101
|
Zheng Y, Wu W, Hu G, Qiu L, Meng S, Song C, Fan L, Zhao Z, Bing X, Chen J. Gut microbiota analysis of juvenile genetically improved farmed tilapia (Oreochromis niloticus) by dietary supplementation of different resveratrol concentrations. FISH & SHELLFISH IMMUNOLOGY 2018; 77:200-207. [PMID: 29574130 DOI: 10.1016/j.fsi.2018.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
The genetically improved farmed tilapia (GIFT, Oreochromis niloticus) is cultured widely for production of freshwater fish in China, while streptococcosis, likely related to pathogenic infections, occurs frequently in juvenile, mother, and operated GIFT. The gut microbiota plays an important role in nutrient digestibility in animals, and resveratrol (RES) has been used in feed for different freshwater fish species. Therefore, understanding changes in the tilapia gut microbiota across different concentrations of dietary RES supplementation is extremely important. The gut microbiota population in tilapia at 45 d after supplementation with different concentrations (0, 0.025, 0.05, 0.1 g/kg) of dietary RES was assessed by 16S rDNA gene sequencing. A total of 5445 operational taxonomic units were identified from all samples, and 14 phyla and 81 families were identified from all fecal samples. The bacteria of the phylum Firmicutes were significantly enriched in the 0.025 g/kg RES group when compared with the controls. Proteobacteria, Firmicutes and Cyanobacteria were the most dominant three phyla in all samples. With the increasing concentrations, the proportion of beneficial microbial taxa (Acetobacteraceae and Methylobacteriaceae) increased, whereas the proportion of harmful microbial taxa decreased, eg. Streptococcaceae except for 0.1 g/kg RES groups. RES did not affect the richness and diversity in tilapia gut microbiota. These findings provide information on the diversity and differences in GIFT gut microbiota database, and may contribute to developing strategies for management of diseases and long-term sustainability of O. niloticus culture.
Collapse
Affiliation(s)
- Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Wei Wu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Gengdong Hu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Chao Song
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Limin Fan
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China
| | - Zhixiang Zhao
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, PR China
| | - Xuwen Bing
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, PR China.
| | - Jiazhang Chen
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences/Fishery Eco-Evironment Monitoring Center of Lower Reaches of Yangtze River, Ministry of Agriculture/Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors(Wuxi), Ministry of Agriculture, Wuxi, Jiangsu, 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi, Jiangsu, 214081, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, PR China.
| |
Collapse
|
102
|
Warne RW, Kirschman L, Zeglin L. Manipulation of Gut Microbiota Reveals Shifting Community Structure Shaped by Host Developmental Windows in Amphibian Larvae. Integr Comp Biol 2018; 57:786-794. [PMID: 28985317 DOI: 10.1093/icb/icx100] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exploration of the importance of developmental windows for microbial colonization in diverse animal taxa, and tests of how these shape both animal microbiomes as well as host phenotypes promise to shed needed light on host-microbe interactions. The aims of this study were to explore how gut microbiota diversity of larval amphibians varies among species and across ontogeny, and to test if manipulation of gut colonization can reveal how microbiomes develop. We found that gut microbiomes differ among species and change across larval ontogeny, with distinctive differences between larvae, metamorphic animals, and juvenile frogs. Through applying a gnotobiotic protocol to eggs and cross-inoculating gut microbiomes between species, we demonstrated that microbiota can be transplanted among species and developmental stages. These results also demonstrated that microbial colonization at hatching is potentially formative for long term composition and function of amphibian gut microbiomes, suggesting that hatching may be a critical developmental window for colonization, similar to the effects of birth mode on human microbiomes. Specifically, our results suggest that either the egg jelly and/or capsules surrounding amphibian eggs are likely important sources for initial microbiome inoculation. Furthermore, we speculate these results suggest that vertical transmission may be important to amphibian microbiome establishment and development, as is common among many animal taxa. Taken together, our results suggest that explicit tests of how host developmental windows influence microbial colonization, and shape amphibian microbiomes across life stages promise to provide insight into the ecological and evolutionary dynamics of host-microbe interactions.
Collapse
Affiliation(s)
- Robin W Warne
- Department of Zoology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Lucas Kirschman
- Department of Zoology, Southern Illinois University, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Lydia Zeglin
- Biology Department, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
103
|
Abstract
The relative contributions of innate and adaptive immune mechanisms in responding to the intestinal microbiota during ontogeny are largely unknown. A recent study in Nature by Mao et al. (2018) elegantly dissects the role of each cell type in the intestine and further describes the metabolic cost to innate immunity.
Collapse
Affiliation(s)
- Eric M Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
104
|
Girard-Madoux MJ, Gomez de Agüero M, Ganal-Vonarburg SC, Mooser C, Belz GT, Macpherson AJ, Vivier E. The immunological functions of the Appendix: An example of redundancy? Semin Immunol 2018; 36:31-44. [DOI: 10.1016/j.smim.2018.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
|
105
|
Fransen MF, Benonisson H, van Maren WW, Sow HS, Breukel C, Linssen MM, Claassens JWC, Brouwers C, van der Kaa J, Camps M, Kleinovink JW, Vonk KK, van Heiningen S, Klar N, van Beek L, van Harmelen V, Daxinger L, Nandakumar KS, Holmdahl R, Coward C, Lin Q, Hirose S, Salvatori D, van Hall T, van Kooten C, Mastroeni P, Ossendorp F, Verbeek JS. A Restricted Role for FcγR in the Regulation of Adaptive Immunity. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29523656 DOI: 10.4049/jimmunol.1700429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
By their interaction with IgG immune complexes, FcγR and complement link innate and adaptive immunity, showing functional redundancy. In complement-deficient mice, IgG downstream effector functions are often impaired, as well as adaptive immunity. Based on a variety of model systems using FcγR-knockout mice, it has been concluded that FcγRs are also key regulators of innate and adaptive immunity; however, several of the model systems underpinning these conclusions suffer from flawed experimental design. To address this issue, we generated a novel mouse model deficient for all FcγRs (FcγRI/II/III/IV-/- mice). These mice displayed normal development and lymphoid and myeloid ontogeny. Although IgG effector pathways were impaired, adaptive immune responses to a variety of challenges, including bacterial infection and IgG immune complexes, were not. Like FcγRIIb-deficient mice, FcγRI/II/III/IV-/- mice developed higher Ab titers but no autoantibodies. These observations indicate a redundant role for activating FcγRs in the modulation of the adaptive immune response in vivo. We conclude that FcγRs are downstream IgG effector molecules with a restricted role in the ontogeny and maintenance of the immune system, as well as the regulation of adaptive immunity.
Collapse
Affiliation(s)
- Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Hreinn Benonisson
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Wendy W van Maren
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Heng Sheng Sow
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Margot M Linssen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jill W C Claassens
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Conny Brouwers
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jos van der Kaa
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marcel Camps
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Jan Willem Kleinovink
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kelly K Vonk
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Sandra van Heiningen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ngaisah Klar
- Department of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lianne van Beek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Vanessa van Harmelen
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Kutty S Nandakumar
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.,School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Rikard Holmdahl
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden
| | - Chris Coward
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Qingshun Lin
- Department of Pathology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Sachiko Hirose
- Toin Human Science and Technology Center, Department of Biomedical Engineering, Toin University of Yokohama, Yokohama 225-8502, Japan
| | - Daniela Salvatori
- Department of Anatomy, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; and
| | - Thorbald van Hall
- Department of Clinical Oncology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Cees van Kooten
- Department of Nephrology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Piero Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - J Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands;
| |
Collapse
|
106
|
Chitre AS, Kattah MG, Rosli YY, Pao M, Deswal M, Deeks SG, Hunt PW, Abdel-Mohsen M, Montaner LJ, Kim CC, Ma A, Somsouk M, McCune JM. A20 upregulation during treated HIV disease is associated with intestinal epithelial cell recovery and function. PLoS Pathog 2018; 14:e1006806. [PMID: 29505600 PMCID: PMC5854440 DOI: 10.1371/journal.ppat.1006806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/15/2018] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
TRIAL REGISTRATION ClinicalTrials.gov Clinical Trial NCT00594880.
Collapse
Affiliation(s)
- Avantika S. Chitre
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Michael G. Kattah
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Yenny Y. Rosli
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Montha Pao
- Division of HIV/AIDS, University of California, San Francisco, San Francisco, CA, United States of America
| | - Monika Deswal
- Division of HIV/AIDS, University of California, San Francisco, San Francisco, CA, United States of America
| | - Steven G. Deeks
- Division of HIV/AIDS, University of California, San Francisco, San Francisco, CA, United States of America
| | - Peter W. Hunt
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | | | - Luis J. Montaner
- The Wistar Institute, Philadelphia, PA, United States of America
| | - Charles C. Kim
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Averil Ma
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Ma Somsouk
- Division of Gastroenterology, University of California, San Francisco, San Francisco, CA, United States of America
| | - Joseph M. McCune
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
107
|
Garfias-López JA, Castro-Escarpuli G, Cárdenas PE, Moreno-Altamirano MMB, Padierna-Olivos J, Sánchez-García FJ. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract. Immunol Lett 2018; 196:149-154. [PMID: 29486232 DOI: 10.1016/j.imlet.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 02/02/2018] [Accepted: 02/19/2018] [Indexed: 12/23/2022]
Abstract
A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut.
Collapse
Affiliation(s)
- Julio Adrián Garfias-López
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Graciela Castro-Escarpuli
- Laboratorio de Bacteriología Médica, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Pedro E Cárdenas
- Laboratorios de Especialidades Inmunológicas SA de CV, Mexico City, Mexico
| | | | | | - F Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
108
|
Ivanov S, Merlin J, Lee MKS, Murphy AJ, Guinamard RR. Biology and function of adipose tissue macrophages, dendritic cells and B cells. Atherosclerosis 2018; 271:102-110. [PMID: 29482037 DOI: 10.1016/j.atherosclerosis.2018.01.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/22/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022]
Abstract
The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity.
Collapse
Affiliation(s)
- Stoyan Ivanov
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France.
| | - Johanna Merlin
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France
| | - Man Kit Sam Lee
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Andrew J Murphy
- Haematopoiesis and Leukocyte Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rodolphe R Guinamard
- INSERM U1065, Mediterranean Center of Molecular Medicine, University of Nice Sophia-Antipolis, Faculty of Medicine, Nice, France.
| |
Collapse
|
109
|
Yu Q, Jia A, Li Y, Bi Y, Liu G. Microbiota regulate the development and function of the immune cells. Int Rev Immunol 2018; 37:79-89. [PMID: 29425062 DOI: 10.1080/08830185.2018.1429428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microbiota is a group of microbes coexisting and co-evolving with the immune system in the host body for millions of years. There are mutual interaction between microbiota and the immune system. Immune cells can shape the populations of microbiota in the gut of animals and humans, and the presence of microbiota and the microbial products can regulate the development and function of the immune cells in the host. Although microbiota resides mainly at the mucosa, the effect of microbiota on the immune system can be both local at the mucosa and systemic through the whole body. At the mucosal sites, the presences of microbiota and microbial products have a direct effect on the immune cells. Microbiota induces production of effectors from immune cells, such as cytokines and inflammatory factors, influencing the further development and function of the immune cells. Experimental data have shown that microbial products can influence the activity of some key factors in signaling pathways. At the nonmucosal sites, such as the bone marrow, peripheral lymph nodes, and spleen, microbiota can also regulate the development and function of the immune cells via several mechanisms in mice, such as introduction of chromatin-level changes through histone acetylation and DNA methylation. Given the important effect of microbiota on the immune system, many immunotherapies that are mediated by immune system rely on gut microbiota. Thus, the study of how microbiota influences immune system bring a potential therapy prospect in preventing and treating diseases.
Collapse
Affiliation(s)
- Qing Yu
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Anna Jia
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Yan Li
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| | - Yujing Bi
- b State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , China
| | - Guangwei Liu
- a Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education , Institute of Cell Biology, College of Life Sciences, Beijing Normal University , Beijing , China
| |
Collapse
|
110
|
Kaetzel CS, Mestecky J, Johansen FE. Two Cells, One Antibody: The Discovery of the Cellular Origins and Transport of Secretory IgA. THE JOURNAL OF IMMUNOLOGY 2018; 198:1765-1767. [PMID: 28223403 DOI: 10.4049/jimmunol.1700025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Charlotte S Kaetzel
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536;
| | - Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294; and
| | | |
Collapse
|
111
|
Rodrigues RR, Shulzhenko N, Morgun A. Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host-Microbiota Interactions. Methods Mol Biol 2018; 1849:227-242. [PMID: 30298258 PMCID: PMC6557635 DOI: 10.1007/978-1-4939-8728-3_15] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Improvements in sequencing technologies and reduced experimental costs have resulted in a vast number of studies generating high-throughput data. Although the number of methods to analyze these "omics" data has also increased, computational complexity and lack of documentation hinder researchers from analyzing their high-throughput data to its true potential. In this chapter we detail our data-driven, transkingdom network (TransNet) analysis protocol to integrate and interrogate multi-omics data. This systems biology approach has allowed us to successfully identify important causal relationships between different taxonomic kingdoms (e.g., mammals and microbes) using diverse types of data.
Collapse
Affiliation(s)
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
112
|
Udayappan SD, Kovatcheva-Datchary P, Bakker GJ, Havik SR, Herrema H, Cani PD, Bouter KE, Belzer C, Witjes JJ, Vrieze A, de Sonnaville N, Chaplin A, van Raalte DH, Aalvink S, Dallinga-Thie GM, Heilig HGHJ, Bergström G, van der Meij S, van Wagensveld BA, Hoekstra JBL, Holleman F, Stroes ESG, Groen AK, Bäckhed F, de Vos WM, Nieuwdorp M. Intestinal Ralstonia pickettii augments glucose intolerance in obesity. PLoS One 2017; 12:e0181693. [PMID: 29166392 PMCID: PMC5699813 DOI: 10.1371/journal.pone.0181693] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
An altered intestinal microbiota composition has been implicated in the pathogenesis of metabolic disease including obesity and type 2 diabetes mellitus (T2DM). Low grade inflammation, potentially initiated by the intestinal microbiota, has been suggested to be a driving force in the development of insulin resistance in obesity. Here, we report that bacterial DNA is present in mesenteric adipose tissue of obese but otherwise healthy human subjects. Pyrosequencing of bacterial 16S rRNA genes revealed that DNA from the Gram-negative species Ralstonia was most prevalent. Interestingly, fecal abundance of Ralstonia pickettii was increased in obese subjects with pre-diabetes and T2DM. To assess if R. pickettii was causally involved in development of obesity and T2DM, we performed a proof-of-concept study in diet-induced obese (DIO) mice. Compared to vehicle-treated control mice, R. pickettii-treated DIO mice had reduced glucose tolerance. In addition, circulating levels of endotoxin were increased in R. pickettii-treated mice. In conclusion, this study suggests that intestinal Ralstonia is increased in obese human subjects with T2DM and reciprocally worsens glucose tolerance in DIO mice.
Collapse
Affiliation(s)
| | - Petia Kovatcheva-Datchary
- Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Guido J. Bakker
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Stefan R. Havik
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- * E-mail: (MN); (HH)
| | - Patrice D. Cani
- Université catholique de Louvain, WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Louvain Drug Research Institute, Brussels, Belgium
| | - Kristien E. Bouter
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Julia J. Witjes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Anne Vrieze
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Noor de Sonnaville
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alice Chaplin
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Daniel H. van Raalte
- Diabetes Center, Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands
- ICAR, VU University Medical Center, Amsterdam, The Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Göran Bergström
- Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | | | - Joost B. L. Hoekstra
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Frits Holleman
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Erik S. G. Stroes
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- RPU Immunobiology, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Wallenberg Laboratory, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Diabetes Center, Department of Internal medicine, VU University Medical Center, Amsterdam, The Netherlands
- ICAR, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (MN); (HH)
| |
Collapse
|
113
|
High-fat diet induces systemic B-cell repertoire changes associated with insulin resistance. Mucosal Immunol 2017; 10:1468-1479. [PMID: 28422186 DOI: 10.1038/mi.2017.25] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
The development of obesity-associated insulin resistance is associated with B-lymphocyte accumulation in visceral adipose tissue (VAT) and is prevented by B-cell ablation. To characterize potentially pathogenic B-cell repertoires in this disorder, we performed high-throughput immunoglobulin (Ig) sequencing from multiple tissues of mice fed high-fat diet (HFD) and regular diet (RD). HFD significantly changed the biochemical properties of Ig heavy-chain complementarity-determining region-3 (CDRH3) sequences, selecting for IgA antibodies with shorter and more hydrophobic CDRH3 in multiple tissues. A set of convergent antibodies of highly similar sequences found in the VAT of HFD mice but not RD mice showed significant somatic mutation, suggesting a response shared between mice to a common antigen or antigens. These findings indicate that a simple high-fat dietary intervention has a major impact on mouse B-cell repertoires, particularly in adipose tissues.
Collapse
|
114
|
Multi-omics Comparative Analysis Reveals Multiple Layers of Host Signaling Pathway Regulation by the Gut Microbiota. mSystems 2017; 2:mSystems00107-17. [PMID: 29085914 PMCID: PMC5655592 DOI: 10.1128/msystems.00107-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/29/2017] [Indexed: 02/06/2023] Open
Abstract
Multiple host pathways were affected by its adaptation to the microbiota. We have found significant transcriptome-proteome discordance caused by the microbiota. This discovery leads to the definite conclusion that transcript-level analysis is not sufficient to predict protein levels and their influence on the function of many specific cellular pathways, so only analysis of combinations of the quantitative data determined at different levels will lead to a complete understanding of the complex relationships between the host and the microbiota. Therefore, our results demonstrate the importance of using an integrative approach to study host-microbiota interaction at the molecular level. The bodies of mammals are hosts to vast microbial communities composed of trillions of bacteria from thousands of species, whose effects on health and development have begun to be appreciated only recently. In this investigation, an integrated analysis combining proteomics and transcriptomics was used to quantitatively compare the terminal ilia from conventional and germfree mice. Female and male mice responded similarly to the microbiota, but C57BL/10A mice responded more strongly than BALB/c mice at both the transcriptome and proteome levels. The microbiota primarily caused upregulation of immunological pathways and downregulation of metabolic pathways in the conventional mice. Many of the affected pathways were altered only at either the transcriptome or proteome level. Of the pathways that were affected at both levels, most were affected concordantly. The discordant pathways were not principally involved in the immune system but instead were related to metabolism, oxidative phosphorylation, protein translation, transport, and turnover. To broaden the discovery of affected host pathways, a meta-analysis was performed using intestinal transcriptomics data from previously published studies of germfree versus conventional mice with diverse microbiota populations. Similar transcript-level responses to the microbiota were found, and many additional affected host pathways were discovered. IMPORTANCE Multiple host pathways were affected by its adaptation to the microbiota. We have found significant transcriptome-proteome discordance caused by the microbiota. This discovery leads to the definite conclusion that transcript-level analysis is not sufficient to predict protein levels and their influence on the function of many specific cellular pathways, so only analysis of combinations of the quantitative data determined at different levels will lead to a complete understanding of the complex relationships between the host and the microbiota. Therefore, our results demonstrate the importance of using an integrative approach to study host-microbiota interaction at the molecular level.
Collapse
|
115
|
Bifari F, Ruocco C, Decimo I, Fumagalli G, Valerio A, Nisoli E. Amino acid supplements and metabolic health: a potential interplay between intestinal microbiota and systems control. GENES & NUTRITION 2017; 12:27. [PMID: 29043007 PMCID: PMC5628494 DOI: 10.1186/s12263-017-0582-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/17/2017] [Indexed: 01/12/2023]
Abstract
Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic status to which they act. In particular, EAA supplementation can trigger different and even opposite effects depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health, including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to establish causal relationships among dietary EAAs, gut microbiota, and health during human development.
Collapse
Affiliation(s)
- Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Ruocco
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
116
|
Wypych TP, Marzi R, Wu GF, Lanzavecchia A, Sallusto F. Role of B cells in T H cell responses in a mouse model of asthma. J Allergy Clin Immunol 2017; 141:1395-1410. [PMID: 28889953 DOI: 10.1016/j.jaci.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND The importance of B lymphocytes to present antigens for antibody production is well documented. In contrast, very little is known about their capacity to influence CD4+ T-cell activation during a primary or secondary response to allergens. OBJECTIVE Using mouse models of asthma, we investigated the role of B cells as antigen-presenting cells in priming and maintenance of TH cell responses. METHODS Mice were immunized through the intranasal route with house dust mite (HDM) extract derived from Dermatophagoides pteronyssinus. B cells were depleted in HDM-sensitized animals to investigate the importance of B cells in maintenance of the allergic response. B cells were depleted before HDM sensitization to investigate the role of B cells in T-cell priming; furthermore, HDM sensitization was performed in mice with MHC class II expression restricted to the B-cell lineage. RESULTS We found that B cells serve as potent antigen-presenting cells ex vivo and restimulate in vivo-primed HDM-specific TH cells. HDM antigens were taken up by B cells independently of B-cell receptor specificity, indicating that HDM uptake and antigen presentation to CD4+ T cells is not restricted to rare B cells carrying HDM-specific B cell receptors. B-cell depletion before HDM challenge in HDM-sensitized mice resulted in a dramatic reduction of allergic response, indicating the role of B cells in amplification of TH2 responses. In contrast, HDM sensitization of mice in which MHC class II expression was restricted to B cells revealed the inability of these cells to prime TH2 responses but highlighted their unexpected role in priming TH1 and TH17 responses. CONCLUSION Collectively, these data reveal new mechanisms leading to initiation and exacerbation of the allergic response that might have implications for designing new therapeutic strategies to combat HDM allergy.
Collapse
Affiliation(s)
- Tomasz Piotr Wypych
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Roberta Marzi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gregory F Wu
- Department of Neurology, Washington University, St Louis, Mo
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
117
|
Frasca D, Blomberg BB. Adipose Tissue Inflammation Induces B Cell Inflammation and Decreases B Cell Function in Aging. Front Immunol 2017; 8:1003. [PMID: 28894445 PMCID: PMC5581329 DOI: 10.3389/fimmu.2017.01003] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022] Open
Abstract
Aging is the greatest risk factor for developing chronic diseases. Inflamm-aging, the age-related increase in low-grade chronic inflammation, may be a common link in age-related diseases. This review summarizes recent published data on potential cellular and molecular mechanisms of the age-related increase in inflammation, and how these contribute to decreased humoral immune responses in aged mice and humans. Briefly, we cover how aging and related inflammation decrease antibody responses in mice and humans, and how obesity contributes to the mechanisms for aging through increased inflammation. We also report data in the literature showing adipose tissue infiltration with immune cells and how these cells are recruited and contribute to local and systemic inflammation. We show that several types of immune cells infiltrate the adipose tissue and these include macrophages, neutrophils, NK cells, innate lymphoid cells, eosinophils, T cells, B1, and B2 cells. Our main focus is how the adipose tissue affects immune responses, in particular B cell responses and antibody production. The role of leptin in generating inflammation and decreased B cell responses is also discussed. We report data published by us and by other groups showing that the adipose tissue generates pro-inflammatory B cell subsets which induce pro-inflammatory T cells, promote insulin resistance, and secrete pathogenic autoimmune antibodies.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
118
|
Vyshenska D, Lam KC, Shulzhenko N, Morgun A. Interplay between viruses and bacterial microbiota in cancer development. Semin Immunol 2017; 32:14-24. [PMID: 28602713 DOI: 10.1016/j.smim.2017.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/03/2017] [Accepted: 05/30/2017] [Indexed: 12/29/2022]
Abstract
During the last few decades we have become accustomed to the idea that viruses can cause tumors. It is much less considered and discussed, however, that most people infected with oncoviruses will never develop cancer. Therefore, the genetic and environmental factors that tip the scales from clearance of viral infection to development of cancer are currently an area of active investigation. Microbiota has recently emerged as a potentially critical factor that would affect this balance by increasing or decreasing the ability of viral infection to promote carcinogenesis. In this review, we provide a model of microbiome contribution to the development of oncogenic viral infections and viral associated cancers, give examples of this process in human tumors, and describe the challenges that prevent progress in the field as well as their potential solutions.
Collapse
Affiliation(s)
- Dariia Vyshenska
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Khiem C Lam
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, 208 Dryden Hall, Corvallis, OR 97331, USA.
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, OR 97331, USA.
| |
Collapse
|
119
|
Mahlaoui N, Warnatz K, Jones A, Workman S, Cant A. Advances in the Care of Primary Immunodeficiencies (PIDs): from Birth to Adulthood. J Clin Immunol 2017; 37:452-460. [PMID: 28523402 PMCID: PMC5489581 DOI: 10.1007/s10875-017-0401-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Primary immunodeficiencies (PIDs) are a widely heterogeneous group of inherited defects of the immune system consisting of many clinical phenotypes with at least 300 underlying genetic deficits currently known. Patients with PIDs can present with, or develop during the course of their life, a susceptibility to recurrent and chronic infection along with autoimmune, allergic, inflammatory, and/or proliferative disorders, all potentially leading to end-organ damage. In recent years, a combination of basic and clinical research has greatly improved understanding of the underlying immunological and genetic defects in PIDs, leading to improved diagnosis, classification, and treatment approaches. In this review, we consider some of the key understandings that should direct diagnostic and treatment approaches in PID and offer insights into current and emerging management approaches and the lifelong care of patients from childhood through to adulthood.
Collapse
Affiliation(s)
- Nizar Mahlaoui
- French National Reference Center for Primary Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. .,Pediatric Immuno-Haematology and Rheumatology Unit, Necker Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France. .,INSERM UMR 1163, Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris, France. .,Sorbonne Paris Cité, Imagine Institute, Paris Descartes University, Paris, France.
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alison Jones
- Immunology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sarita Workman
- Department of Immunology, Royal Free London NHS Foundation Trust, 2nd Floor, Pond Street, Hampstead, London, NW3 2QG, UK
| | - Andrew Cant
- Great North Children's Hospital, & Institute for Cellular Medicine University of Newcastle, Newcastle upon Tyne, NE4 1LP, UK
| |
Collapse
|
120
|
Host Genome Influence on Gut Microbial Composition and Microbial Prediction of Complex Traits in Pigs. Genetics 2017; 206:1637-1644. [PMID: 28468904 DOI: 10.1534/genetics.117.200782] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/27/2017] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to analyze the interplay between gastrointestinal tract (GIT) microbiota, host genetics, and complex traits in pigs using extended quantitative-genetic methods. The study design consisted of 207 pigs that were housed and slaughtered under standardized conditions, and phenotyped for daily gain, feed intake, and feed conversion rate. The pigs were genotyped with a standard 60 K SNP chip. The GIT microbiota composition was analyzed by 16S rRNA gene amplicon sequencing technology. Eight from 49 investigated bacteria genera showed a significant narrow sense host heritability, ranging from 0.32 to 0.57. Microbial mixed linear models were applied to estimate the microbiota variance for each complex trait. The fraction of phenotypic variance explained by the microbial variance was 0.28, 0.21, and 0.16 for daily gain, feed conversion, and feed intake, respectively. The SNP data and the microbiota composition were used to predict the complex traits using genomic best linear unbiased prediction (G-BLUP) and microbial best linear unbiased prediction (M-BLUP) methods, respectively. The prediction accuracies of G-BLUP were 0.35, 0.23, and 0.20 for daily gain, feed conversion, and feed intake, respectively. The corresponding prediction accuracies of M-BLUP were 0.41, 0.33, and 0.33. Thus, in addition to SNP data, microbiota abundances are an informative source of complex trait predictions. Since the pig is a well-suited animal for modeling the human digestive tract, M-BLUP, in addition to G-BLUP, might be beneficial for predicting human predispositions to some diseases, and, consequently, for preventative and personalized medicine.
Collapse
|
121
|
Faria AMC, Reis BS, Mucida D. Tissue adaptation: Implications for gut immunity and tolerance. J Exp Med 2017; 214:1211-1226. [PMID: 28432200 PMCID: PMC5413340 DOI: 10.1084/jem.20162014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
Faria et al. discuss the concept that immune cells undergo specialized adaptation to tissue-specific conditions and its potential implications for tolerance and immunity. Tissue adaptation is an intrinsic component of immune cell development, influencing both resistance to pathogens and tolerance. Chronically stimulated surfaces of the body, in particular the gut mucosa, are the major sites where immune cells traffic and reside. Their adaptation to these environments requires constant discrimination between natural stimulation coming from harmless microbiota and food, and pathogens that need to be cleared. This review will focus on the adaptation of lymphocytes to the gut mucosa, a highly specialized environment that can help us understand the plasticity of leukocytes arriving at various tissue sites and how tissue-related factors operate to shape immune cell fate and function.
Collapse
Affiliation(s)
- Ana M C Faria
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065 .,Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270901, Brazil
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
122
|
Davison JM, Lickwar CR, Song L, Breton G, Crawford GE, Rawls JF. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha. Genome Res 2017; 27:1195-1206. [PMID: 28385711 PMCID: PMC5495071 DOI: 10.1101/gr.220111.116] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023]
Abstract
Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.
Collapse
Affiliation(s)
- James M Davison
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Colin R Lickwar
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| | - Lingyun Song
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Ghislain Breton
- Department of Integrative Biology and Pharmacology, McGovern Medical School, Houston, Texas 77030, USA
| | - Gregory E Crawford
- Department of Pediatrics, Division of Medical Genetics, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Center for the Genomics of Microbial Systems, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
123
|
Abstract
The human gut is in constant complex interaction with the external environment. Although much is understood about the composition and function of the microbiota, much remains to be learnt about the mechanisms by which these organisms interact with the immune system in health and disease. Type 1 interferon (T1IFN), a ubiquitous and pleiotropic family of cytokines, is a critical mediator of the response to viral, bacterial, and other antigens sampled in the intestine. Although inflammation is enhanced in mouse model of colitis when T1IFN signaling is lost, the action of T1IFN is context specific and can be pro- or anti-inflammatory. In humans, T1IFN has been used to treat inflammatory diseases, including multiple sclerosis and inflammatory bowel disease but intestinal inflammation can also develop after the administration of T1IFN. Recent findings indicate that "tonic" or "endogenous" T1IFN, induced by signals from the commensal microbiota, modulates the local signaling environment to prime the intestinal mucosal immune system to determine later responses to pathogens and commensal organisms. This review will summarize the complex immunological effects of T1IFN and recent the role of T1IFN as a mediator between the microbiota and the mucosal immune system, highlighting human data wherever possible. It will discuss what we can learn from clinical experiences with T1IFN and how the T1IFN pathway may be manipulated in the future to maintain mucosal homeostasis.
Collapse
|
124
|
Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol 2017; 17:219-232. [DOI: 10.1038/nri.2017.7] [Citation(s) in RCA: 744] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
125
|
Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, Theodorou V, Dekker J, Méheust A, de Vos WM, Mercenier A, Nauta A, Garcia-Rodenas CL. Homeostasis of the gut barrier and potential biomarkers. Am J Physiol Gastrointest Liver Physiol 2017; 312:G171-G193. [PMID: 27908847 PMCID: PMC5440615 DOI: 10.1152/ajpgi.00048.2015] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 11/09/2016] [Accepted: 11/19/2016] [Indexed: 02/07/2023]
Abstract
The gut barrier plays a crucial role by spatially compartmentalizing bacteria to the lumen through the production of secreted mucus and is fortified by the production of secretory IgA (sIgA) and antimicrobial peptides and proteins. With the exception of sIgA, expression of these protective barrier factors is largely controlled by innate immune recognition of microbial molecular ligands. Several specialized adaptations and checkpoints are operating in the mucosa to scale the immune response according to the threat and prevent overreaction to the trillions of symbionts inhabiting the human intestine. A healthy microbiota plays a key role influencing epithelial barrier functions through the production of short-chain fatty acids (SCFAs) and interactions with innate pattern recognition receptors in the mucosa, driving the steady-state expression of mucus and antimicrobial factors. However, perturbation of gut barrier homeostasis can lead to increased inflammatory signaling, increased epithelial permeability, and dysbiosis of the microbiota, which are recognized to play a role in the pathophysiology of a variety of gastrointestinal disorders. Additionally, gut-brain signaling may be affected by prolonged mucosal immune activation, leading to increased afferent sensory signaling and abdominal symptoms. In turn, neuronal mechanisms can affect the intestinal barrier partly by activation of the hypothalamus-pituitary-adrenal axis and both mast cell-dependent and mast cell-independent mechanisms. The modulation of gut barrier function through nutritional interventions, including strategies to manipulate the microbiota, is considered a relevant target for novel therapeutic and preventive treatments against a range of diseases. Several biomarkers have been used to measure gut permeability and loss of barrier integrity in intestinal diseases, but there remains a need to explore their use in assessing the effect of nutritional factors on gut barrier function. Future studies should aim to establish normal ranges of available biomarkers and their predictive value for gut health in human cohorts.
Collapse
Affiliation(s)
- Jerry M. Wells
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | - Robert J. Brummer
- 2Nutrition-Gut-Brain Interactions Research Centre, School of Medicine and Health, Örebro University, Örebro, Sweden;
| | - Muriel Derrien
- 3Centre Daniel Carasso, Danone Research, Palaiseau, France;
| | - Thomas T. MacDonald
- 4Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, United Kingdom;
| | - Freddy Troost
- 5Division of Gastroenterology-Hepatology, Department of Internal Medicine, University Hospital Maastricht, Maastricht University Medical Centre, Maastricht, The Netherlands;
| | - Patrice D. Cani
- 6Louvain Drug Research Institute, WELBIO (Walloon Excellence in Life Sciences and BIOtechnology), Metabolism and Nutrition Research Group, Université Catholique de Louvain, Brussels, Belgium;
| | - Vassilia Theodorou
- 7Neuro-Gastroenterology and Nutrition Group, Institut National de la Recherche Agronomique, Toulouse, France;
| | - Jan Dekker
- 1Host-Microbe Interactomics, Animal Sciences, Wageningen University, Wageningen, The Netherlands;
| | | | - Willem M. de Vos
- 9Laboratory of Microbiology, Wageningen UR, Wageningen, The Netherlands;
| | - Annick Mercenier
- 10Institute of Nutritional Science, Nestlé Research Center, Lausanne, Switzerland; and
| | - Arjen Nauta
- 11FrieslandCampina, Amersfoort, The Netherlands
| | | |
Collapse
|
126
|
Li R, Yang J, Saffari A, Jacobs J, Baek KI, Hough G, Larauche MH, Ma J, Jen N, Moussaoui N, Zhou B, Kang H, Reddy S, Henning SM, Campen MJ, Pisegna J, Li Z, Fogelman AM, Sioutas C, Navab M, Hsiai TK. Ambient Ultrafine Particle Ingestion Alters Gut Microbiota in Association with Increased Atherogenic Lipid Metabolites. Sci Rep 2017; 7:42906. [PMID: 28211537 PMCID: PMC5314329 DOI: 10.1038/srep42906] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/17/2017] [Indexed: 12/22/2022] Open
Abstract
Ambient particulate matter (PM) exposure is associated with atherosclerosis and inflammatory bowel disease. Ultrafine particles (UFP, dp < 0.1–0.2 μm) are redox active components of PM. We hypothesized that orally ingested UFP promoted atherogenic lipid metabolites in both the intestine and plasma via altered gut microbiota composition. Low density lipoprotein receptor-null (Ldlr−/−) mice on a high-fat diet were orally administered with vehicle control or UFP (40 μg/mouse/day) for 3 days a week. After 10 weeks, UFP ingested mice developed macrophage and neutrophil infiltration in the intestinal villi, accompanied by elevated cholesterol but reduced coprostanol levels in the cecum, as well as elevated atherogenic lysophosphatidylcholine (LPC 18:1) and lysophosphatidic acids (LPAs) in the intestine and plasma. At the phylum level, Principle Component Analysis revealed significant segregation of microbiota compositions which was validated by Beta diversity analysis. UFP-exposed mice developed increased abundance in Verrocomicrobia but decreased Actinobacteria, Cyanobacteria, and Firmicutes as well as a reduced diversity in microbiome. Spearman’s analysis negatively correlated Actinobacteria with cecal cholesterol, intestinal and plasma LPC18:1, and Firmicutes and Cyanobacteria with plasma LPC 18:1. Thus, ultrafine particles ingestion alters gut microbiota composition, accompanied by increased atherogenic lipid metabolites. These findings implicate the gut-vascular axis in a atherosclerosis model.
Collapse
Affiliation(s)
- Rongsong Li
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jieping Yang
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Arian Saffari
- Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Jacobs
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kyung In Baek
- Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Greg Hough
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Muriel H Larauche
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jianguo Ma
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Nelson Jen
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| | - Nabila Moussaoui
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Bill Zhou
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hanul Kang
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Srinivasa Reddy
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Susanne M Henning
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Joseph Pisegna
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Zhaoping Li
- Division of Clinical Nutrition, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Constantinos Sioutas
- Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tzung K Hsiai
- Division of Cardiology, Department of Medicine, School of Medicine, University of California, Los Angeles, CA 90095, USA.,Department of Bioengineering, School of Engineering &Applied Science, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
127
|
Saxena K, Simon LM, Zeng XL, Blutt SE, Crawford SE, Sastri NP, Karandikar UC, Ajami NJ, Zachos NC, Kovbasnjuk O, Donowitz M, Conner ME, Shaw CA, Estes MK. A paradox of transcriptional and functional innate interferon responses of human intestinal enteroids to enteric virus infection. Proc Natl Acad Sci U S A 2017; 114:E570-E579. [PMID: 28069942 PMCID: PMC5278484 DOI: 10.1073/pnas.1615422114] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The intestinal epithelium can limit enteric pathogens by producing antiviral cytokines, such as IFNs. Type I IFN (IFN-α/β) and type III IFN (IFN-λ) function at the epithelial level, and their respective efficacies depend on the specific pathogen and site of infection. However, the roles of type I and type III IFN in restricting human enteric viruses are poorly characterized as a result of the difficulties in cultivating these viruses in vitro and directly obtaining control and infected small intestinal human tissue. We infected nontransformed human intestinal enteroid cultures from multiple individuals with human rotavirus (HRV) and assessed the host epithelial response by using RNA-sequencing and functional assays. The dominant transcriptional pathway induced by HRV infection is a type III IFN-regulated response. Early after HRV infection, low levels of type III IFN protein activate IFN-stimulated genes. However, this endogenous response does not restrict HRV replication because replication-competent HRV antagonizes the type III IFN response at pre- and posttranscriptional levels. In contrast, exogenous IFN treatment restricts HRV replication, with type I IFN being more potent than type III IFN, suggesting that extraepithelial sources of type I IFN may be the critical IFN for limiting enteric virus replication in the human intestine.
Collapse
Affiliation(s)
- Kapil Saxena
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lukas M Simon
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Xi-Lei Zeng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Narayan P Sastri
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Umesh C Karandikar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nadim J Ajami
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Nicholas C Zachos
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Olga Kovbasnjuk
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Mark Donowitz
- Department of Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Chad A Shaw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
128
|
Graves CL, Li J, LaPato M, Shapiro MR, Glover SC, Wallet MA, Wallet SM. Intestinal Epithelial Cell Regulation of Adaptive Immune Dysfunction in Human Type 1 Diabetes. Front Immunol 2017; 7:679. [PMID: 28119693 PMCID: PMC5222791 DOI: 10.3389/fimmu.2016.00679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023] Open
Abstract
Environmental factors contribute to the initiation, progression, and maintenance of type 1 diabetes (T1D), although a single environmental trigger for disease has not been identified. Studies have documented the contribution of immunity within the gastrointestinal tract (GI) to the expression of autoimmunity at distal sites. Intestinal epithelial cells (IECs) regulate local and systemic immunologic homeostasis through physical and biochemical interactions with innate and adaptive immune populations. We hypothesize that a loss in the tolerance-inducing nature of the GI tract occurs within T1D and is due to altered IECs' innate immune function. As a first step in addressing this hypothesis, we contrasted the global immune microenvironment within the GI tract of individuals with T1D as well as evaluated the IEC-specific effects on adaptive immune cell phenotypes. The soluble and cellular immune microenvironment within the duodenum, the soluble mediator profile of primary IECs derived from the same duodenal tissues, and the effect of the primary IECs' soluble mediator profile on T-cell expansion and polarization were evaluated. Higher levels of IL-17C and beta-defensin 2 (BD-2) mRNA in the T1D-duodenum were observed. Higher frequencies of type 1 innate lymphoid cells (ILC1) and CD8+CXCR3+ T-cells (Tc1) were also observed in T1D-duodenal tissues, concomitant with lower frequencies of type 3 ILC (ILC3) and CD8+CCR6+ T-cells (Tc17). Higher levels of proinflammatory mediators (IL-17C and BD-2) in the absence of similar changes in mediators associated with homeostasis (interleukin 10 and thymic stromal lymphopoietin) were also observed in T1D-derived primary IEC cultures. T1D-derived IEC culture supernatants induced more robust CD8+ T-cell proliferation along with enhanced polarization of Tc1 populations, at the expense of Tc17 polarization, as well as the expansion of CXCR3+CCR6+/- Tregs, indicative of a Th1-like and less regulatory phenotype. These data demonstrate a proinflammatory microenvironment of the T1D-duodenum, whereby IECs have the potential to contribute to the expansion and polarization of innate and adaptive immune cells. Although these data do not discern whether these observations are not simply a consequence of T1D, the data indicate that the T1D-GI tract has the capacity to foster a permissive environment under which autoreactive T-cells could be expanded and polarized.
Collapse
Affiliation(s)
- Christina L. Graves
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Jian Li
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melissa LaPato
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melanie R. Shapiro
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Sarah C. Glover
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| |
Collapse
|
129
|
An expanding stage for commensal microbes in host immune regulation. Cell Mol Immunol 2017; 14:339-348. [PMID: 28065939 DOI: 10.1038/cmi.2016.64] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal commensal microbiota is a concentrated mix of microbial life forms, including bacteria, fungi, archaea and viruses. These life forms are targets of host antimicrobial defense in order to establish a homeostatic symbiosis inside the host. However, they are also instrumental in shaping the functions of our immune system via a diverse set of communication mechanisms. In the gut, T helper 17, regulatory T and B cells are continuously tuned by specific microbial strains and metabolic processes. These cells in return help to establish a mutually beneficial exchange with the gut microbial contents. Imbalances in this symbiosis lead to dysregulations in the host's ability to control infections and the development of autoimmune diseases. In addition, the commensal microbiota has a significant and obligatory role in shaping both gut intrinsic and distal lymphoid organs, casting a large impact on the overall immune landscape in the host. This review discusses the major components of the microbial community in the gut and how its members collectively and individually exert regulatory roles in the host immune system and lymphoid structure development, as well as the functions of several major immune cell types.
Collapse
|
130
|
McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest 2017; 127:5-13. [PMID: 28045397 DOI: 10.1172/jci88876] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation in adipose tissue, possibly related to adipose cell hypertrophy, hypoxia, and/or intestinal leakage of bacteria and their metabolic products, likely plays a critical role in the development of obesity-associated insulin resistance (IR). Cells of both the innate and adaptive immune system residing in adipose tissues, as well as in the intestine, participate in this process. Thus, M1 macrophages, IFN-γ-secreting Th1 cells, CD8+ T cells, and B cells promote IR, in part through secretion of proinflammatory cytokines. Conversely, eosinophils, Th2 T cells, type 2 innate lymphoid cells, and possibly Foxp3+ Tregs protect against IR through local control of inflammation.
Collapse
|
131
|
Dinan TG, Cryan JF. Microbes, Immunity, and Behavior: Psychoneuroimmunology Meets the Microbiome. Neuropsychopharmacology 2017; 42:178-192. [PMID: 27319972 PMCID: PMC5143479 DOI: 10.1038/npp.2016.103] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/26/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023]
Abstract
There is now a large volume of evidence to support the view that the immune system is a key communication pathway between the gut and brain, which plays an important role in stress-related psychopathologies and thus provides a potentially fruitful target for psychotropic intervention. The gut microbiota is a complex ecosystem with a diverse range of organisms and a sophisticated genomic structure. Bacteria within the gut are estimated to weigh in excess of 1 kg in the adult human and the microbes within not only produce antimicrobial peptides, short chain fatty acids, and vitamins, but also most of the common neurotransmitters found in the human brain. That the microbial content of the gut plays a key role in immune development is now beyond doubt. Early disruption of the host-microbe interplay can have lifelong consequences, not just in terms of intestinal function but in distal organs including the brain. It is clear that the immune system and nervous system are in continuous communication in order to maintain a state of homeostasis. Significant gaps in knowledge remain about the effect of the gut microbiota in coordinating the immune-nervous systems dialogue. However, studies using germ-free animals, infective models, prebiotics, probiotics, and antibiotics have increased our understanding of the interplay. Early life stress can have a lifelong impact on the microbial content of the intestine and permanently alter immune functioning. That early life stress can also impact adult psychopathology has long been appreciated in psychiatry. The challenge now is to fully decipher the molecular mechanisms that link the gut microbiota, immune, and central nervous systems in a network of communication that impacts behavior patterns and psychopathology, to eventually translate these findings to the human situation both in health and disease. Even at this juncture, there is evidence to pinpoint key sites of communication where gut microbial interventions either with drugs or diet or perhaps fecal microbiota transplantation may positively impact mental health.
Collapse
Affiliation(s)
- Timothy G Dinan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Psychiatry & Neurobehavioural Sciences, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
132
|
Thomas LD, Vyshenska D, Shulzhenko N, Yambartsev A, Morgun A. Differentially correlated genes in co-expression networks control phenotype transitions. F1000Res 2016; 5:2740. [PMID: 28163897 PMCID: PMC5247791 DOI: 10.12688/f1000research.9708.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/10/2016] [Indexed: 01/06/2023] Open
Abstract
Background: Co-expression networks are a tool widely used for analysis of “Big Data” in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer). Methods: Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two
mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks. Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as “bottlenecks” rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using
in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play regulatory roles in cancer cell growth. Conclusion: Identifying differentially co-expressed genes in co-expression networks is an important tool in detecting regulatory genes involved in alterations of phenotype.
Collapse
Affiliation(s)
- Lina D Thomas
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Anatoly Yambartsev
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, USA
| |
Collapse
|
133
|
Greer RL, Dong X, Moraes ACF, Zielke RA, Fernandes GR, Peremyslova E, Vasquez-Perez S, Schoenborn AA, Gomes EP, Pereira AC, Ferreira SRG, Yao M, Fuss IJ, Strober W, Sikora AE, Taylor GA, Gulati AS, Morgun A, Shulzhenko N. Akkermansia muciniphila mediates negative effects of IFNγ on glucose metabolism. Nat Commun 2016; 7:13329. [PMID: 27841267 PMCID: PMC5114536 DOI: 10.1038/ncomms13329] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/23/2016] [Indexed: 12/19/2022] Open
Abstract
Cross-talk between the gut microbiota and the host immune system regulates host metabolism, and its dysregulation can cause metabolic disease. Here, we show that the gut microbe Akkermansia muciniphila can mediate negative effects of IFNγ on glucose tolerance. In IFNγ-deficient mice, A. muciniphila is significantly increased and restoration of IFNγ levels reduces A. muciniphila abundance. We further show that IFNγ-knockout mice whose microbiota does not contain A. muciniphila do not show improvement in glucose tolerance and adding back A. muciniphila promoted enhanced glucose tolerance. We go on to identify Irgm1 as an IFNγ-regulated gene in the mouse ileum that controls gut A. muciniphila levels. A. muciniphila is also linked to IFNγ-regulated gene expression in the intestine and glucose parameters in humans, suggesting that this trialogue between IFNγ, A. muciniphila and glucose tolerance might be an evolutionally conserved mechanism regulating metabolic health in mice and humans. Mice deficient in the pro-inflammatory cytokine IFNγ have improved glucose tolerance. Here, the authors show that this effect depends on the gut microbe Akkermansia muciniphila, whose abundance increases in the absence IFNγ, and which is known to have beneficial effects on host metabolism.
Collapse
Affiliation(s)
- Renee L Greer
- College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Ana Carolina F Moraes
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715, São Paulo, SP 01246-904, Brazil
| | - Ryszard A Zielke
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Gabriel R Fernandes
- Oswaldo Cruz Foundation, René Rachou Research Center, Av. Augusto de Lima, 1715, Belo Horizonte, MG 30190-002, Brazil
| | - Ekaterina Peremyslova
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Stephany Vasquez-Perez
- College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA
| | - Alexi A Schoenborn
- Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, 260 MacNider Building, CB# 7220, Chapel Hill, North Carolina 27599, USA
| | - Everton P Gomes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr Eneas de Carvalho Aguiar, 44, São Paulo, SP 05403-000, Brazil
| | - Sandra R G Ferreira
- Department of Epidemiology, School of Public Health, University of São Paulo, Av. Dr Arnaldo, 715, São Paulo, SP 01246-904, Brazil
| | - Michael Yao
- Mucosal Immunity Section, Laboratory of Immune Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | - Ivan J Fuss
- Mucosal Immunity Section, Laboratory of Immune Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | - Warren Strober
- Mucosal Immunity Section, Laboratory of Immune Defenses, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA
| | - Aleksandra E Sikora
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Gregory A Taylor
- Geriatric Research, Education and Clinical Center, VA Medical Center, Departments of Medicine, Molecular Genetics and Microbiology and Immunology, Division of Geriatrics and Center for the Study of Aging and Human Development, Duke Box 3003, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Ajay S Gulati
- Division of Pediatric Gastroenterology, University of North Carolina at Chapel Hill, 260 MacNider Building, CB# 7220, Chapel Hill, North Carolina 27599, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, 1601 SW Jefferson Way, Corvallis, Oregon 97331, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, 105 Dryden Hall, 450 SW 30th Street, Corvallis, Oregon 97331, USA
| |
Collapse
|
134
|
Abstract
Disruptions to the microbiota can have pathological consequences, which highlights the need to understand the factors that contribute to its stability. Although decades of research have focused on the importance of IgA during pathogenic infection, much of the IgA that is generated in the gut targets the resident commensal microorganisms. Despite this observation, the role of antibodies in regulating microbiota composition remains controversial and poorly understood. Here we propose that antibodies generated in response to microbial colonization of the gut shape the composition of the microbiota to benefit the health of the host through a process that we term antibody-mediated immunoselection (AMIS). Given the exquisite specificity of antibodies and an emerging interest in the use of immunotherapies, we suggest that understanding AMIS of the microbiota will highlight novel uses of antibodies to manipulate microbial communities for therapeutic benefit.
Collapse
|
135
|
Jørgensen SF, Trøseid M, Kummen M, Anmarkrud JA, Michelsen AE, Osnes LT, Holm K, Høivik ML, Rashidi A, Dahl CP, Vesterhus M, Halvorsen B, Mollnes TE, Berge RK, Moum B, Lundin KEA, Fevang B, Ueland T, Karlsen TH, Aukrust P, Hov JR. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol 2016; 9:1455-1465. [PMID: 26982597 DOI: 10.1038/mi.2016.18] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 02/08/2016] [Indexed: 02/04/2023]
Abstract
Common variable immunodeficiency (CVID) is the most common symptomatic primary immunodeficiency characterized by low immunoglobulin (Ig)G and IgA, and/or IgM. In addition to bacterial infections, a large subgroup has noninfectious inflammatory and autoimmune complications. We performed 16S ribosomal RNA-based profiling of stool samples in 44 CVID patients, 45 patients with inflammatory bowel disease (disease controls), and 263 healthy controls. We measured plasma lipopolysaccharide (LPS) and markers of immune cell activation (i.e., soluble (s) CD14 and sCD25) in an expanded cohort of 104 patients with CVID and in 30 healthy controls. We found a large shift in the microbiota of CVID patients characterized by a reduced within-individual bacterial diversity (alpha diversity, P<0.001) without obvious associations to antibiotics use. Plasma levels of both LPS (P=0.001) and sCD25 (P<0.0001) were elevated in CVID, correlating negatively with alpha diversity and positively with a dysbiosis index calculated from the taxonomic profile. Low alpha diversity and high dysbiosis index, LPS, and immune markers were most pronounced in the subgroup with inflammatory and autoimmune complications. Low level of IgA was associated with decreased alpha diversity, but not independently from sCD25 and LPS. Our findings suggest a link between immunodeficiency, systemic immune activation, LPS, and altered gut microbiota.
Collapse
Affiliation(s)
- S F Jørgensen
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Transplantation Medicine, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - M Trøseid
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Transplantation Medicine, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - M Kummen
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - J A Anmarkrud
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - A E Michelsen
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - L T Osnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - K Holm
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - M L Høivik
- Department of Gastroenterology, Oslo University Hospital Ullevål, Oslo, Norway
| | - A Rashidi
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - C P Dahl
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - M Vesterhus
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Medicine, National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - B Halvorsen
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T E Mollnes
- K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, and Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - R K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - B Moum
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterology, Oslo University Hospital Ullevål, Oslo, Norway
| | - K E A Lundin
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - B Fevang
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Transplantation Medicine, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - T Ueland
- K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Transplantation Medicine, Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K G Jebsen Thrombosis Research and Expertise Centre, University of Tromsø, Tromsø, Norway
| | - T H Karlsen
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Transplantation Medicine, Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of clinical medicine, University of Bergen, Bergen, Norway
| | - P Aukrust
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Department of Transplantation Medicine, Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - J R Hov
- Research Institute of Internal Medicine, Division of Cancer Medicine, Surgery and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,K G Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Department of Transplantation Medicine, Section of Gastroenterology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
136
|
Yambartsev A, Perlin MA, Kovchegov Y, Shulzhenko N, Mine KL, Dong X, Morgun A. Unexpected links reflect the noise in networks. Biol Direct 2016; 11:52. [PMID: 27737689 PMCID: PMC5480421 DOI: 10.1186/s13062-016-0155-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 10/01/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Gene covariation networks are commonly used to study biological processes. The inference of gene covariation networks from observational data can be challenging, especially considering the large number of players involved and the small number of biological replicates available for analysis. RESULTS We propose a new statistical method for estimating the number of erroneous edges in reconstructed networks that strongly enhances commonly used inference approaches. This method is based on a special relationship between sign of correlation (positive/negative) and directionality (up/down) of gene regulation, and allows for the identification and removal of approximately half of all erroneous edges. Using the mathematical model of Bayesian networks and positive correlation inequalities we establish a mathematical foundation for our method. Analyzing existing biological datasets, we find a strong correlation between the results of our method and false discovery rate (FDR). Furthermore, simulation analysis demonstrates that our method provides a more accurate estimate of network error than FDR. CONCLUSIONS Thus, our study provides a new robust approach for improving reconstruction of covariation networks. REVIEWERS This article was reviewed by Eugene Koonin, Sergei Maslov, Daniel Yasumasa Takahashi.
Collapse
Affiliation(s)
- Anatoly Yambartsev
- Department of Statistics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Michael A Perlin
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Yevgeniy Kovchegov
- Department of Mathematics, College of Science, Oregon State University, Corvallis, OR, USA
| | - Natalia Shulzhenko
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Karina L Mine
- Instituto de Imunogenética - Associação Fundo de Incentivo à Pesquisa (IGEN-AFIP), São Paulo, SP, Brazil
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
137
|
Mimee M, Citorik RJ, Lu TK. Microbiome therapeutics - Advances and challenges. Adv Drug Deliv Rev 2016; 105:44-54. [PMID: 27158095 PMCID: PMC5093770 DOI: 10.1016/j.addr.2016.04.032] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/21/2016] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
Abstract
The microbial community that lives on and in the human body exerts a major impact on human health, from metabolism to immunity. In order to leverage the close associations between microbes and their host, development of therapeutics targeting the microbiota has surged in recent years. Here, we discuss current additive and subtractive strategies to manipulate the microbiota, focusing on bacteria engineered to produce therapeutic payloads, consortia of natural organisms and selective antimicrobials. Further, we present challenges faced by the community in the development of microbiome therapeutics, including designing microbial therapies that are adapted for specific geographies in the body, stable colonization with microbial therapies, discovery of clinically relevant biosensors, robustness of engineered synthetic gene circuits and addressing safety and biocontainment concerns. Moving forward, collaboration between basic and applied researchers and clinicians to address these challenges will poise the field to herald an age of next-generation, cellular therapies that draw on novel findings in basic research to inform directed augmentation of the human microbiota.
Collapse
Affiliation(s)
- Mark Mimee
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA
| | - Robert J Citorik
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA
| | - Timothy K Lu
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA, USA; MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Center for Microbiome Informatics and Therapeutics, Cambridge, MA, USA.
| |
Collapse
|
138
|
Levi Mortera S, Del Chierico F, Vernocchi P, Rosado MM, Cavola A, Chierici M, Pieroni L, Urbani A, Carsetti R, Lante I, Dallapiccola B, Putignani L. Monitoring Perinatal Gut Microbiota in Mouse Models by Mass Spectrometry Approaches: Parental Genetic Background and Breastfeeding Effects. Front Microbiol 2016; 7:1523. [PMID: 27725814 PMCID: PMC5036385 DOI: 10.3389/fmicb.2016.01523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 01/22/2023] Open
Abstract
At birth, contact with external stimuli, such as nutrients derived from food, is necessary to modulate the symbiotic balance between commensal and pathogenic bacteria, protect against bacterial dysbiosis, and initiate the development of the mucosal immune response. Among a variety of different feeding patterns, breastfeeding represents the best modality. In fact, the capacity of breast milk to modulate the composition of infants’ gut microbiota leads to beneficial effects on their health. In this study, we used newborn mice as a model to evaluate the effect of parental genetic background (i.e., IgA-producing mice and IgA-deficient mice) and feeding modulation (i.e., maternal feeding and cross-feeding) on the onset and shaping of gut microbiota after birth. To investigate these topics, we used either a culturomic approach that employed Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MS), or bottom–up Liquid Chromatography, with subsequent MSMS shotgun metaproteomic analysis that compared and assembled results of the two techniques. We found that the microbial community was enriched by lactic acid bacteria when pups were breastfed by wild-type (WT) mothers, while IgA-deficient milk led to an increase in the opportunistic bacterial pathogen (OBP) population. Cross-feeding results suggested that IgA supplementation promoted the exclusion of some OBPs and the temporary appearance of beneficial species in pups fed by WT foster mothers. Our results show that both techniques yield a picture of microbiota from different angles and with varying depths. In particular, our metaproteomic pipeline was found to be a reliable tool in the description of microbiota. Data from these studies are available via ProteomeXchange, with identifier PXD004033.
Collapse
Affiliation(s)
- Stefano Levi Mortera
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Pamela Vernocchi
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Maria M Rosado
- Immunology Research Area, B-cell Physiopathology Unit and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Agnese Cavola
- Department of Experimental Medicine, University of Rome Tor Vergata Rome, Italy
| | | | | | - Andrea Urbani
- IRCCS-Santa Lucia FoundationRome, Italy; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro CuoreRome, Italy
| | - Rita Carsetti
- Immunology Research Area, B-cell Physiopathology Unit and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Isabella Lante
- Laboratory Medicine Department, San Camillo Hospital Treviso, Italy
| | | | - Lorenza Putignani
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Department of Laboratory, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
139
|
Abstract
Hypomorphic Rag mutations in humans cause Omenn Syndrome (OS) a severe immunodeficiency associated with autoimmune-like manifestations mediated by oligoclonal activated T and B cells. The clinical and immunological spectrum of OS presentation is extremely broad. However, the role played by environmental triggers in the disease pathogenesis remains largely unknown. We have recently shown in a murine model that gut microbiota has a substantial role in determining the distinctive immune dysregulation of OS. Here, we describe how dysbiosis and loss of T cell tolerance to commensals influence the expression of autoimmunity at the barrier site and beyond, and the disease hallmark hyper-IgE. We discuss how commensal antigens and gut-derived pathogenic T cells could potentially modulate skin immunity to determine cutaneous degenerations in OS. These mechanisms may have broader implications for a deeper understanding of the role of gut microbes in influencing barriers integrity and host physiology.
Collapse
Affiliation(s)
- Rosita Rigoni
- Milan Unit, Istituto di Ricerca Genetica e
Biomedica, Consiglio Nazionale delle Ricerche, Milan,
Italy,Humanitas Clinical and Research
Center, Rozzano, Milan, Italy
| | - Fabio Grassi
- Istituto Nazionale Genetica Molecolare,
Department of Medical Biotechnology and Translational Medicine, University of
Milan, Milan, Italy,Institute for Research in
Biomedicine, Bellinzona, Switzerland
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e
Biomedica, Consiglio Nazionale delle Ricerche, Milan,
Italy,Telethon Institute for Gene Therapy, Division
of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a
Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan,
Italy
| | - Barbara Cassani
- Milan Unit, Istituto di Ricerca Genetica e
Biomedica, Consiglio Nazionale delle Ricerche, Milan,
Italy,Humanitas Clinical and Research
Center, Rozzano, Milan, Italy,CONTACT Barbara Cassani Humanitas Clinical and Research Center, via Manzoni
56, 20089 Rozzano (Mi), Italy
| |
Collapse
|
140
|
Abstract
PURPOSE OF REVIEW Autoimmune and inflammatory manifestations are the biggest clinical challenge in the care of patients with common variable immunodeficiency (CVID). The increasing pathogenic knowledge and potential therapeutic implications require a new evaluation of the status quo. (Figure is included in full-text article.) RECENT FINDINGS The conundrum of the simultaneous manifestation of primary immunodeficiency and autoimmune disease (AID) is increasingly elucidated by newly discovered genetic defects. Thus, cytotoxic T lymphocyte-associated antigen 4 or caspase-9 deficiency presenting with CVID-like phenotypes reiterate concepts of immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome and autoimmune lymphoproliferative syndrome. Activating signaling defects downstream of antigen or cytokine receptors are often associated with loss-of-tolerance in the affected patients. Increasingly, forms of combined immunodeficiency are discovered among CVID-like patients. Although different autoimmune manifestations often coincide in the same patient their immunopathology varies. Treatment of AID in CVID remains a challenge, but based on a better definition of the immunopathology first attempts of targeted treatment have been made. SUMMARY The increasing comprehension of immunological concepts promoting AID in CVID will allow better and in some cases possibly even targeted treatment. A genetic diagnosis therefore becomes important information in this group of patients, especially in light of the fact that some patients might require hematopoietic stem cell transplantation because of their underlying immunodeficiency.
Collapse
|
141
|
Frasca D, Diaz A, Romero M, Blomberg BB. Ageing and obesity similarly impair antibody responses. Clin Exp Immunol 2016; 187:64-70. [PMID: 27314456 DOI: 10.1111/cei.12824] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/19/2022] Open
Abstract
Ageing is characterized by increased low-grade chronic inflammation, which is a significant risk factor for morbidity and mortality of elderly individuals. Similar to ageing, obesity is considered to be an inflammatory predisposition associated with chronic activation of immune cells and consequent local and systemic inflammation. Both ageing and obesity are characterized by reduced innate and adaptive immune responses. This review focuses on B cells, how they may contribute, at least locally, to low-grade chronic inflammation in ageing and obesity and on the mechanisms involved.
Collapse
Affiliation(s)
- D Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - A Diaz
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - M Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| | - B B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, USA
| |
Collapse
|
142
|
Abstract
PURPOSE OF REVIEW It is long known that immune and metabolic cascades intersect at various cross-points. More recently, the regulatory influence of the microbiota on both of these cascades has emerged. Advances with therapeutic implications for chronic immunologic and metabolic disorders are examined. RECENT FINDINGS Disturbances of the microbiota, particularly in early life, may be the proximate environmental risk factor in socioeconomically developed societies for development of chronic immune-allergic and metabolic disorders, including obesity. Antibiotics and dietary factors contribute to this risk. Multiple microbial signalling molecules mediate host-microbe interactions including bacterial metabolites such as short-chain fatty acids, bile salts and others. SUMMARY New strategies for manipulating the composition and metabolic activity of the gut microbiota have emerged and offer a realistic prospect of personalized therapeutic options in immune and metabolic diseases.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine and APC Microbiome Institute, National University of Ireland, Cork, Ireland
| | | |
Collapse
|
143
|
Gut microbiota and hematopoietic stem cell transplantation: where do we stand? Bone Marrow Transplant 2016; 52:7-14. [PMID: 27348539 DOI: 10.1038/bmt.2016.173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/26/2022]
Abstract
Advances in biological techniques have potentiated great progresses in understanding the interaction between human beings and the ∼10 to 100 trillion microbes living in their gastrointestinal tract: gut microbiota (GM). In this review, we describe recent emerging data on the role of GM in hematopoietic stem cell transplantation, with a focus on immunomodulatory properties in the immune system recovery and the impact in the development of the main complications, as GvHD and infections.
Collapse
|
144
|
Wang Z, Wang Z, Wang J, Diao Y, Qian X, Zhu N. T-bet-Expressing B Cells Are Positively Associated with Crohn's Disease Activity and Support Th1 Inflammation. DNA Cell Biol 2016; 35:628-635. [PMID: 27348235 DOI: 10.1089/dna.2016.3304] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogenesis of Crohn's disease (CD) is thought to involve the chronic activation of T helper 1 (Th1)- and Th17-mediated inflammation, such as the production of interferon-gamma (IFN-γ) and interleukin 17 (IL-17). However, studies have also shown that although IFN-γ is required, IFN-γ-producing or T-bet-expressing Th1 cells are dispensable. We therefore examined T-bet-expressing B cells as another source of IFN-γ that potentially supported intestinal inflammation in CD patients. We found that the frequencies of T-bet-expressing B cells were significantly upregulated and abundantly present in the gut of active, but not quiescent, CD patients. The frequencies of T-bet-expressing B cells were also directly correlated with CD disease activity. These T-bet+ B cells were almost exclusively IgG expressing and produced significantly higher amounts of IFN-γ, IL-6, and IL-12 than IgA- and IgM-expressing T-bet- B cells. These B cells also supported IFN-γ production of CD4+ T cells. T-bet expression was induced in vitro in peripheral blood B cells through the stimulation of B-cell receptor (BCR), Toll-like receptor 7 (TLR7), and IFN-γ, which resembled gut T-bet+ B cells in terms of elevated IFN-γ. We found that these stimulated B cells, but not unstimulated B cells, supported the IFN-γ and IL-12 production from autologous CD4+ T cells. In addition, in patients with higher gut T-bet+ B-cell percentage, a higher frequency of gut-infiltrating IFN-γ+ and IL-12+ T cells was also observed. Together, our results suggested that T-bet-expressing B cells could contribute to the intestinal Th1 inflammation in CD patients.
Collapse
Affiliation(s)
- Zhenlong Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Zhiming Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Jinjing Wang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Yanqing Diao
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Xiaoli Qian
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| | - Nan Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University , Nanjing, China
| |
Collapse
|
145
|
Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC Med 2016; 14:83. [PMID: 27256449 PMCID: PMC4891875 DOI: 10.1186/s12916-016-0625-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/10/2016] [Indexed: 02/07/2023] Open
Abstract
HIV/AIDS causes severe dysfunction of the immune system through CD4+ T cell depletion, leading to dysregulation of both the adaptive and innate immune arms. A primary target for viral infection is the gastrointestinal tract, which is a reservoir of CD4+ T cells. In addition to being a major immune hub, the human gastrointestinal tract harbors trillions of commensal microorganisms, the microbiota, which have recently been shown to play critical roles in health. Alterations in the composition and function of microbiota have been implicated in a variety of 'multi-factorial' disorders, including infectious, autoimmune, metabolic, and neoplastic disorders. It is widely accepted that, in addition to its direct role in altering the gastrointestinal CD4+ T cell compartment, HIV infection is characterized by gut microbiota compositional and functional changes. Herein, we review such alterations and discuss their potential local and systemic effects on the HIV-positive host, as well as potential roles of novel microbiota-targeting treatments in modulating HIV progression and associated adverse systemic manifestations.
Collapse
Affiliation(s)
- Gili Zilberman-Schapira
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Niv Zmora
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Shlomik Itav
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Stavros Bashiardes
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel
| | - Hila Elinav
- Hadassah AIDS Center, Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, 91120, Israel.
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 76100, Israel.
| |
Collapse
|
146
|
Kim D, Kim YG, Seo SU, Kim DJ, Kamada N, Prescott D, Philpott DJ, Rosenstiel P, Inohara N, Núñez G. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin. Nat Med 2016; 22:524-30. [PMID: 27064448 PMCID: PMC4860092 DOI: 10.1038/nm.4075] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/04/2016] [Indexed: 01/07/2023]
Abstract
Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated and germ-free (GF) mice had reduced amounts of antigen-specific IgG, smaller recall-stimulated cytokine responses, impaired follicular helper T (TFH) cell responses and reduced numbers of plasma cells. Recognition of symbiotic bacteria via the nucleotide-binding oligomerization domain containing 2 (Nod2) sensor in cells that express the integrin CD11c (encoded by Itgax) was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or monocolonization with Staphylococcus sciuri, which has high Nod2-stimulatory activity, was sufficient to promote robust CT adjuvant activity, whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in dendritic cells via intracellular cyclic AMP. These results show a role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sang-Uk Seo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dong-Jae Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dave Prescott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology; University of Kiel, Kiel, Germany
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
147
|
Pabst O, Cerovic V, Hornef M. Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota. Trends Immunol 2016; 37:287-296. [PMID: 27066758 DOI: 10.1016/j.it.2016.03.002] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Starting at birth, the intestinal microbiota changes dramatically from a highly individual collection of microorganisms, dominated by comparably few species, to a mature, competitive, and diverse microbial community. Microbial colonization triggers and accompanies the maturation of the mucosal immune system and ultimately results in a mutually beneficial host-microbe interrelation in the healthy host. Here, we discuss the role of secretory immunoglobulin A (SIgA) during the establishment of the infant microbiota and life-long host-microbial homeostasis. We critically review the published literature on how SIgA affects the enteric microbiota and highlight the accessibility of the infant microbiota to therapeutic intervention.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany.
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH University, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University, 52074 Aachen, Germany
| |
Collapse
|
148
|
Greer R, Dong X, Morgun A, Shulzhenko N. Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes 2016; 7:126-35. [PMID: 26979110 PMCID: PMC4856449 DOI: 10.1080/19490976.2015.1128625] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The scientific community has recently come to appreciate that, rather than existing as independent organisms, multicellular hosts and their microbiota comprise a complex evolving superorganism or metaorganism, termed a holobiont. This point of view leads to a re-evaluation of our understanding of different physiological processes and diseases. In this paper we focus on experimental and computational approaches which, when combined in one study, allowed us to dissect mechanisms (traditionally named host-microbiota interactions) regulating holobiont physiology. Specifically, we discuss several approaches for microbiota perturbation, such as use of antibiotics and germ-free animals, including advantages and potential caveats of their usage. We briefly review computational approaches to characterize the microbiota and, more importantly, methods to infer specific components of microbiota (such as microbes or their genes) affecting host functions. One such approach called transkingdom network analysis has been recently developed and applied in our study. (1) Finally, we also discuss common methods used to validate the computational predictions of host-microbiota interactions using in vitro and in vivo experimental systems.
Collapse
Affiliation(s)
- Renee Greer
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Xiaoxi Dong
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Andrey Morgun
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | | |
Collapse
|
149
|
Rigoni R, Fontana E, Guglielmetti S, Fosso B, D'Erchia AM, Maina V, Taverniti V, Castiello MC, Mantero S, Pacchiana G, Musio S, Pedotti R, Selmi C, Mora JR, Pesole G, Vezzoni P, Poliani PL, Grassi F, Villa A, Cassani B. Intestinal microbiota sustains inflammation and autoimmunity induced by hypomorphic RAG defects. J Exp Med 2016; 213:355-75. [PMID: 26926994 PMCID: PMC4813669 DOI: 10.1084/jem.20151116] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/25/2016] [Indexed: 12/21/2022] Open
Abstract
Rigoni et al. report that hypomorphic Rag2R229Q mutation is associated with altered microbiota composition and defects in the gut–blood barrier and suggest that intestinal microbes may play a critical role in the distinctive immune dysregulation of Omenn syndrome. Omenn syndrome (OS) is caused by hypomorphic Rag mutations and characterized by a profound immunodeficiency associated with autoimmune-like manifestations. Both in humans and mice, OS is mediated by oligoclonal activated T and B cells. The role of microbial signals in disease pathogenesis is debated. Here, we show that Rag2R229Q knock-in mice developed an inflammatory bowel disease affecting both the small bowel and colon. Lymphocytes were sufficient for disease induction, as intestinal CD4 T cells with a Th1/Th17 phenotype reproduced the pathological picture when transplanted into immunocompromised hosts. Moreover, oral tolerance was impaired in Rag2R229Q mice, and transfer of wild-type (WT) regulatory T cells ameliorated bowel inflammation. Mucosal immunoglobulin A (IgA) deficiency in the gut resulted in enhanced absorption of microbial products and altered composition of commensal communities. The Rag2R229Q microbiota further contributed to the immunopathology because its transplant into WT recipients promoted Th1/Th17 immune response. Consistently, long-term dosing of broad-spectrum antibiotics (ABXs) in Rag2R229Q mice ameliorated intestinal and systemic autoimmunity by diminishing the frequency of mucosal and circulating gut-tropic CCR9+ Th1 and Th17 T cells. Remarkably, serum hyper-IgE, a hallmark of the disease, was also normalized by ABX treatment. These results indicate that intestinal microbes may play a critical role in the distinctive immune dysregulation of OS.
Collapse
Affiliation(s)
- Rosita Rigoni
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Elena Fontana
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia School of Medicine, 25123 Brescia, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Bruno Fosso
- Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnology, and Pharmacological Sciences, University of Bari, 70121 Bari, Italy Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| | - Virginia Maina
- Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental, and Nutritional Sciences (DeFENS), University of Milan, 20122 Milan, Italy
| | - Maria Carmina Castiello
- Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Stefano Mantero
- Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanni Pacchiana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Silvia Musio
- Foundation IRCCS Neurological Institute, C. Besta, Neuroimmunology and Neuromuscular Disorders Unit, 20132 Milan, Italy
| | - Rosetta Pedotti
- Foundation IRCCS Neurological Institute, C. Besta, Neuroimmunology and Neuromuscular Disorders Unit, 20132 Milan, Italy
| | - Carlo Selmi
- Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy BIOMETRA Department, University of Milan, 20122 Milan, Italy
| | - J Rodrigo Mora
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115
| | - Graziano Pesole
- Department of Biosciences, Biotechnology, and Pharmacological Sciences, University of Bari, 70121 Bari, Italy Institute of Biomembranes and Bioenergetics, National Research Council, 70126 Bari, Italy
| | - Paolo Vezzoni
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| | - Pietro Luigi Poliani
- Department of Molecular and Translational Medicine, Pathology Unit, University of Brescia School of Medicine, 25123 Brescia, Italy
| | - Fabio Grassi
- Istituto Nazionale Genetica Molecolare, Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Anna Villa
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Telethon Institute for Gene Therapy, Division of Regenerative Medicine, Stem Cells and Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Barbara Cassani
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy Humanitas Clinical and Research Center, Rozzano, 20089 Milan, Italy
| |
Collapse
|
150
|
Shashkova T, Popenko A, Tyakht A, Peskov K, Kosinsky Y, Bogolubsky L, Raigorodskii A, Ischenko D, Alexeev D, Govorun V. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations. PLoS One 2016; 11:e0148386. [PMID: 26894828 PMCID: PMC4760737 DOI: 10.1371/journal.pone.0148386] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/18/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. METHODOLOGY/PRINCIPAL FINDINGS In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. CONCLUSION/SIGNIFICANCE The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms. Visual version of the model shows that spatial structure is a key factor, which helps bacteria to survive and to adapt to changed environmental conditions.
Collapse
Affiliation(s)
- Tatiana Shashkova
- Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russia
- Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny, 141700, Russian Federation
| | - Anna Popenko
- Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russia
| | - Alexander Tyakht
- Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russia
| | - Kirill Peskov
- “M&S Decisions” LLC, Narishkinskaya alleya, 5, Moscow, 125167, Russian Federation
| | - Yuri Kosinsky
- “M&S Decisions” LLC, Narishkinskaya alleya, 5, Moscow, 125167, Russian Federation
| | - Lev Bogolubsky
- Yandex LLC 16 Leo Tolstoy St., Moscow, 119021, Russian Federation
| | | | - Dmitry Ischenko
- Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russia
| | - Dmitry Alexeev
- Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russia
- Moscow Institute of Physics and Technology, Institutskiy pereulok 9, Dolgoprudny, 141700, Russian Federation
| | - Vadim Govorun
- Research Institute of Physical Chemical Medicine, Malaya Pirogovskaya, 1a, Moscow, 119435, Russia
| |
Collapse
|