101
|
Yu P, Zhang L, Li S, Li Y, Cheng J, Lu Y, Zeng Y, Bu H. Screening and analysis of porcine endogenous retrovirus in Chinese Banna minipig inbred line. Transplant Proc 2005; 36:2485-7. [PMID: 15561290 DOI: 10.1016/j.transproceed.2004.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pigs have been the most likely animal as the source of cells, tissues, and organs for xenotransplantation. But the use of pigs in xenotransplantation is associated with the risk of porcine endogenous retrovirus (PERV) transmission. Previous studies have identified that the proviruses are integrated into the genome of normal pigs and that virus particles released from the porcine cells can infect human cells in vitro. As a unique inbred pig, Banna minipig inbred (BMI) has a huge potential value for xenotransplantation and medical research. It has been the focal experimental animal for pig-to-human xenotransplantation in China, due to its clear genetic background and tiny individual differences. To evaluate whether the potential risk of PERV exists in inbred pigs, a series of screening experiments were performed herein. The results of PCR with primers specific for gag, pol, and env showed that proviruses existed in the genome of BMI, and the PERV subtypes were PERV-A and PERV-B. PERV mRNA was expressed functionally in BMI. Positive results of an RT assay identified that PERV in BMI had potential infectivity, but the concentration of PERV reverse transcriptase in BMI was almost 20 times lower than that of HIV. These results suggested that gag, pol and env genes of PERV were not lost during inbreeding, which created favorable conditions to produce viral particles that could possibly infect human cells in xenotransplantation.
Collapse
Affiliation(s)
- P Yu
- Laboratory of Transplant Engineering and Immunology, Departmentment of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
102
|
Lin G, Cai J, Jiang H, Shen H, Jiang X, Yu Q, Song J. Biological pacemaker created by fetal cardiomyocyte transplantation. J Biomed Sci 2005; 12:513-9. [PMID: 15971007 DOI: 10.1007/s11373-005-6794-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Accepted: 05/02/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the feasibility of an alternative approach to electronic pacemaker by using spontaneously excitable cell grafts as a biological pacemaker in a large animal model of complete atrioventricular block. METHODS AND RESULTS Dissociated male human atrial cardiomyocytes including sinus nodal cells were grafted into the free wall of the left ventricle in five female pigs. Three weeks after the injection of cell-grafted solution/control medium the pigs underwent catheter ablation of the atrioventricular node (AV-node). After complete AV block was created, the idioventricular beat rate was more rapid in cell-grafted pigs than that in control pigs (86+/-21 vs. 30+/-10 bpm; P<0.001). Administering of isoprenalin significantly increased idioventricular rate from 86+/-21 to 117+/-18 bpm in the cell-grafted animals (P<0.01). Electrophysiological mapping studies demonstrated that the idioventricular rhythm originated from the cell-injection site. Polymerase chain reaction verifying the existence of SRY DNA in the cell injection site indicated that the grafted male cells were survived. Furthermore, the connexin-43 and N-cadherin positive junctions between donor cardiomyocytes and host cells were identified. CONCLUSION Xenografted fetal human atrial cardiomyocytes are able to survive and integrate into the host myocardium, and show a pacing function that can be modulated by autonomic agents.
Collapse
Affiliation(s)
- Guosheng Lin
- Department of Cardiology, Renmin Hospital of Wuhan University, JieFang Road, 238, Wuhan, 430060, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
103
|
Dinsmore JH. Treatment of neurodegenerative diseases with neural cell transplantation. Expert Opin Investig Drugs 2005; 7:527-34. [PMID: 15991990 DOI: 10.1517/13543784.7.4.527] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Neural cell transplantation is an emerging therapy that may provide an effective treatment for neurodegenerative disorders. The most extensive work with neural transplants has been carried out for Parkinson's and Huntington's diseases. However, intensive efforts are also being made for the treatment of other neurological indications, such as spinal cord repair, stroke, epilepsy, multiple sclerosis (MS), Alzheimer's disease and amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease), to name just a few. The major barrier for the successful application of cells as therapeutics is achieving long-term survival and function. The CNS has proven to be ideal for transplantation, in part because immune rejection is attenuated in the CNS compared to peripheral locations. However, some form of immunosuppression is desirable for optimal allograft survival and required for xenograft survival. This review will focus on the challenges of restoring function to something as intricate as the CNS and on the limitations imposed by this complexity on any cellular therapeutic.
Collapse
Affiliation(s)
- J H Dinsmore
- Diacrin, Inc., Building 96, Thirteenth St., Charlestown, MA 02129, USA
| |
Collapse
|
104
|
Eventov-Friedman S, Katchman H, Shezen E, Aronovich A, Tchorsh D, Dekel B, Freud E, Reisner Y. Embryonic pig liver, pancreas, and lung as a source for transplantation: optimal organogenesis without teratoma depends on distinct time windows. Proc Natl Acad Sci U S A 2005; 102:2928-33. [PMID: 15710886 PMCID: PMC548800 DOI: 10.1073/pnas.0500177102] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pig embryonic tissues represent an attractive option for organ transplantation. However, the achievement of optimal organogenesis after transplantation, namely, maximal organ growth and function without teratoma development, represents a major challenge. In this study, we determined distinct gestational time windows for the growth of pig embryonic liver, pancreas, and lung precursors. Transplantation of embryonic-tissue precursors at various gestational ages [from E (embryonic day) 21 to E100] revealed a unique pattern of growth and differentiation for each embryonic organ. Maximal liver growth and function were achieved at the earliest teratoma-free gestational age (E28), whereas the growth and functional potential of the pancreas gradually increased toward E42 and E56 followed by a marked decline in insulin-secreting capacity at E80 and E100. Development of mature lung tissue containing essential respiratory system elements was observed at a relatively late gestational age (E56). These findings, showing distinct, optimal gestational time windows for transplantation of embryonic pig liver, pancreas, and lung, might explain, in part, the disappointing results in previous transplantation trials and could help enhance the chances for successful implementation of embryonic pig tissue in the treatment of a wide spectrum of human diseases.
Collapse
|
105
|
Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol 2005; 190:32-41. [PMID: 15473978 DOI: 10.1016/j.expneurol.2004.06.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 05/04/2004] [Accepted: 06/07/2004] [Indexed: 12/24/2022]
Abstract
Previous work indicated that pig umbilical cord matrix (pUCM) cells are a type of primitive stem cell and that these cells could be recovered after central or peripheral injection into rats that did not receive immune suppression therapy. To determine the safety and proliferation potential of pUCM cells after brain transplantation, approximately 150 pUCM cells were transplanted into the brains of rats that previously received a striatal injection of the neurotoxin 6-hydroxydopamine (6-OHDA). The pUCM cells were previously engineered to express enhanced green fluorescent protein (eGFP); in this way, the graft cells were identified. The rats did not receive immune suppression therapy. There were no postsurgical complications and the animals thrived following transplantation. At 2, 4, 6, and 8 weeks after transplantation, two rats were sacrificed and the morphology, size and number of graft cells, and the percentage of tyrosine hydroxylase (TH)-positive graft cells were determined. The size distribution of the grafted pUCM cells was unimodal and normal, and the average size increased significantly over the 2- to 8-week survival period. The number of pUCM cells increased from approximately 5400 cells at the 2-week survival period post-transplantation to approximately 20,000 cells at the 8-week survival period. There was an increase in the percentage of TH-positive pUCM cells from approximately 1% at the 2-week survival period to approximately 6% at the 8-week survival period. There was no evidence of a significant host immune response at any time; for example, no accumulation of CD-4, CD-8, CD-11b, CD-161 cells in the transplantation site. These results suggest that pUCM cells engraft and proliferate without requiring immune suppression. These findings also suggest that a subset of pUCM cells can differentiate into TH-positive cells within 8 weeks after transplantation into the 6-OHDA lesioned rat brain.
Collapse
Affiliation(s)
- S Medicetty
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5602, USA
| | | | | | | | | |
Collapse
|
106
|
Abstract
Motor dysfunctions in Parkinson's disease are considered to be primarily due to the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Pharmacological therapies based on the principle of dopamine replacement are extremely valuable, but suffer from two main drawbacks: troubling side effects (e.g. dyskinesia) and loss of efficacy with disease progression. Transplantation of embryonic dopaminergic neurons has emerged as a therapeutic alternative. Enthusiasm following the success of the initial open-label trials has been dampened by the negative outcome of double-blind placebo controlled trials. Additionally, the emergence of graft-related dyskinesia indicates that the experimental grafting procedure requires further refinement before it can be developed into a therapy. Shortage of embryonic donor tissue limits large-scale clinical transplantation trials. We review three of the most attractive tissue sources of dopaminergic neurons for cell replacement therapy: human embryonic ventral mesencephalic tissue, embryonic and adult multipotent region-specific stem cells and embryonic stem cells. Recent developments in embryonic stem cell research and on their implications for a future transplantation therapy in Parkinson's disease are described. Finally, we discuss how human embryonic stem cells can be differentiated into dopaminergic neurons, and issues such as the numbers of dopaminergic neurons required for success and the risk for teratoma formation after implantation.
Collapse
Affiliation(s)
- Ana Sofia Correia
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
107
|
Abstract
One of the greatest challenges in the treatment of inner-ear disorders is to find a cure for the hearing loss that is caused by the loss of cochlear hair cells or spiral ganglion neurons. The recent discovery of stem cells in the adult inner ear that are capable of differentiating into hair cells, as well as the finding that embryonic stem cells can be converted into hair cells, raise hope for the future development of stem-cell-based treatment regimens. Here, we propose different approaches for using stem cells to regenerate the damaged inner ear and we describe the potential obstacles that translational approaches must overcome for the development of stem-cell-based cell-replacement therapies for the damaged inner ear.
Collapse
Affiliation(s)
- Huawei Li
- Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
108
|
Harrower TP, Richards A, Cruz G, Copeman L, Dunnett SB, Barker RA. Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. Xenotransplantation 2004; 11:60-71. [PMID: 14962294 DOI: 10.1111/j.1399-3089.2004.00084.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Allotransplantation of human foetal neural tissue for neurodegenerative disorders has been shown to provide clinical benefit but is limited by a number of issues including donor supply. The use of porcine foetal tissue as an alternative source of cells is being investigated but xenotransplants survive poorly as a result of immunological rejection, which may involve complement. In this study we investigated the expression of the membrane-bound complement regulatory proteins--decay accelerating factor (DAF), membrane co-factor protein (MCP) and CD59 in embryonic neural tissue. Cells were derived from human foetuses, wild-type porcine foetuses and porcine foetuses transgenic for human complement regulatory proteins and analysed using flow cytometry and immunocytochemistry. Functional assessment of human complement regulatory protein expression in transgenic porcine tissue was assessed by C3b deposition and cell survival on exposure to human complement. Human and wild-type porcine foetal neural tissue expressed moderate levels of MCP and CD59 but low or no levels of DAF. Neural tissue from porcine foetuses transgenic for human MCP (E174) expressed the transgene but failed to significantly inhibit human C3b deposition compared with non-transgenic tissue. In contrast, foetal neural tissue from two different human DAF transgenic pig lines (A74 and E71) known to express high levels of human DAF on endothelial cells, failed to express significant levels of human DAF in foetal neural tissue. Complement regulatory proteins such as MCP and CD59 are expressed in the human and wild-type embryonic brain but in contrast, DAF is expressed at very low levels. Pigs transgenic for human DAF express very low levels of human DAF on embryonic neural tissue. In pigs transgenic for human MCP, the transgene is expressed at similar levels to that in human embryonic neural tissue but at an insufficient level to prevent activation of the complement cascade. Thus alternative approaches to reducing complement activation by xenografted neural foetal tissue will be required if this process proves to be important in the rejection process.
Collapse
Affiliation(s)
- T P Harrower
- Cambridge Centre for Brain Repair, Forvie Site, Robinson, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
109
|
Sykes M, d'Apice A, Sandrin M. Position Paper of the Ethics Committee of the International Xenotransplantation Association. Transplantation 2004; 78:1101-7. [PMID: 15502702 DOI: 10.1097/01.tp.0000142886.27906.3e] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Xenotransplantation (XTx) provides a potential solution to the shortage of human organs and tissues, and has several advantages over other possible solutions to this problem. However, a number of scientific and ethical barriers exist, and need to be addressed in order to advance the field of XTx in a manner that optimizes its potential to benefit society and minimizes its risk. Some of the most pressing ethical issues are discussed, and the position of the Ethics Committee of the International Xenotransplantation Association is presented.
Collapse
Affiliation(s)
- Megan Sykes
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, MGH-East, 13th Street, Boston, MA 02129, USA.
| | | | | |
Collapse
|
110
|
Riaz SS, Theofilopoulos S, Jauniaux E, Stern GM, Bradford HF. The differentiation potential of human foetal neuronal progenitor cells in vitro. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:39-51. [PMID: 15464216 DOI: 10.1016/j.devbrainres.2004.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2004] [Indexed: 10/26/2022]
Abstract
Previously, this laboratory has shown that human foetal progenitor cells derived from ventral mesencephalon (VM) can be developmentally directed towards a dopaminergic lineage. In the present study, the effects are reported of several as yet untested differentiation/survival factors on the controlled conversion of neural progenitor cells to dopaminergic neurons. Positive immunoreactivity to tyrosine hydroxylase (TH) and raised levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), secreted into culture medium, were used to indicate the presence of the dopaminergic neuronal phenotype, i.e., active TH. Incubation with retinoic acid (RA) (0.5 microM) lead to an increase in the number of cultured cells showing positive immunoreactivity for the neuronal marker, microtubule-associated protein (MAP)-2ab. A concomitant increase in TH-positive immunoreactivity was also demonstrated. The brain-derived neurotrophic factor (BDNF) (50 ng/ml), glial-derived neurotrophic factor (GDNF) (10 ng/ml) and interleukin-1 beta (IL-1 beta) (10 ng/ml) also had positive effects in promoting neural progenitor cell differentiation towards the dopaminergic phenotype in the presence of dopamine (10 microM) and forskolin (Fsk) (10 microM). There was no synergy in this effect when progenitor cells were incubated with all of these agents simultaneously. The trans-differentiation potential of the progenitor cells to be directed towards other neurotransmitter phenotypic lineages was also investigated. It was found that, with the right cocktails of agents, serotonin (Ser) (75 microM), acidic fibroblast growth factor (aFGF) (10 ng/ml), BDNF (50 ng/ml) and forskolin (10 microM), these same cells could be directed down the serotonergic cell lineage pathway (as judged by the appearance of tryptophan hydroxylase (TPH) positive immunoreactivity, and synthesis of 5-HT and its metabolites, secreted into the culture medium). However, no cocktail containing noradrenaline (10 nM-500 microM), BDNF (50 ng/ml) and forskolin (10 microM) was found which promoted differentiation towards the noradrenergic cell phenotype as judged by the absence of any TH or D beta H positive immunoreactivity, and no formation of 3,4-dihydroxyphenylethyleneglycol (DOPEG), the principal metabolite of noradrenaline. The controlled trans-differentiation potential of these cell could pave the way for development and harvesting of large numbers of neurons of the appropriate neurotransmitter phenotype for future transplantation therapies for the treatment of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease.
Collapse
Affiliation(s)
- Samina S Riaz
- Department of Biological Sciences, Imperial College of Science, Technology and Medicine, Biochemistry Building, South Kensington Campus, Imperial College Road, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
111
|
Abstract
Huntington's disease is an autosomal dominant genetic disease, which results in progressive neuronal degeneration in the neostriatum and neocortex, and associated functional impairments in motor, cognitive, and psychiatric domains. Although the genetic mutation is identified, involving an abnormal CAG expansion within the htt gene on chromosome 4, the mechanism by which this leads to neuronal cell death and the question of why striatal neurones are targeted both remain unknown. Thus, in addition to the search for molecular and genetic strategies to inhibit development of the disease, we still need to identify effective strategies for cellular repair in affected individuals. Aspects of the human neuropathology can be well modeled by excitotoxic or metabolic lesions in experimental animals, and in transgenic mice carrying the htt mutation, providing the basis for testing alternative therapeutic strategies. The rationale and efficacy of alternative cell therapies are reviewed, including transplantation repair with embryonic striatal tissues, expansion and differentiation of striatal-like cells from stem cells, and in vivo and ex vivo gene therapy for delivery of neuroprotective growth factor molecules. Pilot and experimental clinical trials of several approaches are now also underway, and the alternative strategies are compared.
Collapse
Affiliation(s)
- Stephen B Dunnett
- School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, United Kingdom.
| | | |
Collapse
|
112
|
|
113
|
|
114
|
Sumitran-Holgersson S, Brevig T, Widner H, Holgersson J. Activated porcine embryonic brain endothelial cells induce a proliferative human T-lymphocyte response. Cell Transplant 2004; 12:637-46. [PMID: 14579932 DOI: 10.3727/000000003108747118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Transplantation of allogeneic embryonic neural tissue is a potential treatment for patients with Parkinson's and Huntington's diseases. The supply of human donor tissue is limited, and alternatives such as the use of animal (e.g., porcine) donor tissue are currently being evaluated. Before porcine grafts can be used clinically, strategies to prevent neural xenograft rejection must be developed. Knowledge on how human T lymphocytes recognize porcine embryonic neural tissue would facilitate the development of such strategies. To investigate the ability of porcine embryonic brain microvascular endothelial cells (PBMEC) to stimulate human T-cell proliferation, PBMEC were immuno-magnetically isolated and cocultured with purified human CD4 or CD8 single-positive T cells. PBMEC had a cobblestone-like growth pattern and expressed the endothelial cell markers CD31 and CD106. PBMEC stimulated with the supernatant of phytohemagglutinin-activated porcine peripheral blood mononuclear cells or porcine IFN-gamma, but not nonstimulated PBMEC, induced proliferation of both CD8 and CD4 T cells as assessed by [3H]thymidine incorporation. Flow cytometric analyses showed that the degree of CD8 and CD4 T cell proliferation correlated with the expression levels of class I and II major histocompatibility complex (MHC) antigens, respectively. PBMEC expressed a CTLA-4/Fc-reactive molecule, most likely CD86, suggesting that these cells are able to deliver a costimulatory signal to the T cells. Human TNF-alpha, but not human IFN-gamma, induced class I, but not class II, MHC expression on PBMEC. Within a neural graft or the regional lymph nodes, PBMEC might stimulate human T cells via the direct pathway, and should therefore be removed from the donor tissue prior to transplantation.
Collapse
Affiliation(s)
- Suchitra Sumitran-Holgersson
- Division of Clinical Immunology, Karolinska Institutet, Huddinge University Hospital AB, S-141 86 Stockholm, Sweden
| | | | | | | |
Collapse
|
115
|
Sayles M, Jain M, Barker RA. The cellular repair of the brain in Parkinson's disease—past, present and future. Transpl Immunol 2004; 12:321-42. [PMID: 15157925 DOI: 10.1016/j.trim.2003.12.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Damage to the central nervous system was once considered irreparable. However, there is now growing optimism that neural transplant therapies may one day enable complete circuit reconstruction and thus functional benefit for patients with neurodegenerative conditions such as Parkinson's disease (PD), and perhaps even those with more widespread damage such as stroke patients. Indeed, since the late 1980s hundreds of patients with Parkinson's disease have received allografts of dopamine-rich embryonic human neural tissue. The grafted tissue has been shown to survive and ameliorate many of the symptoms of the disease, both in the clinical setting and in animal models of the disease. However, practical problems associated with tissue procurement and storage, and ethical concerns over using aborted human fetal tissue have fuelled a search for alternative sources of suitable material for grafting. In particular, stem cells and xenogeneic embryonic dopamine-rich neural tissue are being explored, both of which bring their own practical and ethical dilemmas. Here we review the progress made in neural transplantation, both in the laboratory and in the clinic with particular attention to the development of stem cell and xenogeneic tissue based therapy.
Collapse
Affiliation(s)
- Mark Sayles
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK
| | | | | |
Collapse
|
116
|
Mirza B, Krook H, Andersson P, Larsson LC, Korsgren O, Widner H. Intracerebral cytokine profiles in adult rats grafted with neural tissue of different immunological disparity. Brain Res Bull 2004; 63:105-18. [PMID: 15130699 DOI: 10.1016/j.brainresbull.2004.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 01/23/2004] [Accepted: 01/30/2004] [Indexed: 02/06/2023]
Abstract
To understand graft rejection in cell based therapies for brain repair we have quantified IL-1beta, IL-2, IL-4, IL-10, IL-12p40, IFN-gamma and TNF-alpha mRNA levels using real-time PCR, at days 4, 14, and 42 post-transplantation, in rats engrafted with syngeneic, allogeneic, concordant and discordant xenogeneic neural tissues. In addition, in the discordant xenografts immunohistochemistry and in situ hybridization were applied to detect local expression of IFN-gamma, TNF-alpha, IL-10 and TGF-beta. Allografts remained non-rejected but expressed IL-1beta, TNF-alpha and IL-4 transcripts but not IL-12p40 and IFN-gamma. Xenografts demonstrated distinct cytokine profiles that differed from syngeneic and allogeneic grafts. Non-rejected discordant xenografts contained higher levels of TNF-alpha transcripts and lower levels of IL-2 transcripts than the rejected ones at day 42. Discordant xenografts displayed a stronger and earlier expression of IL-1beta and TNF-alpha, followed by T-helper 1 and T-helper 2 associated cytokine expression. The number of cells expressing mRNA encoding TNF-alpha and TGF-beta was significantly increased over time in the discordant group. In conclusion, the immunological disparity of the implanted tissue explains survival rates and is associated with different cytokine profiles. In allografts, a chronic inflammatory reaction was detected and in xenogeneic grafts a delayed hypersensitivity like reaction may be involved in rejection.
Collapse
Affiliation(s)
- Bilal Mirza
- Section for Neuronal Survival, Department of Physiological Sciences and Neuroscience, Wallenberg Neuroscience Center, Lund University, BMC-A10, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
117
|
Paterson L, DeSousa P, Ritchie W, King T, Wilmut I. Application of reproductive biotechnology in animals: implications and potentials. Applications of reproductive cloning. Anim Reprod Sci 2004; 79:137-43. [PMID: 14643101 DOI: 10.1016/s0378-4320(03)00161-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of new methods of nuclear transfer in mammals is creating many new opportunities in research, medicine and agriculture. The method of cloning is repeatable and has been established in many laboratories worldwide. However, the present procedure is inefficient with fewer than 4% of embryos becoming viable offspring. A considerable improvement in efficiency is required before wide scale use for livestock improvement. The opportunity to introduce precise genetic changes to livestock is available for the first time through the use of gene targeting procedures in cultured cells that are used as nuclear donors. This has potential application in the production of organs for transplantation to humans, studies of human genetic disease and basic research in to the control of gene expression and function.
Collapse
|
118
|
Kodama Y, Hida H, Jung CG, Baba H, Isono M, Kobayashi H, Nishino H. High Titer Retroviral Gene Transduction to Neural Progenitor Cells for Establishment of Donor Cells for Neural Transplantation to Parkinsonian Model Rats. Neurol Med Chir (Tokyo) 2004; 44:344-51; discussion 352. [PMID: 15347210 DOI: 10.2176/nmc.44.344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neural progenitor cells (NPCs) are expected to be useful donor sources for cell transplantation therapy in Parkinson's disease. However, control of the differentiational lineage, especially into dopaminergic neurons, is still difficult. Thus, genetic modification of NPCs to produce l-dopa is potentially useful. The present study prepared high titer retrovirus carrying human tyrosine hydroxylase-1 (HTH-1) gene. HTH-1 gene could be efficiently transduced into NPCs obtained from the E12.5 rat mesencephalon. This retroviral gene transduction caused no apparent changes in survival, proliferation, or differentiation. In vitro, HTH-1 gene-transduced NPCs released little l-dopa and addition of tetrahydrobiopterin, the cofactor of tyrosine hydroxylase, was required for production of l-dopa. In vivo, three of seven hemi-parkinsonian model rats that received HTH-1 gene-transduced donor NPCs achieved functional recovery. High titer retroviral vector for gene transduction could be used to prepare NPCs for transplantation to hemi-parkinsonian model rats. However, functional recovery after transplantation of HTH-1 gene-transduced NPCs was incomplete.
Collapse
Affiliation(s)
- Yuji Kodama
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo.
| | | | | | | | | | | | | |
Collapse
|
119
|
Paris MCJ, Snow M, Cox SL, Shaw JM. Xenotransplantation: a tool for reproductive biology and animal conservation? Theriogenology 2004; 61:277-91. [PMID: 14662128 DOI: 10.1016/s0093-691x(03)00234-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The transplantation of reproductive organs, including ovaries and ovarian tissue, was pioneered over 100 years ago. In the 1960s, ovarian grafting was used as a tool to investigate ovarian function, but with the recent development of more effective cryopreservation protocols for ovarian tissue, germline preservation and propagation have now become realistic goals. This review describes progress in ovarian banking and ovarian tissue transplantation, with emphasis on how fresh and frozen ovarian tissue can be used in assisted reproduction for both humans and animals. This paper focuses most closely on the potential value of xenotransplantation, the transplantation of gonads from one species to another, to conserve rare and endangered species. Specific attention is drawn to the use of xenotransplantation as a strategy for generating viable gametes that can be used to produce live fertile offspring. Other upcoming xenogeneic technologies that may be of potential significance in animal conservation, such as transplantation of whole ovaries or isolated growing follicles, and even male germ cells, are discussed.
Collapse
Affiliation(s)
- Monique C J Paris
- Murdoch Children's Research Institute, Flemington Road, Parkville 3052, Vic, Australia.
| | | | | | | |
Collapse
|
120
|
Yoshiyama M, Hayashi T, Nakamura Y, Omura T, Izumi Y, Matsumoto R, Takeuchi K, Kitaura Y, Yoshikawa J. Effects of Cellular Cardiomyoplasty on Ventricular Remodeling Assessed by Doppler Echocardiography and Topographic Immunohistochemistry. Circ J 2004; 68:580-6. [PMID: 15170096 DOI: 10.1253/circj.68.580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Myocardial infarction (MI) promotes deleterious remodeling of the myocardium, resulting in ventricular dilation and pump dysfunction. Supplementing infarcted myocardium with neonatal myocyte would attenuate deleterious remodeling and so the present study used Doppler echocardiography and histology to analyze the cardiac function and histological regeneration of the damaged myocardium after cellular cardiomyoplasty. METHODS AND RESULTS Experimental MI was induced by 24-h coronary ligation followed by reperfusion in adult male Lewis rats and neonatal myocytes were injected directly into the infarct and peri-infarct regions. Three groups of animals were studied at 4 weeks after cellular cardiomyoplasty: noninfarcted control (control), MI plus sham injection (MI), and MI plus cell injection (MI + cell). Ventricular remodeling and cardiac performance were assessed by Doppler echocardiography or contrast echocardiography. At 4 weeks after cellular cardiomyoplasty, MI + cell hearts exhibited attenuation of global ventricular dilation and cardiac function compared with MI hearts not receiving cellular cardiomyoplasty. Immunohistochemically, connexin-43-positive small cells were observed in the vicinity of the infarction in MI + cell heart. By electron microscopy, these cells contained myofilaments with Z-bands and poorly developed intercalated disks, suggesting neonatal myocardial cells. Furthermore, the myocardial cells were often making close contact with interstitial cells. CONCLUSIONS Implanted neonatal myocytes form viable grafts after MI, resulting in attenuated ventricular dilation and enhanced contractile function. Echocardiography, electron microscopy, and immunohistochemistry are useful methods for assessing the functional and histological regeneration of the damaged myocardium.
Collapse
Affiliation(s)
- Minoru Yoshiyama
- Department of Internal Medicine and Cardiology, Graduate School of Medicine, Osaka City University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Radtke C, Akiyama Y, Brokaw J, Lankford KL, Wewetzer K, Fodor WL, Kocsis JD. Remyelination of the nonhuman primate spinal cord by transplantation of H-transferase transgenic adult pig olfactory ensheathing cells. FASEB J 2003; 18:335-7. [PMID: 14657003 PMCID: PMC2605365 DOI: 10.1096/fj.03-0214fje] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Olfactory ensheathing cells (OECs) have been shown to mediate remyelination and to stimulate axonal regeneration in a number of in vivo rodent spinal cord studies. However, whether OECs display similar properties in the primate model has not been tested so far. In the present study, we thus transplanted highly-purified OECs isolated from transgenic pigs expressing the alpha1,2 fucosyltransferase gene (H-transferase or HT) gene into a demyelinated lesion of the African green monkey spinal cord. Four weeks posttransplantation, robust remyelination was found in 62.5% of the lesion sites, whereas there was virtually no remyelination in the nontransplanted controls. This together with the immunohistochemical demonstration of the grafted cells within the lesioned area confirmed that remyelination was indeed achieved by OECs. Additional in vitro assays demonstrated 1) that the applied cell suspension consisted of >98% OECs, 2) that the majority of the cells expressed the transgene, and 3) that expression of the HT gene reduced complement activation more than twofold compared with the nontransgenic control. This is the first demonstration that xenotransplantation of characterized OECs into the primate spinal cord results in remyelination.
Collapse
Affiliation(s)
- Christine Radtke
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
- CTR. Anatomy, Hannover Medical School, Hannover, Germany
| | - Yukinori Akiyama
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| | - Jane Brokaw
- Alexion Pharmaceuticals Inc., Cheshire, Connecticut 06410
| | - Karen L. Lankford
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| | | | | | - Jeffery D. Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven 06516; Neuroscience Research Center, Veterans Affairs Medical Center, West Haven 06516
| |
Collapse
|
122
|
Abstract
Microinjection of foreign DNA into pronuclei of a fertilized oocyte has predominantly been used for the generation of transgenic livestock. This technology works reliably, but is inefficient and results in random integration and variable expression patterns in the transgenic offspring. Nevertheless, remarkable achievements have been made with this technology. By targeting expression to the mammary gland, numerous heterologous recombinant human proteins have been produced in large amounts which could be purified from milk of transgenic goats, sheep, cattle and rabbit. Products such as human anti-thrombin III, alpha-anti-trypsin and tissue plasminogen activator are currently in advanced clinical trials and are expected to be on the market within the next few years. Transgenic pigs that express human complement regulating proteins have been tested in their ability to serve as donors in human organ transplantation (i.e. xenotransplantation). In vitro and in vivo data convincingly show that the hyperacute rejection response can be overcome in a clinically acceptable manner by successful employing this strategy. It is anticipated that transgenic pigs will be available as donors for functional xenografts within a few years. Similarly, pigs may serve as donors for a variety of xenogenic cells and tissues. The recent developments in nuclear transfer and its merger with the growing genomic data allow a targeted and regulatable transgenic production. Systems for efficient homologous recombination in somatic cells are being developed and the adaptation of sophisticated molecular tools, already explored in mice, for transgenic livestock production is underway. The availability of these technologies are essential to maintain "genetic security" and to ensure absence of unwanted side effects.
Collapse
Affiliation(s)
- Heiner Niemann
- Department of Biotechnology, Institut für Tierzucht Mariensee, FAL, 31535 Neustadt, Germany.
| | | |
Collapse
|
123
|
Fodor WL. Tissue engineering and cell based therapies, from the bench to the clinic: the potential to replace, repair and regenerate. Reprod Biol Endocrinol 2003; 1:102. [PMID: 14614775 PMCID: PMC293418 DOI: 10.1186/1477-7827-1-102] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 11/13/2003] [Indexed: 01/22/2023] Open
Abstract
The field of Regenerative Biology as it applies to Regenerative Medicine is an increasingly expanding area of research with hopes of providing therapeutic treatments for diseases and/or injuries that conventional medicines and even new biologic drug therapies cannot effectively treat. Extensive research in the area of Regenerative Medicine is focused on the development of cells, tissues and organs for the purpose of restoring function through transplantation. The general belief is that replacement, repair and restoration of function is best accomplished by cells, tissues or organs that can perform the appropriate physiologic/metabolic duties better than any mechanical device, recombinant protein therapeutic or chemical compound. Several strategies are currently being investigated and include, cell therapies derived from autologous primary cell isolates, cell therapies derived from established cell lines, cell therapies derived from a variety of stem cells, including bone marrow/mesenchymal stem cells, cord blood stem cells, embryonic stem cells, as well as cells tissues and organs from genetically modified animals. This mini-review is not meant to be exhaustive, but aims to highlight clinical applications for the four areas of research listed above and will address a few key advances and a few of the hurdles yet to be overcome as the technology and science improve the likelihood that Regenerative Medicine will become clinically routine.
Collapse
Affiliation(s)
- William L Fodor
- Center for Regenerative Biology and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06250-4243, USA.
| |
Collapse
|
124
|
Abstract
The gene for Huntington's disease was identified in 1993 as being a CAG repeat expansion in exon 1 of a gene now known as huntingtin on chromosome 4. Although many of the downstream effects of this mutant gene were identified in the subsequent years, a more detailed understanding of these events will be necessary in order to design specific interventions to interfere with the disease process and slow disease progression. In parallel, a number of groups have been investigating alternative approaches to treatment of Huntington's disease, including cell and tissue transplantation. As the brunt of cell dysfunction and loss is borne by the striatum, at least in the early to mid-stages of disease, the goal is to identify methods for replacing lost cells with fetal neuroblasts that can develop, integrate into the host circuitry and thereby restore lost function. Clinical studies in which primary fetal neuroblasts were transplanted into the brains of patients with advanced Parkinson's disease have demonstrated benefit when the transplant methodology closely follows the biological principles established in animal experiments. On the basis of demonstrated benefit following striatal cell transplantation in animal models of Huntington's disease, a small number of studies have now commenced in patients with Huntington's disease. To date, these clinical studies have demonstrated the feasibility and safety of transplantation in this condition, but it will require several more years yet before the efficacy of the procedure can be confidently established.
Collapse
Affiliation(s)
- Anne E Rosser
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | |
Collapse
|
125
|
Nishimura F, Yoshikawa M, Kanda S, Nonaka M, Yokota H, Shiroi A, Nakase H, Hirabayashi H, Ouji Y, Birumachi JI, Ishizaka S, Sakaki T. Potential use of embryonic stem cells for the treatment of mouse parkinsonian models: improved behavior by transplantation of in vitro differentiated dopaminergic neurons from embryonic stem cells. Stem Cells 2003; 21:171-80. [PMID: 12634413 DOI: 10.1634/stemcells.21-2-171] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND and Aims. The purpose of the present study was to examine the efficacy of transplantation of mouse embryonic-stem-(ES)-cell-derived tyrosine hydroxylase-positive (TH(+)) cells into Parkinsonian mice using behavioral tests and immunohistochemical evaluation. METHODS Undifferentiated ES cells carrying the enhanced green fluorescent protein (EGFP) gene were differentiated into a cell population containing TH(+) neurons using a five-step in vitro differentiation method. These ES-cell-derived cells were used as allografts in Parkinsonian mice, made by administering injections of 6-hydroxydopamine (6-OHDA). Fifteen hemiparkinsonian mice were divided into three groups. Four weeks after 6-OHDA injection, mice in groups 1, 2, and 3 received phosphate-buffered saline, 1 x 10(4) graft cells, and 1 x 10(5) graft cells, respectively, into their dopamine-denervated striata. RESULTS Improved rotational behavior was observed in the graft-transplanted groups (groups 2 and 3) 2 weeks after transplantation. Mice in group 2 displayed a continuous maintenance of reduced rotational behavior, while those in group 3 showed ipsilateral rotation toward the lesioned side at 4, 6, and 8 weeks after transplantation. Tumor formation was observed in one mouse in group 3. TH(+) cells were found at the grafted sites 8 weeks after transplantation in mice in groups 2 and 3, some of which were immunopositive to GFP, demonstrating the presence of dopaminergic neurons derived from the ES cells. CONCLUSION Transplantation of in vitro differentiated ES cells changed rotational behavior in Parkinsonian mice. Our results suggest the potential availability of ES cells for Parkinson's disease.
Collapse
|
126
|
Abstract
Xenotransplantation, in particular transplantation of pig cells, tissues and organs into human patients, may alleviate the current shortage of suitable allografts available for human transplantation. This overview addresses the physiological, immunological and virological factors considered with regard to xenotransplantation. Among the issues reviewed are the merits of using pigs as xenograft source species, the compatibility of pig and human organ physiology and the immunological hindrances with regard to the various types of rejection and attempts at abrogating rejection. Advances in the prevention of pig organ rejection by creating genetically modified pigs that are more suited to the human microenvironment are also discussed. Finally, with regard to virology, possible zoonotic infections emanating from pigs are reviewed, with special emphasis on the pig endogenous retrovirus (PERV). An in depth account of PERV studies, comprising their discovery as well as recent knowledge of the virus, is given. To date, all retrospective studies on patients with pig xenografts have shown no evidence of PERV transmission, however, many factors make us interpret these results with caution. Although the lack of PERV infection in xenograft recipients up to now is encouraging, more basic research and controlled animal studies that mimic the pig to human xenotransplantation setting more closely are required for safety assessment.
Collapse
Affiliation(s)
- Saema Magre
- Wohl Virion Centre, The Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK
| | | | | |
Collapse
|
127
|
Abstract
Following injury to the CNS, severed axons undergo a phase of abortive sprouting in the vicinity of the wound, but do not spontaneously re-grow or regenerate. From a long history of attempts to stimulate regeneraion, a major strategy that has been developed clinically is the implantation of tissue into denervated target regions. Unfortunately trials have so far not borne out the promise that this would prove a useful therapy for disorders such as Parkinson's disease. Many strategies have also been developed to stimulate the regeneration of axons across sites of injury, particularly in the spinal cord. Animal data have demonstrated that some of these approaches hold promise and that the spinal cord has a remarkable degree of intrinsic plasticity. Attempts are now being made to utilize experimental techniques in spinal patients.
Collapse
Affiliation(s)
- Peter E Batchelor
- Departments of Medicine and Neurology, University of Melbourne, Austin and Repatriation Medical Centre, Vic. 3084, Heidelberg, Australia
| | | |
Collapse
|
128
|
Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, Troyer DL. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 2003; 182:288-99. [PMID: 12895440 DOI: 10.1016/s0014-4886(03)00128-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune rejection of transplanted material is a potential complication of organ donation. In response to tissue transplantation, immune rejection has two components: a host defense directed against the grafted tissue and an immune response from the grafted tissue against the host (graft vs host disease). To treat immune rejection, transplant recipients are typically put on immunosuppression therapy. Complications may arise from immune suppression or from secondary effects of immunosuppression drugs. Our preliminary work indicated that stem cells may be xenotransplanted without immunosuppression therapy. Here, we investigated the survival of pig stem cells derived from umbilical cord mucous connective tissue (UCM) after transplantation into rats. Our data demonstrate that UCM cells survive at least 6 weeks without immune suppression of the host animals after transplantation into either the brain or the periphery. In the first experiment, UCM cells were transplanted into the rat brain and recovered in that tissue 2-6 weeks posttransplantation. At 4 weeks posttransplantation, the UCM cells engrafted into the brain along the injection tract. The cells were small and roughly spherical. The transplanted cells were positively immunostained using a pig-specific antibody for neuronal filament 70 (NF70). In contrast, 6 weeks posttransplantation, about 10% of the UCM cells that were recovered had migrated away from the injection site into the region just ventral to the corpus callosum; these cells also stained positively for NF70. In our second experiment, UCM cells that were engineered to constitutively express enhanced green fluorescent protein (eGFP) were transplanted. These cells were recovered 2-4 weeks after brain transplantation. Engrafted cells expressing eGFP and positively staining for NF70 were recovered. This finding indicates a potential for gene therapy. In the third experiment, to determine whether depositing the graft into the brain protected UCM cells from immune detection/clearance, UCM cells were injected into the tail vein and/or the semitendinosis muscle in a group of animals. UCM cells were recovered from the muscle or within the kidney 3 weeks posttransplantation. In control experiments, rat brains were injected with PKH 26-labeled UCM cells that had been lysed by repeated sonic disruption. One and 2 weeks following injection, no PKH 26-labeled neurons or glia were observed. Taken together, these data indicate that UCM cells can survive xenotransplantation and that a subset of the UCM cells respond to local signals to differentiate along a neural lineage.
Collapse
Affiliation(s)
- M L Weiss
- Department of Anatomy and Physiology, Kansas State University, College of Veterinary Medicine, Manhattan, KS 66506-5602, USA.
| | | | | | | | | | | | | |
Collapse
|
129
|
Björklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer L, Barker R. Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2003; 2:437-45. [PMID: 12849125 DOI: 10.1016/s1474-4422(03)00442-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anders Björklund
- Wallenberg Neuroscience Center, Section of Neurobiology, Lund University, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Uchida K, Okano H, Hayashi T, Mine Y, Tanioka Y, Nomura T, Kawase T. Grafted swine neuroepithelial stem cells can form myelinated axons and both efferent and afferent synapses with xenogeneic rat neurons. J Neurosci Res 2003; 72:661-9. [PMID: 12774306 DOI: 10.1002/jnr.10628] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuroepithelial stem cells derived from the swine mesencephalic neural tube were examined regarding their eligibility for neural xenografting as a donor material, with the aim of evaluating myelinated axon formation and both types of synaptic formation with xenogeneic host neurons as part of possible neural circuit reconstruction. The mesencephalic neural tube tissues were dissected out from swine embryos at embryonic days 17 and 18 and were implanted immediately into the striatum of the Parkinsonian model rat. The swine-derived grafts had many nestin-positive rosette-forming, neurofilament-positive, and tyrosine hydroxylase-positive cells in the rat striatum. Electron microscopic study revealed both efferent and afferent synaptic formations in the donor-derived immature neurons or tyrosine hydroxylase-positive donor cells in the grafts. Myelinated axons, both positive and negative for swine-specific neurofilament antibody, were mingled together in the graft. These results indicated that implanted neuroepithelial stem cells could survive well and divide asymmetrically into both nestin-expressing precursors and differentiated neurochemical marker-expressing neurons in the xenogeneic rat striatum, with the help of an immunosuppressant. Donor-derived immature neurons formed both efferent and afferent synapses with xenogeneic host neurons, and donor-derived axons were myelinated, which suggests that implanted swine neuroepithelial stem cells could possibly restore damaged neuronal circuitry in the diseased brain.
Collapse
Affiliation(s)
- Koichi Uchida
- Department of Neurosurgery, School of Medicine, Keio University, Shinjuku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
131
|
Blanchet PJ, Konitsiotis S, Mochizuki H, Pluta R, Emerich DF, Chase TN, Mouradian MM. Complications of a trophic xenotransplant approach in parkinsonian monkeys. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:607-12. [PMID: 12787846 DOI: 10.1016/s0278-5846(03)00048-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Various restorative cell transplantation strategies have been investigated to substitute for lost dopamine (DA) neurons or to enhance DA synthesis in Parkinson's disease. Intracerebral implantation of engineered cells encapsulated in a semipermeable polymer membrane constitutes one way to deliver bioactive substances unable to cross the blood-brain barrier while avoiding the need for long-term immunosuppression. Glial cell line-derived neurotrophic factor (GDNF) has shown trophic effects on DA neurons but effective and sustained delivery within the brain parenchyma remains problematic. The long-term efficacy and late complications of a xenotransplant approach utilizing GDNF-expressing encapsulated baby hamster kidney (BHK) cells were examined. Each of five MPTP-lesioned parkinsonian cynomolgus monkeys received five devices containing active or inert cells grafted bilaterally in the striatum in a two-stage procedure 9 months apart and animals were sacrificed 4 months later for analyses. No definite motor benefit was observed, DA levels were comparable between GDNF- and control cell-implanted striata, and tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra showed no consistent recovery. Cell viability and GDNF synthesis in the explanted devices were negligible. The brain tissue surrounding all implants showed an intense immune reaction with prominent "foreign body" inflammatory infiltrates. Membrane biophysics, the cell type used, and the extended period of time the devices remained in situ may have contributed to the negative outcome and should be addressed in future investigations using this approach.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
132
|
Larsson LC, Corbascio M, Pearson TC, Larsen CP, Ekberg H, Widner H. Induction of operational tolerance to discordant dopaminergic porcine xenografts. Transplantation 2003; 75:1448-54. [PMID: 12792495 DOI: 10.1097/01.tp.0000058807.45320.a2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Porcine embryonic neural tissue transplanted intracerebrally could potentially relieve the symptoms of Parkinson's disease if the immune response toward the graft could be overcome. However, conventional immunosuppressive treatments have proven inefficient in preventing rejection. An alternative is blocking the costimulatory signals for lymphocyte activation. Treatment with cytotoxic T-lymphocyte antigen 4 immunoglobulin (CTLA4Ig) and anti-CD40L has been successful in preventing rejection of xenografts in some experimental studies, but not all. Lymphocyte function antigen (LFA)-1 is an important costimulatory molecule for CD8+ T cells, and we hypothesize that blockade with anti-LFA-1 may enhance the efficacy of CTLA4Ig and anti-CD40L therapy. METHODS C57BL/6 mice received intracerebral transplants of ventral mesencephalic tissue from embryonic porcine donors. CTLA4Ig, anti-CD40L, and anti-LFA-1 were administered every other day on days 0 to 8, and the transplants were studied after 4 to 6 weeks. Grafts were histologically analyzed for size, survival of dopaminergic nerve cells, and immune responses. Recipients were challenged with cultured glia cells of donor origin or an allogeneic skin graft to evaluate tolerance induction. RESULTS Mice treated with all three substances had large grafts containing high amounts of dopamine cells but a low degree of immune response. Grafts in recipients challenged with glial cells showed an increased immunologic activity but were not rejected. Triple-treated mice showed a normal rejection process of the allogeneic skin grafts. CONCLUSION After a short course of costimulation blocking therapy, discordant neural xenografts demonstrate long-term survival, withstand immunologic challenge, yet maintain host-versus-graft reactivity. Anti-LFA-1 complements CTLA4Ig and anti-CD40L in the induction of operational tolerance to these xenografts.
Collapse
Affiliation(s)
- Lena C Larsson
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | | | | | | | |
Collapse
|
133
|
Sykes M, d'Apice A, Sandrin M. Position paper of the Ethics Committee of the International Xenotransplantation Association. Xenotransplantation 2003; 10:194-203. [PMID: 12694539 DOI: 10.1034/j.1399-3089.2003.00067.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Xenotransplantation (XTx) provides a potential solution to the shortage of human organs and tissues, and has several advantages over other possible solutions to this problem. However, a number of scientific and ethical barriers exist, and need to be addressed in order to advance the field of XTx in a manner that optimizes its potential to benefit society and minimizes its risk. Some of the most pressing ethical issues are discussed, and the position of the Ethics Committee of the International Xenotransplantation Association is presented.
Collapse
Affiliation(s)
- Megan Sykes
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA.
| | | | | |
Collapse
|
134
|
Shah CA, Böni J, Bisset LR, Seebach JD, Schüpbach J. Ultra-sensitive and specific detection of porcine endogenous retrovirus (PERV) using a sequence-capture real-time PCR approach. J Virol Methods 2003; 109:209-16. [PMID: 12711065 DOI: 10.1016/s0166-0934(03)00073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Use of porcine xenografts presents as a possible solution to the current shortage of human allografts limiting transplantation procedures. While no definitive observation of in vivo porcine endogenous retrovirus (PERV) transmission in humans has been reported, the in vitro ability of PERV to infect human cells and the observation of PERV transmission to immunodeficient mice suggest a need for ultra-sensitive techniques to monitor porcine xenograft recipients and contacts for possible PERV transmission. In an effort to enhance current PCR-based PERV detection, the feasibility of combining nucleic acid sequence-capture with use of a quantitative real-time 5' nuclease assay was examined. Sequence-capture by means of oligonucleotide hybridization to a conserved PERV gag sequence and attachment to magnetic beads was used to extract and concentrate PERV A, B and C DNA from sample material containing high levels of background human DNA. Sequence-capture oligonucleotide design incorporated selective substitution of dUTP for dTTP in order to facilitate eventual oligonucleotide destruction. In addition, sequence-capture oligonucleotides were located outside of the amplified region in order to minimize the effects of possible PCR carry-over. Quantitative PCR was then undertaken using a real-time 5' nuclease assay incorporating primers and probe also specific for a conserved PERV gag region. Sequence-capture real-time PCR assessment of PERV levels demonstrated a dynamic range of at least five orders of magnitude, a sensitivity between 0.005 and 0.028 PERV copies per microg background human DNA and a specificity between 98.2 and 100% (95% CI). In contrast, while real-time PERV PCR in the absence of a sequence-capture step demonstrated a similar specificity between 98.4 and 100% (95% CI), the sensitivity of this conventional approach was between 0.2 and 1.0 PERV copies per microg background human DNA. In conclusion, the increased sensitivity of PERV detection obtained by the combined use of PERV-specific sequence-capture and quantitative real-time PERV PCR suggest that this approach should enhance the effectiveness and reliability of monitoring procedures currently applied to porcine xenograft recipients and contacts.
Collapse
Affiliation(s)
- Cyril A Shah
- Swiss National Center for Retroviruses, University of Zürich, Gloriastrasse 30, CH-8028 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
135
|
Stocchi F, Olanow CW. Neuroprotection in Parkinson's disease: clinical trials. Ann Neurol 2003; 53 Suppl 3:S87-97; discussion S97-9. [PMID: 12666101 DOI: 10.1002/ana.10488] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Advances in our understanding of the cause and pathogenesis of Parkinson's disease (PD) have permitted the rational selection of putative neuroprotective agents for study in PD. However, the list of agents that might provide neuroprotective effects derived from laboratory studies is daunting, and we face the challenge of determining which agents to bring to the clinic and how to find the resources (patients and funds) to properly study so many promising therapeutic opportunities.1 Appropriate outcome variables that are not confounded by any symptomatic effect of the drug and are acceptable to clinicians and regulatory authorities also remain to be defined. The first clinical trials designed to test the capacity of putative neuroprotective agents to alter the natural history of PD have now been performed and illustrate some of these problems. The DATATOP (Deprenyl and Tocopherol Antioxidant Therapy of PD) study used the time to reach a disease milestone in untreated PD patients (ie, need for levodopa) as the primary end point. However, interpretation of results was confounded by the drug's symptomatic effect. The SINDEPAR (Sinemet-Deprenyl-Parlodel) study used the change in motor score between initial visit and final visit after washout of all study medications as the primary end point. However, here too there were concerns about confounding symptomatic effects, because antiparkinsonian medications have now been shown to have a long duration response that can persist for weeks and perhaps even months after withdrawal. More recent studies have used surrogate markers of the integrity of nigrostriatal function such as striatal uptake of fluorodopa on positron emission tomography (PET) or beta-CIT-on single-photon emission computerized tomography (SPECT) as primary outcome measures. However, it has not yet been confirmed that striatal uptake of these isotopes does in fact correlate with the remaining number of dopamine neurons or terminals, and the possibility of a confounding pharmacological effect has not yet been completely excluded. To date, no drug has been established to have a neuroprotective effect in PD, and none has been approved for a neuroprotective indication. Furthermore, regulatory agencies have not yet agreed that any of the outcome measures currently used will be acceptable for approval of a new drug. Resolution of these issues is of critical importance to convince pharmaceutical companies to expend the hundreds of millions of dollars necessary to bring a new drug to market. Drugs that already have been approved in PD for their symptomatic effects, such as dopamine agonists or propargylamines (eg, selegiline), offer the best opportunity for establishing that a drug is neuroprotective in PD in the immediate future, but herein also lies the difficulty of establishing that any benefits observed are not solely because of the drug's symptomatic properties. Currently, this will most likely entail demonstrating that the drug provides benefit for PD patients for both imaging and clinical markers of disease progression.
Collapse
Affiliation(s)
- Fabrizio Stocchi
- Department of Neuroscience and Neuromed, University La Sapienza, Rome, Italy.
| | | |
Collapse
|
136
|
Yoshida H, Date I, Shingo T, Fujiwara K, Kobayashi K, Miyoshi Y, Ohmoto T. Stereotactic transplantation of a dopamine-producing capsule into the striatum for treatment of Parkinson disease: a preclinical primate study. J Neurosurg 2003; 98:874-81. [PMID: 12691415 DOI: 10.3171/jns.2003.98.4.0874] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The PC12 cells are well known for their ability to secrete dopamine and levodopa. In multiple animal mode encapsulated PC12 cells have been shown to ameliorate parkinsonian symptoms when transplanted into the striatum; technique is expected to be effective clinically as well. The present study was performed using nonhuman primates to ensure that the transplantation of encapsulated PC12 cells is likely to be both safe and effective in human clinical trials. METHODS Unencapsulated or encapsulated PC12 cells were implanted into the brains of Japanese monkeys (Macaca fuscata). Histological and immunocytochemical analyses were performed 1, 2, 4, and 8 weeks posttransplantation on the unencapsulated cells and 2, 4, and 8 weeks after transplantation on the encapsulated cells. The survival of the PC12 cells inside the capsule was determined by measuring the amounts of dopamine and levodopa released from the capsules a removal from the striatum. Magnetic resonance imaging was performed in both unencapsulated and encapsulated PC12 cell-grafted groups. Due to the immunological reaction of the host brain no unencapsulated PC12 cells remained in the grafted area 8 weeks after transplantation. On the contrary, encapsulated PC12 cells retrieved from the host brain continued to release dopamine and levodopa even 8 weeks after implantation. The host's reaction to the PC12-loaded capsule was much weaker than that to the unencapsulated PC12 cells. CONCLUSIONS These results suggest that the transplantation of encapsulated PC12 cells could be a safe and effective treatment modality for Parkinson disease in human patients.
Collapse
Affiliation(s)
- Hideyuki Yoshida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | |
Collapse
|
137
|
Peaire AE, Takeshima T, Johnston JM, Isoe K, Nakashima K, Commissiong JW. Production of dopaminergic neurons for cell therapy in the treatment of Parkinson's disease. J Neurosci Methods 2003; 124:61-74. [PMID: 12648765 DOI: 10.1016/s0165-0270(02)00364-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopaminergic cell therapy is a potential viable treatment for Parkinson's disease. However, lack of a well-characterized cell preparation of known phenotypic composition containing a high percentage of dopaminergic neurons, has prevented a definitive, controlled, pilot clinical trial from being conducted. We report the successful in vitro expansion of rat E12 mesencephalic progenitors to produce 5-fold the normal number of dopaminergic neurons. The expanded neurons (MAP2+) were detached, resuspended, and formed into small aggregates of 10-200 neurons containing 25-50% of dopaminergic neurons (TH+) that will likely be optimal for use in successful cell therapy. After storage in DPBS, in 0 mM Ca(2+) for up to 24 h at room temperature, aggregated cells were still 90% viable. These results demonstrate that it might be feasible to use a similar protocol to expand human dopaminergic progenitors in vitro. If successful, the requisite large numbers of dopaminergic neurons required to conduct a pilot clinical trial for Parkinson's disease will be produced in vitro. Indications are that the cells can be maintained at optimal viability for the duration of the neural transplantation procedure, under real operating conditions.
Collapse
Affiliation(s)
- A E Peaire
- Cell Biology, Prescient NeuroPharma Inc., 96 Skyway Ave., Toronto, Ont., Canada M9W 4Y9
| | | | | | | | | | | |
Collapse
|
138
|
Maruyama M, Kobayashi N, Okitsu T, Totsugawa T, Watanabe T, Matsumura T, Kosaka Y, Tanaka N. Successful lentivirus-based delivery of NLS-LACZ gene into porcine hepatocytes. Transplant Proc 2003; 35:435-6. [PMID: 12591476 DOI: 10.1016/s0041-1345(02)03793-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- M Maruyama
- Department of Surgery, Okayama University Graduate School of Medicine and Dentistry, Okayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
139
|
Trophic restoration of the nigrostriatal dopaminergic pathway in long-term carotid body-grafted parkinsonian rats. J Neurosci 2003. [PMID: 12514210 DOI: 10.1523/jneurosci.23-01-00141.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We studied the mechanisms underlying long-term functional recovery of hemiparkinsonian rats grafted intrastriatally with carotid body (CB) cell aggregates. Amelioration of their motor syndrome is a result of the trophic actions of these grafts on the remaining ipsilateral substantia nigra neurons rather than of the release of dopamine from the CB grafts. The grafts maintain a stable morphological appearance and differentiated cell phenotype for the duration of the life of the host. Adult CB expresses high levels of glial cell line-derived neurotrophic factor (GDNF) and the multicomponent GDNF receptor complex. These properties may contribute to the trophic actions of the CB transplants on nigrostriatal neurons and to their extraordinary longevity. We show that CB glomus cells, although highly dopaminergic, are protected from dopamine-mediated oxidative damage because of the absence of the high-affinity dopamine transporter. Thus, intrastriatal CB grafts are uniquely suited for long-term delivery of trophic factors capable of promoting restoration of the nigrostriatal pathway.
Collapse
|
140
|
Duan WM, Westerman MA, Wong G, Low WC. Rat nigral xenografts survive in the brain of MHC class II-, but not class I-deficient mice. Neuroscience 2003; 115:495-504. [PMID: 12421616 DOI: 10.1016/s0306-4522(02)00382-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have examined the role of the indirect pathway of antigen recognition and T cells in neural xenografts rejection by using major histocompatibility complex (MHC) class II-deficient mice as xenograft recipients. Dissociated embryonic ventral mesencephalic tissue from Sprague-Dawley rats was stereotaxically injected as a cell suspension into the striatum of MHC class II-deficient adult mice as well as MHC class I-deficient and wild-type mice as controls. All of the MHC class II-deficient mice had surviving grafts in the striatum 4 weeks post-grafting. In contrast, only a few of the MHC class I-deficient mice exhibited very small grafts and none of the wild-type mice had any surviving grafts. The mean number of surviving transplanted dopamine neurons in the MHC class II-deficient group was significantly larger than that observed in the other two groups. Moderate levels of MHC class I antigen expression were seen in the transplantation sites of some animals in the MHC class II-deficient group. No helper or cytotoxic T cells were observed infiltrating into the graft sites of this group. However, there were markedly increased levels of expression of MHC class I and class II antigens, and a number of T cells infiltrating in the graft sites in both the MHC class I-deficient and wild-type groups. These results show that rat embryonic nigral tissue can survive transplantation in the brain of the MHC class II-deficient mice for at least 4 weeks without any overt signs of rejection, suggesting that the indirect pathway of foreign antigen recognition mediated by host MHC class II molecules and helper T cells plays an important role in the rejection responses to intracerebral xenografts.
Collapse
Affiliation(s)
- W-M Duan
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
141
|
Abstract
To determine whether pig metanephroi grow and differentiate after allotransplantation or xenotransplantation across a highly disparate barrier, we implanted metanephroi from embryonic day 28 (E28) pig embryos into the omentum of unilaterally nephrectomized adult pigs or C57Bl/6J mice (hosts). Some mouse hosts received anti-CD45RB, anti-CD154, and anti-CD11a (costimulatory blockade). E28 pig metanephroi were < 0.2 mm in diameter and contained only metanephric blastema and segments of ureteric bud. Pig metanephroi transplanted into pigs underwent growth and differentiation of nephrons over a 2 week period without the need for costimulatory blockade of hosts. In contrast, pig metanephroi did not grow or differentiate in mice that received no costimulatory blockade. However, by 2 weeks posttransplantation in mice in which costimulation was blocked, metanephroi from E28 pigs had enlarged, become vascularized, and had formed mature tubules and glomeruli. By 3 weeks posttransplantation in mice, metanephroi had grown to the point that they were approximately half the volume of the native mouse kidney. Here we show that growth and development of pig metanephroi occurs posttransplantation across an allogeneic or highly disparate xenogeneic barrier.
Collapse
Affiliation(s)
- Sharon A Rogers
- Department of Medicine, George M. O'Brien Kidney and Urological Disease Center, Renal Division, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | |
Collapse
|
142
|
Cicchetti F, Fodor W, Deacon TW, van Horne C, Rollins S, Burton W, Costantini LC, Isacson O. Immune parameters relevant to neural xenograft survival in the primate brain. Xenotransplantation 2003; 10:41-9. [PMID: 12535224 DOI: 10.1034/j.1399-3089.2003.01130.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The lack of supply and access to human tissue has prompted the development of xenotransplantation as a potential clinical modality for neural cell transplantation. The goal of the present study was to achieve a better understanding of the immune factors involved in neural xenograft rejection in primates. Initially, we quantified complement mediated cell lysis of porcine fetal neurons by primate serum and demonstrated that anti-C5 antibody treatment inhibited cell death. We then developed an immunosuppression protocol that included in vivo anti-C5 monoclonal antibody treatment, triple drug therapy (cyclosporine, methylprednisolone, azathioprine) and donor tissue derived from CD59 or H-transferase transgenic pigs and applied it to pig-to-primate neural cell transplant models. Pre-formed alphaGal, induced alphaGal and primate anti-mouse antibody (PAMA) titers were monitored to assess the immune response. Four primates were transplanted. The three CD59 neural cell recipients showed an induced anti-alphaGal response, whereas the H-transferase neural cell recipient exhibited consistently low anti-alphaGal titers. Two of these recipients contained surviving grafts as detected by immunohistochemistry using selected neural markers. Graft survival correlated with high dose cyclosporine treatment, complete complement blockade and the absence of an induced PAMA response to the murine anti-C5 monoclonal antibodies.
Collapse
Affiliation(s)
- F Cicchetti
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, Belmont, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Abstract
For nearly a century, xenotransplantation has been seen as a potential approach to replacing organs and tissues damaged by disease. Until recently, however, the application of xenotransplantation has seemed only a remote possibility. What has changed this perspective is the advent of genetic engineering of large animals; that is, the ability to add genes to and remove genes from lines of animals that could provide an enduring source of tissues and organs for clinical application. Genetic engineering could address the immunologic, physiologic and infectious barriers to xenotransplantation, and could allow xenotransplantation to provide a source of cells with defined and even controlled expression of exogenous genes. This communication will consider one perspective on the application of genetic engineering in xenotransplantation.
Collapse
Affiliation(s)
- J L Platt
- Transplantation Biology, Department of Surgery, Medical Sciences Building 2-66, Mayo Clinic, 200 1st Street S.W., Rochester, MN 55905, USA.
| |
Collapse
|
144
|
Jolesz FA, Talos IF, Schwartz RB, Mamata H, Kacher DF, Hynynen K, McDannold N, Saivironporn P, Zao L. Intraoperative magnetic resonance imaging and magnetic resonance imaging-guided therapy for brain tumors. Neuroimaging Clin N Am 2002; 12:665-83. [PMID: 12687918 DOI: 10.1016/s1052-5149(02)00036-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since their introduction into surgical practice in the mid 1990s, intraoperative MRI systems have evolved into essential, routinely used tools for the surgical treatment of brain tumors in many centers. Clear delineation of the lesion, "under-the-surface" vision, and the possibility of obtaining real-time feedback on the extent of resection and the position of residual tumor tissue (which may change during surgery due to "brain-shift") are the main strengths of this method. High-performance computing has further extended the capabilities of intraoperative MRI systems, opening the way for using multimodal information and 3D anatomical reconstructions, which can be updated in "near real time." MRI sensitivity to thermal changes has also opened the way for innovative, minimally invasive (LASER ablations) as well as noninvasive therapeutic approaches for brain tumors (focused ultrasound). Although we have not used intraoperative MRI in clinical applications sufficiently long to assess long-term outcomes, this method clearly enhances the ability of the neurosurgeon to navigate the surgical field with greater accuracy, to avoid critical anatomic structures with greater efficacy, and to reduce the overall invasiveness of the surgery itself.
Collapse
Affiliation(s)
- Ferenc A Jolesz
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Clinical studies involving intrastriatal transplantation of embryonic mesencephalic tissue in patients with Parkinson disease (PD) have provided proof-of-principle for the cell replacement strategy in this disorder. The grafted dopaminergic neurons can reinnervate the denervated striatum, restore regulated dopamine release and movement-related frontal cortical activation, and produce significant symptomatic relief. In the most successful cases, patients have been able to withdraw from levodopa treatment after undergoing transplantation and resume an independent life. There are, however, several problems linked to the use of primary embryonic tissue: 1) lack of sufficient amounts of tissue for transplantation in a large number of patients; 2) variability of functional outcome (major improvement in some and modest if any clinical benefit in others); and 3) occurrence of troublesome dyskinesias in a significant proportion of patients after transplantation. Thus, neural transplantation is still at an experimental stage in the treatment of PD. For the development of a clinically useful cell therapy we need to define better criteria for patient selection and how graft placement should be optimized in each individual. Most importantly, we need to generate large numbers of viable dopamine neurons in preparations that are standardized and quality controlled. Stem cells could be useful as an unlimited source of dopamine neurons. Thus far, neurons with at least some dopaminergic characteristics have been generated from stem cells. In most cases, however, their survival after grafting in animals has been poor, and it is also unclear if they function as normal dopamine neurons. Several scientific issues need to be addressed before stem cell-based therapies can be tested in PD patients.
Collapse
Affiliation(s)
- Olle Lindvall
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, Lund, Sweden.
| | | |
Collapse
|
146
|
Abstract
Surgical therapies for Parkinson's disease (PD) are now being performed with increasing frequency due to the limitations of conventional dopaminergic therapies, improvements in operative procedures, and increased information on the organization of the basal ganglia in normal and pathologic conditions. Ablation procedures have now been largely replaced with deep brain stimulation, which permits benefits to be obtained without the need to make a destructive brain lesion. Several studies now demonstrate the value of stimulating the subthalamic nucleus or the globus pallidus pars interna in patients with advanced PD. Nonetheless, there are limitations associated with these procedures and benefits do not exceed those obtained with levodopa, albeit with reduced motor complications. Fetal transplantation remains an experimental procedure that has shown limited benefits in a double-blind trial and is complicated by persistent dyskinesia. Stem cell, trophic factor, and gene therapy approaches are promising and are currently under intensive investigation.
Collapse
Affiliation(s)
- C W Olanow
- Mount Sinai School of Medicine, Department of Neurology, New York, NY 10029, USA.
| |
Collapse
|
147
|
Abstract
The number of kidney transplants performed per year is limited by the availability of donor organs. One novel solution to this shortage envisions "growing" new kidneys in situ via xenotransplantation of renal anlagen. We have shown that developing metanephroi transplanted into the omentum of animal hosts undergo differentiation and growth, become vascularized by blood vessels of host origin, and exhibit excretory function. Metanephroi can be stored for up to 3 days in vitro before transplantation with no impairment in growth or function postimplantation. Metanephroi can be transplanted across both concordant (rat --> mouse) and discordant/highly disparate (pig --> rodent) xenogeneic barriers. This review summarizes experimental data relating to the transplantation of developing kidneys.
Collapse
Affiliation(s)
- Marc R Hammerman
- George M. O'Brien Kidney and Urological Disease Center, Renal Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
148
|
Abstract
The concept of replacing lost dopamine neurons in Parkinson's disease using mesencephalic brain cells from fetal cadavers has been supported by over 20 years of research in animals and over a decade of clinical studies. The ambitious goal of these studies was no less than a molecular and cellular "cure" for Parkinson's disease, other neurodegenerative diseases, and spinal cord injury. Much research has been done in rodents, and a few studies have been done in nonhuman primate models. Early uncontrolled clinical reports were enthusiastic, but the outcome of the first randomized, double blind, controlled study challenged the idea that dopamine replacement cells can cure Parkinson's disease, although there were some significant positive findings. Were the earlier animal studies and clinical reports wrong? Should we give up on the goal? Some aspects of the trial design and implantation methods may have led to lack of effects and to some side effects such as dyskinesias. But a detailed review of clinical neural transplants published to date still suggests that neural transplantation variably reverses some aspects of Parkinson's disease, although differing methods make exact comparisons difficult. While the randomized clinical studies have been in progress, new methods have shown promise for increasing transplant survival and distribution, reconstructing the circuits to provide dopamine to the appropriate targets and with normal regulation. Selected promising new strategies are reviewed that block apoptosis induced by tissue dissection, promote vascularization of grafts, reduce oxidant stress, provide key growth factors, and counteract adverse effects of increased age. New sources of replacement cells and stem cells may provide additional advantages for the future. Full recovery from parkinsonism appears not only to be possible, but a reliable cell replacement treatment may finally be near.
Collapse
Affiliation(s)
- D Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, USA.
| |
Collapse
|
149
|
Bauer M, Meyer M, Brevig T, Gasser T, Widmer HR, Zimmer J, Ueffing M. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue. Exp Neurol 2002; 177:40-9. [PMID: 12429209 DOI: 10.1006/exnr.2002.7965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated transfer of the gene for human glial cell line-derived neurotrophic factor (GDNF) to embryonic (E27/28) porcine VM tissue kept as organotypic explant cultures. Treatment of the developing VM with two mitogens, basic fibroblast growth factor and epidermal growth factor, prior to transfection significantly increased transfection yields. Expression of human GDNF via an episomal vector could be detected by in situ hybridization and by the measuring of GDNF protein secreted into the culture medium. When compared to mock-transfected controls, VM tissue expressing recombinant GDNF contained significantly higher numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo- and xenotransplantation treatment in Parkinson's disease.
Collapse
Affiliation(s)
- Matthias Bauer
- GSF-National Research Center for Environment and Health, Institute for Human Genetics, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | | | | | | | | | | | | |
Collapse
|
150
|
Jacoby DB, Lindberg C, Ratliff J, Wetzel K, Stewart GR, Dinsmore J. Comparison of fresh and cryopreserved porcine ventral mesencephalon cells transplanted in A rat model of Parkinson's disease. J Neurosci Res 2002; 69:382-96. [PMID: 12125079 DOI: 10.1002/jnr.10297] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To evaluate whether cryopreservation of porcine ventral mesencephalon cells influences graft survival and function in vivo, we have transplanted either freshly prepared or cryopreserved cells into the striatum of 6-hydroxydopamine-lesioned rats. A single cell suspension of porcine ventral mesencephalon cells from the same isolation either was stored at 4 degrees C and transplanted the next day or was cryopreserved for 4 weeks in liquid nitrogen vapor. The cryopreserved cells were then rapidly thawed, rinsed, and transplanted in the same manner as the fresh cells, with the same dose of viable cells. All animals received daily injections of cyclosporin A to prevent xenograft rejection. To monitor graft function, amphetamine-induced rotation was measured every 3 weeks between 6 and 15 weeks posttransplantation. After sacrifice at 15 weeks posttransplantation, histological methods were used to compare fresh cell and cryopreserved cell transplants with respect to graft survival, differentiation and integration, and host immune response. Cryopreserved cells were found to be either equivalent or in some cases superior to fresh cells with respect to rotational correction, graft survival, graft volume, numbers of graft-derived dopaminergic neurons, and host immune responses. In conclusion, the results indicate that it is feasible to cryopreserve porcine ventral mesencephalon cells for long-term storage of cells prior to transplantation in an animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Douglas B Jacoby
- Department of Cell Transplantation, Diacrin Inc., Charlestown, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|