101
|
Holm KH, Cicchetti F, Bjorklund L, Boonman Z, Tandon P, Costantini LC, Deacon TW, Huang X, Chen DF, Isacson O. Enhanced axonal growth from fetal human bcl-2 transgenic mouse dopamine neurons transplanted to the adult rat striatum. Neuroscience 2001; 104:397-405. [PMID: 11377843 DOI: 10.1016/s0306-4522(01)00098-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Embryonic neurons transplanted to the adult CNS extend axons only for a developmentally defined period. There are certain intercellular factors that control the axonal extension, one of which may be the expression of the bcl-2 protein. In this study, rats with complete striatal dopamine fiber denervation received embryonic day 14 mouse ventral mesencephalon cells overexpressing human bcl-2 or control wild-type ventral mesencephalon cells. All rats were treated with cyclosporine to prevent rejection and the surviving grafts were analyzed for cell survival and outgrowth of dopaminergic fibers. The results demonstrate that bcl-2 overexpression does not enhance neuronal graft survival. However, the bcl-2 overexpressing neurons had a higher number of dopaminergic fibers that grew longer distances. These results show that overexpression of bcl-2 can result in longer distance axonal growth of transplanted fetal dopaminergic neurons and that genetic modification of embryonic donor cells may enhance their ability to reinnervate a neuronal target territory.
Collapse
Affiliation(s)
- K H Holm
- Neuroregeneration Laboratory, McLean Hospital and Program in Neuroscience, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Isacson O, Costantini L, Schumacher JM, Cicchetti F, Chung S, Kim KS. Cell implantation therapies for Parkinson's disease using neural stem, transgenic or xenogeneic donor cells. Parkinsonism Relat Disord 2001; 7:205-212. [PMID: 11331188 DOI: 10.1016/s1353-8020(00)00059-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A new therapeutic neurological and neurosurgical methodology involves cell implantation into the living brain in order to replace intrinsic neuronal systems, that do not spontaneously regenerate after injury, such as the dopaminergic (DA) system affected in Parkinson's disease (PD) and aging. Current clinical data indicate proof of principle for this cell implantation therapy for PD. Furthermore, the disease process does not appear to negatively affect the transplanted cells, although the patient's endogenous DA system degeneration continues. However, the optimal cells for replacement, such as highly specialized human fetal dopaminergic cells capable of repairing an entire degenerated nigro-striatal system, cannot be reliably obtained or generated in sufficient numbers for a standardized medically effective intervention. Xenogeneic and transgenic cell sources of analogous DA cells have shown great utility in animal models and some promise in early pilot studies in PD patients. The cell implantation treatment discipline, using cell fate committed fetal allo- or xenogeneic dopamine neurons and glia, is currently complemented by research on potential stem cell derived DA neurons. Understanding the cell biological principles and developing methodology necessary to generate functional DA progenitors is currently our focus for obtaining DA cells in sufficient quantities for the unmet cell transplantation need for patients with PD and related disorders.
Collapse
Affiliation(s)
- O Isacson
- Neuroregeneration Laboratory, Harvard Medical School/McLean Hospital, 02478, Belmont, MA, USA
| | | | | | | | | | | |
Collapse
|
103
|
Brüstle O, Cunningham MG, Tabar V, Studer L. Experimental Transplantation in the Embryonic, Neonatal, and Adult Mammalian Brain. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/0471142301.ns0310s01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Oliver Brüstle
- National Institute of Neurological Disorders and Stroke; Bethesda Maryland
| | | | - Vivian Tabar
- National Institute of Neurological Disorders and Stroke; Bethesda Maryland
| | - Lorenz Studer
- National Institute of Neurological Disorders and Stroke; Bethesda Maryland
| |
Collapse
|
104
|
Abstract
The capability for in vitro expansion of human neural stem cells (HNSCs) provides a well characterized and unlimited source alternative to using primary fetal tissue for neuronal replacement therapies. The HNSCs, injected into the lateral ventricle of 24-month-old rats after in vitro expansion, displayed extensive and positional incorporation into the aged host brain with improvement of cognitive score assessed by the Morris water maze after 4 weeks of the transplantation. Our results demonstrate that the aged brain is capable of providing the necessary environment for HNSCs to retain their pluripotent status and suggest the potential for neuroreplacement therapies in age-associated neurodegenerative disease.
Collapse
Affiliation(s)
- T Qu
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
105
|
Affiliation(s)
- E B Pedersen
- Department of Anatomy and Neurobiology, University of Southern Denmark, Odense University, DK-5000 Odense C, Denmark
| | | |
Collapse
|
106
|
Winkler C, Kirik D, Björklund A, Dunnett SB. Transplantation in the rat model of Parkinson's disease: ectopic versus homotopic graft placement. PROGRESS IN BRAIN RESEARCH 2001; 127:233-65. [PMID: 11142030 DOI: 10.1016/s0079-6123(00)27012-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- C Winkler
- Wallenberg Neuroscience Center, Division of Neurobiology, Lund University, Sölvegatan 17, S-223 62 Lund, Sweden
| | | | | | | |
Collapse
|
107
|
Freeman TB, Hauser RA, Sanberg PR, Saporta S. Neural transplantation for the treatment of Huntington's disease. PROGRESS IN BRAIN RESEARCH 2001; 127:405-11. [PMID: 11142038 DOI: 10.1016/s0079-6123(00)27019-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- T B Freeman
- Department of Neurosurgery, University of South Florida, Tampa, FL 33606, USA.
| | | | | | | |
Collapse
|
108
|
Duan WM, Westerman M, Flores T, Low WC. Survival of intrastriatal xenografts of ventral mesencephalic dopamine neurons from MHC-deficient mice to adult rats. Exp Neurol 2001; 167:108-17. [PMID: 11161598 DOI: 10.1006/exnr.2000.7537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies of neural xenografts have used immunosuppressive agents to prevent graft rejection. In the present study we have examined the survival of mouse dopamine neurons lacking either MHC class I or MHC class II molecules transplanted into rat brains and the host immune and inflammatory responses against the xenografts. Survival of neural grafts was immunocytochemically determined at 4 days, 2 weeks, and 6 weeks after transplantation by counting tyrosine hydroxylase (TH)-positive cells in the graft areas. In addition, the host immune and inflammatory responses against neural xenografts were evaluated by semiquantitatively rating MHC class I and class II antigen expression, accumulation of macrophages and activated microglia, and infiltration of CD4- and CD8-positive T-lymphocytes. For the negative controls, the mean number of TH-positive cells in rats that received wild-type mouse tissue progressively decreased at various time periods following transplantation. In contrast, intrastriatal grafting of either MHC class I or MHC class II antigen-depleted neural xenografts resulted in a prolonged survival and were comparable to cyclosporin A-treated rats that had received wild-type mouse tissue. These results indicate that genetically modified donor tissue lacking MHC molecules can be used to prevent neural xenograft rejection.
Collapse
Affiliation(s)
- W M Duan
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
109
|
Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S, Isacson O. Transplanted fetal striatum in Huntington's disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A 2000; 97:13877-82. [PMID: 11106399 PMCID: PMC17669 DOI: 10.1073/pnas.97.25.13877] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural and stem cell transplantation is emerging as a potential treatment for neurodegenerative diseases. Transplantation of specific committed neuroblasts (fetal neurons) to the adult brain provides such scientific exploration of these new potential therapies. Huntington's disease (HD) is a fatal, incurable autosomal dominant (CAG repeat expansion of huntingtin protein) neurodegenerative disorder with primary neuronal pathology within the caudate-putamen (striatum). In a clinical trial of human fetal striatal tissue transplantation, one patient died 18 months after transplantation from cardiovascular disease, and postmortem histological analysis demonstrated surviving transplanted cells with typical morphology of the developing striatum. Selective markers of both striatal projection and interneurons such as dopamine and c-AMP-related phosphoprotein, calretinin, acetylcholinesterase, choline acetyltransferase, tyrosine hydroxylase, calbindin, enkephalin, and substance P showed positive transplant regions clearly innervated by host tyrosine hydroxylase fibers. There was no histological evidence of immune rejection including microglia and macrophages. Notably, neuronal protein aggregates of mutated huntingtin, which is typical HD neuropathology, were not found within the transplanted fetal tissue. Thus, although there is a genetically predetermined process causing neuronal death within the HD striatum, implanted fetal neural cells lacking the mutant HD gene may be able to replace damaged host neurons and reconstitute damaged neuronal connections. This study demonstrates that grafts derived from human fetal striatal tissue can survive, develop, and are unaffected by the disease process, at least for 18 months, after transplantation into a patient with HD.
Collapse
Affiliation(s)
- T B Freeman
- Department of Neurosurgery, Department of Pharmacology and Experimental Therapeutics, and The Neuroscience Program, University of South Florida, Tampa, FL 33606, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Pratt T, Sharp L, Nichols J, Price DJ, Mason JO. Embryonic stem cells and transgenic mice ubiquitously expressing a tau-tagged green fluorescent protein. Dev Biol 2000; 228:19-28. [PMID: 11087623 DOI: 10.1006/dbio.2000.9935] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We have generated embryonic stem (ES) cells and transgenic mice carrying a tau-tagged green fluorescent protein (GFP) transgene under the control of a powerful promoter active in all cell types including those of the central nervous system. GFP requires no substrate and can be detected in fixed or living cells so is an attractive genetic marker. Tau-tagged GFP labels subcellular structures, including axons and the mitotic machinery, by binding the GFP to microtubules. This allows cell morphology to be visualized in exquisite detail. We test the application of cells derived from these mice in several types of cell-mixing experiments and demonstrate that the morphology of tau-GFP-expressing cells can be readily visualized after they have integrated into unlabeled host cells or tissues. We anticipate that these ES cells and transgenic mice will prove a novel and powerful tool for a wide variety of applications including the development of neural transplantation technologies in animal models and fundamental research into axon pathfinding mechanisms. A major advantage of the tau-GFP label is that it can be detected in living cells and labeled cells and their processes can be identified and subjected to a variety of manipulations such as electrophysiological cell recording.
Collapse
Affiliation(s)
- T Pratt
- Department of Biomedical Sciences, Centre for Developmental Biology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, United Kingdom
| | | | | | | | | |
Collapse
|
111
|
Brevig T, Holgersson J, Widner H. Xenotransplantation for CNS repair: immunological barriers and strategies to overcome them. Trends Neurosci 2000; 23:337-44. [PMID: 10906793 DOI: 10.1016/s0166-2236(00)01605-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neural transplantation holds promise for focal CNS repair. Owing to the shortage of human donor material, which is derived from aborted embryos, and ethical concerns over its use, animal donor tissue is now considered an appropriate alternative. In the USA, individuals suffering from Parkinson's disease, Huntington's disease, focal epilepsy or stroke have already received neural grafts from pig embryos. However, in animal models, neural tissue transplanted between species is usually promptly rejected, even when implanted in the brain. Some of the immunological mechanisms that underlie neural xenograft rejection have recently been elucidated, but others remain to be determined and controlled before individuals with neurological disorders can benefit from xenotransplantation.
Collapse
Affiliation(s)
- T Brevig
- Dept of Anatomy and Neurobiology, University of Southern Denmark, Denmark
| | | | | |
Collapse
|
112
|
Meyer M, Johansen J, Gramsbergen JB, Johansen TE, Zimmer J. Improved survival of embryonic porcine dopaminergic neurons in coculture with a conditionally immortalized GDNF-producing hippocampal cell line. Exp Neurol 2000; 164:82-93. [PMID: 10877918 DOI: 10.1006/exnr.2000.7419] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transplantation of embryonic nigral tissue is used as an experimental therapy for patients with Parkinson's disease but is hampered by a limited survival rate of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) is a potent survival factor for nigrostriatal dopaminergic neurons, and the present in vitro study aimed at improving the survival of dopaminergic neurons in porcine mesencephalic brain slice cultures by adding transfected, immortalized, temperature-sensitive GDNF-releasing HiB5 cells (HiB5-GDNF). Embryonic (E27/28) porcine ventral mesencephalic brain slices were placed on membrane inserts in six-well plates with serum-containing medium, and HiB5-GDNF, nontransfected HiB5 cells (HiB5-control), or green fluorescent protein-producing HiB5 cells (HiB5-GFP) were seeded onto each tissue slice. The concentration of GDNF in the coculture medium was 0.49 +/- 0.13 ng/ml at day 9 and 0. 22 +/- 0.05 ng/ml at day 19 (mean +/- SEM) as measured by GDNF ELISA. The decrease in release of GDNF over time was paralleled by a gradual reduction in the number of HiB5-GFP cells expressing the reporter gene (EGFP). At day 12, HPLC analysis revealed that medium from HiB5-GDNF cocultures contained 2.0 times more dopamine than medium from HiB5-control cocultures. At day 21 there was 1.6 times more dopamine. Similar results were obtained for the dopamine metabolite 3,4-dihydroxyphenylacetic acid. At day 21, cell counts showed that HiB5-GDNF cocultures contained 1.5 times more tyrosine hydroxylase immunoreactive neurons than HiB5-control cocultures, which must be compared with a 1.8 fold increase after chronic treatment with rhGDNF (10 ng/ml). In conclusion, the better survival of HiB5-GDNF cocultures is promising for the generation of effective cell lines for local delivery of neurotrophic factors to intracerebral nigral grafts.
Collapse
Affiliation(s)
- M Meyer
- Anatomy and Neurobiology, SDU-Odense University, Odense, Denmark
| | | | | | | | | |
Collapse
|
113
|
BORLONGAN CESARIOV, YAMAMOTO MITSUHARU, TAKEI NORIE, KUMAZAKI MICHIKO, UNGSUPARKORN CHUTCHARIN, HIDA HIDEKI, SANBERG PAULR, NISHINO HITOO. Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J 2000. [DOI: 10.1096/fasebj.14.10.1307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- CESARIO V. BORLONGAN
- Cellular Neurobiology Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - MITSUHARU YAMAMOTO
- Department of Physiology, Nagoya City University Medical School, Nagoya 467, Japan
| | - NORIE TAKEI
- Department of Physiology, Nagoya City University Medical School, Nagoya 467, Japan
| | - MICHIKO KUMAZAKI
- Department of Physiology, Nagoya City University Medical School, Nagoya 467, Japan
| | | | - HIDEKI HIDA
- Department of Physiology, Nagoya City University Medical School, Nagoya 467, Japan
| | - PAUL R. SANBERG
- Department of Neurological Surgery and Program in Neuroscience, University of South Florida College of Medicine, Tampa, Florida 33612, USA; and
| | - HITOO NISHINO
- Department of Physiology, Nagoya City University Medical School, Nagoya 467, Japan
| |
Collapse
|
114
|
Borlongan CV, Yamamoto M, Takei N, Kumazaki M, Ungsuparkorn C, Hida H, Sanberg PR, Nishino H. Glial cell survival is enhanced during melatonin‐induced neuroprotection against cerebral ischemia. FASEB J 2000. [DOI: 10.1096/fasebj14101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cesario V. Borlongan
- Cellular Neurobiology BranchNational Institute on Drug AbuseNational Institutes of Health Baltimore Maryland 21224 USA
| | - Mitsuharu Yamamoto
- Department of PhysiologyNagoya City University Medical School Nagoya 467 Japan
| | - Norie Takei
- Department of PhysiologyNagoya City University Medical School Nagoya 467 Japan
| | - Michiko Kumazaki
- Department of PhysiologyNagoya City University Medical School Nagoya 467 Japan
| | | | - Hideki Hida
- Department of PhysiologyNagoya City University Medical School Nagoya 467 Japan
| | - Paul R. Sanberg
- Department of Neurological SurgeryProgram in NeuroscienceUniversity of South Florida College of Medicine Tampa Florida 33612 USA
| | - Hitoo Nishino
- Department of PhysiologyNagoya City University Medical School Nagoya 467 Japan
| |
Collapse
|
115
|
Nagai Y, Tucker T, Ren H, Kenan DJ, Henderson BS, Keene JD, Strittmatter WJ, Burke JR. Inhibition of polyglutamine protein aggregation and cell death by novel peptides identified by phage display screening. J Biol Chem 2000; 275:10437-42. [PMID: 10744733 DOI: 10.1074/jbc.275.14.10437] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteins with expanded polyglutamine domains cause eight inherited neurodegenerative diseases, including Huntington's, but the molecular mechanism(s) responsible for neuronal degeneration are not yet established. Expanded polyglutamine domain proteins possess properties that distinguish them from the same proteins with shorter glutamine repeats. Unlike proteins with short polyglutamine domains, proteins with expanded polyglutamine domains display unique protein interactions, form intracellular aggregates, and adopt a novel conformation that can be recognized by monoclonal antibodies. Any of these polyglutamine length-dependent properties could be responsible for the pathogenic effects of expanded polyglutamine proteins. To identify peptides that interfere with pathogenic polyglutamine interactions, we screened a combinatorial peptide library expressed on M13 phage pIII protein to identify peptides that preferentially bind pathologic-length polyglutamine domains. We identified six tryptophan-rich peptides that preferentially bind pathologic-length polyglutamine domain proteins. Polyglutamine-binding peptide 1 (QBP1) potently inhibits polyglutamine protein aggregation in an in vitro assay, while a scrambled sequence has no effect on aggregation. QBP1 and a tandem repeat of QBP1 also inhibit aggregation of polyglutamine-yellow fluorescent fusion protein in transfected COS-7 cells. Expression of QBP1 potently inhibits polyglutamine-induced cell death. Selective inhibition of pathologic interactions of expanded polyglutamine domains with themselves or other proteins may be a useful strategy for preventing disease onset or for slowing progression of the polyglutamine repeat diseases.
Collapse
Affiliation(s)
- Y Nagai
- Deane Laboratory, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Baker KA, Hong M, Sadi D, Mendez I. Intrastriatal and intranigral grafting of hNT neurons in the 6-OHDA rat model of Parkinson's disease. Exp Neurol 2000; 162:350-60. [PMID: 10739641 DOI: 10.1006/exnr.1999.7337] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The clinical findings on neural transplantation for Parkinson's disease (PD) reported thus far are promising but many issues must be addressed before neural transplantation can be considered a routine therapeutic option for PD. The future of neural transplantation for the treatment of neurological disorders may rest in the discovery of a suitable alternative cell type for fetal tissue. One such alternative may be neurons derived from a human teratocarcinoma (hNT). hNT neurons have been shown to survive and integrate within the host brain following transplantation and provide functional recovery in animal models of stroke and Huntington's disease. In this study, we describe the transplantation of hNT neurons in the substantia nigra (SN) and striatum of the rat model for PD. Twenty-seven rats were grafted with one of three hNT neuronal products; hNT neurons, hNT-DA neurons, or lithium chloride (LiCl) pretreated hNT-DA neurons. Robust hNT grafts could be seen with anti-neural cell adhesion molecule and anti-neuron-specific enolase immunostaining. Immunostaining for tyrosine hydroxylase (TH) expression revealed no TH-immunoreactive (THir) neurons in any animals with hNT neuronal grafts. THir cells were observed in 43% of animals with hNT-DA neuronal grafts and all animals with LiCl pretreated hNT-DA neuronal grafts (100%). The number of THir neurons in these animals was low and not sufficient to produce significant functional recovery. In summary, this study has demonstrated that hNT neurons survive transplantation and express TH in the striatum and SN. Although hNT neurons are promising as an alternative to fetal tissue and may have potential clinical applications in the future, further improvements in enhancing TH expression are needed.
Collapse
Affiliation(s)
- K A Baker
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | | | | | |
Collapse
|
117
|
Fink JS, Schumacher JM, Ellias SL, Palmer EP, Saint-Hilaire M, Shannon K, Penn R, Starr P, VanHorne C, Kott HS, Dempsey PK, Fischman AJ, Raineri R, Manhart C, Dinsmore J, Isacson O. Porcine xenografts in Parkinson's disease and Huntington's disease patients: preliminary results. Cell Transplant 2000; 9:273-8. [PMID: 10811399 DOI: 10.1177/096368970000900212] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The observation that fetal neurons are able to survive and function when transplanted into the adult brain fostered the development of cellular therapy as a promising approach to achieve neuronal replacement for treatment of diseases of the adult central nervous system. This approach has been demonstrated to be efficacious in patients with Parkinson's disease after transplantation of human fetal neurons. The use of human fetal tissue is limited by ethical, infectious, regulatory, and practical concerns. Other mammalian fetal neural tissue could serve as an alternative cell source. Pigs are a reasonable source of fetal neuronal tissue because of their brain size, large litters, and the extensive experience in rearing them in captivity under controlled conditions. In Phase I studies porcine fetal neural cells grafted unilaterally into Parkinson's disease (PD) and Huntington's disease (HD) patients are being evaluated for safety and efficacy. Clinical improvement of 19% has been observed in the Unified Parkinson's Disease Rating Scale "off" state scores in 10 PD patients assessed 12 months after unilateral striatal transplantation of 12 million fetal porcine ventral mesencephalic (VM) cells. Several patients have improved more than 30%. In a single autopsied PD patient some porcine fetal VM cells were observed to survive 7 months after transplantation. Twelve HD patients have shown a favorable safety profile and no change in total functional capacity score 1 year after unilateral striatal placement of up to 24 million fetal porcine striatal cells. Xenotransplantation of fetal porcine neurons is a promising approach to delivery of healthy neurons to the CNS. The major challenges to the successful use of xenogeneic fetal neuronal cells in neurodegenerative diseases appear to be minimizing immune-mediated rejection, management of the risk of xenotic (cross-species) infections, and the accurate assessment of clinical outcome of diseases that are slowly progressive.
Collapse
Affiliation(s)
- J S Fink
- Genzyme Corporation, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Mendez I, Hong M, Smith S, Dagher A, Desrosiers J. Neural transplantation cannula and microinjector system: experimental and clinical experience. Technical note. J Neurosurg 2000; 92:493-9. [PMID: 10701543 DOI: 10.3171/jns.2000.92.3.0493] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The authors present a simple, reliable, and safe system for performing neural transplantation in the human brain. The device consists of a transplantation cannula and microinjector system that has been specifically designed to reduce implantation-related trauma and to maximize the number of graft deposits per injection. The system was evaluated first in an experimental rat model of Parkinson's disease (PD). Animals in which transplantation with this system had been performed showed excellent graft survival with minimal trauma to the brain. Following this experimental stage, the cannula and microinjector system were used in eight patients with PD enrolled in the Halifax Neural Transplantation Program who received bilateral putaminal transplants of fetal ventral mesencephalic tissue. A total of 16 transplantation operations and 64 trajectories were performed in the eight patients, and there were no intraoperative or perioperative complications. Magnetic resonance imaging studies obtained 24 hours after surgery revealed no evidence of tissue damage or hemorrhage. Transplant survival was confirmed by fluorodopa positron emission tomography scans obtained 6 and 12 months after surgery. As neural transplantation procedures for the treatment of neurological conditions evolve, the ability to deliver viable grafts safely will become critically important. The device presented here has proved to be of value in maximizing the number of graft deposits while minimizing implantation-related trauma to the host brain.
Collapse
Affiliation(s)
- I Mendez
- Department of Surgery, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|
119
|
Larsson LC, Czech KA, Brundin P, Widner H. Intrastriatal ventral mesencephalic xenografts of porcine tissue in rats: immune responses and functional effects. Cell Transplant 2000; 9:261-72. [PMID: 10811398 DOI: 10.1177/096368970000900211] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transplantation of neural tissue from other species has the potential to improve function in patients with neurodegenerative disorders. We investigated the functional effects of embryonic porcine dopaminergic neurons transplanted in a rat model of Parkinson's disease and the immune responses to the grafts in immunosuppressed and nonimmunosuppressed hosts. Twenty-three rats with unilateral 6-hydroxydopamine lesions received dissociated, 27-day-old embryonic porcine ventral mesencephalic tissue in the right striatum. Eighteen rats received cyclosporine (10 mg/kg, IP, daily) during the whole period of 14 weeks, in combination with prednisolone (20 mg/kg, IP, daily) the first 4 days. Five rats served as nonimmunosuppressed controls. All rats were tested for amphetamine-induced rotational behavior at 3-week intervals. Two immunosuppressed rats were excluded due to severe side effects of the treatment. Functional recovery was seen in 9 of 16 immunosuppressed rats at 12 weeks. Six animals remained functionally recovered at 14 weeks and contained an average of 5750+/-1450 (SEM) dopaminergic neurons. Between 9 and 14 weeks, three immunosuppressed rats rejected their grafts, based on rotation scores and immunohistochemical demonstration of cell infiltrates. One additional immunosuppressed rat showed evidence of ongoing rejection at 14 weeks. The striata in animals with ongoing or recent rejection contained large numbers of CD4- and CD8-positive lymphocytes, NK cells, macrophages, and microglia cells, whereas scar tissue was found in rats with grafts rejected at earlier time points (n = 11). Embryonic porcine ventral mesencephalic tissue matures in the adult rat striatum, reinnervates the host brain, and restores behavioral defects. Immunosuppressive treatment was necessary for long-term graft survival and functional recovery, but did not sufficiently protect from rejection mechanisms. Porcine neural tissue is an interesting alternative to embryonic human tissue for intracerebral transplantation in neurodegenerative diseases. However, to achieve stable graft survival in discordant xenogeneic combinations, an appropriate immunosuppressive treatment or donor tissue modifications are needed.
Collapse
Affiliation(s)
- L C Larsson
- Department of Physiological Sciences, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | |
Collapse
|
120
|
|
121
|
Low WC, Duan WM, Keene CD, Ni HT, Westerman MA. Immunobiology of Neural Xenotransplantation. NEUROMETHODS 2000. [DOI: 10.1007/978-1-59259-690-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
122
|
Barker RA, Ratcliffe E, Richards A, Dunnett SB. Fetal porcine dopaminergic cell survival in vitro and its relationship to embryonic age. Cell Transplant 1999; 8:593-9. [PMID: 10701488 DOI: 10.1177/096368979900800605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One of the critical factors in the survival of embryonic neural grafts is the age at which the population of donor neurons is harvested. This is especially the case for the developing dopaminergic neurons in the embryonic ventral mesencephalon, which are used for neural grafts in Parkinson's disease (PD). The donor age for optimal harvesting of these cells has been well characterized in the mouse, rat, and marmoset, and to a lesser extent in humans. However, the best donor age for porcine ventral mesencephalic tissue has not been ascertained, even though the use of this tissue for xenografts has been explored both experimentally and clinically. In this study the effect of donor age on dopaminergic cell survival was assessed in vitro, from a range of fetal pigs aged from E24 to E35. The number of tyrosine hydroxylase (TH)-positive cells per ventral mesencephalon was then calculated after 1 and 7 days in culture. E26-E27 embryos gave the highest yield of such cells at both survival time points, suggesting that this will be the optimal age for harvesting tissues whether for experimental or clinical nigral xenograft programs.
Collapse
Affiliation(s)
- R A Barker
- MRC Cambridge Centre for Brain Repair, UK.
| | | | | | | |
Collapse
|
123
|
Sumitran S, Liu J, Czech KA, Christensson B, Widner H, Holgersson J. Human natural antibodies cytotoxic to pig embryonic brain cells recognize novel non-Galalpha1,3Gal-based xenoantigens. Exp Neurol 1999; 159:347-61. [PMID: 10506507 DOI: 10.1006/exnr.1999.7181] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transplantation of porcine embryonic brain cells, including dopaminergic neurons, from ventral mesencephalon (VM) is considered a potential treatment for patients with Parkinson's disease. In the present study, we characterized the distribution among VM cells of the major porcine endothelial xenoantigen, the Galalpha1,3Gal epitope, and evaluated the cytotoxic effect of anti-Galalpha1,3Gal antibody-depleted and nondepleted human AB serum on VM cells. Overall levels of Galalpha1,3Gal-epitope expression was very low on the VM cell population using Bandeiraea simplicifolia IB(4) lectin staining of resuspended VM cells in flow cytometric analyses or staining of SDS-PAGE-separated, solubilized VM cell membrane proteins in Western blot analyses. Lectin-histochemical staining of sections of pig embryonal VM regions with BSA IB(4) lectin showed staining restricted to endothelial cells and microglia. In the presence of complement, both nondepleted and anti-Galalpha1,3Gal antibody-depleted AB sera were shown to be cytotoxic to VM cells as assessed in microcytotoxicity- and flow cytometry-based cytotoxicity assays. Purified IgM and IgG were both cytotoxic in the presence of complement. Three major VM cell membrane antigens of approximately 210, 105, and 50 kDa were reactive with natural IgM antibodies present in pooled human AB sera. Thus, antibody-dependent cytotoxicity may contribute to pig to human brain cell xenorejection, necessitating donor tissue modifications prior to a more widespread utilization of neural tissue xenografting.
Collapse
Affiliation(s)
- S Sumitran
- Division of Clinical Immunology, Karolinska Institute, Huddinge, S-141 86, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
124
|
Bentlage C, Nikkhah G, Cunningham MG, Björklund A. Reformation of the nigrostriatal pathway by fetal dopaminergic micrografts into the substantia nigra is critically dependent on the age of the host. Exp Neurol 1999; 159:177-90. [PMID: 10486186 DOI: 10.1006/exnr.1999.7110] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine whether the growth of axons along the nigrostriatal pathway from fetal dopamine cells, transplanted into the substantia nigra of young postnatal 6-OHDA-lesioned rats, is dependent on the age of the host brain. Neonatal rats were lesioned bilaterally by intraventricular injection of 6-OHDA at postnatal day 1 (P1) and received grafts of E14 ventral mesencephalon at day 3 (group P3), day 10 (group P10), or day 20 (group P20) into the right substantia nigra. One lesioned group was left untransplanted. Six months after surgery the animals were subjected to analysis of drug-induced rotation following injection of amphetamine, apomorphine, a D1 agonist (SKF38393), or a D2 agonist (Quinpirole). Animals transplanted intranigrally at day 3 and day 10 showed a strong amphetamine-induced rotational bias toward the side contralateral to the transplant. Animals transplanted into substantia nigra at P20, like the lesioned control animals, showed no rotational bias. Apomorphine and selective D1 and D2 agonists induced ipsilateral turning behavior in the P3 and P10 group, but not in the P20 or the lesion control groups. Immunofluorescence histochemistry in combination with retrograde axonal tracing, using FluoroGold injection into the ipsilateral caudate-putamen showed colocalization of tyrosine hydroxylase and FluoroGold in large numbers of transplanted neurons in the animals transplanted at postnatal day 3 and postnatal day 10, which was not observed in the group P20. The lesion control group showed a 90% complete lesion of the TH-positive cells in the substantia nigra while largely sparing the neurons in the ventral tegmental area. The results indicate that intranigral grafts can be placed accurately and survive well within the substantia nigra region at various time points during postnatal development. Furthermore, embryonic dopamine neurons have the ability to extend axons along the nigrostriatal pathway and reconnect with the dopamine-depleted striatum when transplanted at postnatal day 3 and postnatal day 10, but not at postnatal day 20.
Collapse
Affiliation(s)
- C Bentlage
- Department of Physiology, Wallenberg Neuroscience Center, Sölvegatan 17, Lund, S-223 62, Sweden
| | | | | | | |
Collapse
|
125
|
Abstract
The major limitation on the application of transplantation for the treatment of human disease is a severe shortage of human donor organs and tissues. One approach to overcoming this problem is xenotransplantation, that is the transplantation of animal organs into humans. The major hurdle to xenotransplantation is the immune response of the recipient against the graft. Recent years have brought new information concerning this hurdle and insights of strategies for overcoming it. Other hurdles include the physiological function of the graft in the foreign environment including the possibility of molecular incompatibilities between the donor and recipient and the possibility of transferring infectious diseases from the graft to the recipient. The current perspective on these issues will be presented in the review that follows.
Collapse
Affiliation(s)
- J L Platt
- Department of Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA.
| |
Collapse
|
126
|
Larsson LC, Duan WM, Widner H. Discordant xenografts: different outcome after mouse and rat neural tissue transplantation to guinea-pigs. Brain Res Bull 1999; 49:367-76. [PMID: 10452358 DOI: 10.1016/s0361-9230(99)00074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Embryonic neural tissue obtained from other species has been considered as a donor tissue source in repair strategies for human neurodegenerative disorders. The neuro- and immunobiology of distantly related species combinations, discordant xenografts, need to be characterised. For this purpose, a small animal model would be an important research tool. Adult guinea-pigs, and adult rats as controls, received intrastriatal grafts of either mouse or rat embryonic ventral mesencephalic tissue. The survival rates and types of host immune response were assessed at 2 weeks after grafting using stereological techniques and semi-quantitative evaluations. In the mouse-to-guinea-pig group, all transplants were rejected and no tyrosine hydroxylase-immuno reactive (TH-IR) cells remained. In the rat-to-guinea-pig group, there was good survival of TH-IR cells (5050 SEM+/-1550), similar to that in the rat-to-rat group (4900 SEM+/-1540). In the mouse-to-rat group, half of the animals had no surviving TH-IR cells (520 SEM+/-230 for the whole group). These species combinations offer inexpensive, efficient, and suitable conditions to study important survival factors for discordant xenogeneic neural tissue transplants. The factors responsible for the divergent graft outcomes between the two combinations might provide clues on how to manipulate xenogeneic tissue to increase survival rates in the future.
Collapse
Affiliation(s)
- L C Larsson
- Department of Physiological Sciences, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | |
Collapse
|
127
|
Abstract
The ability to isolate multipotential neuroepithelial precursor cells from the mammalian nervous system provides exciting perspectives for the in vitro analysis of early nervous system development and the generation of donor cells for neural repair. New models are needed to study the properties of these cells in vivo. Neural chimeras have revealed a remarkable degree of plasticity in the developmental potential of neuroepithelial precursor cells. Following transplantation into the cerebral ventricle of embryonic hosts, precursors derived from various brain regions and developmental stages participate in host brain development and undergo region-specific differentiation into neurons and glia. These findings indicate that in the developing nervous system, migration and differentiation of neural precursors cells are regulated to a large extent by extrinsic signals. Neural chimeras composed of genetically modified cells will permit the study of the molecular mechanisms underlying these guidance cues, which may eventually be exploited for cell replacement strategies in the adult brain. A key problem in neural transplantation is the availability of suitable donor tissue. Neural chimeras composed of embryonic stem (ES) cell-derived neurons and glia depict ES cells as a versatile and virtually unlimited donor source for neural repair. Generation of interspecies neural chimeras composed of human and rodent cells facilitates the translation of these advances into clinical strategies for human nervous system repair.
Collapse
Affiliation(s)
- O Brüstle
- Department of Neuropathology, University of Bonn Medical Center, Germany.
| |
Collapse
|
128
|
Jacoby DB, Lindberg C, Cunningham MG, Ratliff J, Dinsmore J. Long-term survival of fetal porcine lateral ganglionic eminence cells in the hippocampus of rats. J Neurosci Res 1999; 56:581-94. [PMID: 10374813 DOI: 10.1002/(sici)1097-4547(19990615)56:6<581::aid-jnr4>3.0.co;2-l] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Embryonic porcine brain tissue from the lateral ganglionic eminence was transplanted into the adult rat hippocampus to determine whether fetal striatal cells could survive, differentiate, and integrate in a heterotopic site. The hippocampus, a common site of epileptic seizure activity, was chosen to determine if fetal striatal cells could supply inhibitory GABAergic neurons that may serve to block seizures. Cells were either implanted with a single deposit using a standard metal cannula or by five smaller disseminated deposits with a glass micropipette. At 20-24 weeks, animals immunosuppressed with cyclosporin showed long-term survival of porcine cells in the adult hippocampus. Analysis by immunohistochemistry and in situ hybridization showed that the grafts contained glial and neuronal cell types, including GABAergic neurons within graft core and networks of porcine neuronal fibers extending from the graft into the host parenchyma. In addition, a marker of porcine presynaptic terminals, synaptobrevin, was abundant within the grafts and was found associated with hippocampal structures and cell layers suggesting functional integration of grafted cells within the host. The survival of xenografts in the hippocampus and potential integration of inhibitory components provides evidence that these grafts may serve as an internal negative feedback mechanism to quench epileptiform activity.
Collapse
Affiliation(s)
- D B Jacoby
- Diacrin, Inc., Department of Cell Transplantation, Charlestown Navy Yard, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
129
|
Holm K, Isacson O. Factors intrinsic to the neuron can induce and maintain its ability to promote axonal outgrowth: a role for BCL2? Trends Neurosci 1999; 22:269-73. [PMID: 10354605 DOI: 10.1016/s0166-2236(98)01352-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The adult CNS provides a poor environment for axonal growth and regeneration. The question of to what extent the loss of axonal growth occurring as the brain matures is dependent on factors intrinsic or extrinsic to the growing neuron is still unanswered. Examination of axonal growth from neural transplants provides insight into the roles of growth factors, inhibitory molecules, growth-promoting substrates and the differences between CNS and PNS environments in the regulation of neurite extension. The data that imply a role for BCL2 and related molecules in such processes are reviewed in this article, which analyzes the factors intrinsic to the neuron that control its capacity for axonal growth.
Collapse
Affiliation(s)
- K Holm
- Neuroregeneration Laboratory, Harvard Medical School, Program in Neuroscience, McLean Hospital, Belmont, MA 02178-9106, USA
| | | |
Collapse
|
130
|
Abstract
At present, several incompatibilities between pig and human, not only from the immunologic point of view but also regarding physiological and molecular systems, have been identified. It is anticipated that this is only the tip of the iceberg regarding this topic. However, there are also many systems that are compatible. Strategies have been outlined, and many tools, such as gene modification, are available to solve the problems. Therefore, the statement by Keith Reemtsma in the foreward to the latest issue of the monography Xenotransplantation "The important question is not whether xenotransplantation will succeed, but rather how and under what circumstances xenografts will provide predictable enough results to warrent clinical application" will hopefully be a reality in the future.
Collapse
Affiliation(s)
- M E Breimer
- Department of Surgery, Institute of Surgical Sciences, University of Göteborg, Sweden
| |
Collapse
|
131
|
Love S, Hilton DA. Transplantation in the central nervous system. CURRENT TOPICS IN PATHOLOGY. ERGEBNISSE DER PATHOLOGIE 1999; 92:181-213. [PMID: 9919811 DOI: 10.1007/978-3-642-59877-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- S Love
- Department of Neuropathology, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
132
|
Deacon T, Whatley B, LeBlanc C, Lin L, Isacson O. Pig fetal septal neurons implanted into the hippocampus of aged or cholinergic deafferented rats grow axons and form cross-species synapses in appropriate target regions. Cell Transplant 1999; 8:111-29. [PMID: 10338280 DOI: 10.1177/096368979900800104] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anatomical specificity of axon growth from fetal pig septal xenografts was studied by transplanting septal cells from E30-35 pig fetuses into cholinergic deafferented (192-IgG-saporin-infused) rats or into aged rats (> 18 months). Cell suspensions (100,000 cells/microl) were injected bilaterally into the dorsal and ventral hippocampus of immunosuppressed rats (10 mg/kg/day cyclosporine A). To assess axonal growth and synapse formation, acetylcholinesterase histochemistry, an antibody to choline acetyltransferase (ChAT), and three pig-positive/rat-negative antibodies: bovine 70kD neurofilament (NF70), human low-affinity NGF receptor (hNGFr), and human synaptobrevin (hSB) were used. In rats with surviving grafts at 6 months, NF70 axonal labeling was more extensive than either ChAT or hNGFr labeling. All three markers demonstrated graft axons extending selectively through the hippocampal CA fields and the molecular layer of the dentate gyrus. Graft axons did not extend into adjacent entorhinal cortex or neocortex. The distribution of pig hSB-positive synapses correlated with AChE-positive fiber outgrowth in to the host. Electron microscopic analysis of hSB-immunostained hippocampal sections revealed pig presynaptic terminals in contact with normal rat postsynaptic structures in the CA fields and the dentate gyrus. These data demonstrate target-appropriate growth of pig cholinergic axons and the formation of cross-species synapses in the deafferented or aged rat hippocampus.
Collapse
Affiliation(s)
- T Deacon
- Neuroregeneration Laboratory, McLean Hospital, Harvard Medical School, Belmont, MA 02178, USA
| | | | | | | | | |
Collapse
|
133
|
Lozano AM, Lang AE, Hutchison WD, Dostrovsky JO. New developments in understanding the etiology of Parkinson's disease and in its treatment. Curr Opin Neurobiol 1998; 8:783-90. [PMID: 9914234 DOI: 10.1016/s0959-4388(98)80122-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Important recent advances have been made in understanding the etiology and pathogenesis of Parkinson's disease, as well as in developing novel treatments. Two newly identified genes, alpha-synuclein and parkin, have been linked to parkinsonism. In addition, disturbances to the normal basal ganglia circuits in Parkinson's patients are being described at both anatomical and physiological levels. These developments provide a strong scientific basis for novel medical and surgical strategies to treat the profound motor disturbances in patients with Parkinson's disease.
Collapse
Affiliation(s)
- A M Lozano
- Department of Surgery, University of Toronto, The Toronto Hospital, Western Division, 399 Bathurst Street, Toronto, Ontario M5T 2S8, Canada.
| | | | | | | |
Collapse
|
134
|
Jones DG, Redpath CM. Regeneration in the central nervous system: pharmacological intervention, xenotransplantation, and stem cell transplantation. Clin Anat 1998; 11:263-70. [PMID: 9652542 DOI: 10.1002/(sici)1098-2353(1998)11:4<263::aid-ca7>3.0.co;2-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The factors inhibiting regeneration in the central nervous system (CNS) have been elaborated, debated, and studied for the past 70 years. Recent work has pointed to the fine balance that exists between repair and regeneration following CNS injury. Growth factors have featured prominently in this debate. In attempts to tip the scales toward regeneration and functional reconnection to damaged neurons, pharmacological intervention has come to the fore. However, a perennial concern has been that much of regeneration may be aberrant, although there is now evidence to suggest that this fear may have been exaggerated. In searching for additional avenues for achieving therapeutic reconstruction of damaged neural pathways, transplantation studies occupy a prominent place in the literature. Various principles have become established, and these have proved relevant for all approaches utilizing grafts. Xenotransplantation and stem cell transplantation are approaches with exciting potential. Circuitry can be effectively restored by xenotransplantation, including early indications of integration of pig dopaminergic neurons in Parkinson's disease. The considerable possibilities offered by the differentiation of neural stem cells into progenitor cells and then into neurons and glia are explored.
Collapse
Affiliation(s)
- D G Jones
- Department of Anatomy and Structural Biology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
135
|
Abstract
The transplantation of tissues and organs between individuals of different species, that is, xenotransplantation, engenders a variety of immune responses. Xenogeneic immune responses mediated by naturally-occurring antibodies and complement lead to hyperacute and acute vascular rejection of vascularized organ grafts and may also cause vascular rejection of cell and tissue grafts. Under some circumstances, however, a vascularized organ graft may evade humoral rejection despite the presence of anti-donor antibodies in the circulation of the recipient; this condition is called accommodation. Xenogeneic immune responses mediated by T lymphocytes and natural killer cells may cause acute cellular rejection. The extent to which cellular rejection of xenografts resembles cellular rejection of allografts remains to be determined. New insights into the molecular mechanisms underlying the immune responses to xenotransplantation has shed light on the pathogenesis of immunological disease and has allowed the development of specific immunomodulatory strategies that may facilitate clinical application of xenotransplantation.
Collapse
Affiliation(s)
- S Saadi
- Department of Surgery, Duke University Durham, North Carolina 27710, USA
| | | |
Collapse
|
136
|
Quintana J, Lopez-Colberg I, Cunningham LA. Use of GFAP-lacZ transgenic mice to determine astrocyte fate in grafts of embryonic ventral midbrain. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0165-3806(97)00181-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
137
|
Deacon T, Dinsmore J, Costantini LC, Ratliff J, Isacson O. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 1998; 149:28-41. [PMID: 9454612 DOI: 10.1006/exnr.1997.6674] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In order to assess the potential of embryonic stem cells to undergo neuronal differentiation in vivo, totipotent stem cells from mouse blastocysts (D3 and E14TG2a; previously expanded in the presence of leukemia inhibitory factor) were transplanted, with or without retinoic acid pretreatment, into adult mouse brain, adult lesioned rat brain, and into the mouse kidney capsule. Intracerebral grafts survived in 61% of cyclosporine immunosuppressed rats and 100% of mouse hosts, exhibited variable size and morphology, and both intracerebral and kidney capsule grafts developed large numbers of cells exhibiting neuronal morphology and immunoreactivity for neurofilament, neuron-specific enolase, tyrosine hydroxylase (TH), 5-hydroxytryptamine (5-HT), and cells immunoreactive for glial fibrillary acidic protein. Though graft size and histology were variable, typical grafts of 5-10 mm3 contained 10-20,000 TH+ neurons, whereas dopamine-beta-hydroxylase+ cells were rare. Most grafts also included nonneuronal regions. In intracerebral grafts, large numbers of astrocytes immunoreactive for glial fibrillary acidic protein were present. Both TH+ and 5-HT+ axons from intracerebral grafts grew into regions of the dopamine-lesioned host striatum. TH+ axons grew preferentially into striatal gray matter, while 5-HT+ axons showed no white/gray matter preference. These findings demonstrate that transplantation to the brain or kidney capsule can induce a significant fraction of totipotent embryonic stem cells to become putative dopaminergic or serotonergic neurons and that when transplanted to the brain these neurons are capable of innervating the adult host striatum.
Collapse
Affiliation(s)
- T Deacon
- Neuroregeneration Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02178, USA
| | | | | | | | | |
Collapse
|
138
|
Stice SL, Robl JM, Ponce de Leon FA, Jerry J, Golueke PG, Cibelli JB, Kane JJ. Cloning: new breakthroughs leading to commercial opportunities. Theriogenology 1998; 49:129-38. [PMID: 10732126 DOI: 10.1016/s0093-691x(97)00407-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Research on cloning animals, again, came to the forefront of public attention in 1997. Most scientists involved in biomedical and agricultural research have emphasized the benefits, of which there are many, of cloning to the public. Basic studies on nuclear transfer have and will continue to contribute to our understanding of how genomic activation and cell cycle synchrony affect nuclear reprogramming and cloning efficiencies, specifically. Also, more basic information on actual mechanisms and specific factors in the oocyte causing nuclear reprogramming is forthcoming. As new molecular approaches in functional genomics are combined with nuclear transfer experiments, new genes involved in nuclear reprogramming will be found. The commercial potentials of products stemming from discoveries in cloning are vast. Cloning will be a more efficient, faster and more useful way of making transgenic fetuses for cell therapies, adult animals for protein production and organs for xenotransplantation. Clearly there are new opportunities in animal cloning technology that will produce many benefits to society.
Collapse
Affiliation(s)
- S L Stice
- Advanced Cell Technology, Inc., Amherst, MA, USA
| | | | | | | | | | | | | |
Collapse
|
139
|
Polgar S, Borlongan CV, Koutouzis TK, Todd SL, Cahill DW, Sanberg PR. Implications of neurological rehabilitation for advancing intracerebral transplantation. Brain Res Bull 1997; 44:229-32. [PMID: 9323435 DOI: 10.1016/s0361-9230(97)00109-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurological rehabilitation involves the systematic presentation of environmental stimuli and challenges that enable the patient to learn strategies for minimizing their disabilities. Rehabilitation therapy of transplant recipients may be an important factor in enhancing the efficacy of the transplanted organ or tissue to promote functional recovery. Laboratory research and clinical trials on neural transplantation, as an experimental treatment for neurological disorders (e.g., Parkinson's disease, Huntington's disease, and cerebral ischemia), have focused primarily on devising effective surgical implantation strategies with little attention devoted to the interaction between environmental factors and restorative neurosurgery. Exercise training as part of neurological rehabilitation may be an important factor for neural transplantation therapy for Parkinson's disease. Rehabilitation providers are particularly well placed to provide the environment and the support to optimize the behavioral functioning of neural transplant patients in learning to use the new grafted tissue.
Collapse
Affiliation(s)
- S Polgar
- School of Public Health, Latrobe University, Bundoora, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
140
|
Jacoby DB, Lindberg C, Ratliff J, Wunderlich M, Bousquet J, Wetzel K, Beaulieu L, Dinsmore J. Fetal pig neural cells as a restorative therapy for neurodegenerative disease. Artif Organs 1997; 21:1192-8. [PMID: 9384325 DOI: 10.1111/j.1525-1594.1997.tb00474.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
With proper immunosuppression, interspecies transplantation of porcine as well as other species of neural cells survive, mature, and integrate into the host in a manner which reconstructs much of the appropriate neural circuitry. These transplants have been shown to alleviate many of the symptoms of various disorders of the central nervous system. In this study, we addressed immunological and maturation issues with regards to intracerebral transplantation of fetal porcine neural cells. First, we compared fetal neural xenograft survival in athymic nude rats versus rats immunosuppressed with cyclosporin A and found that there is little discernible difference between porcine grafts in the 2 recipients. We also found that ectopic transplantation of cells isolated from the porcine striatal primordium can survive and develop into grafts composed of both neuronal and glial phenotypes within the rat hippocampus. This fact raises the possibility that cells of a particular neurotransmitter type (e.g., GABAergic cells) developing from the striatal precursor cells can be transplanted outside the striatum of the adult brain and have physiological effects.
Collapse
Affiliation(s)
- D B Jacoby
- Diacrin, Inc., Charlestown, Massachusetts 02129, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The modification of nervous system function by cell replacement and the introduction of heterologous genes are being developed as possible therapeutic approaches in degenerative diseases of the nervous system. The use of cellular transplantation in the nervous system of patients with neurodegenerative diseases will be reviewed with an emphasis on Parkinson's disease.
Collapse
Affiliation(s)
- J S Fink
- Diacrin, Inc., Charlestown, Massachusetts 02129, U.S.A
| |
Collapse
|
142
|
Oettinger HF, Sullivan JA, Crosby KE, Kelley JA, Jaooby DB, Dinsmore J, Zawadzka A, Edge AS. Species-specific detection of porcine xenografts with an antibody against a novel epitope of the lymphocyte homing receptor CD44. Xenotransplantation 1997. [DOI: 10.1111/j.1399-3089.1997.tb00190.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
143
|
Borlongan CV, Cameron DF, Saporta S, Sanberg PR. Intracerebral transplantation of testis-derived sertoli cells promotes functional recovery in female rats with 6-hydroxydopamine-induced hemiparkinsonism. Exp Neurol 1997; 148:388-92. [PMID: 9398481 DOI: 10.1006/exnr.1997.6513] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently, we demonstrated amelioration of behavioral deficits associated with 6-hydroxydopamine-induced hemiparkinsonism by transplanting rat testis-derived Sertoli cells into adult male rat brains. In the present study, we used adult female hemiparkinsonian rats to investigate whether the beneficial effects of transplantation of Sertoli cells may be differentially affected by gender of the animal transplant recipient. At 1 month posttransplantation, animals transplanted with Sertoli cells showed functional recovery as revealed by significant reductions in apomorphine-induced rotational behavior and asymmetrical elevated body swing behavior. Control animals that received medium alone did not display any visible behavioral recovery. These results suggest that transplantation of Sertoli cells is not male hormone-dependent and further support the use of these cells as a graft source for Parkinson's disease and other neurological disorders.
Collapse
Affiliation(s)
- C V Borlongan
- Department of Surgery, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | |
Collapse
|
144
|
Affiliation(s)
- J L Platt
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA.
| |
Collapse
|
145
|
Rostaing-Rigattieri S, Flores-Guevara R, Peschanski M, Cadusseau J. Glial and endothelial cell response to a fetal transplant of purified neurons. Neuroscience 1997; 79:723-34. [PMID: 9219936 DOI: 10.1016/s0306-4522(96)00671-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Astrocytes, microglia and endothelial cells display very specific phenotypic characteristics in the intact adult CNS, which appear quite versatile when grown in culture without neurons. Indirect evidence from in vitro co-culture studies and analysis of the effects of specific neuronal removal in vivo, does accordingly favour a role of neurons for the phenotypic repression of these cells in the intact brain. In order to provide more direct evidence for such neuronal influence, we attempted to induce, in the rat brain, a reversal of the post-lesional activation of astrocytes, microglia and endothelial cells by transplantation of fetal neurons purified by immunopanning. Host microglial cells which have been activated by the lesion process, penetrated the neuronal graft during the few days after the transplantation. Reactive astrocytes began to appear in the lesioned parenchyma and gathered around the transplant. Thereafter they first sent their processes in the direction of the neuronal graft, before they migrated into the graft a few days later. At this time, which was at the end of the first week post-transplantation, the host endothelial cells sprouted "streamers" of basal lamina within the graft forming small capillaries. During the second week post-transplantation, numerous astrocytes and microglial cells, both displaying a reactive hypertrophied morphology, were observed throughout the grafts. Finally, by the end of the first month, the activated cells differentiated towards a quiescent, resting morphology. At this time the grafts contained a vascular network with morphological characteristics comparable to those observed in the intact brain parenchyma. The results indicate that the interaction of activated astroglia and microglia and endothelial cells with neurons causes the cells to re-differentiate and regain phenotypic features characteristic of intact brain parenchyma, strongly suggesting that neurons play an essential role in the phenotypic restriction of glial and endothelial cells in the adult central nervous system.
Collapse
|
146
|
Olsson M, Bentlage C, Wictorin K, Campbell K, Björklund A. Extensive migration and target innervation by striatal precursors after grafting into the neonatal striatum. Neuroscience 1997; 79:57-78. [PMID: 9178865 DOI: 10.1016/s0306-4522(96)00606-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Embryonic striatal precursors grafted into the lesioned adult host striatum show limited integration with little migration and restricted efferent projections. In the present study, the influence of an immature striatal environment on the integrative capacity of grafted neuroblasts was examined after transplantation of striatal progenitors into the striatum at different stages of postnatal development. Mouse progenitors, derived from embryonic day 13.5-14 lateral or medial ganglionic eminence or the cerebellar primordium, were transplanted as a single cell suspension into the developing postnatal day 1, 7 and 21 rat striatum. The grafted cells and their axonal projections were visualized using antibodies raised against the mouse-specific neural markers, M6 and M2. Cells from the lateral (but not the medial) ganglionic eminence showed a remarkable capacity to innervate selectively the striatal target structures, globus pallidus, entopeduncular nucleus and substantia nigra, reminiscent of endogenous striatal neurons, which is not observed after grafting into adult hosts. M6 and M2-immunopositive cellular profiles from both the lateral and medial ganglionic eminences were observed to have migrated extensively away from the injection site, in contrast to the cerebellar precursors which remained clustered at the implantation site. Cells from the lateral ganglionic eminence were largely confined within the striatal complex where they developed striatal characteristics, displaying expression of DARPP-32, the 32,000 mol. wt dopamine- and cyclic AMP-regulated phosphoprotein, whereas cells from the medial ganglionic eminence had migrated caudally along the internal capsule and were observed predominantly in the globus pallidus and thalamus, in addition to the striatum. The cells located outside the striatum were all DARPP-32 negative. The improved integration and increased projection capacity of the lateral ganglionic eminence precursors grafted into postnatal day 1 hosts gradually declined as the host advanced into later stages of development (postnatal day 7), and in postnatal day 21 hosts the grafted striatal precursors behaved similarly to grafts implanted into adult recipients. These results demonstrate the specific capacity of embryonic striatal progenitors to integrate into the developing basal ganglia circuitry during early postnatal development, and that the extent of neuronal and glial integration and graft host connectivity declines when the host has developed beyond the first postnatal week.
Collapse
Affiliation(s)
- M Olsson
- Wallenberg Neuroscience Center, Department of Physiology and Neuroscience, University of Lund, Sweden
| | | | | | | | | |
Collapse
|
147
|
Krobert K, Lopez-Colberg I, Cunningham LA. Astrocytes promote or impair the survival and function of embryonic ventral mesencephalon co-grafts: effects of astrocyte age and expression of recombinant brain-derived neurotrophic factor. Exp Neurol 1997; 145:511-23. [PMID: 9217087 DOI: 10.1006/exnr.1997.6483] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intrastriatal grafting of dopamine-rich embryonic ventral mesencephalon (VM) is a potential therapeutic treatment for Parkinson's disease. However, it has been suggested that the efficacy of this procedure might be improved by enhancing the survival and/or degree of neurite outgrowth by the grafted VM, since these parameters are currently suboptimal. In the present study, we tested the ability of astrocytes retrovirally transduced to produce recombinant brain-derived neurotrophic factor (BDNF) to enhance the survival and/or function of embryonic VM in the unilateral 6-hydroxydopamine (6-OHDA) lesioned rat, a well-characterized rodent model of Parkinson's disease. In culture, primary astrocytes derived from Postnatal Day 0 (P0) rat striatum and transduced with the BDNF vector increased the survival of Embryonic Day 15 (E15) dopaminergic VM neurons by approximately threefold and reduced the loss of dopaminergic neurons following 6-OHDA treatment by approximately 20%. The cultured astrocytes were then mixed 1:1 with freshly dissociated E15 VM and co-grafted into the dopamine-denervated striatum. Unexpectedly, the control nontransduced astrocytes reduced the survival of dopaminergic neurons by 60% and restricted the pattern of neurite outgrowth by the co-grafted VM, compared to grafts of VM alone at 7 weeks postgrafting. These effects were paralleled by an attenuated rate and degree of behavioral recovery. The detrimental effects of the control astrocytes were partially reversed when the astrocytes were transduced to express BDNF, although dopaminergic neuron survival was still reduced by 30% compared to that within VM-only grafts. To begin to assess whether the detrimental effects of the astrocytes were related to the maturational state of the cultured astrocytes, astrocytes were obtained from E18 striatum and maintained in short-term culture (9 days vs several weeks for P0 cultures) prior to co-grafting with VM. Interestingly, the younger astrocytes did not reduce graft survival and allowed for better graft integration. These results suggest that primary astrocytes maintained in long-term culture are detrimental to embryonic neural grafts, an effect that is not completely overcome by expression of recombinant BDNF, and that astrocyte age may be an important consideration in the use of these cells as CNS gene delivery vehicles.
Collapse
Affiliation(s)
- K Krobert
- Department of Pharmacology, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | |
Collapse
|
148
|
Haque NS, LeBlanc CJ, Isacson O. Differential dissection of the rat E16 ventral mesencephalon and survival and reinnervation of the 6-OHDA-lesioned striatum by a subset of aldehyde dehydrogenase-positive TH neurons. Cell Transplant 1997. [PMID: 9171157 DOI: 10.1016/s0963-6897(97)86921-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The retinoic acid-generating enzyme, aldehyde dehydrogenase (AHD), is expressed in a subpopulation of dopaminergic neurons found in the substantia nigra. Using AHD and tyrosine hydroxylase (TH) as immunohistochemical markers, we determined whether differential dissection of the embryonic (E16) ventral mesencephalon (VM) into its lateral and medial portions contributed equally to the number of TH cells surviving transplantation, if grafted AHD/TH neurons reinnervate the host striatum according to their normal projection patterns, and examined the functional recovery caused by the implanted cells as assessed by amphetamine-induced rotation in a 6-OHDA-lesioned model of Parkinson's disease. The embryonic tissue was transplanted as solid pieces injected via a 20-gauge lumbar puncture needle into the center of the deafferented striatum. Groups received either one complete ventral mesencephalic piece (VM), two medial pieces of ventral mesencephalic tissue (MVM), or two lateral pieces of ventral mesencephalic tissue (LVM). Both VM and MVM groups showed a significant decrease in amphetamine-induced rotation over time and, there was no difference in the degree of reduction observed between the two groups. Histological evaluation of the transplants revealed a much larger total number of surviving TH cells in grafts from the VM and MVM groups compared to the LVM group. Surviving AHD/TH neurons were found in all groups. Whereas TH staining of the transplanted striatum displayed a halo of graft-derived fibers all around the transplant and integration of these fibers into the host neuropil, AHD staining showed a preferential reinnervation of the dorsolateral striatum corresponding to the normal projection pattern of AHD/TH neurons. In summary, selective dissection of the embryonic ventral mesencephalon is possible, functional recovery as assessed by amphetamine-induced rotation in animals transplanted with MVM is similar to that seen in animals grafted with VM, and AHD/TH neurons have a selective reinnervation pattern in the PD transplantation paradigm. These findings may have implications for the grafting of fetal mesencephalic tissue in PD patients.
Collapse
Affiliation(s)
- N S Haque
- Neuroregeneration Laboratory, Harvard Medical School/McLean Hospital, Belmont, MA 02178, USA
| | | | | |
Collapse
|
149
|
MAP2 expression in the developing human fetal spinal cord and following xenotransplantation. Cell Transplant 1997. [PMID: 9171166 DOI: 10.1016/s0963-6897(97)00033-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human fetal spinal cord (FSC) tissue was obtained from elective abortions at 6-14 wk gestational age (GA). The specimens were then either immediately processed for immunohistochemical analysis or xenotransplantation. In the latter case, donor tissue was prepared as a dissociated cell suspension and then introduced either subpially or intraspinally into contusion lesions of the adult rat midthoracic spinal cord. The xenografts were subsequently examined by conventional histological and immunohistochemical methods at 2-3 mo postgrafting. Immunostaining showed that MAP2 was expressed heavily in cells residing in the mantle layer of the human fetal spinal cord in situ as early as 6 wk GA. Subpial and intraparenchymal xenografts also were intensely immunoreactive for MAP2, but no staining of surrounding host neural tissue was detected. We conclude that the differential expression of MAP2 can be used to distinguish human graft tissue from the surrounding rat spinal cord in this xenograft paradigm. Under appropriate staining conditions, MAP2 can thus serve to facilitate analyses of host-graft integration, donor cell migration, and neuritic outgrowth.
Collapse
|
150
|
Haque NS, Borghesani P, Isacson O. Therapeutic strategies for Huntington's disease based on a molecular understanding of the disorder. MOLECULAR MEDICINE TODAY 1997; 3:175-83. [PMID: 9134531 DOI: 10.1016/s1357-4310(97)01012-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A mutation on chromosome 4p16.3 with an expanded polyglutamine tract has been identified as the cause of Huntington's disease (HD). The neuroscience and clinical community now faces the formidable challenge of using this information to develop a treatment against this fatal and currently untreatable disease. This article reviews the recent literature pertaining to HD and presents an overview of possible intervention strategies against the neurodegenerative process of HD. Because little is known about the physiological function of the HD gene, there are four biological levels at which therapies could be devised. Identification and cloning of the gene might direct novel therapies for HD using the following strategies: interference (1) at the DNA or (2) at the RNA level; (3) blocking the deleterious effect of the protein; and (4) physiological intervention using pharmacological agents or neural cell transplants.
Collapse
Affiliation(s)
- N S Haque
- Neuroregeneration Laboratory, Harvard Medical School/McLean Hospital, Belmont, MA 02178, USA
| | | | | |
Collapse
|