101
|
Verma S, Rahman B. Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array. SENSORS (BASEL, SWITZERLAND) 2023; 23:1290. [PMID: 36772328 PMCID: PMC9921925 DOI: 10.3390/s23031290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications.
Collapse
|
102
|
Wu F, Liu T, Xiao S. Polarization-sensitive photonic bandgaps in hybrid one-dimensional photonic crystals composed of all-dielectric elliptical metamaterials and isotropic dielectrics. APPLIED OPTICS 2023; 62:706-713. [PMID: 36821275 DOI: 10.1364/ao.480083] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Photonic bandgaps (PBGs) in conventional one-dimensional (1-D) photonic crystals (PhCs) composed of isotropic dielectrics are polarization-insensitive since the optical length within a isotropic dielectric layer is polarization-independent. Herein, we realize polarization-sensitive PBGs in hybrid 1-D PhCs composed of all-dielectric elliptical metamaterials (EMMs) and isotropic dielectrics. Based on the Bragg scattering theory and iso-frequency curve analysis, an analytical model is established to characterize the angle dependence of PBGs under transverse magnetic and transverse electric polarizations. The polarization-dependent property of PBGs can be flexibly controlled by the filling ratio of one of the isotropic dielectrics within all-dielectric EMMs. Assisted by the polarization-sensitive PBGs, high-performance polarization selectivity can be achieved. Our work offers a loss-free platform to achieve polarization-sensitive physical phenomena and optical devices.
Collapse
|
103
|
Guo X, Ren YX, Li L, Wang Z, Wang S, Gao M, Wang Z, Wong KKY. Large-scale fabrication of an ultrathin broadband absorber using quasi-random dielectric Mie resonators. OPTICS EXPRESS 2023; 31:2523-2537. [PMID: 36785264 DOI: 10.1364/oe.479867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 06/18/2023]
Abstract
Ultrathin broadband absorber maintaining a near-uniform low reflectivity over a broadband wavelength is essential for many optical applications, such as light harvesting and nanoscale imaging. Recently, there has been considerable interest in employing arrays of high-index dielectric Mie resonators on surfaces to trap light and reduce the reflectivity. For such Mie-resonant metasurfaces, however, antireflection properties featuring both a flat low reflectance curve and a wide bandwidth are hard to be satisfied simultaneously, and an efficient large-scale nanofabrication technique rarely exists. Here, we present a high-throughput laser interference induced quasi-random patterning (LIIQP) technique to fabricate quasi-random Mie resonators in large scale. Mie resonators with feature sizes down to sub-100 nm have been fabricated using a 1064 nm laser source. Each Mie resonator concentrates light at its shape-dependent resonant frequency, and all such resonators are arranged quasi-randomly to provide both rich (with broadband Fourier components) and strong (with large intensities) Fourier spectra. Specifically, a near-uniform broadband reflectivity over 400-1100 nm spectrum region has been confined below 3% by fabricating a large-scale ultrathin (around 400 nm) absorber. Our concept and high-throughput fabrication technique allows the rapid production of quasi-random dielectric Mie-resonant metasurfaces in a controllable way, which can be used in various promising applications including thin-film solar cells, display, and imaging.
Collapse
|
104
|
Amooghorban E, Wubs M. Quantum Optical Effective-Medium Theory for Layered Metamaterials at Any Angle of Incidence. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:291. [PMID: 36678047 PMCID: PMC9861691 DOI: 10.3390/nano13020291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The quantum optics of metamaterials starts with the question of whether the same effective-medium theories apply as in classical optics. In general, the answer is negative. For active plasmonics but also for some passive metamaterials, we show that an additional effective-medium parameter is indispensable besides the effective index, namely, the effective noise-photon distribution. Only with the extra parameter can one predict how well the quantumness of states of light is preserved in the metamaterial. The fact that the effective index alone is not always sufficient and that one additional effective parameter suffices in the quantum optics of metamaterials is both of fundamental and practical interest. Here, from a Lagrangian description of the quantum electrodynamics of media with both linear gain and loss, we compute the effective noise-photon distribution for quantum light propagation in arbitrary directions in layered metamaterials, thereby detailing and generalizing our previous work. The effective index with its direction and polarization dependence is the same as in classical effective-medium theories. As our main result, we derive both for passive and for active media how the value of the effective noise-photon distribution too depends on the polarization and propagation directions of the light. Interestingly, for s-polarized light incident on passive metamaterials, the noise-photon distribution reduces to a thermal distribution, but for p-polarized light it does not. We illustrate the robustness of our quantum optical effective-medium theory by accurate predictions both for power spectra and for balanced homodyne detection of output quantum states of the metamaterial.
Collapse
Affiliation(s)
- Ehsan Amooghorban
- Faculty of Science, Department of Physics, Shahrekord University, P.O. Box 115, Shahrekord 88186-34141, Iran
- Nanotechnology Research Group, Shahrekord University, P.O. Box 115, Shahrekord 88186-34141, Iran
| | - Martijn Wubs
- Department of Electrical and Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center for Nanostructured Graphene, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- NanoPhoton—Center for Nanophotonics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
105
|
Nishida K, Sasai K, Xu R, Yen TH, Tang YL, Takahara J, Chu SW. All-optical scattering control in an all-dielectric quasi-perfect absorbing Huygens' metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:139-146. [PMID: 39633641 PMCID: PMC11501191 DOI: 10.1515/nanoph-2022-0597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2024]
Abstract
In this paper, we theoretically and experimentally demonstrated photothermal nonlinearities of both forward and backward scattering intensities from quasi-perfect absorbing silicon-based metasurface with only λ/7 thickness. The metasurface is efficiently heated up by photothermal effect under laser irradiation, which in turn modulates the scattering spectra via thermo-optical effect. Under a few milliwatt continuous-wave excitation at the resonance wavelength of the metasurface, backward scattering cross-section doubles, and forward scattering cross-section reduces to half. Our study opens up the all-optical dynamical control of the scattering directionality, which would be applicable to silicon photonic devices.
Collapse
Affiliation(s)
- Kentaro Nishida
- Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Koki Sasai
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Rongyang Xu
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Te-Hsin Yen
- Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Yu-Lung Tang
- Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Junichi Takahara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Photonics Center, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei10617, Taiwan
- Molecular Imaging Center, National Taiwan University, No. 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
- Brain Research Center, National Tsing Hua University, 101, Sec 2, Guangfu Road, Hsinchu30013, Taiwan
| |
Collapse
|
106
|
Kazanskiy NL, Khonina SN, Butt MA. Recent Development in Metasurfaces: A Focus on Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:118. [PMID: 36616028 PMCID: PMC9823782 DOI: 10.3390/nano13010118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/12/2023]
Abstract
One of the fastest-expanding study areas in optics over the past decade has been metasurfaces (MSs). These subwavelength meta-atom-based ultrathin arrays have been developed for a broad range of functions, including lenses, polarization control, holography, coloring, spectroscopy, sensors, and many more. They allow exact control of the many properties of electromagnetic waves. The performance of MSs has dramatically improved because of recent developments in nanofabrication methods, and this concept has developed to the point that it may be used in commercial applications. In this review, a vital topic of sensing has been considered and an up-to-date study has been carried out. Three different kinds of MS absorber sensor formations, all-dielectric, all-metallic, and hybrid configurations, are presented for biochemical sensing applications. We believe that this review paper will provide current knowledge on state-of-the-art sensing devices based on MSs.
Collapse
Affiliation(s)
- Nikolay L. Kazanskiy
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | - Svetlana N. Khonina
- IPSI RAS-Branch of the FSRC “Crystallography and Photonics” RAS, 443001 Samara, Russia
- Samara National Research University, 443086 Samara, Russia
| | | |
Collapse
|
107
|
Geng J, Yan W, Shi L, Qiu M. Quasicylindrical Waves for Ordered Nanostructuring. NANO LETTERS 2022; 22:9658-9663. [PMID: 36394454 DOI: 10.1021/acs.nanolett.2c03851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced self-organization of periodic nanostructures on highly absorbing materials is widely understood to be due to interference between laser and surface plasmon polaritons (SPPs) that are excited by initial surface roughness. The structure order naturally emerges from the propagation phase of SPPs. Here, we reveal an unexplored mechanism that is predominantly induced by quasicylindrical waves (QCWs) with negligible contributions from SPPs. This mechanism features a new principle of order emergence in growth of periodic nanostructures through short-range electromagnetic interactions between QCWs and marginal nanofringes. In this scenario, the periodicity of nanostructures is not simply determined by the electromagnetic wavelength. With suppressed long-range interactions, the formation of nanostructures shows a domino-like growth process, thus significantly improving structure uniformity. An in situ microscopic observation is performed to characterize the temporal dynamics of structural growth and verify the new mechanism. Further, the QCWs are directly observed in experiments, which are theoretically supported by a scattering model.
Collapse
Affiliation(s)
- Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Wei Yan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Liping Shi
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu road, Wuhan 430079, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
108
|
Maurya KC, Chatterjee A, Shivaprasad SM, Saha B. Morphology-Controlled Reststrahlen Band and Infrared Plasmon Polariton in GaN Nanostructures. NANO LETTERS 2022; 22:9606-9613. [PMID: 36459090 DOI: 10.1021/acs.nanolett.2c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to ultrabright and stable blue light emission, GaN has emerged as one of the most famous semiconductors of the modern era, useful for light-emitting diodes, power electronics, and optoelectronic applications. Extending GaN's optical resonance from visible to mid- and-far-infrared spectral ranges will enable novel applications in many emerging technologies. Here we show hexagonal honeycomb-shaped GaN nanowall networks and vertically standing nanorods exhibiting morphology-dependent Reststrahlen band and plasmon polaritons that could be harnessed for infrared nanophotonics. Surface-induced dipoles at the edges and asperities in molecular beam epitaxy-deposited nanostructures lead to phonon absorption inside the Reststrahlen band, altering its shape from rectangular to right-trapezoidal. Excitation of such surface polariton modes provides a novel pathway to achieve far-infrared optical resonance in GaN. Additionally, surface defects in nanostructures lead to high carrier concentrations, resulting in tunable mid-infrared plasmon polaritons with high-quality factors. Demonstration of morphology-controlled Reststrahlen band and plasmon polaritons make GaN nanostructures attractive for infrared nanophotonics.
Collapse
Affiliation(s)
- Krishna Chand Maurya
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| | - Abhijit Chatterjee
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| | - Sonnada Math Shivaprasad
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| | - Bivas Saha
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore560064, India
| |
Collapse
|
109
|
Son T, Moon G, Lee C, Xi P, Kim D. Super-resolved three-dimensional near-field mapping by defocused imaging and tracking of fluorescent emitters. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4805-4819. [PMID: 39634753 PMCID: PMC11501887 DOI: 10.1515/nanoph-2022-0546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/14/2022] [Indexed: 12/07/2024]
Abstract
Near-field optics is essential in many nanotechnology applications, such as implementing sensitive biosensing and imaging systems with extreme precision. Understanding optical near-fields at the nanoscale has so attracted the considerable research interest, which use a variety of analytical approaches, most notably near-field scanning microscopy. Here, we show defocused point localization mapped accumulation (DePLOMA), which can overcome many weaknesses of conventional analytical methods. DePLOMA is based on imaging fluorescence emitters at an out-of-focal plane. The acquisition, collection, and accumulation of the position and fluorescence intensity of emitters moving above nanostructures can generate three-dimensional near-field maps of light distribution. The idea enables super-resolution liquid-phase measurements, as demonstrated by reconstruction of near-field created by nanoslits with a resolution determined by emitter size. We employed fluorescent emitters with a radius of 50 and 100 nm for confirmation. The axial resolution was found to be enhanced by more than 6 times above that of diffraction-limited confocal laser scanning microscopy when DePLOMA was used.
Collapse
Affiliation(s)
- Taehwang Son
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Gwiyeong Moon
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Changhun Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea
| |
Collapse
|
110
|
Vennberg F, Ravishankar AP, Anand S. Manipulating light scattering and optical confinement in vertically stacked Mie resonators. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4755-4764. [PMID: 39634727 PMCID: PMC11501431 DOI: 10.1515/nanoph-2022-0605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 12/07/2024]
Abstract
High index dielectric nanoresonators have gained prominence in nanophotonics due to lower losses compared to plasmonic systems and their ability to sustain both electric and magnetic resonances. The resonances can be engineered to create new types of optical states, such as bound-states in a continuum (BIC) and anapoles. In this work, we report on the optical properties of vertically stacked AlGaAs nanodisk Mie resonators. The nanodisks are designed to support an anapole state in the visible wavelength region (400-700 nm). The vertically stacked nanodisk resonators are fabricated from AlGaAs/GaAs multilayer samples with a fast and scalable patterning method using charged sphere colloidal lithography. Both measurements and finite difference time domain (FDTD) simulations of two and three stacked resonators show a sharp dip in the reflectance spectra at the anapole wavelength. For the 2 and 3 disk stacks the reflectance dip contrast at the anapole wavelength becomes very pronounced in the specular reflectance and is attributed to increased directional scattering due to an antenna effect. FDTD simulations show there is enhanced field confinement in all the disks at the anapole wavelength and the confined energy within the individual disks in the stack is at least 2-5 times greater compared to an isolated single nanodisk of the same dimension. Furthermore, the field confinement consistently increases with adding more disks in the stack. These vertically stacked AlGaAs nanodisk resonators can be a very exciting platform to engineer light matter interactions for linear and non-linear optical applications. The general principles of the fabrication method can be adapted to other wavelength ranges and can also be adapted for other III-V material combinations as well as for Si/SiO2.
Collapse
Affiliation(s)
- Felix Vennberg
- Applied Physics, KTH Royal Institute of Technology School of Engineering Sciences, Hannes Alféns väg 12, 114 19, Stockholm, Sweden
| | - Ajith Padyana Ravishankar
- Applied Physics, KTH Royal Institute of Technology School of Engineering Sciences, Hannes Alféns väg 12, 114 19, Stockholm, Sweden
| | - Srinivasan Anand
- Applied Physics, KTH Royal Institute of Technology School of Engineering Sciences, Hannes Alféns väg 12, 114 19, Stockholm, Sweden
| |
Collapse
|
111
|
Jakšić Z, Obradov M, Jakšić O. Bio-Inspired Nanomembranes as Building Blocks for Nanophotonics, Plasmonics and Metamaterials. Biomimetics (Basel) 2022; 7:222. [PMID: 36546922 PMCID: PMC9775387 DOI: 10.3390/biomimetics7040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Nanomembranes are the most widespread building block of life, as they encompass cell and organelle walls. Their synthetic counterparts can be described as freestanding or free-floating structures thinner than 100 nm, down to monatomic/monomolecular thickness and with giant lateral aspect ratios. The structural confinement to quasi-2D sheets causes a multitude of unexpected and often counterintuitive properties. This has resulted in synthetic nanomembranes transiting from a mere scientific curiosity to a position where novel applications are emerging at an ever-accelerating pace. Among wide fields where their use has proven itself most fruitful are nano-optics and nanophotonics. However, the authors are unaware of a review covering the nanomembrane use in these important fields. Here, we present an attempt to survey the state of the art of nanomembranes in nanophotonics, including photonic crystals, plasmonics, metasurfaces, and nanoantennas, with an accent on some advancements that appeared within the last few years. Unlimited by the Nature toolbox, we can utilize a practically infinite number of available materials and methods and reach numerous properties not met in biological membranes. Thus, nanomembranes in nano-optics can be described as real metastructures, exceeding the known materials and opening pathways to a wide variety of novel functionalities.
Collapse
Affiliation(s)
- Zoran Jakšić
- Center of Microelectronic Technologies, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | | | | |
Collapse
|
112
|
Ryu T, Kim M, Hwang Y, Kim MK, Yang JK. High-efficiency SOI-based metalenses at telecommunication wavelengths. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4697-4704. [PMID: 39634736 PMCID: PMC11501833 DOI: 10.1515/nanoph-2022-0480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/10/2022] [Indexed: 12/07/2024]
Abstract
We demonstrated silicon-on-insulator (SOI)-based high-efficiency metalenses at telecommunication wavelengths that are integrable with a standard 220 nm-thick silicon photonic chip. A negative electron-beam resist (ma-N) was placed on top of the Si nanodisk, providing vertical symmetry to realize high efficiency. A metasurface with a Si/ma-N disk array was numerically investigated to design a metalens that showed that a Si/ma-N metalens could focus the incident beam six times stronger than a Si metalens without ma-N. Metalenses with a thick ma-N layer have been experimentally demonstrated to focus the beam strongly at the focal point and have a long depth of field at telecommunication wavelengths. A short focal length of 10 μm with a wavelength-scale spot diameter of approximately 2.5 μm was realized at 1530 nm. This miniaturized high-efficiency metalens with a short focal length can provide a platform for ultrasensitive sensors on silicon photonic IC.
Collapse
Affiliation(s)
- Taesu Ryu
- Department of Optical Engineering, Kongju National University, Cheonan, 31080, Republic of Korea
| | - Moohyuk Kim
- KU‐KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yongsop Hwang
- Institute of Application and Fusion for Light, Kongju National University, Cheonan, 31080, Republic of Korea
- Laser Physics and Photonics Devices Lab, STEM, University of South Australia, Mawson Lakes, SA5095, Australia
| | - Myung-Ki Kim
- KU‐KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jin-Kyu Yang
- Department of Optical Engineering, Kongju National University, Cheonan, 31080, Republic of Korea
- Institute of Application and Fusion for Light, Kongju National University, Cheonan, 31080, Republic of Korea
| |
Collapse
|
113
|
Hao D, Zhang Y, Yang D, Li R, Zhao D, Zhang Z, Wang S, Jin W, Tian H, Duan J, Fan F, Chang S, Maro R, Ma L. Silicon bowtie structure based adjustable nonrigid all-nonmetal metamaterial terahertz filter. OPTICS LETTERS 2022; 47:6101-6104. [PMID: 37219182 DOI: 10.1364/ol.471704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 05/24/2023]
Abstract
An all-nonmetal metamaterial (ANM) terahertz device with a silicon bowtie structure has been developed, which has comparable efficiency to that of its metallic counterparts, and better compatibility with modern semiconductor fabrication processes. Moreover, a highly tunable ANM with the same structure was successfully fabricated through integration with a flexible substrate, which demonstrated large tunability over a wide frequency range. Such a device can be used in terahertz systems for numerous applications, and is a promising substitute for conventional metal-based structures.
Collapse
|
114
|
Yang K, Shi S, Li C, Huang W, Jing X. Broadband stealth devices based on encoded metamaterials. APPLIED OPTICS 2022; 61:10171-10177. [PMID: 36606778 DOI: 10.1364/ao.471262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Based on the generalized Snell's law, the relationship between the phase gradient of the metasurface and the incident frequency is demonstrated, and the principle of the achromatic metasurface is developed. By adjusting the phase gradient and linear dispersion simultaneously, the function of achromatic aberration is realized, and the influence of chromatic aberration on the metasurface is reduced. We propose a metasurface stealth device with achromatic multilayer frame metasurfaces with beam deflection, steering, and collection functions so that the incident electromagnetic beam is transmitted around the stealth object without scattering. In the range of 0.45-0.9 THz, the stealth function can be achieved. We have shown that the achromatic principle, design method, and stealth structure provide a guide for achieving transmissive cloaking.
Collapse
|
115
|
Shi C, Hu J, Liu X, Liang J, Zhao J, Han H, Zhu Q. Double-layer symmetric gratings with bound states in the continuum for dual-band high- Q optical sensing. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:1408-1417. [PMID: 36483638 PMCID: PMC9704010 DOI: 10.3762/bjnano.13.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Herein, we theoretically demonstrate that a double-layer symmetric gratings (DLSG) resonator consisting of a low-refractive-index layer sandwiched between two high-contrast gratings (HCG) layers, can host dual-band high-quality (Q) factor resonance. We find that the artificial bound states in the continuum (BIC) and Fabry-Pérot BIC (FP-BIC) can be induced by optimizing structural parameters of DLSG. Interestingly, the artificial BIC is governed by the spacing between the two rectangular dielectric gratings, while the FP-BIC is achieved by controlling the cavity length of the structure. Further, the two types of BIC can be converted into quasi-BIC (QBIC) by either changing the spacing between adjacent gratings or changing the distance between the upper and lower gratings. The simulation results show that the dual-band high-performance sensor is achieved with the highest sensitivity of 453 nm/RIU and a maximum figure of merit (FOM) of 9808. Such dual-band high-Q resonator is expected to have promising applications in multi-wavelength sensing and nonlinear optics.
Collapse
Affiliation(s)
- Chaoying Shi
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Jinhua Hu
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Xiuhong Liu
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Junfang Liang
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Jijun Zhao
- School of Information and Electrical Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Haiyan Han
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| | - Qiaofen Zhu
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering, Handan, Hebei 056038, P. R. China
| |
Collapse
|
116
|
Noureen S, Mehmood MQ, Ali M, Rehman B, Zubair M, Massoud Y. A unique physics-inspired deep-learning-based platform introducing a generalized tool for rapid optical-response prediction and parametric-optimization for all-dielectric metasurfaces. NANOSCALE 2022; 14:16436-16449. [PMID: 36326120 DOI: 10.1039/d2nr03644d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metasurfaces are composed of a two-dimensional array of carefully engineered subwavelength structures. They provide a novel compact alternative to conventional voluminous optical components. However, their design involves a time-consuming hit and trial procedure, requiring many iterative electromagnetic simulations through expensive commercial solvers. To overcome this non-practical design strategy, recently, various deep-learning-based fast and low computational cost networks have been proposed to design and optimize individual meta-atoms and complete metasurfaces. Most of them focus on optimizing the amplitude response of nanostructures, whereas mapping the phase response is a much more challenging problem that needs to be addressed. Since the metaatom's optical response is entirely reliant on and vulnerable to its geometrical structure, underlying material, and operating wavelength, changing any of these parameters changes the entire physics of the problem in hand. Here, we propose novel deep-learning-based generalized forward and inverse design approaches to optimize all-dielectric transmissive metasurfaces. The proposed forward predicting neural networks take all the geometrical parameters and the physical properties of the bar-shaped dielectric nano-resonators as the input and predict the cross-polarized transmission amplitude and modulated phase at eight distinct rotation angles of the nano-bar. These networks are generalized to predict the electromagnetic (EM) response of different dielectric materials at different operating wavelengths. An inverse design neural network is also proposed that takes the target transmission amplitude and phase at eight discrete orientation angles of the nano-bar as the primary input. The underlying physics of the problem is also incorporated by feeding the intrinsic material properties and the operating wavelength of the nano-bar as a second input to the inverse neural network. It predicts the optimum set of geometrical parameters to achieve maximum cross-polarized transmission and complete Pancharatnam-Berry (PB) phase coverage from 0 to 2π. The average test data mean square error (MSE) achieved for the forward predicting neural network is 1.8 × 10-3 and that of the inverse design neural network is 2.8 × 10-1. The average MSEs for different material's test samples are demonstrated to validate the generalizability of the proposed models in terms of seen and unseen materials. A comparative analysis of the proposed approach with conventional EM software optimization tools is performed to prove that the proposed inverse design works much faster than the conventional methods, also it can handle a comparatively larger range of parameters and predicts the results in a single run with high accuracy.
Collapse
Affiliation(s)
- Sadia Noureen
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore 54600, Pakistan.
| | - Muhammad Qasim Mehmood
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore 54600, Pakistan.
| | - Mohsen Ali
- Department of Computer Science, Information Technology University (ITU) of the Punjab, Arfa Software Technology Park, Ferozepur Road, Lahore 54600, Pakistan
| | | | - Muhammad Zubair
- MicroNano Lab, Electrical Engineering Department, Information Technology University (ITU) of the Punjab, Ferozepur Road, Lahore 54600, Pakistan.
| | - Yehia Massoud
- Innovative Technologies Laboratories (ITL), King Abdullah University of Science and Technology (KAUST), Saudi Arabia.
| |
Collapse
|
117
|
Zhang Y, Chen D, Ma W, You S, Zhang J, Fan M, Zhou C. Active optical modulation of quasi-BICs in Si-VO 2 hybrid metasurfaces. OPTICS LETTERS 2022; 47:5517-5520. [PMID: 37219258 DOI: 10.1364/ol.472927] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/30/2022] [Indexed: 05/24/2023]
Abstract
Active optical modulation breaks the limitation of a passive device, providing a new, to the best of our knowledge, alternative to achieve high-performance optical devices. The phase-change material vanadium dioxide (VO2) plays an important role in the active device due to its unique reversible phase transition. In this work, we numerically investigate the optical modulation in resonant Si-VO2 hybrid metasurfaces. The optical bound states in the continuum (BICs) in an Si dimer nanobar metasurface are studied. The quasi-BICs resonator with high quality factor (Q-factor) can be excited by rotating one of the dimer nanobars. The multipole response and near-field distribution confirm that magnetic dipoles dominate this resonance. Moreover, a dynamically tunable optical resonance is achieved by integrating a VO2 thin film to this quasi-BICs Si nanostructure. With the increase of temperature, VO2 gradually changes from the dielectric state to metal state, and the optical response exhibits a significant change. Then, the modulation of the transmission spectrum is calculated. Situations where VO2 is located in different positions are also discussed. A relative transmission modulation of 180% is achieved. These results fully confirm that the VO2 film shows an excellent ability to modulate the quasi-BICs resonator. Our work provides a route for the active modulation of resonant optical devices.
Collapse
|
118
|
Yang S, He M, Hong C, Caldwell JD, Ndukaife JC. Engineering Electromagnetic Field Distribution and Resonance Quality Factor Using Slotted Quasi-BIC Metasurfaces. NANO LETTERS 2022; 22:8060-8067. [PMID: 36214538 DOI: 10.1021/acs.nanolett.2c01919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dielectric metasurfaces governed by bound states in the continuum (BIC) are actively investigated for achieving high-quality factors and strong electromagnetic field enhancements. Traditional approaches reported for tuning the performance of quasi-BIC metasurfaces include tuning the resonator size, period, and structure symmetry. Here we propose and experimentally demonstrate an alternative approach through engineering slots within a zigzag array of elliptical silicon resonators. Through analytical theory, three-dimensional electromagnetic modeling, and infrared spectroscopy, we systematically investigate the spectral responses and field distributions of the slotted metasurface in the mid-IR. Our results show that by introducing slots, the electric field intensity enhancement near the apex and the quality factor of the quasi-BIC resonance are increased by a factor of 2.1 and 3.3, respectively, in comparison to the metasurface without slots. Furthermore, the slotted metasurface also provides extra regions of electromagnetic enhancement and confinement, which holds enormous potential in particle trapping, sensing, and emission enhancement.
Collapse
Affiliation(s)
- Sen Yang
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Mingze He
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Chuchuan Hong
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Joshua D Caldwell
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
| | - Justus C Ndukaife
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee37235, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee37235, United States
| |
Collapse
|
119
|
Yang H, Zong S, Liu G, Liu X, Fu G, Liu Z. Multiple dipolar resonant silicon-based metamaterials for high-performance optical switching and sensing. OPTICS EXPRESS 2022; 30:40768-40778. [PMID: 36299006 DOI: 10.1364/oe.475312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Dielectric nanostructures reinforcing light-matter interactions by manipulating geometric parameters have a sound momentum in optoelectronic applications. Here, we construct and numerically demonstrate a new platform with multiple dipolar resonant behaviors or impressive switching operation and optical sensing with a high sensitivity and figure of merit (FOM) via the graphene-silicon combined metamaterials. Ultra-sharp resonances are excited by introducing broken symmetry in such all-dielectric metamaterials (ADMs) consisting of two silicon trapezoidal bodies on a silica substrate. By analyzing the distributions of the electromagnetic fields and current densities, we find that two types of multipole modes have been excited to support multiple ultra-narrowband resonances in the near-infrared range. The influence of geometers, such as period, thickness, asymmetry parameters, and polarization angle of the incident light, has also been studied. In addition, by adjusting the Fermi levels of graphene, we realize a 95% amplitude modulation efficiency, which manifests perfect capacity for an optical switch. According to the calculated results, the highest sensitivity can reach 447.5 nm/RIU and a large FOM is also up to 1173 RIU-1. This platform not only introduces new insight onto the achievement of high-quality ultra-sharp resonant responses but also offers a distinct possibility for the further development of high-quality related applications in optical sensors, notch filtering, strong light-matter interactions including the nonlinear optics, and multispectral optoelectronics.
Collapse
|
120
|
Ko B, Badloe T, Yang Y, Park J, Kim J, Jeong H, Jung C, Rho J. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat Commun 2022; 13:6256. [PMID: 36270995 PMCID: PMC9587293 DOI: 10.1038/s41467-022-32987-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
The application of hydrogels in nanophotonics has been restricted due to their low fabrication feasibility and refractive index. Nevertheless, their elasticity and strength are attractive properties for use in flexible, wearable-devices, and their swelling characteristics in response to the relative humidity highlight their potential for use in tunable nanophotonics. We investigate the use of nanostructured polyvinyl alcohol (PVA) using a one-step nanoimprinting technique for tunable and erasable optical security metasurfaces with multiplexed structural coloration and metaholography. The resolution of the PVA nanoimprinting reaches sub-100 nm, with aspect ratios approaching 10. In response to changes in the relative humidity, the PVA nanostructures swell by up to ~35.5%, providing precise wavefront manipulation of visible light. Here, we demonstrate various highly-secure multiplexed optical encryption metasurfaces to display, hide, or destroy encrypted information based on the relative humidity both irreversibly and reversibly. PVA is a hydrogel that has attractive swelling properties for use in tunable photonic applications. Here, the authors exploit PVA with nanoimprint lithography to realize multiplexed optical encryption metasurfaces to display, hide, and destroy encrypted information.
Collapse
Affiliation(s)
- Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeonghoon Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Heonyeong Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. .,POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea. .,National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| |
Collapse
|
121
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
122
|
Kim G, Kim Y, Yun J, Moon SW, Kim S, Kim J, Park J, Badloe T, Kim I, Rho J. Metasurface-driven full-space structured light for three-dimensional imaging. Nat Commun 2022; 13:5920. [PMID: 36216802 PMCID: PMC9550774 DOI: 10.1038/s41467-022-32117-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Structured light (SL)-based depth-sensing technology illuminates the objects with an array of dots, and backscattered light is monitored to extract three-dimensional information. Conventionally, diffractive optical elements have been used to form laser dot array, however, the field-of-view (FOV) and diffraction efficiency are limited due to their micron-scale pixel size. Here, we propose a metasurface-enhanced SL-based depth-sensing platform that scatters high-density ~10 K dot array over the 180° FOV by manipulating light at subwavelength-scale. As a proof-of-concept, we place face masks one on the beam axis and the other 50° apart from axis within distance of 1 m and estimate the depth information using a stereo matching algorithm. Furthermore, we demonstrate the replication of the metasurface using the nanoparticle-embedded-resin (nano-PER) imprinting method which enables high-throughput manufacturing of the metasurfaces on any arbitrary substrates. Such a full-space diffractive metasurface may afford ultra-compact depth perception platform for face recognition and automotive robot vision applications.
Collapse
Affiliation(s)
- Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Yeseul Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jooyeong Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seong-Won Moon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jaekyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Inki Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
- National Institute of Nanomaterials Technology (NINT), Pohang, 37673, Republic of Korea.
| |
Collapse
|
123
|
Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12035-12049. [PMID: 36122249 DOI: 10.1021/acs.langmuir.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aayush Rai
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| |
Collapse
|
124
|
Zhao J, Cheng Y. Temperature‐Tunable Terahertz Perfect Absorber Based on All‐Dielectric Strontium Titanate (STO) Resonator Structure. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jingcheng Zhao
- School of Electronics Information Engineering Beihang University Beijing 100191 China
| | - Yongzhi Cheng
- School of information Science and Engineering Wuhan University of Science and Technology Wuhan Hubei 430081 China
| |
Collapse
|
125
|
Tang P, Tao Q, Liu S, Xiang J, Zhong L, Qin Y. Reconfigurable Radiation Angle Continuous Deflection of All-Dielectric Phase-Change V-Shaped Antenna. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3305. [PMID: 36234432 PMCID: PMC9565491 DOI: 10.3390/nano12193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
All-dielectric optical antenna with multiple Mie modes and lower inherent ohmic loss can achieve high efficiency of light manipulation. However, the silicon-based optical antenna is not reconfigurable for specific scenarios. The refractive index of optical phase-change materials can be reconfigured under stimulus, and this singular behavior makes it a good candidate for making reconfigurable passive optical devices. Here, the optical radiation characteristics of the V-shaped phase-change antenna are investigated theoretically. The results show that with increasing crystallinity, the maximum radiation direction of the V-shaped phase-change antenna can be continuously deflected by 90°. The exact multipole decomposition analysis reveals that the modulus and interference phase difference of the main multipole moments change with the crystallinity, resulting in a continuous deflection of the maximum radiation direction. Thus, the power ratio in the two vertical radiation directions can be monotonically reversed from -12 to 7 dB between 20% and 80% crystallinity. The V-shaped phase-change antenna exhibits the potential to act as the basic structural unit to construct a reconfigurable passive spatial angular power splitter or wavelength multiplexer. The mechanism analysis of radiation directivity involving the modulus and interference phase difference of the multipole moments will provide a reference for the design and optimization of the phase-change antenna.
Collapse
Affiliation(s)
- Ping Tang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiao Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jin Xiang
- School of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuwen Qin
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
126
|
Wu F, Liu T, Chen M, Xiao S. Photonic bandgap engineering in hybrid one-dimensional photonic crystals containing all-dielectric elliptical metamaterials. OPTICS EXPRESS 2022; 30:33911-33925. [PMID: 36242416 DOI: 10.1364/oe.469368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Metamaterials with negative permittivities or/and permeabilities greatly enrich photonic bandgap (PBG) engineering in one-dimensional (1-D) photonic crystals (PhCs). Nevertheless, their inevitable optical losses strongly destroy the crucial prohibition characteristic of PBGs, which makes such engineered PBGs not utilizable in some relevant physical processes and optical/optoelectronic devices. Herein, we bridge a link between 1-D PhCs and all-dielectric loss-free metamaterials and propose a hybrid 1-D PhC containing all-dielectric elliptical metamaterials to engineer angle-dependence of PBGs. Associating the Bragg scattering theory with the iso-frequency curve analysis, an analytical model is established to precisely describe the angle-dependence of PBG. Based on the analytical model, two types of special PBGs, i.e., angle-insensitive and angle-sensitive PBGs, are designed. By further introducing defects into the designed 1-D PhCs, angle-dependence of defect modes can also be flexibly controlled. Our protocol opens a viable route to precisely engineering PBGs and promotes the development of PBG-based physics and applications.
Collapse
|
127
|
Fan K, Averitt RD, Padilla WJ. Active and tunable nanophotonic metamaterials. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3769-3803. [PMID: 39635159 PMCID: PMC11501849 DOI: 10.1515/nanoph-2022-0188] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 12/07/2024]
Abstract
Metamaterials enable subwavelength tailoring of light-matter interactions, driving fundamental discoveries which fuel novel applications in areas ranging from compressed sensing to quantum engineering. Importantly, the metallic and dielectric resonators from which static metamaterials are comprised present an open architecture amenable to materials integration. Thus, incorporating responsive materials such as semiconductors, liquid crystals, phase-change materials, or quantum materials (e.g., superconductors, 2D materials, etc.) imbue metamaterials with dynamic properties, facilitating the development of active and tunable devices harboring enhanced or even entirely novel electromagnetic functionality. Ultimately, active control derives from the ability to craft the local electromagnetic fields; accomplished using a host of external stimuli to modify the electronic or optical properties of the responsive materials embedded into the active regions of the subwavelength resonators. We provide a broad overview of this frontier area of metamaterials research, introducing fundamental concepts and presenting control strategies that include electronic, optical, mechanical, thermal, and magnetic stimuli. The examples presented range from microwave to visible wavelengths, utilizing a wide range of materials to realize spatial light modulators, effective nonlinear media, on-demand optics, and polarimetric imaging as but a few examples. Often, active and tunable nanophotonic metamaterials yield an emergent electromagnetic response that is more than the sum of the parts, providing reconfigurable or real-time control of the amplitude, phase, wavevector, polarization, and frequency of light. The examples to date are impressive, setting the stage for future advances that are likely to impact holography, beyond 5G communications, imaging, and quantum sensing and transduction.
Collapse
Affiliation(s)
- Kebin Fan
- School of Electronic Science and Engineering, Nanjing University, Nanjing210023, China
| | | | - Willie J. Padilla
- Department of Electrical and Computer Engineering, Duke University, Durham, NC27708, USA
| |
Collapse
|
128
|
Wang Z, Xiao Y, Liao K, Li T, Song H, Chen H, Uddin SMZ, Mao D, Wang F, Zhou Z, Yuan B, Jiang W, Fontaine NK, Agrawal A, Willner AE, Hu X, Gu T. Metasurface on integrated photonic platform: from mode converters to machine learning. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:3531-3546. [PMID: 39634458 PMCID: PMC11501831 DOI: 10.1515/nanoph-2022-0294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 12/07/2024]
Abstract
Integrated photonic circuits are created as a stable and small form factor analogue of fiber-based optical systems, from wavelength-division multiplication transceivers to more recent mode-division multiplexing components. Silicon nanowire waveguides guide the light in a way that single and few mode fibers define the direction of signal flow. Beyond communication tasks, on-chip cascaded interferometers and photonic meshes are also sought for optical computing and advanced signal processing technology. Here we review an alternative way of defining the light flow in the integrated photonic platform, using arrays of subwavelength meta-atoms or metalines for guiding the diffraction and interference of light. The integrated metasurface system mimics free-space optics, where on-chip analogues of basic optical components are developed with foundry compatible geometry, such as low-loss lens, spatial-light modulator, and other wavefront shapers. We discuss the role of metasurface in integrated photonic signal processing systems, introduce the design principles of such metasurface systems for low loss compact mode conversion, mathematical operation, diffractive optical systems for hyperspectral imaging, and tuning schemes of metasurface systems. Then we perceive reconfigurability schemes for metasurface framework, toward optical neural networks and analog photonic accelerators.
Collapse
Affiliation(s)
- Zi Wang
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19711, USA
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
| | - Yahui Xiao
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19711, USA
| | - Kun Liao
- Peking University, Beijing100871, China
| | - Tiantian Li
- School of Electronic Engineering, Xi’an University of Posts & Telecommunications, Xi’an710121, China
| | - Hao Song
- Department of Electrical & Computer Engineering, University of South California, Los Angeles, CA90089, USA
| | - Haoshuo Chen
- Nokia Bell Labs, 600 Mountain Ave, Murray Hill, NJ07974, USA
| | - S. M. Zia Uddin
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19711, USA
| | - Dun Mao
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19711, USA
| | | | | | - Bo Yuan
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ08854, USA
| | - Wei Jiang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing210093, China
| | | | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD20899, USA
| | - Alan E. Willner
- Department of Electrical & Computer Engineering, University of South California, Los Angeles, CA90089, USA
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA90089, USA
| | | | - Tingyi Gu
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE19711, USA
| |
Collapse
|
129
|
Yang Y, Kim H, Badloe T, Rho J. Gap-plasmon-driven spin angular momentum selection of chiral metasurfaces for intensity-tunable metaholography working at visible frequencies. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4123-4133. [PMID: 39635177 PMCID: PMC11501853 DOI: 10.1515/nanoph-2022-0075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/02/2022] [Indexed: 12/07/2024]
Abstract
Tunable metasurfaces can replace conventional bulky active optical modules to realize practical flat optical devices such as lenses, LiDAR, holography, and augmented reality. However, tunable metasurfaces have generally been limited to switching between two distinct states. Here, we present liquid crystal (LC) integrated chiral metasurfaces, of which the metahologram intensity can be adjusted continuously between fully 'on' and 'off' states. The chiral metasurface consists of a gap-shifted split ring resonator (SRR), and exhibits spin angular momentum selection that reflects left-circularly-polarized light but perfectly absorbs right-circularly-polarized light (99.9%). The gap-shifted SRR realizes spin angular momentum selection using a metal-dielectric-metal multilayer structure and thereby induces a strong gap-plasmonic response, achieving the maximum calculated circular dichroism in reflection (CDR) of 0.99 at the wavelength of 635 nm. With the chiral metasurface, metaholograms are demonstrated with tunable intensities using LCs that change the polarization state of the output light using an applied voltage. With the LC integrated chiral metasurfaces, 23 steps of polarization are demonstrated for the continuous tuning of the holographic image intensity, achieving measured CDR of 0.91. The proposed LC integrated spin-selective chiral metasurface provides a new resource for development of compact active optical modules with continuously-tunable intensity.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Trevon Badloe
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang37673, Republic of Korea
- POSCO-POSCTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang37673, Republic of Korea
- National Institute of Nanomaterials Technology (NINT), Pohang37673, Republic of Korea
| |
Collapse
|
130
|
Dai M, Jiang Y, Yang F, Xu X, Zhao W, Ha DM, Liu Y. SLMGAN: Single-layer metasurface design with symmetrical free-form patterns using generative adversarial networks. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
131
|
Yakimov AI, Kirienko VV, Utkin DE, Dvurechenskii AV. Light-Trapping-Enhanced Photodetection in Ge/Si Quantum Dot Photodiodes Containing Microhole Arrays with Different Hole Depths. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2993. [PMID: 36080030 PMCID: PMC9457855 DOI: 10.3390/nano12172993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Photodetection based on assemblies of quantum dots (QDs) is able to tie the advantages of both the conventional photodetector and unique electronic properties of zero-dimensional structures in an unprecedented way. However, the biggest drawback of QDs is the small absorbance of infrared radiation due to the low density of the states coupled to the dots. In this paper, we report on the Ge/Si QD pin photodiodes integrated with photon-trapping hole array structures of various thicknesses. The aim of this study was to search for the hole array thickness that provided the maximum optical response of the light-trapping Ge/Si QD detectors. With this purpose, the embedded hole arrays were etched to different depths ranging from 100 to 550 nm. By micropatterning Ge/Si QD photodiodes, we were able to redirect normal incident light laterally along the plane of the dots, therefore facilitating the optical conversion of the near-infrared photodetectors due to elongation of the effective absorption length. Compared with the conventional flat photodetector, the responsivity of all microstructured devices had a polarization-independent improvement in the 1.0-1.8-μm wavelength range. The maximum photocurrent enhancement factor (≈50× at 1.7 μm) was achieved when the thickness of the photon-trapping structure reached the depth of the buried QD layers.
Collapse
Affiliation(s)
- Andrew I. Yakimov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Victor V. Kirienko
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Dmitrii E. Utkin
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Physical Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anatoly V. Dvurechenskii
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
- Physical Department, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
132
|
Yang Q, Chen W, Chen Y, Liu W. Ideal Kerker scattering by homogeneous spheres: the role of gain or loss. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:828-835. [PMID: 36105694 PMCID: PMC9443427 DOI: 10.3762/bjnano.13.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
We investigate how the optical gain or loss (characterized by isotropic complex refractive indexes) influence the ideal Kerker scattering of exactly zero backward scattering. It was previously shown that, for non-magnetic homogeneous spheres with incident plane waves, either gain or loss prohibit ideal Kerker scattering, provided that only electric and magnetic multipoles of a specific order are present and contributions from other multipoles can all be made precisely zero. Here we reveal that, when two multipoles of a fixed order are perfectly matched in terms of both phase and magnitude, multipoles of at least the next two orders cannot possibly be tuned to be all precisely zero or even perfectly matched, and consequently cannot directly produce ideal Kerker scattering. Moreover, we further demonstrate that, when multipoles of different orders are simultaneously taken into consideration, loss or gain can serve as helpful rather than harmful contributing factors, for the elimination of backward scattering.
Collapse
Affiliation(s)
- Qingdong Yang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Weijin Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Yuntian Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Wei Liu
- College for Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, P. R. China
| |
Collapse
|
133
|
Peng R, Zhao Q, Meng Y, Wen S. Pure toroidal dipole in a single dielectric disk. OPTICS EXPRESS 2022; 30:30799-30810. [PMID: 36242177 DOI: 10.1364/oe.468645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
The toroidal dipole is a peculiar electromagnetic excitation and has attracted increasing interests because of unusual radiation characteristics. However, the realization of toroidal moment requires complicated structure and are often disturbed by the conventional electric and magnetic multipoles. In this paper, we explore the electromagnetic properties of a simple dielectric disk illuminated by a focused radially polarized beam and demonstrate a pure toroidal dipolar response. A comprehensive approach is proposed to suppress other undesirable electromagnetic multipolar resonances step by step. The disk with optimized geometry is employed to construct an all-dielectric electric mirror dominated by toroidal dipolar resonance. And two kinds of anapole modes with total suppression of far-field radiation are investigated, which proves electric and magnetic non-radiating sources, respectively. Besides, by simultaneously introducing the asymmetry in both structure and incidence, a transformation from Mie-type mode to trapped mode is observed. Our study provides an opportunity to realize a unique pure toroidal dipole and may boost the relevant light-matter interaction.
Collapse
|
134
|
Ling H, Khurgin JB, Davoyan AR. Atomic-Void van der Waals Channel Waveguides. NANO LETTERS 2022; 22:6254-6261. [PMID: 35867898 DOI: 10.1021/acs.nanolett.2c01819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Layered van der Waals materials allow creating unique atomic-void channels with subnanometer dimensions. Coupling light into these channels may further advance sensing, quantum information, and single molecule chemistries. Here, we examine theoretically limits of light guiding in atomic-void channels and show that van der Waals materials exhibiting strong resonances, excitonic and polaritonic, are ideally suited for deeply subwavelength light guiding. We predict that excitonic transition metal dichalcogenides can squeeze >70% of optical power in just <λ/100 thick channel in the visible and near-infrared. We also show that polariton resonances of hexagonal boron nitride allow deeply subwavelength (<λ/500) guiding in the mid-infrared. We further reveal effects of natural material anisotropy and discuss the influence of losses. Such van der Waals channel waveguides while offering extreme optical confinement exhibit significantly lower loss compared to plasmonic counterparts, thus paving the way to low-loss and deeply subwavelength optics.
Collapse
Affiliation(s)
- Haonan Ling
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| | - Jacob B Khurgin
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Artur R Davoyan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
135
|
Liu W, Ma Y, Liu X, Zhou J, Xu C, Dong B, Lee C. Larger-Than-Unity External Optical Field Confinement Enabled by Metamaterial-Assisted Comb Waveguide for Ultrasensitive Long-Wave Infrared Gas Spectroscopy. NANO LETTERS 2022; 22:6112-6120. [PMID: 35759415 DOI: 10.1021/acs.nanolett.2c01198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanophotonic waveguides that implement long optical pathlengths on chips are promising to enable chip-scale gas sensors. Nevertheless, current absorption-based waveguide sensors suffer from weak interactions with analytes, limiting their adoptions in most demanding applications such as exhaled breath analysis and trace-gas monitoring. Here, we propose an all-dielectric metamaterial-assisted comb (ADMAC) waveguide to greatly boost the sensing capability. By leveraging large longitudinal electric field discontinuity at periodic high-index-contrast interfaces in the subwavelength grating metamaterial and its unique features in refractive index engineering, the ADMAC waveguide features strong field delocalization into the air, pushing the external optical field confinement factor up to 113% with low propagation loss. Our sensor operates in the important but underdeveloped long-wave infrared spectral region, where absorption fingerprints of plentiful chemical bonds are located. Acetone absorption spectroscopy is demonstrated using our sensor around 7.33 μm, showing a detection limit of 2.5 ppm with a waveguide length of only 10 mm.
Collapse
Affiliation(s)
- Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Yiming Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| |
Collapse
|
136
|
Li J, Yao K, Huang Y, Fang J, Kollipara PS, Fan DE, Zheng Y. Tunable Strong Coupling in Transition Metal Dichalcogenide Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200656. [PMID: 35793202 PMCID: PMC9420800 DOI: 10.1002/adma.202200656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Subwavelength optical resonators with spatiotemporal control of light are essential to the miniaturization of optical devices. In this work, chemically synthesized transition metal dichalcogenide (TMDC) nanowires are exploited as a new type of dielectric nanoresonators to simultaneously support pronounced excitonic and Mie resonances. Strong light-matter couplings and tunable exciton polaritons in individual nanowires are demonstrated. In addition, the excitonic responses can be reversibly modulated with excellent reproducibility, offering the potential for developing tunable optical nanodevices. Being in the mobile colloidal state with highly tunable optical properties, the TMDC nanoresonators will find promising applications in integrated active optical devices, including all-optical switches and sensors.
Collapse
Affiliation(s)
- Jingang Li
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Kan Yao
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yun Huang
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jie Fang
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Donglei Emma Fan
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
137
|
Wu P, Qu S, Zeng X, Su N, Chen M, Yu Y. High- Q refractive index sensors based on all-dielectric metasurfaces. RSC Adv 2022; 12:21264-21269. [PMID: 35975043 PMCID: PMC9344899 DOI: 10.1039/d2ra02176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Possessing fantastic abilities to freely manipulate electromagnetic waves on an ultrathin platform, metasurfaces have aroused intense interest in the academic circle. In this work, we present a high-sensitivity refractive index sensor excited by the guided mode of a two-dimensional periodic TiO2 dielectric grating structure. Numerical simulation results show that the optimized nanosensor can excite guided-mode resonance with an ultra-narrow linewidth of 0.19 nm. When the thickness of the biological layer is 20 nm, the sensitivity, Q factor, and FOM values of the nanosensor can reach 82.29 nm RIU-1, 3207.9, and 433.1, respectively. In addition, the device shows insensitivity to polarization and good tolerance to the angle of incident light. This demonstrates that the utilization of low-loss all-dielectric metasurfaces is an effective way to achieve ultra-sensitive biosensor detection.
Collapse
Affiliation(s)
- Pinghui Wu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Shuangcao Qu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Xintao Zeng
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Ning Su
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Musheng Chen
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| | - Yanzhong Yu
- Research Center for Photonic Technology, Fujian Provincial Key Laboratory for Advanced Micro-nano Photonics Technology and Devices & Key Laboratory of Information Functional Material for Fujian Higher Education, Quanzhou Normal University Quanzhou 362000 China
| |
Collapse
|
138
|
Geng Z, Wang Z, Liu C. Route to flexible metamaterial terahertz biosensor based on multi-resonance dips. OPTICS EXPRESS 2022; 30:27418-27428. [PMID: 36236913 DOI: 10.1364/oe.463161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/04/2022] [Indexed: 06/16/2023]
Abstract
A flexible terahertz (THz) metamaterial biosensor is theoretically and experimentally investigated. The metamaterial unit cell of the periodic structure array was simply composed of three non-overlapping cut wires with different length parameters on a flexible thin-film (parylene-C) to improve sensitivity. The biosensor sample was fabricated using a lithography process and characterized by a THz time-domain spectroscopy (TDS) system. The metamaterial exhibited multi-resonance dips in transmission spectrum at 0.6-2.0 THz, which can self-correct errors in biosensing. Numerical results show that the Q-factor, figure of merit (FOM) and sensitivity can change in dynamic ranges with the geometric parameters (space and width) of three-cut-wire metamaterial. When space distance was 40 µm and other parameters were default, the sensitivity, FOM and Q-factor reached 710 GHz/RIU (Refractive Index Unit), 9, and 20, respectively. Therefore, through proper design and preparation, the metamaterial can be applied to biochemical detection.
Collapse
|
139
|
Zhu Y, Tian X, Fang J, Shi Y, Shi S, Zhang S, Song J, Li M, Liu X, Wang X, Yang F. Independently tunable all-dielectric synthetic multi-spectral metamaterials based on Mie resonance. RSC Adv 2022; 12:20765-20770. [PMID: 35919140 PMCID: PMC9297704 DOI: 10.1039/d2ra03014d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022] Open
Abstract
A single metamaterial (MM) is generally designed to operate in only one band, and the MMs with different dimensions of meta-atoms are required to be integrated to achieve multi-spectral responses simultaneously. In this study, an all-dielectric synthetic multi-spectral metamaterial (SMM) that can efficiently operate in the visible and terahertz (THz) ranges by incorporating nanoscale features into microscale unit cells is demonstrated and investigated numerically. The resonant frequency of the proposed SMM in both regimes can be tuned independently by changing the geometric parameters such as diameter, gap, width and height of unit cells functional in two different regions, whilst maintaining high reflectance efficiency. Results show that a variety of colors can be produced from red to purple in the visible range with maximal reflectance as high as 83% while the peak frequency of the SMM can be adjusted from 8.12 to 2.13 THz in the THz range with maximum reflectance up to 94%. The reflection characteristics of the SMM mainly originate from the electric dipole (ED) and magnetic dipole (MD) resonances via Mie scattering in both regions. The strategy of this research offers the possibility of applications in bio/chemical sensing, multi-spectral imaging, filtering, detection, modulation and so on.
Collapse
Affiliation(s)
- Yeqing Zhu
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Xi Tian
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Jiukai Fang
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Yanpeng Shi
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Shengnan Shi
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Shan Zhang
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Jinmei Song
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Meiping Li
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Xiaoyu Liu
- School of Microelectronics, Shandong University Jinan 250100 China
| | - Xiaodong Wang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences Beijing 100083 China
| | - Fuhua Yang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences Beijing 100083 China
| |
Collapse
|
140
|
Maurya KC, Rao D, Acharya S, Rao P, Pillai AIK, Selvaraja SK, Garbrecht M, Saha B. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon-Polaritonic Material. NANO LETTERS 2022; 22:5182-5190. [PMID: 35713183 DOI: 10.1021/acs.nanolett.2c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interaction of light with collective charge oscillations, called plasmon-polariton, and with polar lattice vibrations, called phonon-polariton, are essential for confining light at deep subwavelength dimensions and achieving strong resonances. Traditionally, doped-semiconductors and conducting metal oxides (CMO) are used to achieve plasmon-polaritons in the near-to-mid infrared (IR), while polar dielectrics are utilized for realizing phonon-polaritons in the long-wavelength IR (LWIR) spectral regions. However, demonstrating low-loss plasmon- and phonon-polaritons in one host material will make it attractive for practical applications. Here, we demonstrate high-quality tunable short-wavelength IR (SWIR) plasmon-polariton and LWIR phonon-polariton in complementary metal-oxide-semiconductor compatible group III-V polar semiconducting scandium nitride (ScN) thin films. We achieve both resonances by utilizing n-type (oxygen) and p-type (magnesium) doping in ScN that allows modulation of carrier concentration from 5 × 1018 to 1.6 × 1021 cm-3. Our work enables infrared nanophotonics with an epitaxial group III semiconducting nitride, opening the possibility for practical applications.
Collapse
Affiliation(s)
- Krishna Chand Maurya
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Dheemahi Rao
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Shashidhara Acharya
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Pavithra Rao
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012, India
| | | | - Shankar Kumar Selvaraja
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore 560012, India
| | - Magnus Garbrecht
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Bivas Saha
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
141
|
Gennaro S, Sarma R, Brener I. Nonlinear and ultrafast all-dielectric metasurfaces at the center for integrated nanotechnologies. NANOTECHNOLOGY 2022; 33:402001. [PMID: 35671741 DOI: 10.1088/1361-6528/ac7654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Metasurfaces control optical wavefronts via arrays of nanoscale resonators laid out across a surface. When combined with III-V semiconductors with strong optical nonlinearities, a variety of nonlinear effects such as harmonic generation and all-optical modulation can be enabled and enhanced at the nanoscale. This review presents our research on engineering and boosting nonlinear effects in ultrafast and nonlinear semiconductor metasurfaces fabricated at the Center for Integrated Nanotechnologies. We cover our recent works on parametric generation of harmonic light via direct and cascaded processes in GaAs-metasurfaces using Mie-like optical resonances or symmetric-protected bound state in the continuum, and then describe the recent advances on harmonic generation in all-dielectric metasurfaces coupled to intersubband transitions in III-V semiconductor heterostructures. The review concludes on the potential of metasurfaces to serve as the next platform for on-chip quantum light generation.
Collapse
Affiliation(s)
- Sylvain Gennaro
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87123, United States of America
- Sandia National Laboratories, Albuquerque, NM 87123, United States of America
| | - Raktim Sarma
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87123, United States of America
- Sandia National Laboratories, Albuquerque, NM 87123, United States of America
| | - Igal Brener
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87123, United States of America
- Sandia National Laboratories, Albuquerque, NM 87123, United States of America
| |
Collapse
|
142
|
Ullah N, Zhao R, Huang L. Recent Advancement in Optical Metasurface: Fundament to Application. MICROMACHINES 2022; 13:1025. [PMID: 35888842 PMCID: PMC9322754 DOI: 10.3390/mi13071025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/25/2022] [Indexed: 12/01/2022]
Abstract
Metasurfaces have gained growing interest in recent years due to their simplicity in manufacturing and lower insertion losses. Meanwhile, they can provide unprecedented control over the spatial distribution of transmitted and reflected optical fields in a compact form. The metasurfaces are a kind of planar array of resonant subwavelength components that, depending on the intended optical wavefronts to be sculpted, can be strictly periodic or quasi-periodic, or even aperiodic. For instance, gradient metasurfaces, a subtype of metasurfaces, are designed to exhibit spatially changing optical responses, which result in spatially varying amplitudes of scattered fields and the associated polarization of these fields. This paper starts off by presenting concepts of anomalous reflection and refraction, followed by a brief discussion on the Pancharatanm-Berry Phase (PB) and Huygens' metasurfaces. As an introduction to wavefront manipulation, we next present their key applications. These include planar metalens, cascaded meta-systems, tunable metasurfaces, spectrometer retroreflectors, vortex beams, and holography. The review concludes with a summary, preceded by a perspective outlining our expectations for potential future research work and applications.
Collapse
Affiliation(s)
- Naqeeb Ullah
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (N.U.); (R.Z.)
- Department of Electronic Engineering, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87300, Pakistan
| | - Ruizhe Zhao
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (N.U.); (R.Z.)
| | - Lingling Huang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (N.U.); (R.Z.)
| |
Collapse
|
143
|
Zhao Y, Li Z, Liu X, Wang K, Sun Y, Yang H, Wang X, Wang T, Song N, Gao J. Multi-layered all-dielectric grating visible color filter with a narrow band and high-quality factor. OPTICS EXPRESS 2022; 30:22820-22829. [PMID: 36224973 DOI: 10.1364/oe.453155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we proposed a double-layer all-dielectric grating. Under the premise of ensuring the strength of the resonance peak, the upper SiO2 grating layer suppresses the tendency of high-order dipole resonance excitation and improves the transmittance at the non-resonant position (T > 99%). The distribution of chromaticity coordinates on the CIE 1931 chromaticity diagram also proves that suppressing side peaks can effectively increase the saturation of structural colors, which is essential for a high precision imaging system. The cyclic displacement current excites the magnetic dipole resonance, which causes the magnetic field to be confined in the high refractive index material HfO2 grating layer. By adjusting the duty cycle of the grating structure, a reflection spectrum with low full width half maximum (FWHM) (∼2 nm) and high-quality factor Q (∼424.5 nm) can be obtained. And the spectral intensity is more sensitive to the polarization angle. This work is of great significance to the development of sensors, display imaging and other fields. At the same time, the material of the grating filter meets the requirements of high damage threshold of the high-power laser system, and its high-power laser application potential is inestimable.
Collapse
|
144
|
Tekcan B, van Kasteren B, Grayli SV, Shen D, Tam MC, Ban D, Wasilewski Z, Tsen AW, Reimer ME. Semiconductor nanowire metamaterial for broadband near-unity absorption. Sci Rep 2022; 12:9663. [PMID: 35690650 PMCID: PMC9188558 DOI: 10.1038/s41598-022-13537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
The realization of a semiconductor near-unity absorber in the infrared will provide new capabilities to transform applications in sensing, health, imaging, and quantum information science, especially where portability is required. Typically, commercially available portable single-photon detectors in the infrared are made from bulk semiconductors and have efficiencies well below unity. Here, we design a novel semiconductor nanowire metamaterial, and show that by carefully arranging an InGaAs nanowire array and by controlling their shape, we demonstrate near-unity absorption efficiency at room temperature. We experimentally show an average measured efficiency of 93% (simulated average efficiency of 97%) over an unprecedented wavelength range from 900 to 1500 nm. We further show that the near-unity absorption results from the collective response of the nanowire metamaterial, originating from both coupling into leaky resonant waveguide and transverse modes. These coupling mechanisms cause light to be absorbed directly from the top and indirectly as light scatters from one nanowire to neighbouring ones. This work leads to the possible development of a new generation of quantum detectors with unprecedented broadband near-unity absorption in the infrared, while operating near room temperature for a wider range of applications.
Collapse
Affiliation(s)
- Burak Tekcan
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Brad van Kasteren
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Sasan V Grayli
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Daozhi Shen
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.,Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.,Centre for Advanced Materials Joining, University of Waterloo, Waterloo, ON, Canada
| | - Man Chun Tam
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Dayan Ban
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zbigniew Wasilewski
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Adam W Tsen
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.,Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.,Department of Chemistry, University of Waterloo, Waterloo, ON, Canada.,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
| | - Michael E Reimer
- Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada. .,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada. .,Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
145
|
Hsu WL, Chen YC, Yeh SP, Zeng QC, Huang YW, Wang CM. Review of Metasurfaces and Metadevices: Advantages of Different Materials and Fabrications. NANOMATERIALS 2022; 12:nano12121973. [PMID: 35745310 PMCID: PMC9231017 DOI: 10.3390/nano12121973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 01/27/2023]
Abstract
Flat optics, metasurfaces, metalenses, and related materials promise novel on-demand light modulation within ultrathin layers at wavelength scale, enabling a plethora of next-generation optical devices, also known as metadevices. Metadevices designed with different materials have been proposed and demonstrated for different applications, and the mass production of metadevices is necessary for metadevices to enter the consumer electronics market. However, metadevice manufacturing processes are mainly based on electron beam lithography, which exhibits low productivity and high costs for mass production. Therefore, processes compatible with standard complementary metal–oxide–semiconductor manufacturing techniques that feature high productivity, such as i-line stepper and nanoimprint lithography, have received considerable attention. This paper provides a review of current metasurfaces and metadevices with a focus on materials and manufacturing processes. We also provide an analysis of the relationship between the aspect ratio and efficiency of different materials.
Collapse
Affiliation(s)
- Wei-Lun Hsu
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Yen-Chun Chen
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Shang Ping Yeh
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Qiu-Chun Zeng
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
| | - Yao-Wei Huang
- Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Correspondence: (Y.-W.H.); (C.-M.W.)
| | - Chih-Ming Wang
- Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan; (W.-L.H.); (Y.-C.C.); (S.P.Y.); (Q.-C.Z.)
- Correspondence: (Y.-W.H.); (C.-M.W.)
| |
Collapse
|
146
|
Xiang J, Tao Z, Li X, Zhao Y, He Y, Guo X, Su Y. Metamaterial-enabled arbitrary on-chip spatial mode manipulation. LIGHT, SCIENCE & APPLICATIONS 2022; 11:168. [PMID: 35650178 PMCID: PMC9160251 DOI: 10.1038/s41377-022-00859-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/15/2022] [Accepted: 05/21/2022] [Indexed: 05/25/2023]
Abstract
On-chip spatial mode operation, represented as mode-division multiplexing (MDM), can support high-capacity data communications and promise superior performance in various systems and numerous applications from optical sensing to nonlinear and quantum optics. However, the scalability of state-of-the-art mode manipulation techniques is significantly hindered not only by the particular mode-order-oriented design strategy but also by the inherent limitations of possibly achievable mode orders. Recently, metamaterials capable of providing subwavelength-scale control of optical wavefronts have emerged as an attractive alternative to manipulate guided modes with compact footprints and broadband functionalities. Herein, we propose a universal yet efficient design framework based on the topological metamaterial building block (BB), enabling the excitation of arbitrary high-order spatial modes in silicon waveguides. By simply programming the layout of multiple fully etched dielectric metamaterial perturbations with predefined mathematical formulas, arbitrary high-order mode conversion and mode exchange can be simultaneously realized with uniform and competitive performance. The extraordinary scalability of the metamaterial BB frame is experimentally benchmarked by a record high-order mode operator up to the twentieth. As a proof of conceptual application, an 8-mode MDM data transmission of 28-GBaud 16-QAM optical signals is also verified with an aggregate data rate of 813 Gb/s (7% FEC). This user-friendly metamaterial BB concept marks a quintessential breakthrough for comprehensive manipulation of spatial light on-chip by breaking the long-standing shackles on the scalability, which may open up fascinating opportunities for complex photonic functionalities previously inaccessible.
Collapse
Affiliation(s)
- Jinlong Xiang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyuan Tao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xingfeng Li
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaotian Zhao
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu He
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuhan Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yikai Su
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
147
|
Park H, Gao W, Zhang X, Oh SS. Nodal lines in momentum space: topological invariants and recent realizations in photonic and other systems. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2779-2801. [PMID: 39635682 PMCID: PMC11501740 DOI: 10.1515/nanoph-2021-0692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 12/07/2024]
Abstract
Topological insulators constitute one of the most intriguing phenomena in modern condensed matter theory. The unique and exotic properties of topological states of matter allow for unidirectional gapless electron transport and extremely accurate measurements of the Hall conductivity. Recently, new topological effects occurring at Dirac/Weyl points have been better understood and demonstrated using artificial materials such as photonic and phononic crystals, metamaterials and electrical circuits. In comparison, the topological properties of nodal lines, which are one-dimensional degeneracies in momentum space, remain less explored. Here, we explain the theoretical concept of topological nodal lines and review recent and ongoing progress using artificial materials. The review includes recent demonstrations of non-Abelian topological charges of nodal lines in momentum space and examples of nodal lines realized in photonic and other systems. Finally, we will address the challenges involved in both experimental demonstration and theoretical understanding of topological nodal lines.
Collapse
Affiliation(s)
- Haedong Park
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| | - Wenlong Gao
- Department of Physics, Paderborn University, Warburger Straße 100, Paderborn, 33 098, Germany
| | - Xiao Zhang
- School of Physics, Sun Yat-sen University, Guangzhou, 510 275, China
| | - Sang Soon Oh
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
| |
Collapse
|
148
|
Farheen H, Yan LY, Quiring V, Eigner C, Zentgraf T, Linden S, Förstner J, Myroshnychenko V. Broadband optical Ta 2O 5 antennas for directional emission of light. OPTICS EXPRESS 2022; 30:19288-19299. [PMID: 36221710 DOI: 10.1364/oe.455815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/09/2022] [Indexed: 06/16/2023]
Abstract
Highly directive antennas with the ability of shaping radiation patterns in desired directions are essential for efficient on-chip optical communication with reduced cross talk. In this paper, we design and optimize three distinct broadband traveling-wave tantalum pentoxide antennas exhibiting highly directional characteristics. Our antennas contain a director and reflector deposited on a glass substrate, which are excited by a dipole emitter placed in the feed gap between the two elements. Full-wave simulations in conjunction with global optimization provide structures with an enhanced linear directivity as high as 119 radiating in the substrate. The high directivity is a result of the interplay between two dominant TE modes and the leaky modes present in the antenna director. Furthermore, these low-loss dielectric antennas exhibit a near-unity radiation efficiency at the operational wavelength of 780 nm and maintain a broad bandwidth. Our numerical results are in good agreement with experimental measurements from the optimized antennas fabricated using a two-step electron-beam lithography, revealing the highly directive nature of our structures. We envision that our antenna designs can be conveniently adapted to other dielectric materials and prove instrumental for inter-chip optical communications and other on-chip applications.
Collapse
|
149
|
Yu Z, Lang T, Hong Z, Liu J, Shen C. Sensors for simultaneous measurement of temperature and humidity based on all-dielectric metamaterials. OPTICS EXPRESS 2022; 30:18821-18835. [PMID: 36221674 DOI: 10.1364/oe.459562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/04/2022] [Indexed: 06/16/2023]
Abstract
In this study, a new type of sensors based on all-dielectric metamaterials that can measure temperature and relative humidity simultaneously was designed and theoretically analyzed in detail. The proposed metamaterial sensor consists of a quartz substrate in the bottom layer, polydimethylsiloxane (PDMS) in the middle layer, and a periodic silicon structure on the top layer. CST Studio Suite was used to determine the transmission spectrum of the metamaterials in the near-infrared band using finite integration, and two transmission dips were observed. Then, polyvinyl alcohol (PVA) was used as the humidity-sensitive material to be coated on the surface of this metamaterial sensor, and these two transmission dips were used to measure the temperature and relative humidity simultaneously. Simulation results showed that the sensitivities of the two dips to the temperature are -0.224 and -0.069 nm/°C, and the sensitivities to the relative humidity are -0.618 and -0.521 nm/%, respectively. Based on the sensitivity matrix, the temperature and the relative humidity can be measured simultaneously. The proposed sensor has the advantages of polarization insensitivity, small size and low loss, which makes it have many application potentials in various research fields, including physics, biology and chemical sensing.
Collapse
|
150
|
Yuan H, Li H, Feng Y, Xing L, Fang X, Wang Y, Cao Q. Liquid-based transparent, wideband and reconfigurable absorber/reflector. OPTICS EXPRESS 2022; 30:18845-18853. [PMID: 36221676 DOI: 10.1364/oe.460434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 06/16/2023]
Abstract
In this paper, an optically transparent and wideband absorber/reflector with switchable states and tunable frequency spectrum is presented. The proposed structure consists of a Polydimethylsiloxane (PDMS) layer with microchannel structures and an Indium Tin Oxide (ITO) layer as the metal panel. The switching function is implemented by controlling the injection and discharge of pure water, and the switchable frequency band of the absorbing and reflecting states ranges from 7.9 to 34.4 GHz with a fractional bandwidth of 125.2%. The tunable properties are achieved by changing the concentration of the injected saline water. In addition, the distributions of the electric field, the magnetic field and the power loss density are used to further understand the physical mechanism of the structure. Moreover, it also performs well under different polarizations and incident angles. For validation, a transparent and wideband absorber/reflector is fabricated and tested, and the simulated and measured results are consistent with each other.
Collapse
|