101
|
Inocencio JF, Mitrasinovic S, Asad M, Parney IF, Zang X, Himes BT. Immune checkpoint pathways in glioblastoma: a diverse and evolving landscape. Front Immunol 2024; 15:1424396. [PMID: 39346924 PMCID: PMC11427296 DOI: 10.3389/fimmu.2024.1424396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Immune checkpoint (IC) inhibition in glioblastoma (GBM) has not shown promising results in the last decade compared to other solid tumors. Several factors contributing to the lack of immunotherapy response include the profound immunosuppressive nature of GBM, highly redundant signaling pathways underlying immune checkpoints, and the negative immunogenic impact of current standard of care on the tumor microenvironment. In this review, we will discuss various ICs in the context of GBM, their interplay with the tumor immune microenvironment, relevant pre-clinical and clinical studies, and the impact of current treatment modalities on GBM IC blockade therapy. Understanding the molecular mechanisms that drive ICs, and how they contribute to an immunosuppressive tumor microenvironment is critical in advancing IC inhibition therapy in GBM. Furthermore, revisiting current treatment modalities and their impact on the immune landscape is instrumental in designing future combinatorial therapies that may overcome treatment resistance.
Collapse
Affiliation(s)
- Julio F Inocencio
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Stefan Mitrasinovic
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mohammad Asad
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin T Himes
- Department of Neurological Surgery, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
102
|
Kattelus R, Starskaia I, Lindén M, Batkulwar K, Pietilä S, Moulder R, Marson A, Rasool O, Suomi T, Elo LL, Lahesmaa R, Buchacher T. Phenotypic profiling of human induced regulatory T cells at early differentiation: insights into distinct immunosuppressive potential. Cell Mol Life Sci 2024; 81:399. [PMID: 39264416 PMCID: PMC11393232 DOI: 10.1007/s00018-024-05429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024]
Abstract
Regulatory T cells (Tregs) play a key role in suppressing systemic effector immune responses, thereby preventing autoimmune diseases but also potentially contributing to tumor progression. Thus, there is great interest in clinically manipulating Tregs, but the precise mechanisms governing in vitro-induced Treg (iTreg) differentiation are not yet fully understood. Here, we used multiparametric mass cytometry to phenotypically profile human iTregs during the early stages of in vitro differentiation at single-cell level. A panel of 25 metal-conjugated antibodies specific to markers associated with human Tregs was used to characterize these immunomodulatory cells. We found that iTregs highly express the transcription factor FOXP3, as well as characteristic Treg-associated surface markers (e.g. CD25, PD1, CD137, CCR4, CCR7, CXCR3, and CD103). Expression of co-inhibitory factors (e.g. TIM3, LAG3, and TIGIT) increased slightly at late stages of iTreg differentiation. Further, CD103 was upregulated on a subpopulation of iTregs with greater suppressive capacity than their CD103- counterparts. Using mass-spectrometry-based proteomics, we showed that sorted CD103+ iTregs express factors associated with immunosuppression. Overall, our study highlights that during early stages of differentiation, iTregs resemble memory-like Treg features with immunosuppressive activity, and provides opportunities for further investigation into the molecular mechanisms underlying Treg function.
Collapse
Affiliation(s)
- Roosa Kattelus
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Inna Starskaia
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Markus Lindén
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Kedar Batkulwar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Sami Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, 94158, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tomi Suomi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Institute of Biomedicine, University of Turku, Turku, Finland.
| | - Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
| |
Collapse
|
103
|
Zhang H, Felthaus O, Eigenberger A, Klein S, Prantl L. Treg Cell Therapeutic Strategies for Breast Cancer: Holistic to Local Aspects. Cells 2024; 13:1526. [PMID: 39329710 PMCID: PMC11429654 DOI: 10.3390/cells13181526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Regulatory T cells (Tregs) play a key role in maintaining immune homeostasis and preventing autoimmunity through their immunosuppressive function. There have been numerous reports confirming that high levels of Tregs in the tumor microenvironment (TME) are associated with a poor prognosis, highlighting their role in promoting an immunosuppressive environment. In breast cancer (BC), Tregs interact with cancer cells, ultimately leading to the suppression of immune surveillance and promoting tumor progression. This review discusses the dual role of Tregs in breast cancer, and explores the controversies and therapeutic potential associated with targeting these cells. Researchers are investigating various strategies to deplete or inhibit Tregs, such as immune checkpoint inhibitors, cytokine antagonists, and metabolic inhibition. However, the heterogeneity of Tregs and the variable precision of treatments pose significant challenges. Understanding the functional diversity of Tregs and the latest advances in targeted therapies is critical for the development of effective therapies. This review highlights the latest approaches to Tregs for BC treatment that both attenuate Treg-mediated immunosuppression in tumors and maintain immune tolerance, and advocates precise combination therapy strategies to optimize breast cancer outcomes.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany (L.P.)
| | | | | | | | | |
Collapse
|
104
|
Cui Y, Hackett RG, Ascue J, Muralidaran V, Patil D, Kang J, Kaufman SS, Khan K, Kroemer A. Innate and Adaptive Immune Responses in Intestinal Transplant Rejection: Through the Lens of Inflammatory Bowel and Intestinal Graft-Versus-Host Diseases. Gastroenterol Clin North Am 2024; 53:359-382. [PMID: 39068000 DOI: 10.1016/j.gtc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Intestinal transplantation is a life-saving procedure utilized for patients failing total parenteral nutrition. However, intestinal transplantattion remains plagued with low survival rates and high risk of allograft rejection. The authors explore roles of innate (macrophages, natural killer cells, innate lymphoid cells) and adaptive immune cells (Th1, Th2, Th17, Tregs) in inflammatory responses, particularly inflammatory bowel disease and graft versus host disease, and correlate these findings to intestinal allograft rejection, highlighting which effectors exacerbate or suppress intestinal rejection. Better understanding of this immunology can open further investigation into potential biomolecular targets to develop improved therapeutic treatment options and immunomonitoring techniques to combat allograft rejection and enhance patient lives.
Collapse
Affiliation(s)
- Yuki Cui
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Ryan G Hackett
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jhalen Ascue
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Vinona Muralidaran
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Digvijay Patil
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Jiman Kang
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Stuart S Kaufman
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Khalid Khan
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA
| | - Alexander Kroemer
- MedStar Georgetown Transplant Institute, MedStar Georgetown University Hospital and the Center for Translational Transplant Medicine, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
105
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
106
|
Lee S, Blanco T, Musayeva A, Dehghani S, Narimatsu A, Forouzanfar K, Ortiz G, Kahale F, Wang S, Chen Y, Dohlman TH, Chauhan SK, Dana R. Myeloid-derived suppressor cells promote allograft survival by suppressing regulatory T cell dysfunction in high-risk corneal transplantation. Am J Transplant 2024; 24:1597-1609. [PMID: 38514014 PMCID: PMC11390336 DOI: 10.1016/j.ajt.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Highly inflamed and neovascularized corneal graft beds are known as high-risk (HR) environments for transplant survival. One of the primary factors leading to this rejection is reduction in the suppressive function of regulatory T cells (Treg). Our results show that myeloid-derived suppressor cells (MDSC) counteract interleukin-6-mediated Treg dysfunction by expressing interleukin-10. Additionally, MDSC maintain forkhead box P3 stability and their ability to suppress IFN-γ+ Th1 cells. Administering MDSC to HR corneal transplant recipients demonstrates prolonged graft survival via promotion of Treg while concurrently suppressing IFN-γ+ Th1 cells. Moreover, MDSC-mediated donor-specific immune tolerance leads to long-term corneal graft survival as evidenced by the higher survival rate or delayed survival of a second-party C57BL/7 (B6) graft compared to those of third-party C3H grafts observed in contralateral low-risk or HR corneal transplantation of BALB/c recipient mice, respectively. Our study provides compelling preliminary evidence demonstrating the effectiveness of MDSC in preventing Treg dysfunction, significantly improving graft survival in HR corneal transplantation, and showing promising potential for immune tolerance induction.
Collapse
Affiliation(s)
- Seokjoo Lee
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Blanco
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Aytan Musayeva
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shima Dehghani
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Akitomo Narimatsu
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Katayoon Forouzanfar
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo Ortiz
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Francesca Kahale
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shudan Wang
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yihe Chen
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Dohlman
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Laboratory of Corneal Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
107
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
108
|
Touni AA, Sohn R, Cosgrove C, Shivde RS, Dellacecca ER, Abdel-Aziz RTA, Cedercreutz K, Green SJ, Abdel-Wahab H, Le Poole IC. Topical antibiotics limit depigmentation in a mouse model of vitiligo. Pigment Cell Melanoma Res 2024; 37:583-596. [PMID: 38439216 DOI: 10.1111/pcmr.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 02/12/2024] [Indexed: 03/06/2024]
Abstract
Oral neomycin administration impacts the gut microbiome and delays vitiligo development in mice, and topical antibiotics may likewise allow the microbiome to preserve skin health and delay depigmentation. Here, we examined the effects of 6-week topical antibiotic treatment on vitiligo-prone pmel-1 mice. Bacitracin, Neosporin, or Vaseline were applied to one denuded flank, while the contralateral flank was treated with Vaseline in all mice. Ventral depigmentation was quantified weekly. We found that topical Neosporin treatment significantly reduced depigmentation and exhibited effects beyond the treated area, while Bacitracin ointment had no effect. Stool samples collected from four representative mice/group during treatment revealed that Neosporin treatment aligned with reduced abundance of the Alistipes genus in the gut, while relevant changes to the skin microbiome at end point were less apparent. Either antibiotic treatment led to reduced expression of MR1, potentially limiting mucosal-associated invariant T-cell activation, while Neosporin-treated skin selectively revealed significantly reduced CD8+ T-cell abundance. The latter finding aligned with reduced expression of multiple inflammatory markers and markedly increased regulatory T-cell density. Our studies on favorable skin and oral antibiotic treatment share the neomycin compound, and in either case, microbial changes were most apparent in stool samples. Taken together, neomycin-containing antibiotic applications can mediate skin Treg infiltration to limit vitiligo development. Our study highlights the therapeutic potential of short-term antibiotic applications to limit depigmentation vitiligo.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rachel Sohn
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Rohan S Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Emilia R Dellacecca
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Kettil Cedercreutz
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Stefan J Green
- Department of Internal Medicine and Genomics and Microbiome Core Facility, Rush University, Chicago, Illinois, USA
| | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
109
|
Zhang XC, Zhou YW, Wei GX, Luo YQ, Qiu M. Locoregional therapies combined with immune checkpoint inhibitors for liver metastases. Cancer Cell Int 2024; 24:302. [PMID: 39217341 PMCID: PMC11365172 DOI: 10.1186/s12935-024-03484-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have achieved remarkable success in clinical research and practice. Notably, liver metastasis is not sensitive to ICIs. Liver locoregional therapies can cause irreversible damage to tumor cells and release tumor antigens, thereby providing a rationale for immunotherapy treatments in liver metastasis. The combination therapy of ICIs with locoregional therapies is a promising option for patients with liver metastasis. Preclinical studies have demonstrated that combining ICIs with locoregional therapies produces a significantly synergistic anti-tumor effect. However, the current evidence for the efficacy of ICIs combined with locoregional therapies remains insufficient. Therefore, we review the literature on the mechanisms of locoregional therapies in treating liver metastasis and the clinical research progress of their combination with ICIs.
Collapse
Affiliation(s)
- Xing-Chen Zhang
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Yu-Wen Zhou
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China
| | - Gui-Xia Wei
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Qiao Luo
- Department of Abdominal Cancer, Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Meng Qiu
- Department of Colorectal Cancer Center, West China Hospital of Sichuan University, 37 Guoxue Xiang Street, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
110
|
Park N, Kim KS, Park CG, Jung HD, Park W, Na K. Adipose-derived stem cell-based anti-inflammatory paracrine factor regulation for the treatment of inflammatory bowel disease. J Control Release 2024; 374:384-399. [PMID: 39173953 DOI: 10.1016/j.jconrel.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Stem cell-based therapies offer promising avenues for treating inflammatory diseases owing to their immunomodulatory properties. However, challenges persist regarding their survival and efficacy in inflamed tissues. Our study introduces a novel approach by engineering adipose-derived stem cells (ADSCs) to enhance their viability in inflammatory environments and boost the secretion of paracrine factors for treating inflammatory bowel disease (IBD). An arginine-glycine-aspartate peptide-poly (ethylene glycol)-chlorin e6 conjugate (RPC) was synthesized and coupled with ADSCs, resulting in RPC-labeled ADSCs (ARPC). This conjugation strategy employed RGD-integrin interaction to shield stem cells and allowed visualization and tracking using chlorin e6. The engineered ARPC demonstrated enhanced viability and secretion of paracrine factors upon light irradiation, regulating the inflammatory microenvironment. RNA-sequencing analysis unveiled pathways favoring angiogenesis, DNA repair, and exosome secretion in ARPC(+) while downregulating inflammatory pathways. In in vivo models of acute and chronic IBD, ARPC(+) treatment led to reduced inflammation, preserved colon structure, and increased populations of regulatory T cells, highlighting its therapeutic potential. ARPC(+) selectively homed to inflammatory sites, demonstrating its targeted effect. Overall, ARPC(+) exhibits promise as an effective and safe therapeutic strategy for managing inflammatory diseases like IBD by modulating immune responses and creating an anti-inflammatory microenvironment.
Collapse
Affiliation(s)
- Naeun Park
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Seobu-ro 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Hyun-Do Jung
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wooram Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Kun Na
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
111
|
Karwig L, Moore PF, Alber G, Eschke M. Distinct characteristics of unique immunoregulatory canine non-conventional TCRαβ pos CD4 negCD8α neg double-negative T cell subpopulations. Front Immunol 2024; 15:1439213. [PMID: 39185407 PMCID: PMC11341405 DOI: 10.3389/fimmu.2024.1439213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional CD4pos regulatory T (Treg) cells characterized by expression of the key transcription factor forkhead box P3 (FoxP3) are crucial to control immune responses, thereby maintaining homeostasis and self-tolerance. Within the substantial population of non-conventional T cell receptor (TCR)αβpos CD4negCD8αneg double-negative (dn) T cells of dogs, a novel FoxP3pos Treg-like subset was described that, similar to conventional CD4pos Treg cells, is characterized by high expression of CD25. Noteworthy, human and murine TCRαβpos regulatory dn T cells lack FoxP3. Immunosuppressive capacity of canine dn T cells was hypothesized based on expression of inhibitory molecules (interleukin (IL)-10, cytotoxic T-lymphocyte associated protein 4, CTLA4). Here, to verify their regulatory function, the dnCD25pos (enriched for FoxP3pos Treg-like cells) and the dnCD25neg fraction, were isolated by fluorescence-activated cell sorting from peripheral blood mononuclear cells (PBMC) of Beagle dogs and analyzed in an in vitro suppression assay in comparison to conventional CD4posCD25pos Treg cells (positive control) and CD4posCD25neg T cells (negative control). Canine dnCD25pos T cells suppressed the Concanavalin A-driven proliferation of responder PBMC to a similar extent as conventional CD4posCD25pos Treg cells. Albeit to a lesser extent than FoxP3-enriched dn and CD4posCD25pos populations, even dnCD25neg T cells reduced the proliferation of responder cells. This is remarkable, as dnCD25neg T cells have a FoxP3neg phenotype comparable to non-suppressive CD4posCD25neg T cells. Both, CD25pos and CD25neg dn T cells, can mediate suppression independent of cell-cell contact and do not require additional signals from CD4posCD25neg T cells to secrete inhibitory factors in contrast to CD4posCD25pos T cells. Neutralization of IL-10 completely abrogated the suppression by dnCD25pos and CD4posCD25pos Treg cells in a Transwell™ system, while it only partially reduced suppression by dnCD25neg T cells. Taken together, unique canine non-conventional dnCD25pos FoxP3pos Treg-like cells are potent suppressor cells in vitro. Moreover, inhibition of proliferation of responder T cells by the dnCD25neg fraction indicates suppressive function of a subset of dn T cells even in the absence of FoxP3. The identification of unique immunoregulatory non-conventional dn T cell subpopulations of the dog in vitro is of high relevance, given the immunotherapeutic potential of manipulating regulatory T cell responses in vivo.
Collapse
Affiliation(s)
- Laura Karwig
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Peter F. Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Gottfried Alber
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Maria Eschke
- Institute of Immunology/Molecular Pathogenesis, Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
112
|
Hendrix E, Vande Vyver M, Holt M, Smolders I. Regulatory T cells as a possible new target in epilepsy? Epilepsia 2024; 65:2227-2237. [PMID: 38888867 DOI: 10.1111/epi.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy.
Collapse
Affiliation(s)
- Evelien Hendrix
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maxime Vande Vyver
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Bru-BRAIN, Universitair Ziekenhuis Brussel, Brussels, Belgium
- NEUR Research Group, Center of Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Matthew Holt
- Instituto de Investigação e Inovação Em Saúde, Porto, Portugal
| | - Ilse Smolders
- Department of Pharmaceutical Chemistry, Drug Analysis, and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
113
|
Shyanti RK, Greggs J, Malik S, Mishra M. Gut dysbiosis impacts the immune system and promotes prostate cancer. Immunol Lett 2024; 268:106883. [PMID: 38852888 PMCID: PMC11249078 DOI: 10.1016/j.imlet.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The gut microbiota is a system of microorganisms in the human gastrointestinal (GI) system, consisting of trillions of microorganisms residing in epithelial surfaces of the body. Gut microbiota are exposed to various external and internal factors and form a unique gut-associated immunity maintained through a balancing act among diverse groups of microorganisms. The role of microbiota in dysbiosis of the gut in aiding prostate cancer development has created an urgency for extending research toward comprehension and preventative measures. The gut microbiota varies among persons based on diet, race, genetic background, and geographic location. Bacteriome, mainly, has been linked to GI complications, metabolism, weight gain, and high blood sugar. Studies have shown that manipulating the microbiome (bacteriome, virome, and mycobiome) through the dietary intake of phytochemicals positively influences physical and emotional health, preventing and delaying diseases caused by microbiota. In this review, we discuss the wealth of knowledge about the GI tract and factors associated with dysbiosis-mediated compromised gut immunity. This review also focuses on the relationship of dysbiosis to prostate cancer, the impact of microbial metabolites short-chain fatty acids (SCFAs) on host health, and the phytochemicals improving health while inhibiting prostate cancer.
Collapse
Affiliation(s)
- Ritis K Shyanti
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Jazmyn Greggs
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
114
|
Ozluk AA, Gunenc D, Yildirim SS, Karaca B. Tocilizumab in the treatment of steroid refractory immune-related hepatotoxicity: a case series and review of the literature. Melanoma Res 2024; 34:335-342. [PMID: 38691011 DOI: 10.1097/cmr.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
With the widespread use of immune checkpoint inhibitors, management of immune-related adverse effects specific to these treatments became an important research era in patient management. Among these, immune-related hepatotoxicity (IRH) is an adverse event that can be fatal. While the first-line treatment of IRH is well established, there is still no consensus regarding the management approach for steroid-refractory, severe IRH. Here, we report four patients with metastatic melanoma who developed IRH during antiprogrammed cell death protein-1 plus anticytotoxic T-lymphocyte-associated protein-4 combination therapy and review of the literature. All of our patients were steroid-refractory and were successfully treated with tocilizumab. Given the rapid improvement in liver enzymes and patient's clinical status with tocilizumab, this treatment should be prioritized in steroid-refractory IRH.
Collapse
Affiliation(s)
- Ahmet Anil Ozluk
- Division of Tulay Aktas Oncology, Department of Medicine, Ege University, Bornova, Turkey
| | | | | | | |
Collapse
|
115
|
Munir AZ, Gutierrez A, Qin J, Lichtman AH, Moslehi JJ. Immune-checkpoint inhibitor-mediated myocarditis: CTLA4, PD1 and LAG3 in the heart. Nat Rev Cancer 2024; 24:540-553. [PMID: 38982146 DOI: 10.1038/s41568-024-00715-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/11/2024]
Abstract
Immune-checkpoint inhibitors (ICIs) have revolutionized oncology, with nearly 50% of all patients with cancer eligible for treatment with ICIs. However, patients on ICI therapy are at risk for immune-related toxicities that can affect any organ. Inflammation of the heart muscle, known as myocarditis, resulting from ICI targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA4), programmed cell death protein 1 (PD1) and PD1 ligand 1 (PDL1) is an infrequent but potentially fatal complication. ICI-mediated myocarditis (ICI-myocarditis) is a growing clinical entity given the widespread use of ICIs, its increased clinical recognition and growing use of combination ICI treatment, a well-documented risk factor for ICI-myocarditis. In this Review, we approach ICI-myocarditis from a basic and mechanistic perspective, synthesizing the recent data from both preclinical models and patient samples. We posit that mechanistic understanding of the fundamental biology of immune-checkpoint molecules may yield new insights into disease processes, which will enable improvement in diagnostic and therapeutic approaches. The syndrome of ICI-myocarditis is novel, and our understanding of immune checkpoints in the heart is in its nascency. Yet, investigations into the pathophysiology will inform better patient risk stratification, improved diagnostics and precision-based therapies for patients.
Collapse
Affiliation(s)
- Amir Z Munir
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Alan Gutierrez
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Juan Qin
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA
| | - Andrew H Lichtman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Javid J Moslehi
- Section of Cardio-Oncology & Immunology, Cardiovascular Research Institute (CVRI), University of California San Francisco, School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
116
|
Arce-Sillas A, Álvarez-Luquín DD, Leyva-Hernández J, Montes-Moratilla E, Vivas-Almazán V, Pérez-Correa C, Rodríguez-Ortiz U, Espinosa-Cárdenas R, Fragoso G, Sciutto E, Adalid-Peralta L. Increased levels of regulatory T cells and IL-10-producing regulatory B cells are linked to improved clinical outcome in Parkinson's disease: a 1-year observational study. J Neural Transm (Vienna) 2024; 131:901-916. [PMID: 38822829 DOI: 10.1007/s00702-024-02790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
Whilst the contribution of peripheral and central inflammation to neurodegeneration in Parkinson's disease and the role of the immune response in this disorder are well known, the effects of the anti-inflammatory response on the disease have not been described in depth. This study is aimed to assess the changes in the regulatory/inflammatory immune response in recently diagnosed, untreated PD patients and a year after. Twenty-one PD patients and 19 healthy controls were included and followed-up for 1 year. The levels of immunoregulatory cells (CD4+ Tregs, Bregs, and CD8+ Tregs); classical, nonclassical, and intermediate monocytes, and proinflammatory cells (Th1, Th2, and Th17) were measured by flow cytometry. Cytokine levels were determined by ELISA. Clinical follow-up was based on the Hoehn & Yahr and UDPRS scales. Our results indicate that the regulatory response in PD patients on follow-up was characterized by increased levels of active Tregs, functional Tregs, TR1, IL-10-producing functional Bregs, and IL-10-producing classical monocytes, along with decreased counts of Bregs and plasma cells. With respect to the proinflammatory immune response, peripheral levels of Th1 IFN-γ+ cells were decreased in treated PD patients, whilst the levels of CD4+ TBET+ cells, HLA-DR+ intermediate monocytes, IL-6, and IL-4 were increased after a 1-year follow-up. Our main finding was an increased regulatory T cell response after a 1-year follow-up and its link with clinical improvement in PD patients. In conclusion, after a 1-year follow-up, PD patients exhibited increased levels of regulatory populations, which correlated with clinical improvement. However, a persistent inflammatory environment and active immune response were observed.
Collapse
Affiliation(s)
- Asiel Arce-Sillas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Diana Denisse Álvarez-Luquín
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Jaquelin Leyva-Hernández
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Esteban Montes-Moratilla
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Viridiana Vivas-Almazán
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Citzielli Pérez-Correa
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | | | - Raquel Espinosa-Cárdenas
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico
| | - Gladis Fragoso
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, México
| | - Laura Adalid-Peralta
- Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM, en el Instituto Nacional de Neurología y Neurocirugía, 14269, Mexico City, Mexico.
- Instituto Nacional de Neurología y Neurocirugía, Mexico City, México.
| |
Collapse
|
117
|
Shi S, Deng R, Huang R, Zhou S. Bergapten attenuates sepsis-induced acute lung injury in mice by regulating Th17/Treg balance. Inhal Toxicol 2024; 36:421-430. [PMID: 39420573 DOI: 10.1080/08958378.2024.2400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND The abnormality of the immune system caused by infection is a contributor to the organ dysfunctions associated with sepsis. The balance between Th17/Treg cells is essential for maintaining immune homeostasis. Bergapten is a natural furocoumarin and has been reported to alleviate the Th17/Treg imbalance. Here, we explored the effects of bergapten on the inflammation and immune state in mouse models of sepsis. METHODS The model was established using the cecal ligation and puncture method. Mice were administered 30 mg/kg bergapten. Histological examination, RT-qPCR, enzyme-linked immunosorbent assay, immunoblotting, immunofluorescence, immunohistochemistry, and flow cytometry were used to evaluate the effects of bergapten in vivo. RESULTS Bergapten ameliorated lung damage, reduced lung wet/dry weight ratio, inhibited myeloperoxidase activity, and reduced inflammatory cell infiltration. Bergapten also restrained sepsis-induced inflammation via inhibition of inflammatory cytokines and NF-κB signaling. These effects were accompanied by the restored Th17/Treg balance induced by bergapten. Bergapten decreased the number of Th17 cells and elevated the number of Tregs, and this effect was mediated by the signal transducer and activator of transcription 5 (STAT5)/Forkhead box P3 (Foxp3) and STAT3/retinoid-related orphan receptor-γt (RORγt) pathways. CONCLUSIONS Bergapten exerted anti-inflammatory effects in acute lung injury by improving the Th17/Treg balance, which suggested a potential of bergapten as an immunomodulatory drug treating sepsis-associated diseases.
Collapse
Affiliation(s)
- Shanqiu Shi
- Department of Emergency Medicine, Hanzhong Central Hospital, Hanzhong, China
| | - Rui Deng
- Multimodal Therapy Department of Cancer Center, West China Hospital of Sichuan University, Chengdu, China
| | - Renchun Huang
- Department of Emergency Medicine, Hanzhong Central Hospital, Hanzhong, China
| | - Shitai Zhou
- Department of Emergency Medicine, Hanzhong Central Hospital, Hanzhong, China
| |
Collapse
|
118
|
Dash P, Nayak S, Koppisetty BK. Maternal Soluble Programmed Death Ligand-1 (sPD-L1) and T-regulatory Cells (Tregs) Alteration in Preeclampsia: A Cross-Sectional Study From Eastern India. Cureus 2024; 16:e67877. [PMID: 39328700 PMCID: PMC11426926 DOI: 10.7759/cureus.67877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Background Studies have shown that aberrant reactions of the immune system play an important role in the pathogenesis of preeclampsia. The immune checkpoint molecules programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) system and the T-regulatory cells (Tregs) system are decisive in the regulation of immune responses and can be the target molecules in preeclampsia. In this study, an attempt has been made to evaluate the soluble PD-L1 (sPD-L1) in the serum of preeclampsia cases and correlate it with Tregs and inflammatory markers to have an insight into the link between these immunomodulatory molecules in the pathogenesis of preeclampsia. Materials and methods Ten normal fertile women, 20 trimester-matched normal pregnancy cases, and 20 preeclampsia cases were enrolled in the study. Serum sPD-L1, transforming growth factor beta 1 (TGF-β1), and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA). High-sensitive C-reactive protein (hsCRP) was estimated using a clinical biochemistry autoanalyzer. Tregs were evaluated using flow cytometry. Results and discussion The immune checkpoint molecule PD-L1 inversely correlated with Tregs in preeclampsia cases. Associated inflammation was seen by raised IL-6 and hsCRP. The breakdown of immunological tolerance is mainly caused by the dysregulating the Tregs/Th17 balance, which leads to conditions of autoimmunity and chronic inflammatory disorders. PD-L1 can be the link between this immunological misbalance. Conclusion Our study, showing an increase in sPD-L1 and TGF and a decrease in Tregs with an increase in inflammatory markers like IL-6 and hsCRP levels in preeclampsia, has potential implications for early diagnosis and management of the condition. PD-L1 and Tregs can be target molecules for early management of preeclampsia.
Collapse
Affiliation(s)
- Prakruti Dash
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | - Saurav Nayak
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Bhubaneswar, IND
| | | |
Collapse
|
119
|
Iranzad R, Hosseini M, Bagheri M, Soltani-Zangbar MS, Pirouzpanah M, Biglari N, Zolfaghari M, Khaki A, Aghebati-Maleki L, Roshangar L, Badihi E, Afandideh F, Shahabirad R, Shekarchi AA, Ahmadian Heris J, Etemadi J, Yousefi M. The effectiveness of ruxolitinib and cyclophosphamide combination on T helper 17 and regulatory T cells in rat experimental membranous glomerulonephritis. Mol Cell Probes 2024; 76:101969. [PMID: 38964425 DOI: 10.1016/j.mcp.2024.101969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The progression and pathogenesis of membranous glomerulonephritis (MGN) are inextricably linked to chronic inflammation. Despite improving clinical remission rates due to the application of cyclophosphamide (CYC), treatment of MGN still requires further exploration. Ruxolitinib (Ruxo) negatively affects the signaling pathways participating in the production of pro-inflammatory cytokines. Hence, we investigated whether the combination of CYC and Ruxo can modulate inflammation through influencing T helper 17 (Th17) lineages and regulatory T cells (Tregs). Passive Heymann nephritis (PHN), an experimental model of MGN, was induced in a population of rats. Then, the animals were divided into five groups: PHN, CYC-receiving, Ruxo-receiving, CYC-Ruxo-receiving PHN rats, and healthy controls. After 28 days of treatment, biochemistry analysis was performed and splenocytes were isolated for flowcytometry investigation of Th17 cells and Tregs. The correlative transcription factors of the cells, alongside their downstream cytokine gene expressions, were also assessed using real-time PCR. Furthermore, serum cytokine signatures for the lymphocytes were determined through ELISA. The combination of CYC and Ruxo significantly reduced the serum values of urea in rats versus the PHN group (24.62 ± 7.970 vs. 40.60 ± 10.81 mg/dL). In contrast to Treg's activities, the functionality of Th17 cells noticeably increased not only in PHN rats but also in CYC or Ruxo-receiving PHN animals when compared with the control (10.60 ± 2.236, 8.800 ± 1.465, 8.680 ± 1.314 vs. 4.420 ± 1.551 %). However, in comparison to the PHN group, the incidence of Th17 cells notably fell in rats receiving CYC and Ruxo (10.60 ± 2.236 vs. 6.000 ± 1.373 %) in favor of the Treg's percentage (5.020 ± 1.761 vs. 8.980 ± 1.178 %), which was verified by the gene expressions and cytokine productions correlative to these lymphocytes. The combination of CYC and Ruxo was able to decline Th17 cells in favor of Tregs improvement in PHN rats, suggesting an innovative combination therapy in MGN treatment approaches.
Collapse
Affiliation(s)
- Rahim Iranzad
- Faculty of Veterinary, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hosseini
- Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Bagheri
- Gastroenteropatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Negin Biglari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammadali Zolfaghari
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Khaki
- Department of Pathobiology, Faculty of Veterinary, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Badihi
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshid Afandideh
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reihane Shahabirad
- Medical Philosophy and History Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Etemadi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
120
|
Pavlović A, Miljak A, Brzica K, Glavina Durdov M. The Abundance of FOXP3, FOXP3/CD4 and CD8 Cells in the Microenvironment of Nodular Sclerosis and Mixed Cellularity Subtypes Is Associated with the Epstein-Barr Virus Status of Classic Hodgkin Lymphoma. Biomedicines 2024; 12:1680. [PMID: 39200145 PMCID: PMC11352119 DOI: 10.3390/biomedicines12081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Thymic regulatory lymphocytes (Tregs) are rare in the normal periphery where they mediate immune tolerance but accumulate in the tumor immune microenvironment (TIM), reducing the antitumor response. Subtypes of classical Hodgkin lymphoma (CHL) are characterized by a minority of malignant Hodgkin and Reed-Sternberg cells (HRS) and an abundant TIM that plays a key role in modulating the disease. CHL is related to the Epstein-Barr virus (EBV), whose oncogenes influence the growth of HRS. We analyzed the number of T lymphocytes expressing the regulatory marker FOXP3 in CHL with regard to EBV status. The tumor tissue of 182 patients was stained by double immunohistochemistry for FOXP3, CD4, and CD8, and the number of different phenotypes was analyzed microscopically. EBV status was determined by EBER in situ hybridization. EBV-positive CHL was confirmed in 28% of patients and was associated with mixed cellularity (MC) (p < 0.001), older age (p < 0.001), and unfavorable outcomes (p = 0.038). The number of CD8+ T lymphocytes differed according to the EBV status of MC and nodular sclerosis (NS), and was the lowest in EBV-negative NS (p = 0.001). Likewise, the numbers for FOXP3 and FOXP3/CD4 were different, and were the lowest in EBV-negative MC (p = 0.035 and p = 0.041, respectively). Values above a median of FOXP3 and CD4 are associated with longer progression-free survival (p = 0.039 and p < 0.001, respectively). EBV impacts the composition of T cell phenotypes in TIM, among which the amount of CD4 and FOXP3 is prognostically valuable.
Collapse
Affiliation(s)
- Antonia Pavlović
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| | - Antonija Miljak
- Department of Hematology, University Hospital of Split, 21000 Split, Croatia;
| | - Katarina Brzica
- Department of Pediatric, University Hospital of Split, 21000 Split, Croatia;
| | - Merica Glavina Durdov
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| |
Collapse
|
121
|
Chen Y, Jin X, Wang Q, Hu S, Huang X. Causal role of immune cells in chronic periodontitis: a bidirectional Mendelian randomization study. BMC Oral Health 2024; 24:806. [PMID: 39014403 PMCID: PMC11253491 DOI: 10.1186/s12903-024-04592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND This study aims to explore the bidirectional causal relationship between immune cell phenotypes and chronic periodontitis using a Mendelian randomization framework. MATERIALS AND METHODS Through a two-sample Mendelian randomization analysis, this research examined genetic data related to 731 immune cell traits and chronic periodontitis. Instrumental variables were chosen based on their genetic links to either immune traits or periodontitis. Various statistical techniques, including MR-Egger regression, weighted median, and inverse-variance weighted (IVW) analysis, were employed to determine the causal connections. RESULTS Predominantly using the IVW method, 26 distinct immune phenotypes were identified as potentially influencing periodontitis (P < 0.05). Conversely, periodontitis potentially affected 33 different immune phenotypes (P < 0.05). The results for pleiotropy and sensitivity tests were stable. However, these associations lost significance after adjusting for the False Discovery Rate. CONCLUSION This study uncovers a complex bidirectional causal relationship between certain immune cell phenotypes and chronic periodontitis, underscoring the intricate interaction between the immune system and the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- Yu Chen
- Department of Stomatology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, No.N1, Shangcheng Avenue, Yiwu City, Zhejiang Province, 322000, China
| | - Xinyang Jin
- Department of Stomatology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, No.N1, Shangcheng Avenue, Yiwu City, Zhejiang Province, 322000, China
| | - Qi Wang
- Department of Stomatology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, No.N1, Shangcheng Avenue, Yiwu City, Zhejiang Province, 322000, China
| | - Sai Hu
- Department of Stomatology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, No.N1, Shangcheng Avenue, Yiwu City, Zhejiang Province, 322000, China
| | - Xu Huang
- Department of Stomatology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, No.N1, Shangcheng Avenue, Yiwu City, Zhejiang Province, 322000, China.
| |
Collapse
|
122
|
Singh AK, Al Qureshah F, Drow T, Hou B, Rawlings DJ. Activated PI3Kδ Specifically Perturbs Mouse Regulatory T Cell Homeostasis and Function Leading to Immune Dysregulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:135-147. [PMID: 38829130 PMCID: PMC11232928 DOI: 10.4049/jimmunol.2400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
FOXP3+ regulatory T cells (Treg) are required for maintaining immune tolerance and preventing systemic autoimmunity. PI3Kδ is required for normal Treg development and function. However, the impacts of dysregulated PI3Kδ signaling on Treg function remain incompletely understood. In this study, we used a conditional mouse model of activated PI3Kδ syndrome to investigate the role of altered PI3Kδ signaling specifically within the Treg compartment. Activated mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) specifically within the Treg compartment exhibited weight loss and evidence for chronic inflammation, as demonstrated by increased memory/effector CD4+ and CD8+ T cells with enhanced IFN-γ secretion, spontaneous germinal center responses, and production of broad-spectrum autoantibodies. Intriguingly, aPIK3CD facilitated Treg precursor development within the thymus and an increase in peripheral Treg numbers. Peripheral Treg, however, exhibited an altered phenotype, including increased PD-1 expression and reduced competitive fitness. Consistent with these findings, Treg-specific aPIK3CD mice mounted an elevated humoral response following immunization with a T cell-dependent Ag, which correlated with a decrease in follicular Treg. Taken together, these findings demonstrate that an optimal threshold of PI3Kδ activity is critical for Treg homeostasis and function, suggesting that PI3Kδ signaling in Treg might be therapeutically targeted to either augment or inhibit immune responses.
Collapse
Affiliation(s)
- Akhilesh K Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Fahd Al Qureshah
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Travis Drow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
123
|
Han SH, Ju MH. Characterizing the Tumor Microenvironment and Its Correlation with cDC1-Related Gene Expression in Gastric Cancer. J Immunol Res 2024; 2024:4468145. [PMID: 39015755 PMCID: PMC11251796 DOI: 10.1155/2024/4468145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Materials and Methods We analyzed RNA-seq data from the Cancer Genome Atlas (TCGA-STAD) and Gene Expression Omnibus (GEO) datasets, focusing on five cDC1-related genes. The cDC1-related signature was defined and divided into high and low expression groups. We employed gene set variation analysis (GSVA) for oncogenic signaling pathways and conducted comprehensive statistical analyses, including Kaplan-Meier and Cox proportional hazards models. Results The high cDC1-related gene signature group was associated with poorer overall and disease-free survival in the TCGA-STAD cohort. Significant differences in CD8+ T cell infiltration and cytotoxic capabilities were observed between high and low CDC1-related signature groups. The study also revealed a strong correlation between CDC1-related signature and increased expression of immune checkpoint proteins and oncogenic pathways, suggesting a complex immunosuppressive tumor microenvironment. Conclusions Our findings indicate the potential of the cDC1-related signature as a prognostic marker in GC, offering insights into the tumor-immune interplay. The study underscores the importance of cDC1s in shaping the tumor microenvironment and their influence on patient prognosis in GC. These results may contribute to the development of novel therapeutic strategies targeting the immune microenvironment in GC.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of PathologyDong-A University College of Medicine, Busan, Republic of Korea
| | - Mi Ha Ju
- Department of PathologyDong-A University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
124
|
Saowapa S, Polpichai N, Tanariyakul M, Wannaphut C, Wattanachayakul P, Danpanichkul P, Suenghataiphorn T, Kulthamrongsri N, Siladech P, Tijani L. Immunotherapy-induced hepatitis in metastatic colorectal cancer: a systematic review and meta-analysis. Proc AMIA Symp 2024; 37:841-850. [PMID: 39165807 PMCID: PMC11332647 DOI: 10.1080/08998280.2024.2374161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 08/22/2024] Open
Abstract
Recent advances in immunotherapy using immune checkpoint inhibitors (ICIs) for various cancers have also highlighted a rise in immune-related adverse events, including hepatitis, potentially leading to the discontinuation of treatment. This study aimed to evaluate the prevalence of hepatitis in metastatic colorectal cancer (mCRC) patients undergoing different ICI therapies. An extensive search of PubMed, PubMed Central, and Google Scholar up to November 2023 identified relevant studies. After excluding non-English articles, case reports, reviews, ongoing trials, and studies combining other therapies, five studies qualified for inclusion. Data extraction and statistical analyses were performed using Excel and Comprehensive Meta-Analysis software, respectively. Results from a subgroup analysis indicated that the incidence of hepatitis was comparable among patients treated with PD-1 monotherapy, PDL-1 monotherapy, and combination PD-1 and CTLA-4 therapy, with rates of 2.6%, 2.2%, and 1.7% for any grade and 2.1%, 2.2%, and 1.7% for grade ≥3 hepatitis, respectively. Naive-treated mCRC patients exhibited higher hepatitis rates than those previously treated (3.2% vs 1.6% and 2.6% vs 1.6% for any grade and grade ≥3, respectively). This study underscores the similar risk of hepatitis across different ICI therapies, with an increased incidence in naive-treated mCRC patients.
Collapse
Affiliation(s)
- Sakditad Saowapa
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Natchaya Polpichai
- Department of Internal Medicine, Weiss Memorial Hospital, Chicago, Illinois, USA
| | - Manasawee Tanariyakul
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Chalothorn Wannaphut
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | | - Pojsakorn Danpanichkul
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | - Narathorn Kulthamrongsri
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Pharit Siladech
- Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Lukman Tijani
- Hematology and Oncology Department, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
125
|
Sumida TS, Cheru NT, Hafler DA. The regulation and differentiation of regulatory T cells and their dysfunction in autoimmune diseases. Nat Rev Immunol 2024; 24:503-517. [PMID: 38374298 PMCID: PMC11216899 DOI: 10.1038/s41577-024-00994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
The discovery of FOXP3+ regulatory T (Treg) cells as a distinct cell lineage with a central role in regulating immune responses provided a deeper understanding of self-tolerance. The transcription factor FOXP3 serves a key role in Treg cell lineage determination and maintenance, but is not sufficient to enable the full potential of Treg cell suppression, indicating that other factors orchestrate the fine-tuning of Treg cell function. Moreover, FOXP3-independent mechanisms have recently been shown to contribute to Treg cell dysfunction. FOXP3 mutations in humans cause lethal fulminant systemic autoinflammation (IPEX syndrome). However, it remains unclear to what degree Treg cell dysfunction is contributing to the pathophysiology of common autoimmune diseases. In this Review, we discuss the origins of Treg cells in the periphery and the multilayered mechanisms by which Treg cells are induced, as well as the FOXP3-dependent and FOXP3-independent cellular programmes that maintain the suppressive function of Treg cells in humans and mice. Further, we examine evidence for Treg cell dysfunction in the context of common autoimmune diseases such as multiple sclerosis, inflammatory bowel disease, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomokazu S Sumida
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Nardos T Cheru
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
126
|
Mazerolles F. New expression of PD-L1 on activated CD4 + T cells opens up new opportunities for cell interactions and signaling. Hum Immunol 2024; 85:110831. [PMID: 38870593 DOI: 10.1016/j.humimm.2024.110831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Surface expression of programmed death-ligand 1 (PD-L1) is mainly observed on antigen presenting cells (APC) such as monocytes or dendritic cells (DCs). Our results showing a high expression of PD-L1 on human naïve CD4+ effector T-cells (TEFFs) and CD4+ regulatory T cells (TREGs) after activation with human DCs, allow us to propose a new role for PD-L1 and its ligands and their potential impact on new signaling pathways. Indeed, expression of PD-L1 on activated CD4+T cells could allow cis interaction with its ligands such as PD-1 and CD80, thus disrupting interactions with other signaling receptors, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) or CD28, which interact with CD80. The ability to compete with hypothetical configuration modifications that may cause a change in affinity/avidity for the trans and cis interactions between these proteins expressed on T cells and/or DCs is discussed. As the study of cancer is strongly influenced by the role of the PD-L1/PD-1 pathway and CD4+T cells, new interactions, cis and/or trans, between TEFFs, TREGs and tumor cells are also proposed. The presence of PD-L1 on activated CD4+ T cells could influence the quality of the cytotoxic T lymphocyte response during priming to provide other help signals.
Collapse
Affiliation(s)
- Fabienne Mazerolles
- Laboratory of Immunogenetics of Paediatric Autoimmunity, Mixed Research Unit 1163, Institut National de la Santé et de la Recherche Médicale, Paris, France; Imagine Institute Paris, Paris Descartes -Sorbonne Paris Cité University, Paris, France.
| |
Collapse
|
127
|
Pourbagheri-Sigaroodi A, Momeny M, Rezaei N, Fallah F, Bashash D. Immune landscape of hepatocellular carcinoma: From dysregulation of the immune responses to the potential immunotherapies. Cell Biochem Funct 2024; 42:e4098. [PMID: 39034646 DOI: 10.1002/cbf.4098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
Hepatocellular carcinoma (HCC) presents a considerable global health burden due to its late diagnosis and high morbidity. The liver's specific anatomical and physiological features expose it to various antigens, requiring precise immune regulation. To the best of our knowledge, this is the first time that a comprehensive overview of the interactions between the immune system and gut microbiota in the development of HCC, as well as the relevant therapeutic approaches are discussed. Dysregulation of immune compartments within the liver microenvironment drives HCC pathogenesis, characterized by elevated regulatory cells such as regulatory T cells (Tregs), myeloid-derived suppressor cells, and M2 macrophages as well as suppressive molecules, alongside reduced number of effector cells like T cells, natural killer cells, and M1 macrophages. Dysbiosis of gut microbiota also contributes to HCC by disrupting intestinal barrier integrity and triggering overactivated immune responses. Immunotherapy approaches, particularly immune checkpoint inhibitors, have exhibited promise in HCC management, yet adoptive cell therapy and cancer vaccination research are in the early steps with relatively less favorable outcomes. Further understanding of immune dysregulation, gut microbiota involvement, and therapeutic combination strategies are essential for advancing precision immunotherapy in HCC.
Collapse
Affiliation(s)
- Atieh Pourbagheri-Sigaroodi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
128
|
Zhou R, Yu H, Sheng T, Wu Y, Chen Y, You J, Yang Y, Luo B, Zhao S, Zheng Y, Li H, Zhang Y, Guo Y, Gu Z, Yu J. Grooved Microneedle Patch Augments Adoptive T Cell Therapy Against Solid Tumors via Diverting Regulatory T Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401667. [PMID: 38843541 DOI: 10.1002/adma.202401667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/21/2024] [Indexed: 06/13/2024]
Abstract
The efficacy of adoptive T cell therapy (ACT) for the treatment of solid tumors remains challenging. In addition to the poor infiltration of effector T (Teff) cells limited by the physical barrier surrounding the solid tumor, another major obstacle is the extensive infiltration of regulatory T (Treg) cells, a major immunosuppressive immune cell subset, in the tumor microenvironment. Here, this work develops a grooved microneedle patch for augmenting ACT, aiming to simultaneously overcome physical and immunosuppressive barriers. The microneedles are engineered through an ice-templated method to generate the grooved structure for sufficient T-cell loading. In addition, with the surface modification of chemokine CCL22, the MNs could not only directly deliver tumor-specific T cells into solid tumors through physical penetration, but also specifically divert Treg cells from the tumor microenvironment to the surface of the microneedles via a cytokine concentration gradient, leading to an increase in the ratio of Teff cells/Treg cells in a mouse melanoma model. Consequently, this local delivery strategy of both T cell receptor T cells and chimeric antigen receptor T cells via the CCL22-modified grooved microneedles as a local niche could significantly enhance the antitumor efficacy and reduce the on-target off-tumor toxicity of ACT.
Collapse
Affiliation(s)
- Ruyi Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| | - Hao Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingke Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingxin Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Advanced Magnetic Materials and International Research Center for EM Metamaterials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiahuan You
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinxian Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bowen Luo
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Zheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yugang Guo
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
129
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
130
|
Kitamura W, Asada N, Ikegawa S, Fujiwara H, Kamoi C, Ennishi D, Nishimori H, Fujii K, Fujii N, Matsuoka KI, Maeda Y. Activated CD4 + T Cell Proportion in the Peripheral Blood Correlates with the Duration of Cytokine Release Syndrome and Predicts Clinical Outcome after Chimeric Antigen Receptor T Cell Therapy. Intern Med 2024; 63:1863-1872. [PMID: 38945932 PMCID: PMC11272506 DOI: 10.2169/internalmedicine.2556-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/16/2023] [Indexed: 07/02/2024] Open
Abstract
Objective Chimeric antigen receptor (CAR) T cell therapy is an emerging and effective therapy for relapsed or refractory diffuse large B cell lymphoma (R/R DLBCL). The characteristic toxicities of CAR T cell therapy include cytokine release syndrome (CRS) and prolonged cytopenia. We investigated the factors associated with these complications after CAR T cell therapy by analyzing lymphocyte subsets following CAR T cell infusion. Methods We retrospectively analyzed peripheral blood samples on days 7, 14, and 28 after tisagenlecleucel (tisa-cel) infusion by flow cytometry at our institution between June 2020 and September 2022. Patients Thirty-five patients with R/R DLBCL who received tisa-cel therapy were included. Results A flow cytometry-based analysis of blood samples from these patients revealed that the proportion of CD4+CD25+CD127+ T cells (hereafter referred to as "activated CD4+ T cells" ) among the total CD4+ T cells on day 7 after tisa-cel infusion correlated with the duration of CRS (r=0.79, p<0.01). In addition, a prognostic analysis of the overall survival (OS) using time-dependent receiver operating characteristic curves indicated a significantly more favorable OS and progression-free survival of patients with a proportion of activated CD4+ T cells among the total CD4+ T cells <0.73 (p=0.01, and p<0.01, respectively). Conclusion These results suggest that the proportion of activated CD4+ T cells on day 7 after tisa-cel infusion correlates with the CRS duration and predicts clinical outcomes after CAR T cell therapy. Further studies with a larger number of patients are required to validate these observations.
Collapse
MESH Headings
- Humans
- Male
- Female
- Cytokine Release Syndrome/blood
- Cytokine Release Syndrome/etiology
- Cytokine Release Syndrome/therapy
- Cytokine Release Syndrome/immunology
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Middle Aged
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/immunology
- Aged
- Retrospective Studies
- CD4-Positive T-Lymphocytes/immunology
- Adult
- Treatment Outcome
- Receptors, Chimeric Antigen/immunology
- Prognosis
- Receptors, Antigen, T-Cell
Collapse
Affiliation(s)
- Wataru Kitamura
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University Hospital, Japan
- Division of Blood Transfusion, Okayama University Hospital, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Chihiro Kamoi
- Department of Hematology and Oncology, Okayama University Hospital, Japan
- Division of Blood Transfusion, Okayama University Hospital, Japan
| | - Daisuke Ennishi
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Japan
| | - Hisakazu Nishimori
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Keiko Fujii
- Division of Clinical Laboratory, Okayama University Hospital, Japan
| | - Nobuharu Fujii
- Division of Blood Transfusion, Okayama University Hospital, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Hospital, Japan
| |
Collapse
|
131
|
Zhong R, Zhan J, Zhang S. Integrative Analysis Reveals STC2 as a Prognostic Biomarker of Laryngeal Squamous Cell Carcinoma. Appl Biochem Biotechnol 2024; 196:3891-3913. [PMID: 37792175 DOI: 10.1007/s12010-023-04727-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/05/2023]
Abstract
Stanniocalcin 2 (STC2) is involved in many tumour types, but it remains unclear what its biological function is in laryngeal squamous cell carcinoma (LSCC). Therefore, we investigated STC2's expression, potential function, and prognostic significance of in LSCC. The expression and prognosis of STC2 in LSCC were described using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. In the TCGA database, the relationship between STC2 and immune infiltration, expression of immune cell chemokine and receptor genes, immune cell molecular marker genes, and epithelial‒mesenchymal transition (EMT) marker genes were analysed. The biological processes involved in STC2 and its expression-related genes were analysed comprehensively using bioinformatics. The single-gene ceRNA network of STC2 was constructed in the TCGA database. Finally, LSCC patients' tumour tissue STC2 expression was verified. STC2 silencing with the RNAi technique was used for the determination of cellular functions in a laryngeal cancer cell line. STC2 expression was higher in most tumours, including LSCC, than in normal tissues and was associated with poor prognosis. The relative proportions of naïve B, plasma, follicular helper T, and macrophage M0 cells in LSCC and normal samples differed significantly. STC2 expression correlated significantly positively with that of TGFB1 (biomarker of Tregs) and significantly negatively with that of D79A and CD19 (biomarkers of B cells). Furthermore, STC2 affected chemokine and receptor gene expression in immune cells. STC2 expression correlated with EMT marker gene expression in LSCC. STC2 was enriched in the PI3K/AKT signalling pathway, extracellular matrix (ECM) organisation, ECM-receptor interaction, and other tumour-related signalling pathways. STC2 was highly expressed in our clinical samples. N-cadherin and vimentin expression were decreased in the TU686 cell line after successful silencing of STC2, indicating that high STC2 expression may prompt LSCC cells to adopt a mesenchymal cell phenotype. STC2 silencing substantially reduced proliferation and migration in the TU686 cell line. STC2 may be a promising predictive biomarker for tumours, providing new approaches for LSCC diagnosis and treatment monitoring.
Collapse
Affiliation(s)
- Rong Zhong
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiandong Zhan
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Siyi Zhang
- School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Otorhinolaryngology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| |
Collapse
|
132
|
Honing DY, Luiten RM, Matos TR. Regulatory T Cell Dysfunction in Autoimmune Diseases. Int J Mol Sci 2024; 25:7171. [PMID: 39000278 PMCID: PMC11241405 DOI: 10.3390/ijms25137171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Regulatory T cells (Tregs), a suppressive subpopulation of T cells, are potent mediators of peripheral tolerance, responsible for immune homeostasis. Many autoimmune diseases exhibit disruptions in Treg function or quantity, resulting in an imbalance between protective and pathogenic immune cells. Selective expansion or manipulation of Tregs is a promising therapeutic approach for autoimmune diseases. However, the extensive diversity of Treg subpopulations and the multiple approaches used for Treg identification leads to high complexity, making it difficult to develop a successful treatment capable of modulating Tregs. In this review, we describe the suppressive mechanisms, subpopulations, classification, and identification methodology for Tregs, and their role in the pathogenesis of autoimmune diseases.
Collapse
Affiliation(s)
- Dionne Y Honing
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Rosalie M Luiten
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Sanofi, 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
133
|
Wongpattaraworakul W, Choi A, Buchakjian MR, Lanzel EA, Kd AR, Simons AL. Prognostic Role of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma. BMC Cancer 2024; 24:766. [PMID: 38926643 PMCID: PMC11201865 DOI: 10.1186/s12885-024-12539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND In oral squamous cell carcinoma (OSCC), the tumor-node-metastasis (TNM) staging system is a significant factor that influences prognosis and treatment decisions for OSCC patients. Unfortunately, TNM staging does not consistently predict patient prognosis and patients with identical clinicopathological characteristics may have vastly different survival outcomes. Host immunity plays an important role in tumor progression but is not included in the TNM staging system. Tumor-infiltrating lymphocytes (TILs) are part of the host immune response that recognizes tumor cells; and the presence of TILs has emerged as potential candidates for prognostic markers for many types of cancers. The present study aims to determine the association of T cell-specific markers (CD3, CD4, CD8, and FOXP3) with clinicopathological characteristics and survival outcomes in OSCC patients. The prognostic value of CD3, CD4, and CD8 will also be evaluated based on tumor stage. METHODS Tissue microarrays were constructed containing 231 OSCC cases and analyzed by immunohistochemical staining for the expression of CD3, CD4, CD8, and FOXP3. The expression scores for each marker were correlated with clinicopathological parameters and survival outcomes. The prognostic impact of CD3, CD4 and CD8 were further analyzed based on tumor stage (early or advanced). RESULTS CD3, CD4, and CD8 were found to be significantly associated with both overall survival and progression-free survival using univariate analysis. However, none of these markers were found to independently predict the survival outcomes of OSCC using multivariate analysis. Only conventional factors such as nodal status, tumor differentiation and perineural invasion (PNI) were independent predictors of survival outcomes, with nodal status being the strongest independent predictor. Additionally, low CD4 (but not CD3 or CD8) expression was found to identify early-stage OSCC patients with exceptionally poor prognosis which was similar to that of advanced staged OSCC patients. CONCLUSIONS TIL markers such as CD3, CD4, CD8, and FOXP3 can predict the survival outcomes of OSCC patients, but do not serve as independent prognostic markers as found with conventional factors (i.e. nodal status, tumor differentiation and PNI). CD4 expression may assist with risk stratification in early-stage OSCC patients which may influence treatment planning and decision making for early-stage OSCC patients.
Collapse
Affiliation(s)
- Wattawan Wongpattaraworakul
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Allen Choi
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Marisa R Buchakjian
- Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Emily A Lanzel
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Anand Rajan Kd
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Andrean L Simons
- Department of Oral Pathology, Radiology, and Medicine, College of Dentistry, University of Iowa, Iowa City, IA, United States.
- Department of Pathology, College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, B180K Medical Laboratories Iowa City, IA, 52242, Iowa City, United States.
| |
Collapse
|
134
|
Koch-Heier J, Vogel AB, Füll Y, Ebensperger M, Schönsiegel A, Zinser RS, Planz O. MEK-inhibitor treatment reduces the induction of regulatory T cells in mice after influenza A virus infection. Front Immunol 2024; 15:1360698. [PMID: 38979428 PMCID: PMC11228811 DOI: 10.3389/fimmu.2024.1360698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Regulatory T cells (Tregs) play a crucial and complex role in balancing the immune response to viral infection. Primarily, they serve to regulate the immune response by limiting the expression of proinflammatory cytokines, reducing inflammation in infected tissue, and limiting virus-specific T cell responses. But excessive activity of Tregs can also be detrimental and hinder the ability to effectively clear viral infection, leading to prolonged disease and potential worsening of disease severity. Not much is known about the impact of Tregs during severe influenza. In the present study, we show that CD4+/CD25+FoxP3+ Tregs are strongly involved in disease progression during influenza A virus (IAV) infection in mice. By comparing sublethal with lethal dose infection in vivo, we found that not the viral load but an increased number of CD4+/CD25+FoxP3+ Tregs may impair the immune response by suppressing virus specific CD8+ T cells and favors disease progression. Moreover, the transfer of induced Tregs into mice with mild disease symptoms had a negative and prolonged effect on disease outcome, emphasizing their importance for pathogenesis. Furthermore, treatment with MEK-inhibitors resulted in a significant reduction of induced Tregs in vitro and in vivo and positively influenced the progression of the disease. Our results demonstrate that CD4+/CD25+FoxP3+ Tregs are involved in the pathogenesis of severe influenza and indicate the potential of the MEK-inhibitor zapnometinib to modulate CD4+/CD25+FoxP3+ Tregs. Thus, making MEK-inhibitors even more promising for the treatment of severe influenza virus infections.
Collapse
Affiliation(s)
- Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | | | | | | | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
- Atriva Therapeutics GmbH, Tübingen, Germany
| | - Raphael S. Zinser
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
135
|
Khokhar M, Dey S, Tomo S, Jaremko M, Emwas AH, Pandey RK. Unveiling Novel Drug Targets and Emerging Therapies for Rheumatoid Arthritis: A Comprehensive Review. ACS Pharmacol Transl Sci 2024; 7:1664-1693. [PMID: 38898941 PMCID: PMC11184612 DOI: 10.1021/acsptsci.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disease, that causes joint damage, deformities, and decreased functionality. In addition, RA can also impact organs like the skin, lungs, eyes, and blood vessels. This autoimmune condition arises when the immune system erroneously targets the joint synovial membrane, resulting in synovitis, pannus formation, and cartilage damage. RA treatment is often holistic, integrating medication, physical therapy, and lifestyle modifications. Its main objective is to achieve remission or low disease activity by utilizing a "treat-to-target" approach that optimizes drug usage and dose adjustments based on clinical response and disease activity markers. The primary RA treatment uses disease-modifying antirheumatic drugs (DMARDs) that help to interrupt the inflammatory process. When there is an inadequate response, a combination of biologicals and DMARDs is recommended. Biological therapies target inflammatory pathways and have shown promising results in managing RA symptoms. Close monitoring for adverse effects and disease progression is critical to ensure optimal treatment outcomes. A deeper understanding of the pathways and mechanisms will allow new treatment strategies that minimize adverse effects and maintain quality of life. This review discusses the potential targets that can be used for designing and implementing precision medicine in RA treatment, spotlighting the latest breakthroughs in biologics, JAK inhibitors, IL-6 receptor antagonists, TNF blockers, and disease-modifying noncoding RNAs.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Sangita Dey
- CSO
Department, Cellworks Research India Pvt
Ltd, Bengaluru, 560066 Karnataka, India
| | - Sojit Tomo
- Department
of Biochemistry, All India Institute of
Medical Sciences, Jodhpur, 342005 Rajasthan, India
| | - Mariusz Jaremko
- Smart-Health
Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological
and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955 Jeddah, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Rajan Kumar Pandey
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17177, Sweden
| |
Collapse
|
136
|
Poniewierska-Baran A, Sobolak K, Niedźwiedzka-Rystwej P, Plewa P, Pawlik A. Immunotherapy Based on Immune Checkpoint Molecules and Immune Checkpoint Inhibitors in Gastric Cancer-Narrative Review. Int J Mol Sci 2024; 25:6471. [PMID: 38928174 PMCID: PMC11203505 DOI: 10.3390/ijms25126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Due to its rapid progression to advanced stages and highly metastatic properties, gastric cancer (GC) is one of the most aggressive malignancies and the fourth leading cause of cancer-related deaths worldwide. The metastatic process includes local invasion, metastasis initiation, migration with colonisation at distant sites, and evasion of the immune response. Tumour growth involves the activation of inhibitory signals associated with the immune response, also known as immune checkpoints, including PD-1/PD-L1 (programmed death 1/programmed death ligand 1), CTLA-4 (cytotoxic T cell antigen 4), TIGIT (T cell immunoreceptor with Ig and ITIM domains), and others. Immune checkpoint molecules (ICPMs) are proteins that modulate the innate and adaptive immune responses. While their expression is prominent on immune cells, mainly antigen-presenting cells (APC) and other types of cells, they are also expressed on tumour cells. The engagement of the receptor by the ligand is crucial for inhibiting or stimulating the immune cell, which is an extremely important aspect of cancer immunotherapy. This narrative review explores immunotherapy, focusing on ICPMs and immune checkpoint inhibitors in GC. We also summarise the current clinical trials that are evaluating ICPMs as a target for GC treatment.
Collapse
Affiliation(s)
- Agata Poniewierska-Baran
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Karolina Sobolak
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Paulina Niedźwiedzka-Rystwej
- Center of Experimental Immunology and Immunobiology of Infectious and Cancer Diseases, University of Szczecin, 71-417 Szczecin, Poland; (A.P.-B.); (P.N.-R.)
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
| | - Paulina Plewa
- Students Research Club of Immunobiology of Infectious and Cancer Diseases “NEUTROPHIL”, University of Szczecin, 71-417 Szczecin, Poland; (K.S.); (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
137
|
Wang Y, Liu C, Ren Y, Song J, Fan K, Gao L, Ji X, Chen X, Zhao H. Nanomaterial-Based Strategies for Attenuating T-Cell-Mediated Immunodepression in Stroke Patients: Advancing Research Perspectives. Int J Nanomedicine 2024; 19:5793-5812. [PMID: 38882535 PMCID: PMC11180442 DOI: 10.2147/ijn.s456632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
This review article discusses the potential of nanomaterials in targeted therapy and immunomodulation for stroke-induced immunosuppression. Although nanomaterials have been extensively studied in various biomedical applications, their specific use in studying and addressing immunosuppression after stroke remains limited. Stroke-induced neuroinflammation is characterized by T-cell-mediated immunodepression, which leads to increased morbidity and mortality. Key observations related to immunodepression after stroke, including lymphopenia, T-cell dysfunction, regulatory T-cell imbalance, and cytokine dysregulation, are discussed. Nanomaterials, such as liposomes, micelles, polymeric nanoparticles, and dendrimers, offer advantages in the precise delivery of drugs to T cells, enabling enhanced targeting and controlled release of immunomodulatory agents. These nanomaterials have the potential to modulate T-cell function, promote neuroregeneration, and restore immune responses, providing new avenues for stroke treatment. However, challenges related to biocompatibility, stability, scalability, and clinical translation need to be addressed. Future research efforts should focus on comprehensive studies to validate the efficacy and safety of nanomaterial-based interventions targeting T cells in stroke-induced immunosuppression. Collaborative interdisciplinary approaches are necessary to advance the field and translate these innovative strategies into clinical practice, ultimately improving stroke outcomes and patient care.
Collapse
Grants
- This work was supported by the National Natural Science Foundation of China (Grant number 82001248), National University of Singapore (NUHSRO/2020/133/Startup/08, NUHSRO/2023/008/NUSMed/TCE/LOA, NUHSRO/2021/034/TRP/09/Nanomedicine, NUHSRO/2021/044/Kickstart/09/LOA, 23-0173-A0001), National Medical Research Council (MOH-001388-00, CG21APR1005, OFIRG23jul-0047), Singapore Ministry of Education (MOE-000387-00), and National Research Foundation (NRF-000352-00)
Collapse
Affiliation(s)
- Yan Wang
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, People’s Republic of China
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Yanhong Ren
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
138
|
Zhao Y, Wang S, Lv S, Liu X, Li W, Song Y, Rong D, Zheng P, Huang H, Zheng H. Combined oral low-dose cyclophosphamide endocrine therapy may improve clinical response among patients with metastatic breast cancer via Tregs in TLSs. Sci Rep 2024; 14:13432. [PMID: 38862586 PMCID: PMC11166640 DOI: 10.1038/s41598-024-64042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Despite limited research on refractory and/or endocrine therapy failure in elderly metastatic breast cancer (MBC) patients, a prior study showed that low-dose oral cyclophosphamide (CY) can improve the overall survival rate of MBC patients, possibly through the immunoregulation of regulatory T cells (Tregs). We preliminarily investigated the combination of endocrine therapy (ET) with oral low-dose CY as salvage therapy in elderly patients via peripheral blood regulatory T-cell analyses. In addition, we evaluated the associations of tumor tertiary lymphoid structures (TLSs) with therapeutic outcomes. HR+/HER2- advanced breast cancer patients who received low-dose CY combined with ET or ET only from April 2015 to August 2021 were enrolled in this retrospective study. The primary outcome was the clinical control rate (CCR), and the secondary outcome was progression-free survival (PFS). Circulating T lymphocyte subpopulations represented by Tregs were monitored during treatment by flow cytometry methods. TLSs wereconfirmed by hematoxylin-eosin staining of pretreatment specimens, and CD3, CD4, and Foxp3 were detected using Opal multicolor immunofluorescence. A total of 85 patients who received CY + ET and 50 patients who received ET only were enrolled, the percentage of patients who received CCR was 73% (62/85) vs. 70% (45/50), and the objective response rate (ORR) was 28% (24/85) vs. 24% (12/50). No deaths occurred during the study period. The mean PFS time was 13 vs. 11 months (P = 0.03). In the CY + ET group, decreases in CD4+/CD25+/Foxp3+ T cells (P < 0.001) were favorable for both clinical control and prolonged PFS (P < 0.001). Compared with patients without TLSs, those with TLSs were more likely to have better clinical control and PFS (mean time = 6 months), and a greater number of Treg cells during TLS pretreatment correlated with longer PFS (P = 0.043). Oral low-dose CY combined with standard ET exerts immunological effects by decreasing Treg levels to achieve improved clinical responses. Moreover, patients with TLSs might benefit more from such therapy than those without TLSs, and a high Treg cell count in TLSs before treatment predicts better therapeutic efficacy.
Collapse
Affiliation(s)
- Yuze Zhao
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Shuo Wang
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Shuzhen Lv
- Breast Department, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaojun Liu
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Weiping Li
- Department of Pharmacology, Shanxi Medical University Fenyang College, Fenyang, 032200, China
| | - Yuguang Song
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China
| | - Dongwen Rong
- Department of Medical Oncology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Peiming Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hongyan Huang
- Department of Medical Oncology, Capital Medical University Cancer Center, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Rd, Beijing, 100038, China.
| | - Huixia Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
139
|
Ruocco MR, Gisonna A, Acampora V, D’Agostino A, Carrese B, Santoro J, Venuta A, Nasso R, Rocco N, Russo D, Cavaliere A, Altobelli GG, Masone S, Avagliano A, Arcucci A, Fiume G. Guardians and Mediators of Metastasis: Exploring T Lymphocytes, Myeloid-Derived Suppressor Cells, and Tumor-Associated Macrophages in the Breast Cancer Microenvironment. Int J Mol Sci 2024; 25:6224. [PMID: 38892411 PMCID: PMC11172575 DOI: 10.3390/ijms25116224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Breast cancers (BCs) are solid tumors composed of heterogeneous tissues consisting of cancer cells and an ever-changing tumor microenvironment (TME). The TME includes, among other non-cancer cell types, immune cells influencing the immune context of cancer tissues. In particular, the cross talk of immune cells and their interactions with cancer cells dramatically influence BC dissemination, immunoediting, and the outcomes of cancer therapies. Tumor-infiltrating lymphocytes (TILs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) represent prominent immune cell populations of breast TMEs, and they have important roles in cancer immunoescape and dissemination. Therefore, in this article we review the features of TILs, TAMs, and MDSCs in BCs. Moreover, we highlight the mechanisms by which these immune cells remodel the immune TME and lead to breast cancer metastasis.
Collapse
Affiliation(s)
- Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Armando Gisonna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (M.R.R.); (A.G.)
| | - Vittoria Acampora
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Anna D’Agostino
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Barbara Carrese
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Jessie Santoro
- IRCCS SYNLAB SDN, Via Emanuele Gianturco 113, 80143 Naples, Italy; (A.D.); (B.C.); (J.S.)
| | - Alessandro Venuta
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Rosarita Nasso
- Department of Movement Sciences and Wellness, University of Naples “Parthenope”, 80133 Naples, Italy;
| | - Nicola Rocco
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Daniela Russo
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | | | - Giovanna Giuseppina Altobelli
- Department of Advanced Biomedical Science, University of Naples Federico II, 80131 Naples, Italy; (N.R.); (D.R.); (G.G.A.)
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (V.A.); (A.V.); (A.A.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| |
Collapse
|
140
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
141
|
Nowak-Kiczmer M, Niedziela N, Czuba ZP, Sowa P, Wierzbicki K, Lubczyński M, Adamczyk-Sowa M. Assessment of serum inflammatory parameters in RRMS and SPMS patients. Neurol Res 2024; 46:495-504. [PMID: 38697017 DOI: 10.1080/01616412.2024.2337503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease. Patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) differ in their responses to treatment; therefore, the correct diagnosis of the particular type of MS is crucial, and biomarkers that can differentiate between the forms of MS need to be identified. The aim of this study was to compare the levels of inflammatory parameters in serum samples from patients with RRMS and SPMS. METHODS The study group consisted of 60 patients with diagnosed MS. The patients were divided into RRMS and SPMS groups. In the RRMS patients, the usage of disease-modifying treatment was included in our analysis. The serum levels of inflammatory parameters were evaluated. RESULTS The serum levels of BAFF, gp130 and osteopontin were significantly higher in SPMS patients than in RRMS patients. The serum levels of BAFF correlated with age in both RRMS and SPMS patients. The serum levels of MMP-2 were significantly higher in RRMS patients than in SPMS patients and correlated with the number of past relapses. The serum levels of IL-32 were significantly higher in RRMS treatment-naïve patients than in RRMS patients treated with disease-modifying therapy. DISCUSSION Significant differences were found in BAFF, gp130, MMP-2 and osteopontin levels between RRMS and SPMS patients. Serum IL-32 levels were statistically lower in RRMS patients treated with disease-modifying therapy than in treatment-naïve patients.
Collapse
Affiliation(s)
- Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Krzysztof Wierzbicki
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Lubczyński
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
142
|
Kowalewski A, Borowczak J, Maniewski M, Gostomczyk K, Grzanka D, Szylberg Ł. Targeting apoptosis in clear cell renal cell carcinoma. Biomed Pharmacother 2024; 175:116805. [PMID: 38781868 DOI: 10.1016/j.biopha.2024.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of renal cancer, accounting for approximately 80% of all renal cell cancers. Due to its exceptional inter- and intratumor heterogeneity, it is highly resistant to conventional systemic therapies. Targeting the evasion of cell death, one of cancer's hallmarks, is currently emerging as an alternative strategy for ccRCC. In this article, we review the current state of apoptosis-inducing therapies against ccRCC, including antisense oligonucleotides, BH3 mimetics, histone deacetylase inhibitors, cyclin-kinase inhibitors, inhibitors of apoptosis protein antagonists, and monoclonal antibodies. Although preclinical studies have shown encouraging results, these compounds fail to improve patients' outcomes significantly. Current evidence suggests that inducing apoptosis in ccRCC may promote tumor progression through apoptosis-induced proliferation, anastasis, and apoptosis-induced nuclear expulsion. Therefore, re-evaluating this approach is expected to enable successful preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Adam Kowalewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Center of Medical Sciences, University of Science and Technology, Bydgoszcz 85-796, Poland.
| | - Jędrzej Borowczak
- Clinical Department of Oncology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland
| | - Mateusz Maniewski
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Doctoral School of Medical and Health Sciences, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Centre Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz 85-796, Poland; Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz 85-094, Poland
| |
Collapse
|
143
|
M Yusoff NNF, Ahmad S, Wan Abdul Rahman WF, Mohamud R, C Boer J, Plebanski M, Abdullah B, Chen X, Tengku Din TADAA. CD4+ Foxp3+ Regulatory T-cells in Modulating Inflammatory Microenvironment in Chronic Rhinosinusitis with Nasal Polyps: Progress and Future Prospect. Cytokine 2024; 178:156557. [PMID: 38452440 DOI: 10.1016/j.cyto.2024.156557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a subtype of chronic rhinosinusitis (CRS) characterized by the presence of nasal polyps (NP) in the paranasal mucosa. Despite the complex etiology, NP is believed to result from chronic inflammation. The long-term aftermath of the type 2 response is responsible for symptoms seen in NP patients, i.e. rhinorrhea, hyposmia, and nasal obstruction. Immune cellular tolerogenic mechanisms, particularly CD4 + Foxp3 + regulatory T cells (Tregs), are crucial to curtail inflammatory responses. Current evidence suggests impaired Treg activity is the main reason underlying the compromise of self-tolerance, contributing to the onset of CRSwNP. There is compelling evidence that tumor necrosis factor 2 (TNFR2) is preferentially expressed by Tregs, and TNFR2 is able to identify the most potent suppressive subset of Tregs. Tumor necrosis factor (TNF)-TNFR2 interaction plays a decisive role in the activation and expansion of Tregs. This review summarizes current understanding of Tregs biology, focusing on the discussion of the recent advances in the study of TNF-TNFR2 axis in the upregulation of Treg function as a negative feedback mechanism in the control of chronic inflammation. The role of dysregulation of Tregs in the immunopathogenesis of CRSwNP will be analyzed. The future perspective on the harnessing Tregs-mediated self-tolerant mechanism in the management of CRSwNP will be introduced.
Collapse
Affiliation(s)
- Nur Najwa Farahin M Yusoff
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Suhana Ahmad
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Jennifer C Boer
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Unit, School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria 3083, Australia
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| | - Xin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | | |
Collapse
|
144
|
Pate BS, Smiley CE, Harrington EN, Bielicki BH, Davis JM, Reagan LP, Grillo CA, Wood SK. Voluntary wheel running as a promising strategy to promote autonomic resilience to social stress in females: Vagal tone lies at the heart of the matter. Auton Neurosci 2024; 253:103175. [PMID: 38677130 PMCID: PMC11173375 DOI: 10.1016/j.autneu.2024.103175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
Social stress is a major risk factor for comorbid conditions including cardiovascular disease and depression. While women exhibit 2-3× the risk for these stress-related disorders compared to men, the mechanisms underlying heightened stress susceptibility among females remain largely unknown. Due to a lack in understanding of the pathophysiology underlying stress-induced comorbidities among women, there has been a significant challenge in developing effective therapeutics. Recently, a causal role for inflammation has been established in the onset and progression of comorbid cardiovascular disease/depression, with women exhibiting increased sensitivity to stress-induced immune signaling. Importantly, reduced vagal tone is also implicated in stress susceptibility, through a reduction in the vagus nerve's well-recognized anti-inflammatory properties. Thus, examining therapeutic strategies that stabilize vagal tone during stress may shed light on novel targets for promoting stress resilience among women. Recently, accumulating evidence has demonstrated that physical activity exerts cardio- and neuro-protective effects by enhancing vagal tone. Based on this evidence, this mini review provides an overview of comorbid cardiovascular and behavioral dysfunction in females, the role of inflammation in these disorders, how stress may impart its negative effects on the vagus nerve, and how exercise may act as a preventative. Further, we highlight a critical gap in the literature with regard to the study of females in this field. This review also presents novel data that are the first to demonstrate a protective role for voluntary wheel running over vagal tone and biomarkers of cardiac dysfunction in the face of social stress exposure in female rats.
Collapse
Affiliation(s)
- Brittany S Pate
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America; Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Evelynn N Harrington
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - B Hunter Bielicki
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - J Mark Davis
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Claudia A Grillo
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States of America; Columbia VA Health Care System, Columbia, SC, United States of America; USC Institute for Cardiovascular Disease Research, Columbia, SC, United States of America.
| |
Collapse
|
145
|
Egawa Y, Higuchi T, Hashida Y, Ueno K, Kojima K, Daibata M. Novel paired CD13-negative (MT-50.1) and CD13-positive (MT-50.4) HTLV-1-infected T-cell lines with differential regulatory T cell-like activity. Sci Rep 2024; 14:12549. [PMID: 38822041 PMCID: PMC11143202 DOI: 10.1038/s41598-024-63494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) occurs after human T-cell leukemia virus type-1 (HTLV-1) infection with a long latency period exceeding several decades. This implies the presence of immune evasion mechanisms for HTLV-1-infected T cells. Although ATL cells have a CD4+CD25+ phenotype similar to that of regulatory T cells (Tregs), they do not always possess the immunosuppressive functions of Tregs. Factors that impart effective immunosuppressive functions to HTLV-1-infected cells may exist. A previous study identified a new CD13+ Treg subpopulation with enhanced immunosuppressive activity. We, herein, describe the paired CD13- (designated as MT-50.1) and CD13+ (MT-50.4) HTLV-1-infected T-cell lines with Treg-like phenotype, derived from the peripheral blood of a single patient with lymphoma-type ATL. The cell lines were found to be derived from HTLV-1-infected non-leukemic cells. MT-50.4 cells secreted higher levels of immunosuppressive cytokines, IL-10 and TGF-β, expressed higher levels of Foxp3, and showed stronger suppression of CD4+CD25- T cell proliferation than MT-50.1 cells. Furthermore, the CD13 inhibitor bestatin significantly attenuated MT-50.4 cell growth, while it did not for MT-50.1 cells. These findings suggest that CD13 expression may be involved in the increased Treg-like activity of MT-50.4 cells. Hence, MT-50.4 cells will be useful for in-depth studies of CD13+Foxp3+ HTLV-1-infected cells.
Collapse
Affiliation(s)
- Yuki Egawa
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Kazuyuki Ueno
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi, 780-0955, Japan
| | - Kensuke Kojima
- Department of Hematology, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Nankoku, Kochi, 783-8505, Japan.
| |
Collapse
|
146
|
Cho WJ, Pulimamidi VK, Mittal SK, Chauhan SK. Mesenchymal stromal cells protect tissues from Th1 immune responses via IL-11 secretion. FASEB J 2024; 38:e23683. [PMID: 38758184 PMCID: PMC11149610 DOI: 10.1096/fj.202400078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/05/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Mesenchymal stromal cells (MSCs) have been shown to modulate the function of various subsets of T cells such as naïve CD4+ T cells and IFNγ+CD4+ Th1 cells; however, mechanisms underlying this regulation have not been fully deciphered. Our in vitro culture assays demonstrate that MSCs suppress the activation and function of CD4+ T cells by secreting interleukin 11, and neutralization of IL11 abrogates MSC-mediated suppression of CD4+ T cell function. Moreover, delayed-type, exogenous supplementation of IL11 significantly suppressed IFNγ+ expression by Th1 cells. Th1 and CD8+ cells play central roles in T cell-mediated tissue damage. Using a murine model of hypersensitivity response to study T cell-mediated tissue damage, we show that silencing IL11 in MSCs significantly abates the capacity of MSCs to suppress the generation of IFNγ-secreting CD4+ and CD8+ cells, failing to prevent T cell-mediated tissue inflammation and tissue damage.
Collapse
Affiliation(s)
- WonKyung J. Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Vinay K. Pulimamidi
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Sharad K. Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| | - Sunil K. Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, 20 Staniford Street, Boston, Massachusetts, 02114, USA
| |
Collapse
|
147
|
Xiao S, Ma S, Sun B, Pu W, Duan S, Han J, Hong Y, Zhang J, Peng Y, He C, Yi P, Caligiuri MA, Yu J. The tumor-intrinsic role of the m 6A reader YTHDF2 in regulating immune evasion. Sci Immunol 2024; 9:eadl2171. [PMID: 38820140 DOI: 10.1126/sciimmunol.adl2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
Tumors evade attacks from the immune system through various mechanisms. Here, we identify a component of tumor immune evasion mediated by YTH domain-containing family protein 2 (YTHDF2), a reader protein that usually destabilizes m6A-modified mRNA. Loss of tumoral YTHDF2 inhibits tumor growth and prolongs survival in immunocompetent tumor models. Mechanistically, tumoral YTHDF2 deficiency promotes the recruitment of macrophages via CX3CL1 and enhances mitochondrial respiration of CD8+ T cells by impairing tumor glycolysis metabolism. Tumoral YTHDF2 deficiency promotes inflammatory macrophage polarization and antigen presentation in the presence of IFN-γ. In addition, IFN-γ induces autophagic degradation of tumoral YTHDF2, thereby sensitizing tumor cells to CD8+ T cell-mediated cytotoxicity. Last, we identified a small molecule compound that preferentially induces YTHDF2 degradation, which shows a potent antitumor effect alone but a better effect when combined with anti-PD-L1 or anti-PD-1 antibodies. Collectively, YTHDF2 appears to be a tumor-intrinsic regulator that orchestrates immune evasion, representing a promising target for enhancing cancer immunotherapy.
Collapse
Affiliation(s)
- Sai Xiao
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Songqi Duan
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Jingjing Han
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yaqun Hong
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Chengdu, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Ping Yi
- Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA 91010, USA
| |
Collapse
|
148
|
Zhao KN, Dimeski G, Masci P, Johnson L, Wang J, de Jersey J, Grant M, Lavin MF. Generation of Rapid and High-Quality Serum by Recombinant Prothrombin Activator Ecarin (RAPClot™). Biomolecules 2024; 14:645. [PMID: 38927049 PMCID: PMC11201583 DOI: 10.3390/biom14060645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
We recently reported the potential application of recombinant prothrombin activator ecarin (RAPClot™) in blood diagnostics. In a new study, we describe RAPClot™ as an additive to develop a novel blood collection prototype tube that produces the highest quality serum for accurate biochemical analyte determination. The drying process of the RAPClot™ tube generated minimal effect on the enzymatic activity of the prothrombin activator. According to the bioassays of thrombin activity and plasma clotting, γ-radiation (>25 kGy) resulted in a 30-40% loss of the enzymatic activity of the RAPClot™ tubes. However, a visual blood clotting assay revealed that the γ-radiation-sterilized RAPClot™ tubes showed a high capacity for clotting high-dose heparinized blood (8 U/mL) within 5 min. This was confirmed using Thrombelastography (TEG), indicating full clotting efficiency under anticoagulant conditions. The storage of the RAPClot™ tubes at room temperature (RT) for greater than 12 months resulted in the retention of efficient and effective clotting activity for heparinized blood in 342 s. Furthermore, the enzymatic activity of the RAPClot™ tubes sterilized with an electron-beam (EB) was significantly greater than that with γ-radiation. The EB-sterilized RAPClot™ tubes stored at RT for 251 days retained over 70% enzyme activity and clotted the heparinized blood in 340 s after 682 days. Preliminary clinical studies revealed in the two trials that 5 common analytes (K, Glu, lactate dehydrogenase (LD), Fe, and Phos) or 33 analytes determined in the second study in the γ-sterilized RAPClot™ tubes were similar to those in commercial tubes. In conclusion, the findings indicate that the novel RAPClot™ blood collection prototype tube has a significant advantage over current serum or lithium heparin plasma tubes for routine use in measuring biochemical analytes, confirming a promising application of RAPClot™ in clinical medicine.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia (L.J.); (J.W.)
| | - Goce Dimeski
- Chemical Pathology, Princess Alexandra Hospital, Woolloongabba, Brisbane, QLD 4102, Australia;
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
- School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul Masci
- Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia (L.J.); (J.W.)
| | - Lambro Johnson
- Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia (L.J.); (J.W.)
| | - Jingjing Wang
- Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia (L.J.); (J.W.)
| | - John de Jersey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Michael Grant
- Q-Sera Pty Ltd., Level 9, 31 Queen St, Melbourne, VIC 3000, Australia;
| | - Martin F. Lavin
- Australian Institute of Biotechnology and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia (L.J.); (J.W.)
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| |
Collapse
|
149
|
Gootjes C, Zwaginga JJ, Roep BO, Nikolic T. Defining Human Regulatory T Cells beyond FOXP3: The Need to Combine Phenotype with Function. Cells 2024; 13:941. [PMID: 38891073 PMCID: PMC11172350 DOI: 10.3390/cells13110941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/18/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Regulatory T cells (Tregs) are essential to maintain immune homeostasis by promoting self-tolerance. Reduced Treg numbers or functionality can lead to a loss of tolerance, increasing the risk of developing autoimmune diseases. An overwhelming variety of human Tregs has been described, based on either specific phenotype, tissue compartment, or pathological condition, yet the bulk of the literature only addresses CD25-positive and CD127-negative cells, coined by naturally occurring Tregs (nTregs), most of which express the transcription factor Forkhead box protein 3 (FOXP3). While the discovery of FOXP3 was seminal to understanding the origin and biology of nTregs, there is evidence in humans that not all T cells expressing FOXP3 are regulatory, and that not all Tregs express FOXP3. Namely, the activation of human T cells induces the transient expression of FOXP3, irrespective of whether they are regulatory or inflammatory effectors, while some induced T cells that may be broadly defined as Tregs (e.g., Tr1 cells) typically lack demethylation and do not express FOXP3. Furthermore, it is unknown whether and how many nTregs exist without FOXP3 expression. Several other candidate regulatory molecules, such as GITR, Lag-3, GARP, GPA33, Helios, and Neuropilin, have been identified but subsequently discarded as Treg-specific markers. Multiparametric analyses have uncovered a plethora of Treg phenotypes, and neither single markers nor combinations thereof can define all and only Tregs. To date, only the functional capacity to inhibit immune responses defines a Treg and distinguishes Tregs from inflammatory T cells (Teffs) in humans. This review revisits current knowledge of the Treg universe with respect to their heterogeneity in phenotype and function. We propose that it is unavoidable to characterize human Tregs by their phenotype in combination with their function, since phenotype alone does not unambiguously define Tregs. There is an unmet need to align the expression of specific markers or combinations thereof with a particular suppressive function to coin functional Treg entities and categorize Treg diversity.
Collapse
Affiliation(s)
- Chelsea Gootjes
- Laboratory of Immunomodulation and Regenerative Cell Therapy, Department of Internal Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (J.J.Z.); (T.N.)
| | | | | | | |
Collapse
|
150
|
Gonçalves IV, Pinheiro-Rosa N, Torres L, Oliveira MDA, Rapozo Guimarães G, Leite CDS, Ortega JM, Lopes MTP, Faria AMC, Martins MLB, Felicori LF. Dynamic changes in B cell subpopulations in response to triple-negative breast cancer development. Sci Rep 2024; 14:11576. [PMID: 38773133 PMCID: PMC11109097 DOI: 10.1038/s41598-024-60243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/19/2024] [Indexed: 05/23/2024] Open
Abstract
Despite presenting a worse prognosis and being associated with highly aggressive tumors, triple-negative breast cancer (TNBC) is characterized by the higher frequency of tumor-infiltrating lymphocytes, which have been implicated in better overall survival and response to therapy. Though recent studies have reported the capacity of B lymphocytes to recognize overly-expressed normal proteins, and tumor-associated antigens, how tumor development potentially modifies B cell response is yet to be elucidated. Our findings reveal distinct effects of 4T1 and E0771 murine tumor development on B cells in secondary lymphoid organs. Notably, we observe a significant expansion of total B cells and plasma cells in the tumor-draining lymph nodes (tDLNs) as early as 7 days after tumor challenge in both murine models, whereas changes in the spleen are less pronounced. Surprisingly, within the tumor microenvironment (TME) of both models, we detect distinct B cell subpopulations, but tumor development does not appear to cause major alterations in their frequency over time. Furthermore, our investigation into B cell regulatory phenotypes highlights that the B10 Breg phenotype remains unaffected in the evaluated tissues. Most importantly, we identified an increase in CD19 + LAG-3 + cells in tDLNs of both murine models. Interestingly, although CD19 + LAG-3 + cells represent a minor subset of total B cells (< 3%) in all evaluated tissues, most of these cells exhibit elevated expression of IgD, suggesting that LAG-3 may serve as an activation marker for B cells. Corroborating with these findings, we detected distinct cell cycle and proliferation genes alongside LAG-3 analyzing scRNA-Seq data from a cohort of TNBC patients. More importantly, our study suggests that the presence of LAG-3 B cells in breast tumors could be associated with a good prognosis, as patients with higher levels of LAG-3 B cell transcripts had a longer progression-free interval (PFI). This novel insight could pave the way for targeted therapies that harness the unique properties of LAG-3 + B cells, potentially offering new avenues for improving patient outcomes in TNBC. Further research is warranted to unravel the mechanistic pathways of these cells and to validate their prognostic value in larger, diverse patient cohorts.
Collapse
Affiliation(s)
- Igor Visconte Gonçalves
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Natália Pinheiro-Rosa
- NYU Grossman School of Medicine, NYU Langone Health, New York University, 550 1st Ave, New York, NY, 10016, USA
| | - Lícia Torres
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana de Almeida Oliveira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Gabriela Rapozo Guimarães
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Christiana da Silva Leite
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - José Miguel Ortega
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Miriam Teresa Paz Lopes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Maria Caetano Faria
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Mariana Lima Boroni Martins
- Instituto Nacional de Câncer, Ministério da Saúde, Coordenação de Pesquisa, Laboratório de Bioinformática e Biologia Computacional - Rua André Cavalcanti, 37, 1 Andar, Centro, Rio de Janeiro, RJ, 20231050, Brasil
| | - Liza Figueiredo Felicori
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|