101
|
An ER Assembly Line of AMPA-Receptors Controls Excitatory Neurotransmission and Its Plasticity. Neuron 2019; 104:680-692.e9. [DOI: 10.1016/j.neuron.2019.08.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/28/2019] [Accepted: 08/20/2019] [Indexed: 11/15/2022]
|
102
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
103
|
Holahan MR, Tzakis N, Oliveira FA. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan. Front Aging Neurosci 2019; 11:253. [PMID: 31572169 PMCID: PMC6749050 DOI: 10.3389/fnagi.2019.00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023] Open
Abstract
An important aspect concerning the underlying nature of memory function is an understanding of how memories are acquired and lost. The stability, and ultimate demise, of memory over the lifespan of an organism remains a critical topic in determining the neurobiological mechanisms that mediate memory representations. This has important implications for the elucidation and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). One important question in the context of preserving functional plasticity over the lifespan is the determination of the neurobiological structural and functional changes that contribute to the formation of memory during the juvenile time frame that might provide protection against later memory dysfunction by promoting the establishment of redundant neural pathways. The main question being, if memory formation during the juvenile period does strengthen and preserve memory stability over the lifespan, what are the neurobiological structural or functional substrates that mediate this effect? One neural attribute whose function may be altered with early life experience and provide a mechanism to preserve memory through the lifespan is glucose transport-linked calcium (Ca2+) buffering. Because peak increases in glucose utilization overlap with a timeframe during which spatial training can enhance later memory processing, it might be the case that learning-associated changes in glucose utilization would provide an important neural functional change to preserve memory function throughout the lifespan. The glucose transporters are proteins that are reduced in AD pathology and there is evidence that glucose reductions can impair Ca2+ buffering. In the absence of an appropriate supply of ATP, provided via glucose transport and glycolysis, Ca2+ levels can rise leading to neural vulnerability with ensuing pathological outcomes. In this review, we explore the hypothesis that enhancing glucose utilization with spatial training during the preadolescent period will provide a functional enhancement that regulates glucose-dependent Ca2+ signaling during aging or neurodegeneration and provide essential neural resources to preserve functional plasticity and memory function.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Niko Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Fernando A. Oliveira
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
104
|
Madayag AC, Gomez D, Anderson EM, Ingebretson AE, Thomas MJ, Hearing MC. Cell-type and region-specific nucleus accumbens AMPAR plasticity associated with morphine reward, reinstatement, and spontaneous withdrawal. Brain Struct Funct 2019; 224:2311-2324. [PMID: 31201496 PMCID: PMC6698404 DOI: 10.1007/s00429-019-01903-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Despite evidence that morphine-related pathologies reflect adaptations in NAc glutamate signaling, substantial gaps in basic information remain. The current study examines the impact of non-contingent acute, repeated, and withdrawal-inducing morphine dosing regimens on glutamate transmission in D1- or D2-MSNs in the nucleus accumbens shell (NAcSh) and core (NAcC) sub-regions in hopes of identifying excitatory plasticity that may contribute to unique facets of opioid addiction-related behavior. Following an acute morphine injection (10 mg/kg), average miniature excitatory postsynaptic current (mEPSC) amplitude mediated by AMPA-type glutamate receptors was increased at D1-MSNs in the both the NAcShl and NAcC, whereas only the frequency of events was elevated at D2-MSNs in the NAcSh. In contrast, spontaneous somatic withdrawal induced by escalating dose of repeated morphine twice per day (20, 40, 60, 80, 100 mg/kg) enhanced mEPSC frequency specifically at D2-MSNs in the NAcSh. Similar to previous findings, excitatory drive was elevated at NAcSh D1-MSNs after 10-14 days home cage abstinence. Following abstinence, an acute drug re-exposure produced a rapid and enduring endocytosis of GluA2-containing AMPARs at D1-MSNs in the shell, that when blocked by an intra-NAc shell infusion of the Tat-GluA23Y peptide, increased reinstatement of morphine place preference-a phenomenon distinctly different than effects previously found with cocaine. The present study is the first to directly identify unique circuit specific adaptations in NAc glutamate synaptic transmission associated with morphine-related acute reward and somatic withdrawal as well as post-abstinence short-term plasticity. Moreover, while differing classes of abused drugs (i.e., psychostimulants and opioids) produce seemingly similar bidirectional plasticity in the NAc following drug re-exposure, our findings indicate this plasticity has distinct behavioral consequences.
Collapse
Affiliation(s)
- Aric C Madayag
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Devan Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233, USA.
| |
Collapse
|
105
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 366] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
106
|
Vaden JH, Banumurthy G, Gusarevich ES, Overstreet-Wadiche L, Wadiche JI. The readily-releasable pool dynamically regulates multivesicular release. eLife 2019; 8:47434. [PMID: 31364987 PMCID: PMC6716946 DOI: 10.7554/elife.47434] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/30/2019] [Indexed: 01/04/2023] Open
Abstract
The number of neurotransmitter-filled vesicles released into the synaptic cleft with each action potential dictates the reliability of synaptic transmission. Variability of this fundamental property provides diversity of synaptic function across brain regions, but the source of this variability is unclear. The prevailing view is that release of a single (univesicular release, UVR) or multiple vesicles (multivesicular release, MVR) reflects variability in vesicle release probability, a notion that is well-supported by the calcium-dependence of release mode. However, using mouse brain slices, we now demonstrate that the number of vesicles released is regulated by the size of the readily-releasable pool, upstream of vesicle release probability. Our results point to a model wherein protein kinase A and its vesicle-associated target, synapsin, dynamically control release site occupancy to dictate the number of vesicles released without altering release probability. Together these findings define molecular mechanisms that control MVR and functional diversity of synaptic signaling. Our nervous system allows us to rapidly sense and respond to the world around us via cells called neurons that relay electrical signals around the brain and body. When an electrical impulse travelling along one neuron reaches a junction – called a synapse – with a neighboring neuron, it stimulates small containers known as vesicles from the first cell to release their contents into the synapse. These contents then travel across to the neighboring cell and may generate a new electrical impulse. The number of vesicles at a synapse that are ready to be released varies from one to ten. The more vesicles the neuron releases, the more likely the second cell will produce an electrical signal of its own. However, not all electrical signals reaching a synapse stimulate vesicles to be released and some signals only release a single vesicle. What determines how many vesicles are released by a single electrical signal? Some vesicles have a higher likelihood of being released than others, but this “eagerness” does not always predict how many vesicles an individual synapse will actually discharge. Now, Vaden et al. have used brain tissue from mice to test an alternative possibility: the simple idea that the number of vesicles available at the synapse affects how many vesicles are released without altering their eagerness for release. Vaden et al. found that activating an enzyme called protein kinase A increased the number of vesicles released from synapses without changing how likely individual vesicles were to be released. Inhibiting protein kinase A also did not change individual vesicle’s eagerness to be released, but did decrease the number of vesicles that were discharged. Further experiments found that protein kinase A modifies a molecule on the surface of vesicles, known as synapsin, which controls the number of vesicles that are available for release. These findings show that the number of vesicles released at a synapse is controlled by two independently regulated parameters: the number of vesicles that are available, as well as how eager individual vesicles are to be released. The ability of neurons to communicate with each other is disrupted in autism spectrum disorders, Alzheimer’s disease and many other diseases. Learning how neurons communicate in healthy brains will help us understand what happens in the neurons of individuals with these conditions.
Collapse
Affiliation(s)
- Jada H Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| | | | - Eugeny S Gusarevich
- Department of Fundamental and Applied Physics, Northern (Arctic) Federal University named after M.V. Lomonosov, Arkhangelsk, Russian Federation
| | | | - Jacques I Wadiche
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
| |
Collapse
|
107
|
Glasgow SD, McPhedrain R, Madranges JF, Kennedy TE, Ruthazer ES. Approaches and Limitations in the Investigation of Synaptic Transmission and Plasticity. Front Synaptic Neurosci 2019; 11:20. [PMID: 31396073 PMCID: PMC6667546 DOI: 10.3389/fnsyn.2019.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/04/2019] [Indexed: 12/16/2022] Open
Abstract
The numbers and strengths of synapses in the brain change throughout development, and even into adulthood, as synaptic inputs are added, eliminated, and refined in response to ongoing neural activity. A number of experimental techniques can assess these changes, including single-cell electrophysiological recording which offers measurements of synaptic inputs with high temporal resolution. Coupled with electrical stimulation, photoactivatable opsins, and caged compounds, to facilitate fine spatiotemporal control over release of neurotransmitters, electrophysiological recordings allow for precise dissection of presynaptic and postsynaptic mechanisms of action. Here, we discuss the strengths and pitfalls of various techniques commonly used to analyze synapses, including miniature excitatory/inhibitory (E/I) postsynaptic currents, evoked release, and optogenetic stimulation. Together, these techniques can provide multiple lines of convergent evidence to generate meaningful insight into the emergence of circuit connectivity and maturation. A full understanding of potential caveats and alternative explanations for findings is essential to avoid data misinterpretation.
Collapse
Affiliation(s)
| | | | | | | | - Edward S. Ruthazer
- Department of Neurology & Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
108
|
Mogensen J, Overgaard M. Reorganization of the connectivity between elementary functions as a common mechanism of phenomenal consciousness and working memory: from functions to strategies. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0346. [PMID: 30061460 DOI: 10.1098/rstb.2017.0346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2018] [Indexed: 02/07/2023] Open
Abstract
In the present communication, phenomenal consciousness, access consciousness and the closely related concept of working memory are presented in the context of a neurocognitive model-the REF (reorganization of elementary functions) framework. The REF framework is based on connectionist networks within which the 'units' are advanced processing modules called elementary functions (EFs). In this framework, the focus is on dynamically changeable 'strategies'-based on reorganizations of the connectivity between EFs-rather than on the more traditional 'cognitive functions'. The background for the REF framework and especially how the neural correlate of consciousness is understood within these models is summarized. According to the REF framework, phenomenal consciousness cannot 'overflow' availability of information for action. Phenomenal consciousness may, however, overflow working memory because working memory in the present context is seen as a surface phenomenon reflecting underlying dynamic strategies-influenced by both experience and situational factors.This article is part of the theme issue 'Perceptual consciousness and cognitive access'.
Collapse
Affiliation(s)
- Jesper Mogensen
- The Unit for Cognitive Neuroscience (UCN), Department of Psychology, University of Copenhagen, Oester Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | - Morten Overgaard
- CNRU, CFIN, MindLab, Aarhus University, Nørrebrogade 44, Building 10 G, 8000 Aarhus C, Denmark
| |
Collapse
|
109
|
The Autism-Associated Gene Scn2a Contributes to Dendritic Excitability and Synaptic Function in the Prefrontal Cortex. Neuron 2019; 103:673-685.e5. [PMID: 31230762 DOI: 10.1016/j.neuron.2019.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 03/23/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022]
Abstract
Autism spectrum disorder (ASD) is strongly associated with de novo gene mutations. One of the most commonly affected genes is SCN2A. ASD-associated SCN2A mutations impair the encoded protein NaV1.2, a sodium channel important for action potential initiation and propagation in developing excitatory cortical neurons. The link between an axonal sodium channel and ASD, a disorder typically attributed to synaptic or transcriptional dysfunction, is unclear. Here we show that NaV1.2 is unexpectedly critical for dendritic excitability and synaptic function in mature pyramidal neurons in addition to regulating early developmental axonal excitability. NaV1.2 loss reduced action potential backpropagation into dendrites, impairing synaptic plasticity and synaptic strength, even when NaV1.2 expression was disrupted in a cell-autonomous fashion late in development. These results reveal a novel dendritic function for NaV1.2, providing insight into cellular mechanisms probably underlying circuit and behavioral dysfunction in ASD.
Collapse
|
110
|
Joffe ME, Santiago CI, Engers JL, Lindsley CW, Conn PJ. Metabotropic glutamate receptor subtype 3 gates acute stress-induced dysregulation of amygdalo-cortical function. Mol Psychiatry 2019; 24:916-927. [PMID: 29269844 PMCID: PMC6013320 DOI: 10.1038/s41380-017-0015-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 11/09/2022]
Abstract
Stress can precipitate or worsen symptoms of many psychiatric disorders by dysregulating glutamatergic function within the prefrontal cortex (PFC). Previous studies suggest that antagonists of group II metabotropic glutamate (mGlu) receptors (mGlu2 and mGlu3) reduce stress-induced anhedonia through actions in the PFC, but the mechanisms by which these receptors act are not known. We now report that activation of mGlu3 induces long-term depression (LTD) of excitatory transmission in the PFC at inputs from the basolateral amygdala. Our data suggest mGlu3-LTD is mediated by postsynaptic AMPAR internalization in PFC pyramidal cells, and we observed a profound impairment in mGlu3-LTD following a single, 20-min restraint stress exposure. Finally, blocking mGlu3 activation in vivo prevented the stress-induced maladaptive changes to amydalo-cortical physiology and motivated behavior. These data demonstrate that mGlu3 mediates stress-induced physiological and behavioral impairments and further support the potential for mGlu3 modulation as a treatment for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Max E. Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Chiaki I. Santiago
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA,Vanderbilt University, Nashville, TN, 37232, USA
| | - Julie L. Engers
- Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA,Department of Chemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA,Vanderbilt Center for Neuroscience Drug Discovery, Nashville, TN, 37232, USA,Correspondence to: P. Jeffrey Conn, Ph.D., Lee E. Limbird Professor of Pharmacology, Director, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, 1205 Light Hall Nashville, TN 37232-0697, Tel. (615) 936-2478, Fax. (615) 343-3088,
| |
Collapse
|
111
|
Li XH, Matsuura T, Liu RH, Xue M, Zhuo M. Calcitonin gene-related peptide potentiated the excitatory transmission and network propagation in the anterior cingulate cortex of adult mice. Mol Pain 2019; 15:1744806919832718. [PMID: 30717631 PMCID: PMC6396051 DOI: 10.1177/1744806919832718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The neuropeptide of calcitonin gene-related peptide (CGRP) plays critical roles in chronic pain, especially in migraine. Immunohistochemistry and in situ hybridization studies have shown that CGRP and its receptors are expressed in cortical areas including pain perception-related prefrontal anterior cingulate cortex. However, less information is available for the functional roles of CGRP in cortical regions such as the anterior cingulate cortex (ACC). Recent studies have consistently demonstrated that long-term potentiation is a key cellular mechanism for chronic pain in the ACC. In the present study, we used 64-electrode array field recording system to investigate the effect of CGRP on excitatory transmission in the ACC. We found that CGRP induced potentiation of synaptic transmission in a dose-dependently manner (1, 10, 50, and 100 nM). CGRP also recruited inactive circuit in the ACC. An application of the calcitonin receptor-like receptor antagonist CGRP8-37 blocked CGRP-induced chemical long-term potentiation and the recruitment of inactive channels. CGRP-induced long-term potentiation was also blocked by N-methyl-D-aspartate (NMDA) receptor antagonist AP-5. Consistently, the application of CGRP increased NMDA receptor-mediated excitatory postsynaptic currents. Finally, we found that CGRP-induced long-term potentiation required the activation of calcium-stimulated adenylyl cyclase subtype 1 (AC1) and protein kinase A. Genetic deletion of AC1 using AC1−/− mice, an AC1 inhibitor NB001 or a protein kinase A inhibitor KT5720, all reduced or blocked CGRP-induced potentiation. Our results provide direct evidence that CGRP may contribute to synaptic potentiation in important physiological and pathological conditions in the ACC, an AC1 inhibitor NB001 may be beneficial for the treatment of chronic headache.
Collapse
Affiliation(s)
- Xu-Hui Li
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada
| | - Takanori Matsuura
- 2 Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada.,3 Department of Orthopaedics, School of Medicine, University of Occupational and Environmental Health, Yahatanishi-ku, Kitakyushu, Japan
| | - Ren-Hao Liu
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Man Xue
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Zhuo
- 1 Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,2 Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, Canada
| |
Collapse
|
112
|
Kanold PO, Deng R, Meng X. The Integrative Function of Silent Synapses on Subplate Neurons in Cortical Development and Dysfunction. Front Neuroanat 2019; 13:41. [PMID: 31040772 PMCID: PMC6476909 DOI: 10.3389/fnana.2019.00041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022] Open
Abstract
The thalamocortical circuit is of central importance in relaying information to the cortex. In development, subplate neurons (SPNs) form an integral part of the thalamocortical pathway. These early born cortical neurons are the first neurons to receive thalamic inputs and excite neurons in the cortical plate. This feed-forward circuit topology of SPNs supports the role of SPNs in shaping the formation and plasticity of thalamocortical connections. Recently it has been shown that SPNs also receive inputs from the developing cortical plate and project to the thalamus. The cortical inputs to SPNs in early ages are mediated by N-methyl-D-aspartate (NMDA)-receptor only containing synapses while at later ages α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptors are present. Thus, SPNs perform a changing integrative function over development. NMDA-receptor only synapses are crucially influenced by the resting potential and thus insults to the developing brain that causes depolarizations, e.g., hypoxia, can influence the integrative function of SPNs. Since such insults in humans cause symptoms of neurodevelopmental disorders, NMDA-receptor only synapses on SPNs might provide a crucial link between early injuries and later circuit dysfunction. We thus here review subplate associated circuits, their changing functions, and discuss possible roles in development and disease.
Collapse
Affiliation(s)
- Patrick O. Kanold
- Department of Biology, University of Maryland, College Park, MD, United States
| | | | | |
Collapse
|
113
|
Innes S, Pariante CM, Borsini A. Microglial-driven changes in synaptic plasticity: A possible role in major depressive disorder. Psychoneuroendocrinology 2019; 102:236-247. [PMID: 30594100 DOI: 10.1016/j.psyneuen.2018.12.233] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 12/16/2022]
Abstract
Recent data gathered from both in vitro and in vivo models of Major Depressive Disorder (MDD) have indicated that microglia play an active role in modifying some of the most important sources for neuronal plasticity, specifically long-term potentiation (LTP) and long-term depression (LTD). In addition, microglia have been implicated in neuro-immune interaction dysregulations, which are considered a core constituent of MDD pathology. While prior studies have investigated the diverse effects activated microglia can have in the context of depression, including regulation of inflammatory cytokine production and structural changes, recent evidence has revealed a more direct relationship between microglial activation and changes in synaptic function and plasticity, including LTP and LTD. Here we review these findings from animal models, as well as discuss how current preclinical evidence might shed light on novel therapeutic targets for patients with depressive disorder.
Collapse
Affiliation(s)
- Stuart Innes
- Guy's King's and St Thomas' School of Life Science and Medicine, King's College London, UK
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| |
Collapse
|
114
|
The STEP 61 interactome reveals subunit-specific AMPA receptor binding and synaptic regulation. Proc Natl Acad Sci U S A 2019; 116:8028-8037. [PMID: 30936304 DOI: 10.1073/pnas.1900878116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein phosphatase that regulates a variety of synaptic proteins, including NMDA receptors (NAMDRs). To better understand STEP's effect on other receptors, we used mass spectrometry to identify the STEP61 interactome. We identified a number of known interactors, but also ones including the GluA2 subunit of AMPA receptors (AMPARs). We show that STEP61 binds to the C termini of GluA2 and GluA3 as well as endogenous AMPARs in hippocampus. The synaptic expression of GluA2 and GluA3 is increased in STEP-KO mouse brain, and STEP knockdown in hippocampal slices increases AMPAR-mediated synaptic currents. Interestingly, STEP61 overexpression reduces the synaptic expression and synaptic currents of both AMPARs and NMDARs. Furthermore, STEP61 regulation of synaptic AMPARs is mediated by lysosomal degradation. Thus, we report a comprehensive list of STEP61 binding partners, including AMPARs, and reveal a central role for STEP61 in differentially organizing synaptic AMPARs and NMDARs.
Collapse
|
115
|
Abstract
Understanding the mechanisms by which long-term synaptic plasticity is expressed remains an important objective in neuroscience. From a physiological perspective, the strength of a synapse can be considered a consequence of several parameters including the probability that a presynaptic action potential (AP) evokes the release of neurotransmitter, the mean number of quanta of transmitter released when release is evoked, and the mean amplitude of a postsynaptic response to a single quantum. Various methods have been employed to estimate these quantal parameters from electrophysiological recordings; such "quantal analysis" has been used to support competing accounts of mechanisms of expression of long-term plasticity. Because electrophysiological recordings, even with minimal presynaptic stimulation, can reflect responses arising at multiple synaptic sites, these methods are open to alternative interpretations. By combining intracellular electrical recording with optical detection of transmission at individual synapses, however, it is possible to eliminate such ambiguity. Here, we describe methods for such combined optical and electrical monitoring of synaptic transmission in brain slice preparations and illustrate how quantal analyses thereby obtained permit more definitive conclusions about the physiological changes that underlie long-term synaptic plasticity.
Collapse
Affiliation(s)
| | - Alan Fine
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
116
|
Murray LM, Knikou M. Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. PLoS One 2019; 14:e0213696. [PMID: 30845251 PMCID: PMC6405126 DOI: 10.1371/journal.pone.0213696] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/26/2019] [Indexed: 12/13/2022] Open
Abstract
Targeted neuromodulation strategies that strengthen neuronal activity are in great need for restoring sensorimotor function after chronic spinal cord injury (SCI). In this study, we established changes in the motoneuron output of individuals with and without SCI after repeated noninvasive transspinal stimulation at rest over the thoracolumbar enlargement, the spinal location of leg motor circuits. Cases of motor incomplete and complete SCI were included to delineate potential differences when corticospinal motor drive is minimal. All 10 SCI and 10 healthy control subjects received daily monophasic transspinal stimuli of 1-ms duration at 0.2 Hz at right soleus transspinal evoked potential (TEP) subthreshold and suprathreshold intensities at rest. Before and two days after cessation of transspinal stimulation, we determined changes in TEP recruitment input-output curves, TEP amplitude at stimulation frequencies of 0.1, 0.125, 0.2, 0.33 and 1.0 Hz, and TEP postactivation depression upon transspinal paired stimuli at interstimulus intervals of 60, 100, 300, and 500 ms. TEPs were recorded at rest from bilateral ankle and knee flexor/extensor muscles. Repeated transspinal stimulation increased the motoneuron output over multiple segments. In control and complete SCI subjects, motoneuron output increased for knee muscles, while in motor incomplete SCI subjects motoneuron output increased for both ankle and knee muscles. In control subjects, TEPs homosynaptic and postactivation depression were present at baseline, and were potentiated for the distal ankle or knee flexor muscles. TEPs homosynaptic and postactivation depression at baseline depended on the completeness of the SCI, with minimal changes observed after transspinal stimulation. These results indicate that repeated transspinal stimulation increases spinal motoneuron responsiveness of ankle and knee muscles in the injured human spinal cord, and thus can promote motor recovery. This noninvasive neuromodulation method is a promising modality for promoting functional neuroplasticity after SCI.
Collapse
Affiliation(s)
- Lynda M. Murray
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States of America
| | - Maria Knikou
- Klab4Recovery Research Laboratory, Department of Physical Therapy, College of Staten Island, The City University of New York, Staten Island, New York, United States of America
- PhD Program in Biology and Collaborative Neuroscience Program, Graduate Center of The City University of New York, New York, New York, United States of America
| |
Collapse
|
117
|
Vincent-Lamarre P, Lynn M, Béïque JC. The Eloquent Silent Synapse. Trends Neurosci 2019; 41:557-559. [PMID: 30143180 DOI: 10.1016/j.tins.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/08/2018] [Indexed: 11/15/2022]
Abstract
The ability of central synapses to undergo long-term potentiation (LTP) still captures the imagination of scientists and has become one of the most fascinating and deeply studied questions in modern neuroscience. By the mid-1990s, however, the field was deeply ensnarled in trying to answer a passionately dichotomous question: is LTP expressed by a pre- or a postsynaptic mechanism? Experimental results that could only be seen by many as being incontrovertibly contradictory presented a perplexing conundrum. However, two papers published in 1995 fundamentally redefined critical assumptions and provided a cunningly simple and elegant solution to an otherwise inextricable impasse.
Collapse
Affiliation(s)
- Philippe Vincent-Lamarre
- University of Ottawa Brain and Mind Research Institute's Center for Neural Dynamics, Department of Cellular and Molecular Medicine, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; These authors contributed equally to this work
| | - Michael Lynn
- University of Ottawa Brain and Mind Research Institute's Center for Neural Dynamics, Department of Cellular and Molecular Medicine, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; These authors contributed equally to this work
| | - Jean-Claude Béïque
- University of Ottawa Brain and Mind Research Institute's Center for Neural Dynamics, Department of Cellular and Molecular Medicine, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
118
|
Simonova NA, Bal NV, Balaban PM, Volgushev MA, Malyshev AY. An Optogenetic Approach to Studies of the Mechanisms of Heterosynaptic Plasticity in Neocortical Neurons. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s11055-019-00716-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
119
|
Ha NT, Dougherty KJ. Spinal Shox2 interneuron interconnectivity related to function and development. eLife 2018; 7:42519. [PMID: 30596374 PMCID: PMC6333440 DOI: 10.7554/elife.42519] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/27/2018] [Indexed: 12/25/2022] Open
Abstract
Neuronal networks generating hindlimb locomotion are located in the spinal cord. The mechanisms underlying spinal rhythmogenesis are unknown but network activity and interconnectivity of excitatory interneurons likely play prominent roles. Here, we investigate interconnectivity within the Shox2 interneuron population, a subset of which has been suggested to be involved in locomotor rhythm generation, using paired recordings in isolated spinal cords or slices from transgenic mice. Sparse unidirectional connections consistent with chemical synaptic transmission and prominent bidirectional connections mediated by electrical synapses were present within distinct subsets of Shox2 interneurons. Moreover, bidirectional electrical connections were preferentially found between functionally-related Shox2 interneurons. Though prevalent in neonatal mice, electrical coupling began to decline in incidence and strength in mice ~ 3 weeks of age. Overall, our data suggest that gap junctional coupling promotes synchronization of Shox2 interneurons, and may be implicated in locomotor rhythmicity in developing mice.
Collapse
Affiliation(s)
- Ngoc T Ha
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| | - Kimberly J Dougherty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, United States
| |
Collapse
|
120
|
Cortical expression of AMPA receptors during postnatal development in a genetic model of absence epilepsy. Int J Dev Neurosci 2018; 73:19-25. [PMID: 30593850 DOI: 10.1016/j.ijdevneu.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/25/2018] [Accepted: 12/25/2018] [Indexed: 11/23/2022] Open
Abstract
Childhood absence epilepsy has been associated with poor academic performance, behavioural difficulties, as well as increased risk of physical injury in some affected children. The frequent episodes of 'absence' arise from corticothalamocortical network dysfunction, with multifactorial mechanisms potentially involved in genetically different patients. Aberrations in glutamatergic neurotransmission has been implicated in some seizure models, and we have recently reported that reduced cortical AMPA receptor (AMPAR) expression (predominantly GluA4- containing AMPARs) in parvalbumin-containing (PV+) inhibitory interneurons, could underlie seizure generation in the stargazer mutant mouse. In the present study, we investigate AMPA receptor subunit changes occurring during postnatal development in the stargazer mouse, to determine when these changes occur relative to seizure onset and thus could be contributory to seizure generation. Using quantitative western blotting, we analysed the expression of AMPAR GluA1-4 subunits in the somatosensory cortex at three critical time points; two before seizure onset (postnatal days (PN) 7-9 and 13-15), and one at seizure onset (PN17-18) in stargazers. We report that compared to their non-epileptic littermates, in the stargazer somatosensory cortex, there was a significant reduction in expression of AMPARs containing GluA1, 3 and 4 subunits prior to seizure onset, whereas reduction in expression of GluA2-AMPARs appears to be a post-seizure event. Thus, while loss of GluA4-containing AMPARs (likely GluA1/4 and GluA3/4) may be linked to seizure induction, the loss of GluA2-containing AMPARs is a secondary post-seizure mechanism, which is most likely involved in seizure maintenance.
Collapse
|
121
|
Matheus Gauy M, Lengler J, Einarsson H, Meier F, Weissenberger F, Yanik MF, Steger A. A Hippocampal Model for Behavioral Time Acquisition and Fast Bidirectional Replay of Spatio-Temporal Memory Sequences. Front Neurosci 2018; 12:961. [PMID: 30618583 PMCID: PMC6306028 DOI: 10.3389/fnins.2018.00961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/03/2018] [Indexed: 01/09/2023] Open
Abstract
The hippocampus is known to play a crucial role in the formation of long-term memory. For this, fast replays of previously experienced activities during sleep or after reward experiences are believed to be crucial. But how such replays are generated is still completely unclear. In this paper we propose a possible mechanism for this: we present a model that can store experienced trajectories on a behavioral timescale after a single run, and can subsequently bidirectionally replay such trajectories, thereby omitting any specifics of the previous behavior like speed, etc, but allowing repetitions of events, even with different subsequent events. Our solution builds on well-known concepts, one-shot learning and synfire chains, enhancing them by additional mechanisms using global inhibition and disinhibition. For replays our approach relies on dendritic spikes and cholinergic modulation, as supported by experimental data. We also hypothesize a functional role of disinhibition as a pacemaker during behavioral time.
Collapse
Affiliation(s)
- Marcelo Matheus Gauy
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Johannes Lengler
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Hafsteinn Einarsson
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Florian Meier
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Felix Weissenberger
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| | - Mehmet Fatih Yanik
- Department of Information Technology and Electrical Engineering, Institute for Neuroinformatics, ETH Zurich, Zurich, Switzerland
| | - Angelika Steger
- Department of Computer Science, Institute of Theoretical Computer Science, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
122
|
Baltaci SB, Mogulkoc R, Baltaci AK. Molecular Mechanisms of Early and Late LTP. Neurochem Res 2018; 44:281-296. [DOI: 10.1007/s11064-018-2695-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/31/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022]
|
123
|
Park M. AMPA Receptor Trafficking for Postsynaptic Potentiation. Front Cell Neurosci 2018; 12:361. [PMID: 30364291 PMCID: PMC6193507 DOI: 10.3389/fncel.2018.00361] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/25/2018] [Indexed: 01/25/2023] Open
Abstract
Long-term potentiation (LTP) of excitatory synaptic strength, which has long been considered a synaptic correlate for learning and memory, requires a fast recruitment of additional α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (AMPARs) to the postsynaptic sites. As cell biological concepts have been applied to the field and genetic manipulation and microscopic imaging technologies have been advanced, visualization of the trafficking of AMPARs to synapses for LTP has been investigated intensively over the last decade. Recycling endosomes have been reported as intracellular storage organelles to supply AMPARs for LTP through the endocytic recycling pathway. In addition, exocytic domains in the spine plasma membrane, where AMPARs are inserted from the intracellular compartment, and nanodomains, where diffusing AMPARs are trapped and immobilized inside synapses for LTP, have been described. Furthermore, cell surface lateral diffusion of AMPARs from extrasynaptic to synaptic sites has been reported as a key step for AMPAR location to the synaptic sites for LTP. This review article will discuss recent findings and views on the reservoir(s) of AMPARs and their trafficking for LTP expression by focusing on the exocytosis and lateral diffusion of AMPARs, and provide some future directions that need to be addressed in the field of LTP.
Collapse
Affiliation(s)
- Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea.,Department of Neuroscience, Korea University of Science and Technology, Daejeon, South Korea
| |
Collapse
|
124
|
Glasgow SD, Labrecque S, Beamish IV, Aufmkolk S, Gibon J, Han D, Harris SN, Dufresne P, Wiseman PW, McKinney RA, Séguéla P, De Koninck P, Ruthazer ES, Kennedy TE. Activity-Dependent Netrin-1 Secretion Drives Synaptic Insertion of GluA1-Containing AMPA Receptors in the Hippocampus. Cell Rep 2018; 25:168-182.e6. [DOI: 10.1016/j.celrep.2018.09.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 11/28/2022] Open
|
125
|
Liu M, Shi R, Hwang H, Han KS, Wong MH, Ren X, Lewis LD, Brown EN, Xu W. SAP102 regulates synaptic AMPAR function through a CNIH-2-dependent mechanism. J Neurophysiol 2018; 120:1578-1586. [PMID: 30067114 PMCID: PMC6230800 DOI: 10.1152/jn.00731.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 11/22/2022] Open
Abstract
The postsynaptic density (PSD)-95-like, disk-large (DLG) membrane-associated guanylate kinase (PSD/DLG-MAGUK) family of proteins scaffold α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) complexes to the postsynaptic compartment and are postulated to orchestrate activity-dependent modulation of synaptic AMPAR functions. SAP102 is a key member of this family, present from early development, before PSD-95 and PSD-93, and throughout life. Here we investigate the role of SAP102 in synaptic transmission using a cell-restricted molecular replacement strategy, where SAP102 is expressed against the background of acute knockdown of endogenous PSD-95. We show that SAP102 rescues the decrease of AMPAR-mediated evoked excitatory postsynaptic currents (AMPAR eEPSCs) and AMPAR miniature EPSC (AMPAR mEPSC) frequency caused by acute knockdown of PSD-95. Further analysis of the mini events revealed that PSD-95-to-SAP102 replacement but not direct manipulation of PSD-95 increases the AMPAR mEPSC decay time. SAP102-mediated rescue of AMPAR eEPSCs requires AMPAR auxiliary subunit cornichon-2, whereas cornichon-2 knockdown did not affect PSD-95-mediated regulation of AMPAR eEPSC. Combining these observations, our data elucidate that PSD-95 and SAP102 differentially influence basic synaptic properties and synaptic current kinetics potentially via different AMPAR auxiliary subunits. NEW & NOTEWORTHY Synaptic scaffold proteins postsynaptic density (PSD)-95-like, disk-large (DLG) membrane-associated guanylate kinase (PSD-MAGUKs) regulate synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) function. However, the functional diversity among different PSD-MAGUKs remains to be categorized. We show that distinct from PSD-95, SAP102 increase the AMPAR synaptic current decay time, and the effect of SAP102 on synaptic AMPAR function requires the AMPAR auxiliary subunit cornichon-2. Our data suggest that PSD-MAGUKs target and modulate different AMPAR complexes to exert specific experience-dependent modification of the excitatory circuit.
Collapse
Affiliation(s)
- Mingna Liu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Rebecca Shi
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Hongik Hwang
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Chemistry, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Kyung Seok Han
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Man Ho Wong
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Xiaobai Ren
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Laura D Lewis
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- MIT-Harvard Division of Health Science and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
- MIT-Harvard Division of Health Science and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | - Weifeng Xu
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology , Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| |
Collapse
|
126
|
Turner BD, Kashima DT, Manz KM, Grueter CA, Grueter BA. Synaptic Plasticity in the Nucleus Accumbens: Lessons Learned from Experience. ACS Chem Neurosci 2018; 9:2114-2126. [PMID: 29280617 DOI: 10.1021/acschemneuro.7b00420] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Synaptic plasticity contributes to behavioral adaptations. As a key node in the reward pathway, the nucleus accumbens (NAc) is important for determining motivation-to-action outcomes. Across animal models of motivation including addiction, depression, anxiety, and hedonic feeding, selective recruitment of neuromodulatory signals and plasticity mechanisms have been a focus of physiologists and behaviorists alike. Experience-dependent plasticity mechanisms within the NAc vary depending on the distinct afferents and cell-types over time. A greater understanding of molecular mechanisms determining how these changes in synaptic strength track with behavioral adaptations will provide insight into the process of learning and memory along with identifying maladaptations underlying pathological behavior. Here, we summarize recent findings detailing how changes in NAc synaptic strength and mechanisms of plasticity manifest in various models of motivational disorders.
Collapse
Affiliation(s)
- Brandon D. Turner
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
| | - Daniel T. Kashima
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Kevin M. Manz
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie A. Grueter
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Brad A. Grueter
- Vanderbilt Brain Institute, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
127
|
Baram Y. Circuit Polarity Effect of Cortical Connectivity, Activity, and Memory. Neural Comput 2018; 30:3037-3071. [PMID: 30216139 DOI: 10.1162/neco_a_01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Experimental constraints have traditionally implied separate studies of different cortical functions, such as memory and sensory-motor control. Yet certain cortical modalities, while repeatedly observed and reported, have not been clearly identified with one cortical function or another. Specifically, while neuronal membrane and synapse polarities with respect to a certain potential value have been attracting considerable interest in recent years, the purposes of such polarities have largely remained a subject for speculation and debate. Formally identifying these polarities as on-off neuronal polarity gates, we analytically show that cortical circuit structure, behavior, and memory are all governed by the combined potent effect of these gates, which we collectively term circuit polarity. Employing widely accepted and biologically validated firing rate and plasticity paradigms, we show that circuit polarity is mathematically embedded in the corresponding models. Moreover, we show that the firing rate dynamics implied by these models are driven by ongoing circuit polarity gating dynamics. Furthermore, circuit polarity is shown to segregate cortical circuits into internally synchronous, externally asynchronous subcircuits, defining their firing rate modes in accordance with different cortical tasks. In contrast to the Hebbian paradigm, which is shown to be susceptible to mutual neuronal interference in the face of asynchrony, circuit polarity is shown to block such interference. Noting convergence of synaptic weights, we show that circuit polarity holds the key to cortical memory, having a segregated capacity linear in the number of neurons. While memory concealment is implied by complete neuronal silencing, memory is restored by reactivating the original circuit polarity. Finally, we show that incomplete deterioration or restoration of circuit polarity results in memory modification, which may be associated with partial or false recall, or novel innovation.
Collapse
Affiliation(s)
- Yoram Baram
- Computer Science Department, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
128
|
Lim SL, Tran DN, Zumkehr J, Chen C, Ghiaar S, Kieu Z, Villanueva E, Gallup V, Rodriguez-Ortiz CJ, Kitazawa M. Inhibition of hematopoietic cell kinase dysregulates microglial function and accelerates early stage Alzheimer's disease-like neuropathology. Glia 2018; 66:2700-2718. [PMID: 30277607 DOI: 10.1002/glia.23522] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 08/02/2018] [Accepted: 08/02/2018] [Indexed: 11/08/2022]
Abstract
Emerging evidence have posited that dysregulated microglia impair clearance and containment of amyloid-β (Aβ) species in the brain, resulting in aberrant buildup of Aβ and onset of Alzheimer's disease (AD). Hematopoietic cell kinase (Hck) is one of the key regulators of phagocytosis among the Src family tyrosine kinases (SFKs) in myeloid cells, and its expression is found to be significantly altered in AD brains. However, the role of Hck signaling in AD pathogenesis is unknown. We employed pharmacological inhibition and genetic ablation of Hck in BV2 microglial cells and J20 mouse model of AD, respectively, to evaluate the impact of Hck deficiency on Aβ-stimulated microglial phagocytosis, Aβ clearance, and resultant AD-like neuropathology. Our in vitro data reveal that pharmacological inhibition of SFKs/Hck in BV2 cells and genetic ablation of their downstream kinase, spleen tyrosine kinase (Syk), in primary microglia significantly attenuate Aβ oligomers-stimulated microglial phagocytosis. Whereas in Hck-deficient J20 mice, we observed exacerbated Aβ plaque burden, reduced microglial coverage, containment, and phagocytosis of Aβ plaques, and induced iNOS expression in plaque-associated microglial clusters. These multifactorial changes in microglial activities led to attenuated PSD95 levels in hippocampal DG and CA3 regions, but did not alter the postsynaptic dendritic spine morphology at the CA1 region nor cognitive function of the mice. Hck inhibition thus accelerates early stage AD-like neuropathology by dysregulating microglial function and inducing neuroinflammation. Our data implicate that Hck pathway plays a prominent role in regulating microglial neuroprotective function during the early stage of AD development.
Collapse
Affiliation(s)
- Siok Lam Lim
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| | - Diana Nguyen Tran
- Molecular and Cell Biology, University of California, Merced, California
| | - Joannee Zumkehr
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| | - Christine Chen
- Molecular and Cell Biology, University of California, Merced, California
| | - Sagar Ghiaar
- Molecular and Cell Biology, University of California, Merced, California
| | - Zanett Kieu
- Molecular and Cell Biology, University of California, Merced, California
| | | | - Victoria Gallup
- Molecular and Cell Biology, University of California, Merced, California
| | - Carlos J Rodriguez-Ortiz
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| | - Masashi Kitazawa
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, California.,Molecular and Cell Biology, University of California, Merced, California
| |
Collapse
|
129
|
Reduced Microglial Activity and Enhanced Glutamate Transmission in the Basolateral Amygdala in Early CNS Autoimmunity. J Neurosci 2018; 38:9019-9033. [PMID: 30185466 DOI: 10.1523/jneurosci.0398-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Emotional dysfunction is common in multiple sclerosis (MS) patients and in mouse models of MS, including experimental autoimmune encephalomyelitis (EAE); however, the etiology of these behaviors is poorly understood. To identify CNS changes associated with these behaviors, we focused on the basolateral amygdala (BLA) because of its central role in the regulation of emotional behavior. Whole-cell recordings were performed in the principal neurons of the BLA in early EAE, before demyelination, T-cell invasion, and motor dysfunction. EAE female mice displayed increased frequency of mEPSCs, with no alteration in amplitude or evoked EPSC paired-pulse ratio compared with controls. We found an increase in the AMPA-NMDA ratio and dendritic spine density, indicating increased numbers of glutamatergic synapses. We saw similar electrophysiological changes in BLA principal neurons after microglia were either inactivated (minocycline) or depleted (Mac1-Saporin) in the BLA. Microglia regulate synapses through pruning, directed by complement protein 3 (C3) expression. C3 was downregulated in the BLA in EAE. Ultrastructural analysis of microglia revealed more complex ramifications and reduced extracellular digestion of cellular elements. We also observed reduced IBA-1 and CD68 staining and lack of proinflammatory cytokine expression in the amygdala. Thus, early EAE is a state of microglial "deactivation" associated with reduced synaptic pruning. This contrasts with the prototypic microglial activation commonly associated with inflammatory CNS disease. Additionally, these data support a role for the acquired immune system to influence both neuronal and microglial function in early CNS autoimmunity.SIGNIFICANCE STATEMENT Microglia help regulate synaptic homeostasis, but there has been little evidence for how this might be important in neuroinflammatory diseases. The data from this study reveal increased synaptic activity and spine density in early stages of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis) in the basolateral amygdala, a nucleus important in the types of behavioral changes we have previously described. These electrophysiological and morphological effects occurred without significant elevation of local inflammatory cytokines or local demyelination. Unexpectedly, in the context of inflammatory state, we found that microglia were "deactivated." This study provides strong evidence for a link between microglial activity and synaptic function; the conclusions contrast with the generally accepted view that microglia are activated in inflammatory disease.
Collapse
|
130
|
Generation of silent synapses in dentate gyrus correlates with development of alcohol addiction. Neuropsychopharmacology 2018; 43:1989-1999. [PMID: 29967367 PMCID: PMC6098144 DOI: 10.1038/s41386-018-0119-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/29/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
The brain circuits and synaptic processes that underlie alcohol addiction are currently the subject of intensive research. Here we focus on hippocampal circuitry and show that chemogenetic inhibition of dentate gyrus (DG) during presentation of alcohol-associated cues has long-lasting effects on mice behavior. DG inhibition enhances alcohol seeking and drinking, suggesting that DG regulates addiction-related behaviors. To test this hypothesis, we perform whole-cell patch-clamp recordings from the granule cells of DG and look for electrophysiological correlates of alcohol addiction. We observe that presentation of alcohol-associated cue light that induces relapse to alcohol-seeking results in generation of silent synapses, that lack functional AMPA receptors. Furthermore, using human criteria of addiction, we differentiate mice controlling their alcohol consumption from those that undergo transition to addiction to discover that the levels of silent synapses induced by alcohol cues are specifically increased in the addicted mice. As the total level of dendritic spines that harbor synapses is constant at this time point, our data indicate that synapses of perforant path to DG are weakened during cue relapse. Finally we demonstrate that, acamprosate, a drug that limits alcohol drinking and seeking in addicts, prevents generation of silent synapses in DG upon presentation of alcohol-associated cues. Altogether, our data suggest that weakening of DG synapses upon cue relapse contributes to persistent alcohol addiction-related behaviors.
Collapse
|
131
|
Koya E, Dong Y. Sound of silent synapses from the addicted hippocampus. Neuropsychopharmacology 2018; 43:1981-1982. [PMID: 30030543 PMCID: PMC6098148 DOI: 10.1038/s41386-018-0142-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 06/28/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Eisuke Koya
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, BN1 9QG, UK.
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
132
|
McDevitt DS, Graziane NM. Neuronal mechanisms mediating pathological reward-related behaviors: A focus on silent synapses in the nucleus accumbens. Pharmacol Res 2018; 136:90-96. [PMID: 30171902 DOI: 10.1016/j.phrs.2018.08.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
The compulsive drive to seek drugs despite negative consequences relies heavily on drug-induced alterations that occur within the reward neurocircuit. These alterations include changes in neuromodulator and neurotransmitter systems that ultimately lock behaviors into an inflexible and permanent state. To provide clinicians with improved treatment options, researchers are trying to identify, as potential targets of therapeutic intervention, the neural mechanisms mediating an "addictive-like state". Here, we discuss how drug-induced generation of silent synapses in the nucleus accumbens may be a potential therapeutic target capable of reversing drug-related behaviors.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA; Neuroscience graduate program, Penn State College of Medicine, Hershey, PA, 17033 USA
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, 17033 USA.
| |
Collapse
|
133
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
134
|
Timing Mechanisms Underlying Gate Control by Feedforward Inhibition. Neuron 2018; 99:941-955.e4. [PMID: 30122375 DOI: 10.1016/j.neuron.2018.07.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/20/2018] [Accepted: 07/17/2018] [Indexed: 01/20/2023]
Abstract
The gate control theory proposes that Aβ mechanoreceptor inputs to spinal pain transmission T neurons are gated via feedforward inhibition, but it remains unclear how monosynaptic excitation is gated by disynaptic inhibitory inputs that arrive later. Here we report that Aβ-evoked, non-NMDAR-dependent EPSPs in T neurons are subthreshold, allowing time for inhibitory inputs to prevent action potential firing that requires slow-onset NMDAR activation. Potassium channel activities-including IA, whose sizes are established constitutively by PreprodynorphinCre-derived inhibitory neurons-either completely filter away Aβ inputs or make them subthreshold, thereby creating a permissive condition to achieve gate control. Capsaicin-activated nociceptor inputs reduce IA and sensitize the T neurons, allowing Aβ inputs to cause firing before inhibitory inputs arrive. Thus, distinct kinetics of glutamate receptors and electric filtering by potassium channels solve the timing problem underlying the gating by feedforward inhibition, and their modulation offers a way to bypass the gate control.
Collapse
|
135
|
Hartzell AL, Martyniuk KM, Brigidi GS, Heinz DA, Djaja NA, Payne A, Bloodgood BL. NPAS4 recruits CCK basket cell synapses and enhances cannabinoid-sensitive inhibition in the mouse hippocampus. eLife 2018; 7:35927. [PMID: 30052197 PMCID: PMC6105310 DOI: 10.7554/elife.35927] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022] Open
Abstract
Experience-dependent expression of immediate-early gene transcription factors (IEG-TFs) can transiently change the transcriptome of active neurons and initiate persistent changes in cellular function. However, the impact of IEG-TFs on circuit connectivity and function is poorly understood. We investigate the specificity with which the IEG-TF NPAS4 governs experience-dependent changes in inhibitory synaptic input onto CA1 pyramidal neurons (PNs). We show that novel sensory experience selectively enhances somatic inhibition mediated by cholecystokinin-expressing basket cells (CCKBCs) in an NPAS4-dependent manner. NPAS4 specifically increases the number of synapses made onto PNs by individual CCKBCs without altering synaptic properties. Additionally, we find that sensory experience-driven NPAS4 expression enhances depolarization-induced suppression of inhibition (DSI), a short-term form of cannabinoid-mediated plasticity expressed at CCKBC synapses. Our results indicate that CCKBC inputs are a major target of the NPAS4-dependent transcriptional program in PNs and that NPAS4 is an important regulator of plasticity mediated by endogenous cannabinoids.
Collapse
Affiliation(s)
- Andrea L Hartzell
- Neuroscience Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Kelly M Martyniuk
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - G Stefano Brigidi
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Daniel A Heinz
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Biological Sciences Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Nathalie A Djaja
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Anja Payne
- Neuroscience Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| | - Brenda L Bloodgood
- Neuroscience Graduate Program, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States.,Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, United States
| |
Collapse
|
136
|
Haas KT, Compans B, Letellier M, Bartol TM, Grillo-Bosch D, Sejnowski TJ, Sainlos M, Choquet D, Thoumine O, Hosy E. Pre-post synaptic alignment through neuroligin-1 tunes synaptic transmission efficiency. eLife 2018; 7:e31755. [PMID: 30044218 PMCID: PMC6070337 DOI: 10.7554/elife.31755] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
The nanoscale organization of neurotransmitter receptors regarding pre-synaptic release sites is a fundamental determinant of the synaptic transmission amplitude and reliability. How modifications in the pre- and post-synaptic machinery alignments affects synaptic currents, has only been addressed with computer modelling. Using single molecule super-resolution microscopy, we found a strong spatial correlation between AMPA receptor (AMPAR) nanodomains and the post-synaptic adhesion protein neuroligin-1 (NLG1). Expression of a truncated form of NLG1 disrupted this correlation without affecting the intrinsic AMPAR organization, shifting the pre-synaptic release machinery away from AMPAR nanodomains. Electrophysiology in dissociated and organotypic hippocampal rodent cultures shows these treatments significantly decrease AMPAR-mediated miniature and EPSC amplitudes. Computer modelling predicts that ~100 nm lateral shift between AMPAR nanoclusters and glutamate release sites induces a significant reduction in AMPAR-mediated currents. Thus, our results suggest the synapses necessity to release glutamate precisely in front of AMPAR nanodomains, to maintain a high synaptic responses efficiency.
Collapse
Affiliation(s)
- Kalina T Haas
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Benjamin Compans
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Mathieu Letellier
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Thomas M Bartol
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaUnited States
| | - Dolors Grillo-Bosch
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Terrence J Sejnowski
- Howard Hughes Medical InstituteSalk Institute for Biological StudiesLa JollaUnited States
| | - Matthieu Sainlos
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Daniel Choquet
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
- Bordeaux Imaging CenterUMS 3420 CNRS, Université de Bordeaux, US4 INSERM, F-33000BordeauxFrance
| | - Olivier Thoumine
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| | - Eric Hosy
- Interdisciplinary Institute for NeuroscienceUniversity of Bordeaux, UMR 5297, F-33000BordeauxFrance
- Interdisciplinary Institute for NeuroscienceCNRS, UMR 5297, F-33000BordeauxFrance
| |
Collapse
|
137
|
Tian C, Kay Y, Sadybekov A, Rao S, Katritch V, Herring BE. An Intellectual Disability-Related Missense Mutation in Rac1 Prevents LTP Induction. Front Mol Neurosci 2018; 11:223. [PMID: 30042656 PMCID: PMC6049044 DOI: 10.3389/fnmol.2018.00223] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/07/2018] [Indexed: 11/22/2022] Open
Abstract
The small GTPase Rac1 promotes actin polymerization and plays a critical and increasingly appreciated role in the development and plasticity of glutamatergic synapses. Growing evidence suggests that disruption of the Rac1 signaling pathway at glutamatergic synapses contributes to Autism Spectrum Disorder/intellectual disability (ASD/ID)-related behaviors seen in animal models of ASD/ID. Rac1 has also been proposed as a strong candidate of convergence for many factors implicated in the development of ASD/ID. However, the effects of ASD/ID-related mutations in Rac1 itself have not been explored in neurons. Here, we investigate a recently reported de novo missense mutation in Rac1 found in an individual with severe ID. Our modeling predicts that this mutation will strongly inhibit Rac1 activation by occluding Rac1's GTP binding pocket. Indeed, we find that this de novo mutation prevents Rac1 function and results in a selective reduction in synaptic AMPA receptor function. Furthermore, this mutation prevents the induction of long-term potentiation (LTP), the cellular mechanism underlying learning and memory formation. Together, our findings strongly suggest that this mutation contributes to the development of ID in this individual. This research demonstrates the importance of Rac1 in synaptic function and plasticity and contributes to a growing body of evidence pointing to dysregulation of actin polymerization at glutamatergic synapses as a contributing factor to ASD/ID.
Collapse
Affiliation(s)
- Chen Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Yuni Kay
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Anastasiia Sadybekov
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
- The Bridge Institute, University of Southern California, Los Angeles, CA, United States
| | - Sadhna Rao
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Vsevolod Katritch
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
- The Bridge Institute, University of Southern California, Los Angeles, CA, United States
| | - Bruce E. Herring
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- The Bridge Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
138
|
Soares C, Lee KFH, Béïque JC. Metaplasticity at CA1 Synapses by Homeostatic Control of Presynaptic Release Dynamics. Cell Rep 2018; 21:1293-1303. [PMID: 29091767 DOI: 10.1016/j.celrep.2017.10.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 08/16/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022] Open
Abstract
Hebbian and homeostatic forms of plasticity operate on different timescales to regulate synaptic strength. The degree of mechanistic overlap between these processes and their mutual influence are still incompletely understood. Here, we report that homeostatic synaptic strengthening induced by prolonged network inactivity compromised the ability of CA1 synapses to exhibit LTP. This effect could not be accounted for by an obvious deficit in the postsynaptic capacity for LTP expression, since neither the fraction of silent synapses nor the ability to induce LTP by two-photon glutamate uncaging were reduced by the homeostatic process. Rather, optical quantal analysis reveals that homeostatically strengthened synapses display a reduced capacity to maintain glutamate release fidelity during repetitive stimulation, ultimately impeding the induction, and thus expression, of LTP. By regulating the short-term dynamics of glutamate release, the homeostatic process thus influences key aspects of dynamic network function and exhibits features of metaplasticity.
Collapse
Affiliation(s)
- Cary Soares
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Kevin F H Lee
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Neuroscience Graduate Program, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Canadian Partnership for Stroke Recovery, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Brain and Mind Research Institute's Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
139
|
Cheng Y, Wang X, Wei X, Xie X, Melo S, Miranda RC, Wang J. Prenatal Exposure to Alcohol Induces Functional and Structural Plasticity in Dopamine D1 Receptor-Expressing Neurons of the Dorsomedial Striatum. Alcohol Clin Exp Res 2018; 42:10.1111/acer.13806. [PMID: 29870053 PMCID: PMC6281858 DOI: 10.1111/acer.13806] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/29/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is a leading cause of hyperactivity in children. Excitation of dopamine D1 receptor-expressing medium spiny neurons (D1-MSNs) of the dorsomedial striatum (DMS), a brain region that controls voluntary behavior, is known to induce hyperactivity in mice. We therefore hypothesized that PAE-linked hyperactivity was due to persistently altered glutamatergic activity in DMS D1-MSNs. METHODS Female Ai14 tdTomato reporter mice were given access to alcohol in an intermittent access, 2-bottle choice paradigm before pregnancy, and following mating with male D1-Cre mice, through the pregnancy period, and until postnatal day (P) 10. Locomotor activity was tested in juvenile (P21) and adult (P133) offspring, and alcohol-conditioned place preference (CPP) was measured in adult offspring. Glutamatergic activity in DMS D1-MSNs of adult PAE and control mice was measured by slice electrophysiology, followed by measurements of dendritic morphology. RESULTS Our voluntary maternal alcohol consumption model resulted in increased locomotor activity in juvenile PAE mice, and this hyperactivity was maintained into adulthood. Furthermore, PAE resulted in a higher alcohol-induced CPP in adult offspring. Glutamatergic activity onto DMS D1-MSNs was also enhanced by PAE. Finally, PAE increased dendritic complexity in DMS D1-MSNs in adult offspring. CONCLUSIONS Our model of PAE does result in persistent hyperactivity in offspring. In adult PAE offspring, hyperactivity is accompanied by potentiated glutamatergic strength and afferent connectivity in DMS D1-MSNs, an outcome that is also consistent with the observed increase in alcohol preference in PAE offspring. Consequently, a PAE-sensitive circuit, centered within the D1-MSN, may be linked to behavioral outcomes of PAE.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Xiaoyan Wei
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Xueyi Xie
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Sebastian Melo
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas 77807
| |
Collapse
|
140
|
Liu YZ, Wang Y, Tang W, Zhu JY, Wang Z. NMDA receptor-gated visual responses in hippocampal CA1 neurons. J Physiol 2018; 596:1965-1979. [PMID: 29512156 DOI: 10.1113/jp275094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/19/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sensory information processing in hippocampal circuits is critical for numerous hippocampus-dependent functions, but the underlying synaptic mechanism remains elusive. We performed whole-cell recording in vivo to examine visually evoked synaptic activity in hippocampal CA1 pyramidal cells (PCs). We first found that at resting potentials, ∼30% of CA1 PCs showed synaptic responses to a flash of visual stimulation. Interestingly, at depolarizing potentials, nearly all CA1 PCs were found to exhibit NMDA receptor-dependent responses, indicating the presence of NMDA receptor-mediated gating of CA1 responses. The NMDA receptor-gated CA1 responses may play important roles in the hippocampal function that depends on sensory information processing. ABSTRACT Hippocampal processing of environmental information is critical for hippocampus-dependent brain functions that result from experience-induced hippocampal plasticity, such as memory acquisition and storage. Hippocampal responses to sensory stimulation have been extensively investigated, particularly with respect to spike activity. However, the synaptic mechanism for hippocampal processing of sensory stimulation has been much less understood. Here, we performed in vivo whole-cell recording on hippocampal CA1 pyramidal cells (PCs) from adult rodents to examine CA1 responses to a flash of visual stimulation. We first found in recordings obtained at resting potentials that ∼30% of CA1 PCs exhibited significant excitatory/inhibitory membrane-potential (MP) or membrane-current (MC) responses to the flash stimulus. Remarkably, in the other (∼70%) CA1 PCs, although no responses could be detected at resting potentials, clear excitatory MP or MC responses to the same flash stimulus were observed at depolarizing potentials, and these responses were further found to depend on NMDA receptors. Our findings demonstrate the presence of NMDA receptor-mediated gating of visual responses in hippocampal CA1 neurons, a synaptic mechanism for hippocampal processing of sensory information that may play important roles in hippocampus-dependent functions such as learning and memory.
Collapse
Affiliation(s)
- Yu-Zhang Liu
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Yao Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Wei Tang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Jun-Yi Zhu
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| | - Zhiru Wang
- Institute and Key Laboratory of Brain Functional Genomics of Chinese Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Sciences, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
141
|
Litvin DG, Dick TE, Smith CB, Jacono FJ. Lung-injury depresses glutamatergic synaptic transmission in the nucleus tractus solitarii via discrete age-dependent mechanisms in neonatal rats. Brain Behav Immun 2018; 70:398-422. [PMID: 29601943 PMCID: PMC6075724 DOI: 10.1016/j.bbi.2018.03.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/26/2022] Open
Abstract
Transition periods (TPs) are brief stages in CNS development where neural circuits can exhibit heightened vulnerability to pathologic conditions such as injury or infection. This susceptibility is due in part to specialized mechanisms of synaptic plasticity, which may become activated by inflammatory mediators released under pathologic conditions. Thus, we hypothesized that the immune response to lung injury (LI) mediated synaptic changes through plasticity-like mechanisms that depended on whether LI occurred just before or after a TP. We studied the impact of LI on brainstem 2nd-order viscerosensory neurons located in the nucleus tractus solitarii (nTS) during a TP for respiratory control spanning (postnatal day (P) 11-15). We injured the lungs of Sprague-Dawley rats by intratracheal instillation of Bleomycin (or saline) just before (P9-11) or after (P17-19) the TP. A week later, we prepared horizontal slices of the medulla and recorded spontaneous and evoked excitatory postsynaptic currents (sEPSCs/eEPSCs) in vitro from neurons in the nTS that received monosynaptic glutamatergic input from the tractus solitarii (TS). In rats injured before the TP (pre-TP), neurons exhibited blunted sEPSCs and TS-eEPSCs compared to controls. The decreased TS-eEPSCs were mediated by differences in postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic-acid receptors (AMPAR). Specifically, compared to controls, LI rats had more Ca2+-impermeable AMPARs (CI-AMPARs) as indicated by: 1) the absence of current-rectification, 2) decreased sensitivity to polyamine, 1-Naphthyl-acetyl-spermine-trihydrochloride (NASPM) and 3) augmented immunoreactive staining for the CI-AMPAR GluA2. Thus, pre-TP-LI acts postsynaptically to blunt glutamatergic transmission. The neuroimmune response to pre-TP-LI included microglia hyper-ramification throughout the nTS. Daily intraperitoneal administration of minocycline, an inhibitor of microglial/macrophage function prevented hyper-ramification and abolished the pre-TP-LI evoked synaptic changes. In contrast, rat-pups injured after the TP (post-TP) exhibited microglia hypo-ramification in the nTS and had increased sEPSC amplitudes/frequencies, and decreased TS-eEPSC amplitudes compared to controls. These synaptic changes were not associated with changes in CI-AMPARs, and instead involved greater TS-evoked use-dependent depression (reduced paired pulse ratio), which is a hallmark of presynaptic plasticity. Thus we conclude that LI regulates the efficacy of TS → nTS synapses through discrete plasticity-like mechanisms that are immune-mediated and depend on whether the injury occurs before or after the TP for respiratory control.
Collapse
Affiliation(s)
- David G Litvin
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States
| | - Thomas E Dick
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Corey B Smith
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States
| | - Frank J Jacono
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States; Division of Pulmonary, Critical Care and Sleep Medicine, Louis Stokes VA Medical Center, Cleveland, OH 44106, United States.
| |
Collapse
|
142
|
Wang P, Mei F, Hu J, Zhu M, Qi H, Chen X, Li R, McNutt MA, Yin Y. PTENα Modulates CaMKII Signaling and Controls Contextual Fear Memory and Spatial Learning. Cell Rep 2018. [PMID: 28636948 DOI: 10.1016/j.celrep.2017.05.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PTEN (phosphatase and tensin homology deleted on chromosome 10) has multiple functions, and recent studies have shown that the PTEN family has isoforms. The roles of these PTEN family members in biologic activities warrant specific evaluation. Here, we show that PTENα maintains CaMKII in a state that is competent to induce long-term potentiation (LTP) with resultant regulation of contextual fear memory and spatial learning. PTENα binds to CaMKII with its distinctive N terminus and resets CaMKII to an activatable state by dephosphorylating it at sites T305/306. Loss of PTENα impedes the interaction of CaMKII and NR2B, leading to defects in hippocampal LTP, fear-conditioned memory, and spatial learning. Restoration of PTENα in the hippocampus of PTENα-deficient mice rescues learning deficits through regulation of CaMKII. CaMKII mutations in dementia patients inhibit CaMKII activity and result in disruption of PTENα-CaMKII-NR2B signaling. We propose that CaMKII is a target of PTENα phosphatase and that PTENα is an essential element in the molecular regulation of neural activity.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Fan Mei
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Jiapan Hu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Minglu Zhu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Hailong Qi
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Xi Chen
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Ruiqi Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Michael A McNutt
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Science, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
143
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
144
|
Heidarinejad M, Nakamura H, Inoue T. Stimulation-induced changes in diffusion and structure of calmodulin and calmodulin-dependent protein kinase II proteins in neurons. Neurosci Res 2018; 136:13-32. [PMID: 29395358 DOI: 10.1016/j.neures.2018.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 11/28/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) and calmodulin (CaM) play essential roles in synaptic plasticity, which is an elementary process of learning and memory. In this study, fluorescence correlation spectroscopy (FCS) revealed diffusion properties of CaM, CaMKIIα and CaMKIIβ proteins in human embryonic kidney 293 (HEK293) cells and hippocampal neurons. A simultaneous multiple-point FCS recording system was developed on a random-access two-photon microscope, which facilitated efficient analysis of molecular dynamics in neuronal compartments. The diffusion of CaM in neurons was slower than that in HEK293 cells at rest, while the diffusion in stimulated neurons was accelerated and indistinguishable from that in HEK293 cells. This implied that activity-dependent binding partners of CaM exist in neurons, which slow down the diffusion at rest. Diffusion properties of CaMKIIα and β proteins implied that major populations of these proteins exist as holoenzymatic forms. Upon stimulation of neurons, the diffusion of CaMKIIα and β proteins became faster with reduced particle brightness, indicating drastic structural changes of the proteins such as dismissal from holoenzyme structure and further fragmentation.
Collapse
Affiliation(s)
- Morteza Heidarinejad
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Hideki Nakamura
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
145
|
Dong J, Zhou Q, Wei Z, Yan S, Sun F, Cai X. Protein kinase A mediates scopolamine-induced mTOR activation and an antidepressant response. J Affect Disord 2018; 227:633-642. [PMID: 29174736 DOI: 10.1016/j.jad.2017.11.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/11/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Clinical reports have shown that scopolamine produces a rapid (3-4 d) and potent anti-depressive response without severe adverse effects. Animal experiments have proven that scopolamine induces mTOR pathway activation in an AMPAR dependent manner. The present study aimed to determine the role of PKA in scopolamine-induced potentiation of AMPAR, as well as in mTOR pathway activation and rapid antidepressant effects. METHODS We utilized electrophysiological recording, Western blotting, and behavior tests to examine the effects of scopolamine, the selective M2 cholinergic receptor antagonist methoctramine, and H89, a PKA specific inhibitor on AMPAR potentiation, mTOR pathway activation, and behavioral responses in a rat depression model of learned helplessness. RESULTS Scopolamine (1μM) rapidly increased AMPAR-fEPSP amplitudes and membrane GluA1 expression in CA1 region of hippocampal slices, both of which were abolished by H89. Moreover, scopolamine promoted AMPAR phosphorylation on GluA1 ser845, a PKA site involved in GluA1 membrane insertion. H89 disrupted both GluA1 ser845 phosphorylation and mTOR activation, as well as the antidepressant effects of scopolamine as determined via forced swim test. Additionally, methoctramine mimicked the effects of scopolamine on phosphorylation and counter-depressive action in a PKA-dependent manner. LIMITATIONS Only one test was used to evaluate depressive behavior, and gene knock-out rats were not yet utilized to refine our hypotheses. CONCLUSION Our findings revealed that PKA pathway is necessary for scopolamine-induced synaptic plasticity and mTOR pathway activation, and indicated that a potential M2-PKA mechanism underlies scopolamine's antidepressant effects. Such findings suggest that GluA1 ser845 phosphorylation may be a trigger event for scopolamine's actions, and that PKA may represent a novel target for the treatment of depressive symptoms.
Collapse
Affiliation(s)
- Jianyang Dong
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinji Zhou
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhisheng Wei
- Department of Neurology, School of Clinical Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Shi Yan
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fangfang Sun
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Cai
- Institute of Neurosciences, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Department of Physiology, Southern Illinois University, Carbondale, IL, USA.
| |
Collapse
|
146
|
Lømo T. Discovering long-term potentiation (LTP) - recollections and reflections on what came after. Acta Physiol (Oxf) 2018; 222. [PMID: 28719040 DOI: 10.1111/apha.12921] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023]
Abstract
Chance events led me to a lifelong career in scientific research. They paved the way for being the first to see long-term potentiation of synaptic efficiency (LTP) in Per Andersen's laboratory in Oslo in 1966. Here I describe my way to this discovery and the experiments with Tim Bliss in 1968-1969 that led to Bliss and Lømo, 1973. Surprisingly, we later failed to reproduce these results. I discuss possible reasons for this failure, which made us both leave LTP research, in my case for good, in Tim's case for several years. After 30 years of work in a different field, I renewed my interest in the hippocampus and LTP in the early 2000s and published, for the first time, results that I had obtained 40 years earlier. Here I present my take on how interest in and research on LTP evolved after the early years. This includes a discussion of the functions of hippocampus as seen in those early days, the case of patient H.M., Donald Hebb's place in the story, the search for 'memory molecules' such as PKMζ, and the primary site for LTP expression (pre- and/or post-synaptic?). Throughout, I reflect on my life in science, how science is done and what drives it. The reflections are quite personal and I admit to mixed feelings about broadcasting them.
Collapse
Affiliation(s)
- T. Lømo
- Institute of Basic Medical Sciences; University of Oslo; Oslo Norway
| |
Collapse
|
147
|
Huang Y, Liu X, Liao Y, Liao Y, Zou D, Wei X, Huang Q, Wu Y. Role of miR-34c in the cognitive function of epileptic rats induced by pentylenetetrazol. Mol Med Rep 2018; 17:4173-4180. [PMID: 29344671 PMCID: PMC5802187 DOI: 10.3892/mmr.2018.8441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 04/05/2017] [Indexed: 11/11/2022] Open
Abstract
Studies suggest that microRNA (miR)-34c may serve a role in cognitive function in rodent and primate groups. A previous study demonstrated an increase in miR-34c expression in chronic epileptic rats with memory disorders, induced by pentylenetetrazol (PTZ). However, the mechanism underlying the effects of miR-34c on cognitive function in epileptic rats remains unclear. Therefore, the present study investigated alterations in cognitive function in temporal lobe epileptic rats, induced by repeated injections of PTZ, following treatment with an miR-34c agomir compared with a scramble group. Increased expression of miR-34c was observed in the agomir group, in addition to an increased deficit in learning and memory function in the Morris water maze test. Glutamate receptor ionotropic N-methyl-D-aspartate (NMDA) 2B (NR2B), phosphorylated (p)-reduced nicotinamide-adenine dinucleotide phosphate-dependent diflavin oxidoreductase 1 (NR1) and p-glutamate receptor 1 (GluR1) protein expression was detected in the hippocampus using western blotting. Additionally, the downregulation of NR2B, p-NR1 and p-GluR1 in the miR-34c agomir group demonstrated that miR-34c may serve a negative role in cognitive function in epileptic seizures, by dysregulating NMDA and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, which are associated with long-term potentiation.
Collapse
Affiliation(s)
- Yiqing Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xixia Liu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuhan Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yayun Liao
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Donghua Zou
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xing Wei
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Huang
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Wu
- Department of Neurology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
148
|
Hearing M, Graziane N, Dong Y, Thomas MJ. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol Sci 2018; 39:276-294. [PMID: 29338873 DOI: 10.1016/j.tips.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Commonalities in addictive behavior, such as craving, stimuli-driven drug seeking, and a high propensity for relapse following abstinence, have pushed for a unified theory of addiction that encompasses most abused substances. This unitary theory has recently been challenged - citing distinctions in structural neural plasticity, biochemical signaling, and neural circuitry to argue that addiction to opioids and psychostimulants is behaviorally and neurobiologically distinct. Recent more selective examination of drug-induced plasticity has highlighted that these two drug classes promote an overall reward circuitry signaling overlap through modifying excitatory synapses in the nucleus accumbens - a key constituent of the reward system. We discuss adaptations in presynaptic/postsynaptic and extrasynaptic glutamate signaling produced by opioids and psychostimulants, and their relevance to circuit remodeling and addiction-related behavior - arguing that these core neural adaptations are important targets for developing pharmacotherapies to treat addiction to multiple drugs.
Collapse
Affiliation(s)
- Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Nicholas Graziane
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark J Thomas
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
149
|
Akiyama H, Nakadate K, Sakakibara SI. Synaptic localization of the SUMOylation-regulating protease SENP5 in the adult mouse brain. J Comp Neurol 2018; 526:990-1005. [DOI: 10.1002/cne.24384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Hiroki Akiyama
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences; Waseda University; Tokorozawa Saitama 359-1192 Japan
| | - Kazuhiko Nakadate
- Department of Basic Science; Educational and Research Center for Pharmacy, Meiji Pharmaceutical University; Kiyose Tokyo 204-858 Japan
| | - Shin-ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences; Waseda University; Tokorozawa Saitama 359-1192 Japan
| |
Collapse
|
150
|
Guidolin D, Marcoli M, Maura G, Agnati LF. New dimensions of connectomics and network plasticity in the central nervous system. Rev Neurosci 2018; 28:113-132. [PMID: 28030363 DOI: 10.1515/revneuro-2016-0051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 09/20/2016] [Indexed: 12/24/2022]
Abstract
Cellular network architecture plays a crucial role as the structural substrate for the brain functions. Therefore, it represents the main rationale for the emerging field of connectomics, defined as the comprehensive study of all aspects of central nervous system connectivity. Accordingly, in the present paper the main emphasis will be on the communication processes in the brain, namely wiring transmission (WT), i.e. the mapping of the communication channels made by cell components such as axons and synapses, and volume transmission (VT), i.e. the chemical signal diffusion along the interstitial brain fluid pathways. Considering both processes can further expand the connectomics concept, since both WT-connectomics and VT-connectomics contribute to the structure of the brain connectome. A consensus exists that such a structure follows a hierarchical or nested architecture, and macro-, meso- and microscales have been defined. In this respect, however, several lines of evidence indicate that a nanoscale (nano-connectomics) should also be considered to capture direct protein-protein allosteric interactions such as those occurring, for example, in receptor-receptor interactions at the plasma membrane level. In addition, emerging evidence points to novel mechanisms likely playing a significant role in the modulation of intercellular connectivity, increasing the plasticity of the system and adding complexity to its structure. In particular, the roamer type of VT (i.e. the intercellular transfer of RNA, proteins and receptors by extracellular vesicles) will be discussed since it allowed us to introduce a new concept of 'transient changes of cell phenotype', that is the transient acquisition of new signal release capabilities and/or new recognition/decoding apparatuses.
Collapse
|