101
|
Lewandowska M, Tołpa K, Rogala J, Piotrowski T, Dreszer J. Multivariate multiscale entropy (mMSE) as a tool for understanding the resting-state EEG signal dynamics: the spatial distribution and sex/gender-related differences. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:18. [PMID: 37798774 PMCID: PMC10552392 DOI: 10.1186/s12993-023-00218-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The study aimed to determine how the resting-state EEG (rsEEG) complexity changes both over time and space (channels). The complexity of rsEEG and its sex/gender differences were examined using the multivariate Multiscale Entropy (mMSE) in 95 healthy adults. Following the probability maps (Giacometti et al. in J Neurosci Methods 229:84-96, 2014), channel sets have been identified that correspond to the functional networks. For each channel set the area under curve (AUC), which represents the total complexity, MaxSlope-the maximum complexity change of the EEG signal at thefine scales (1:4 timescales), and AvgEnt-to the average entropy level at coarse-grained scales (9:12 timescales), respectively, were extracted. To check dynamic changes between the entropy level at the fine and coarse-grained scales, the difference in mMSE between the #9 and #4 timescale (DiffEnt) was also calculated. RESULTS We found the highest AUC for the channel sets corresponding to the somatomotor (SMN), dorsolateral network (DAN) and default mode (DMN) whereas the visual network (VN), limbic (LN), and frontoparietal (FPN) network showed the lowest AUC. The largest MaxSlope were in the SMN, DMN, ventral attention network (VAN), LN and FPN, and the smallest in the VN. The SMN and DAN were characterized by the highest and the LN, FPN, and VN by the lowest AvgEnt. The most stable entropy were for the DAN and VN while the LN showed the greatest drop of entropy at the coarse scales. Women, compared to men, showed higher MaxSlope and DiffEnt but lower AvgEnt in all channel sets. CONCLUSIONS Novel results of the present study are: (1) an identification of the mMSE features that capture entropy at the fine and coarse timescales in the channel sets corresponding to the main resting-state networks; (2) the sex/gender differences in these features.
Collapse
Affiliation(s)
- Monika Lewandowska
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University in Torun, Gagarina 39 Street, 87-100, Torun, Poland
| | - Krzysztof Tołpa
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University in Torun, Gagarina 39 Street, 87-100, Torun, Poland
| | - Jacek Rogala
- Faculty of Physics, University of Warsaw, Pasteur 5 Street, 02-093, Warsaw, Poland
| | - Tomasz Piotrowski
- Institute of Engineering and Technology, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Torun, Grudziądzka 5 Street, 87-100, Torun, Poland
| | - Joanna Dreszer
- Department of Clinical Psychology and Neuropsychology, Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University in Torun, Gagarina 39 Street, 87-100, Torun, Poland.
| |
Collapse
|
102
|
Liu Z, Han F, Wang Q. Task-relevant brain dynamics among cognitive subsystems induced by regional stimulation in a whole-brain computational model. Phys Rev E 2023; 108:044402. [PMID: 37978611 DOI: 10.1103/physreve.108.044402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
Cognition involves the global integration of distributed brain regions that are known to work cohesively as cognitive subsystems during brain functioning. Empirical evidence has suggested that spatiotemporal phase relationships between brain regions, measured as synchronization and metastability, may encode important task-relevant information. However, it remains largely unknown how phase relationships aggregate at the level of cognitive subsystems under different cognitive processing. Here, we probe this question by simulating task-relevant brain dynamics through regional stimulation of a whole-brain dynamical network model operating in the resting-state dynamical regime. The model is constructed with structurally embedded Stuart-Laudon oscillators and then fitted with human resting-state functional magnetic resonance imaging data. Based on this framework, we first demonstrate the plausibility of introducing the cognitive system partition into the modeling analysis framework by showing that the clustering of regions across functional networks is better circumscribed by the predefined partition. At the cognitive subsystem level, we focus on how task-relevant phase dynamics are organized in terms of synchronization and metastability. We found that patterns of cognitive synchronization are more task specific, whereas patterns of cognitive metastability are more consistent across different states, suggesting it may encode a more task-general property during cognitive processing, an inherent property conferred by brain organization. This consistent network architecture in cognitive metastability may be related to the distinct functional responses of realistic cognitive systems. We also provide empirical evidence to partially support our computational results. Our paper may provide insights for the mechanisms underlying task-relevant brain dynamics, and establish a model-based link between brain structure, dynamics, and cognition, a fundamental step for computationally aided brain interventions.
Collapse
Affiliation(s)
- Zilu Liu
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai 200051, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing 100191, China
| |
Collapse
|
103
|
Peng L, Hu X, Xu C, Xu Y, Lai H, Yang Y, Liu J, Xue Y, Li M. Altered regional homogeneity and homotopic connectivity in Chinese breast cancer survivors with fear of cancer recurrence: A resting-state fMRI study. J Psychosom Res 2023; 173:111454. [PMID: 37595543 DOI: 10.1016/j.jpsychores.2023.111454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Fear of cancer recurrence (FCR) is one of the most distressing concerns for breast cancer survivors, but the neural mechanism underlying FCR remains unclear. METHODS We conducted a cross-sectional study and recruited 62 breast cancer survivors varying in FCR (31 high-FCR individuals and 31 low-FCR individuals) and compared neuroimaging findings. Data from 3 low-FCR subjects were excluded because they did not complete all experiments. All the participants underwent resting-state functional magnetic resonance imaging (rs-fMRI). Regional homogeneity (ReHo) and voxel-mirrored homotopic connectivity (VMHC) were assessed. RESULTS Breast cancer survivors with high and low FCR significantly differed in the ReHo of the left caudate nucleus and precuneus as well as in the VMHC of the posterior cerebellar lobe, superior frontal gyrus, orbital frontal gyrus, inferior frontal gyrus, occipital gyrus, inferior parietal lobule and frontal middle gyrus. FCR was negatively correlated with the mean ReHo of the left caudate nucleus (r = -0.501, p < 0.001) and positively correlated with the mean ReHo of the right precuneus (r = 0.505, p < 0.001). In addition, FCR was positively correlated with the mean VMHC of the bilateral superior occipital gyrus (r = 0.438, p < 0.001). CONCLUSION These findings suggest that the left caudate nucleus, right precuneus and bilateral superior occipital gyrus are involved in FCR, which may provide preliminary evidence to improve the present understanding of the neural mechanisms of FCR.
Collapse
Affiliation(s)
- Li Peng
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Xiaofei Hu
- Department of Military Psychology, Army Medical University, Chongqing 400038, China; Department of Radiology, Southwest Hospital, Army Medical University, 400038, China
| | - Chen Xu
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Yuanyuan Xu
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Han Lai
- Department of Military Psychology, Army Medical University, Chongqing 400038, China
| | - Ying Yang
- Breast Center of Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Ju Liu
- Department of Foreign Languages, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yuan Xue
- Department of Radiology, Southwest Hospital, Army Medical University, 400038, China
| | - Min Li
- Department of Military Psychology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
104
|
Sun Y, Zhang M, Saggar M. Cross-attractor modeling of resting-state functional connectivity in psychiatric disorders. Neuroimage 2023; 279:120302. [PMID: 37579998 PMCID: PMC10515743 DOI: 10.1016/j.neuroimage.2023.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
Resting-state functional connectivity (RSFC) is altered across various psychiatric disorders. Brain network modeling (BNM) has the potential to reveal the neurobiological underpinnings of such abnormalities by dynamically modeling the structure-function relationship and examining biologically relevant parameters after fitting the models with real data. Although innovative BNM approaches have been developed, two main issues need to be further addressed. First, previous BNM approaches are primarily limited to simulating noise-driven dynamics near a chosen attractor (or a stable brain state). An alternative approach is to examine multi(or cross)-attractor dynamics, which can be used to better capture non-stationarity and switching between states in the resting brain. Second, previous BNM work is limited to characterizing one disorder at a time. Given the large degree of co-morbidity across psychiatric disorders, comparing BNMs across disorders might provide a novel avenue to generate insights regarding the dynamical features that are common across (vs. specific to) disorders. Here, we address these issues by (1) examining the layout of the attractor repertoire over the entire multi-attractor landscape using a recently developed cross-attractor BNM approach; and (2) characterizing and comparing multiple disorders (schizophrenia, bipolar, and ADHD) with healthy controls using an openly available and moderately large multimodal dataset from the UCLA Consortium for Neuropsychiatric Phenomics. Both global and local differences were observed across disorders. Specifically, the global coupling between regions was significantly decreased in schizophrenia patients relative to healthy controls. At the same time, the ratio between local excitation and inhibition was significantly higher in the schizophrenia group than the ADHD group. In line with these results, the schizophrenia group had the lowest switching costs (energy gaps) across groups for several networks including the default mode network. Paired comparison also showed that schizophrenia patients had significantly lower energy gaps than healthy controls for the somatomotor and visual networks. Overall, this study provides preliminary evidence supporting transdiagnostic multi-attractor BNM approaches to better understand psychiatric disorders' pathophysiology.
Collapse
Affiliation(s)
- Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA
| | - Mengsen Zhang
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94304, USA.
| |
Collapse
|
105
|
Liu C, Belleau EL, Dong D, Sun X, Xiong G, Pizzagalli DA, Auerbach RP, Wang X, Yao S. Trait- and state-like co-activation pattern dynamics in current and remitted major depressive disorder. J Affect Disord 2023; 337:159-168. [PMID: 37245549 PMCID: PMC10897955 DOI: 10.1016/j.jad.2023.05.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 05/02/2023] [Accepted: 05/21/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Distinguishing between trait- and state-like neural alternations in major depressive disorder (MDD) may advance our understanding of this recurring disorder. We aimed to investigate dynamic functional connectivity alternations in unmedicated individuals with current or past MDD using co-activation pattern analyses. METHODS Resting-state functional magnetic resonance imaging data were acquired from individuals with first-episode current MDD (cMDD, n = 50), remitted MDD (rMDD, n = 44), and healthy controls (HCs, n = 64). Using a data-driven consensus clustering technique, four whole-brain states of spatial co-activation were identified and associated metrics (dominance, entries, transition frequency) were analyzed with respect to clinical characteristics. RESULTS Relative to rMDD and HC, cMDD showed increased dominance and entries of state 1 (primarily involving default mode network (DMN)), and decreased dominance of state 4 (mostly involving frontal-parietal network (FPN)). Among cMDD, state 1 entries correlated positively with trait rumination. Conversely, relative to cMDD and HC, individuals with rMDD were characterized by increased state 4 entries. Relative to HC, both MDD groups showed increased state 4-to-1 (FPN to DMN) transition frequency but reduction in state 3 (spanning visual attention, somatosensory, limbic networks), with the former metric specifically related to trait rumination. LIMITATIONS Further confirmation with longitudinal studies are required. CONCLUSIONS Regardless of symptoms, MDD was characterized by increased FPN-to-DMN transitions and reduced dominance of a hybrid network. State-related effect emerged in regions critically implicated in repetitive introspection and cognitive control. Asymptomatic individuals with past MDD were uniquely linked to increased FPN entries. Our findings identify trait-like brain network dynamics that might increase vulnerability to future MDD.
Collapse
Affiliation(s)
- Chengwen Liu
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Emily L Belleau
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Daifeng Dong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Xiaoqiang Sun
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Ge Xiong
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Randy P Auerbach
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Xiang Wang
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| | - Shuqiao Yao
- Medical Psychological Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; China National Clinical Research Center for Mental Disorders (Xiangya), Changsha, Hunan, PR China.
| |
Collapse
|
106
|
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci 2023; 24:557-574. [PMID: 37438433 DOI: 10.1038/s41583-023-00718-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Cognitive Science, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
107
|
Stanojevic N, Fatic S, Jelicic L, Nenadovic V, Stokic M, Bilibajkic R, Subotic M, Boskovic Matic T, Konstantinovic L, Cirovic D. Resting-state EEG alpha rhythm spectral power in children with specific language impairment: a cross-sectional study. J Appl Biomed 2023; 21:113-120. [PMID: 37747311 DOI: 10.32725/jab.2023.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE This study investigated EEG alpha rhythm spectral power in children with Specific Language Impairment (SLI) and compared it to typically developing children to better understand the electrophysiological characteristics of this disorder. Specifically, we explored resting-state EEG, because there are studies that point to it being linked to speech and language development. METHODS EEG recordings of 30 children diagnosed with specific language impairment and 30 typically developing children, aged 4.0-6.11 years, were carried out under eyes closed and eyes open conditions. Differences in alpha rhythm spectral power in relation to brain topography and experimental conditions were calculated. RESULTS In the eyes closed condition, alpha rhythm spectral power was statistically significantly lower in children with specific language impairment in the left temporal (T5) and occipital electrodes (O1, O2) than in typically developing children. In the eyes open condition, children with SLI showed significantly lower alpha rhythm spectral power in the left temporal (T3, T5), parietal (P3, Pz), and occipital electrodes (O1, O2). There were no statistically significant differences between the groups in relation to the relative change (the difference between average alpha rhythm spectral power during eyes closed condition and average alpha rhythm spectral power during eyes open condition divided by average alpha rhythm spectral power during eyes closed condition) in the alpha rhythm spectral power between the conditions. CONCLUSION Lower alpha rhythm spectral power in the left temporal, left, midline parietal, and occipital brain regions could be a valuable electrophysiological marker in children with SLI. Further investigation is needed to examine the connection between EEG alpha spectral power and general processing and memory deficits in patients with SLI.
Collapse
Affiliation(s)
- Nina Stanojevic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Saska Fatic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Ljiljana Jelicic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Vanja Nenadovic
- Institute for Experimental Phonetics and Speech Pathology "Dorde Kostic", Department of Speech, Language, and Hearing Sciences, Belgrade, Serbia
| | - Miodrag Stokic
- University of Belgrade, Faculty of Biology, Belgrade, Serbia
| | - Ruzica Bilibajkic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
| | - Misko Subotic
- Research & Development Institute "Life Activities Advancement Institute", Cognitive Neuroscience Department, Belgrade, Serbia
| | - Tatjana Boskovic Matic
- University of Kragujevac, Faculty of Medical Sciences, University Clinical Center, Kragujevac, Serbia
| | - Ljubica Konstantinovic
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
- Clinic for Rehabilitation "Dr Miroslav Zotovic", Belgrade, Serbia
| | - Dragana Cirovic
- University of Belgrade, Faculty of Medicine, Belgrade, Serbia
- University Children's Hospital, Physical Medicine and Rehabilitation Department, Belgrade, Serbia
| |
Collapse
|
108
|
Liu X, Tyler LK, Cam-Can, Davis SW, Rowe JB, Tsvetanov KA. Cognition's dependence on functional network integrity with age is conditional on structural network integrity. Neurobiol Aging 2023; 129:195-208. [PMID: 37392579 DOI: 10.1016/j.neurobiolaging.2023.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Maintaining good cognitive function is crucial for well-being across the lifespan. We proposed that the degree of cognitive maintenance is determined by the functional interactions within and between large-scale brain networks. Such connectivity can be represented by the white matter architecture of structural brain networks that shape intrinsic neuronal activity into integrated and distributed functional networks. We explored how the function-structure connectivity convergence, and the divergence of functional connectivity from structural connectivity, contribute to the maintenance of cognitive function across the adult lifespan. Multivariate analyses were used to investigate the relationship between function-structure connectivity convergence and divergence with multivariate cognitive profiles, respectively. Cognitive function was increasingly dependent on function-structure connectivity convergence as age increased. The dependency of cognitive function on connectivity was particularly strong for high-order cortical networks and subcortical networks. The results suggest that brain functional network integrity sustains cognitive functions in old age, as a function of the integrity of the brain's structural connectivity.
Collapse
Affiliation(s)
- Xulin Liu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Lorraine K Tyler
- The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Cam-Can
- Cambridge Centre for Ageing and Neuroscience (Cam-CAN), MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Simon W Davis
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; The Centre for Speech, Language and the Brain, Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
109
|
Chen X, Ren H, Tang Z, Zhou K, Zhou L, Zuo Z, Cui X, Chen X, Liu Z, He Y, Liao X. Leading basic modes of spontaneous activity drive individual functional connectivity organization in the resting human brain. Commun Biol 2023; 6:892. [PMID: 37652993 PMCID: PMC10471630 DOI: 10.1038/s42003-023-05262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
Spontaneous activity of the human brain provides a window to explore intrinsic principles of functional organization. However, most studies have focused on interregional functional connectivity. The principles underlying rich repertoires of instantaneous activity remain largely unknown. We apply a recently proposed eigen-microstate analysis to three resting-state functional MRI datasets to identify basic modes that represent fundamental activity patterns that coexist over time. We identify five leading basic modes that dominate activity fluctuations. Each mode exhibits a distinct functional system-dependent coactivation pattern and corresponds to specific cognitive profiles. In particular, the spatial pattern of the first leading basis mode shows the separation of activity between the default-mode and primary and attention regions. Based on theoretical modelling, we further reconstruct individual functional connectivity as the weighted superposition of coactivation patterns corresponding to these leading basic modes. Moreover, these leading basic modes capture sleep deprivation-induced changes in brain activity and interregional connectivity, primarily involving the default-mode and task-positive regions. Our findings reveal a dominant set of basic modes of spontaneous activity that reflect multiplexed interregional coordination and drive conventional functional connectivity, furthering the understanding of the functional significance of spontaneous brain activity.
Collapse
Affiliation(s)
- Xi Chen
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Haoda Ren
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Zhonghua Tang
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, School of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaohua Cui
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Zonghua Liu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing, 100875, China.
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
110
|
Pinotsis DA, Miller EK. In vivo ephaptic coupling allows memory network formation. Cereb Cortex 2023; 33:9877-9895. [PMID: 37420330 PMCID: PMC10472500 DOI: 10.1093/cercor/bhad251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
It is increasingly clear that memories are distributed across multiple brain areas. Such "engram complexes" are important features of memory formation and consolidation. Here, we test the hypothesis that engram complexes are formed in part by bioelectric fields that sculpt and guide the neural activity and tie together the areas that participate in engram complexes. Like the conductor of an orchestra, the fields influence each musician or neuron and orchestrate the output, the symphony. Our results use the theory of synergetics, machine learning, and data from a spatial delayed saccade task and provide evidence for in vivo ephaptic coupling in memory representations.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Department of Psychology, Centre for Mathematical Neuroscience and Psychology, University of London, London EC1V 0HB, United Kingdom
- The Picower Institute for Learning & Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Earl K Miller
- The Picower Institute for Learning & Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| |
Collapse
|
111
|
Almeida J, Martins AR, Amaral L, Valério D, Bukhari Q, Schu G, Nogueira J, Spínola M, Soleimani G, Fernandes F, Silva AR, Fregni F, Simis M, Simões M, Peres A. The cerebellum is causally involved in episodic memory under aging. GeroScience 2023; 45:2267-2287. [PMID: 36749471 PMCID: PMC10651631 DOI: 10.1007/s11357-023-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Episodic memory decline is a major signature of both normal and pathological aging. Many neural regions have been implicated in the processes subserving both episodic memory and typical aging decline. Here, we demonstrate that the cerebellum is causally involved episodic memory under aging. We show that a 12-day neurostimulation program delivered to the right cerebellum led to improvements in episodic memory performance under healthy aging that long outlast the stimulation period - healthy elderly individuals show episodic memory improvement both immediately after the intervention program and in a 4-month follow-up. These results demonstrate the causal relevance of the cerebellum in processes associated with long-term episodic memory, potentially highlighting its role in regulating and maintaining cognitive processing. Moreover, they point to the importance of non-pharmacological interventions that prevent or diminish cognitive decline in healthy aging.
Collapse
Affiliation(s)
- Jorge Almeida
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal.
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal.
| | - Ana R Martins
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Lénia Amaral
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Department of Neuroscience, Georgetown University Medical Center, Washington, USA
| | - Daniela Valério
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Qasim Bukhari
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Guilherme Schu
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Joana Nogueira
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Mónica Spínola
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- NOVA LINCS, University of Madeira, Caminho da Penteada, 9020-105, Funchal, Portugal
| | - Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
- Department of Psychiatry, University of Minnesota, Minneapolis, USA
| | | | - Ana R Silva
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Department of Physical Medicine & Rehabilitation, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marcel Simis
- Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Mário Simões
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- Psychological Assessment and Psychometrics Laboratory, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| | - André Peres
- Proaction Lab, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
- CINEICC, Faculdade de Psicologia e de Ciências da Educação, Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
112
|
Messé A, Hollensteiner KJ, Delettre C, Dell-Brown LA, Pieper F, Nentwig LJ, Galindo-Leon EE, Larrat B, Mériaux S, Mangin JF, Reillo I, de Juan Romero C, Borrell V, Engler G, Toro R, Engel AK, Hilgetag CC. Structural basis of envelope and phase intrinsic coupling modes in the cerebral cortex. Neuroimage 2023; 276:120212. [PMID: 37269959 PMCID: PMC10300241 DOI: 10.1016/j.neuroimage.2023.120212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023] Open
Abstract
Intrinsic coupling modes (ICMs) can be observed in ongoing brain activity at multiple spatial and temporal scales. Two families of ICMs can be distinguished: phase and envelope ICMs. The principles that shape these ICMs remain partly elusive, in particular their relation to the underlying brain structure. Here we explored structure-function relationships in the ferret brain between ICMs quantified from ongoing brain activity recorded with chronically implanted micro-ECoG arrays and structural connectivity (SC) obtained from high-resolution diffusion MRI tractography. Large-scale computational models were used to explore the ability to predict both types of ICMs. Importantly, all investigations were conducted with ICM measures that are sensitive or insensitive to volume conduction effects. The results show that both types of ICMs are significantly related to SC, except for phase ICMs when using measures removing zero-lag coupling. The correlation between SC and ICMs increases with increasing frequency which is accompanied by reduced delays. Computational models produced results that were highly dependent on the specific parameter settings. The most consistent predictions were derived from measures solely based on SC. Overall, the results demonstrate that patterns of cortical functional coupling as reflected in both phase and envelope ICMs are both related, albeit to different degrees, to the underlying structural connectivity in the cerebral cortex.
Collapse
Affiliation(s)
- Arnaud Messé
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany.
| | - Karl J Hollensteiner
- Department of Neurophysiology and Pathophysiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Céline Delettre
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany; Unité de Neuroanatomie Appliquée et Théorique, Unité de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Université Paris Cité, 25-28 rue du Dr Roux, Paris 75015, France
| | - Leigh-Anne Dell-Brown
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Lena J Nentwig
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Edgar E Galindo-Leon
- Department of Neurophysiology and Pathophysiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Benoît Larrat
- NeuroSpin, CEA, Paris-Saclay University, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Sébastien Mériaux
- NeuroSpin, CEA, Paris-Saclay University, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Jean-François Mangin
- NeuroSpin, CEA, Paris-Saclay University, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Isabel Reillo
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, Sant Joan d'Alacant, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Spain
| | - Camino de Juan Romero
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, Sant Joan d'Alacant, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Spain
| | - Víctor Borrell
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, Sant Joan d'Alacant, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant 03550, Spain
| | - Gerhard Engler
- Department of Neurophysiology and Pathophysiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Roberto Toro
- Unité de Neuroanatomie Appliquée et Théorique, Unité de Génétique Humaine et Fonctions Cognitives, Institut Pasteur, Université Paris Cité, 25-28 rue du Dr Roux, Paris 75015, France; Center for Research and Interdisciplinarity, Paris Descartes University, 24, rue du Faubourg Saint Jacques, Paris 75014, France
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinistraße 52, Hamburg 20246, Germany; Department of Health Sciences, Boston University, 635 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
113
|
Pei L, Northoff G, Ouyang G. Comparative analysis of multifaceted neural effects associated with varying endogenous cognitive load. Commun Biol 2023; 6:795. [PMID: 37524883 PMCID: PMC10390511 DOI: 10.1038/s42003-023-05168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
Contemporary neuroscience has firmly established that mental state variation concurs with changes in neural dynamic activity in a complex way that a one-to-one mapping cannot describe. To explore the scenario of the multifaceted changes in neural dynamics associated with simple mental state variation, we took cognitive load - a common cognitive manipulation in psychology - as a venue to characterize how multiple neural dynamic features are simultaneously altered by the manipulation and how their sensitivity differs. Electroencephalogram was collected from 152 participants performing stimulus-free tasks with different demands. The results show that task demand alters wide-ranging neural dynamic features, including band-specific oscillations across broad frequency bands, scale-free dynamics, and cross-frequency phase-amplitude coupling. The scale-free dynamics outperformed others in indexing cognitive load variation. This study demonstrates a complex relationship between cognitive dynamics and neural dynamics, which points to a necessity to integrate multifaceted neural dynamic features when studying mind-brain relationship in the future.
Collapse
Affiliation(s)
- Leisi Pei
- Faculty of Education, The University of Hong Kong, Hong Kong, China
| | - Georg Northoff
- Institute of Mental Health Research, Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa, Ottawa, Canada
| | - Guang Ouyang
- Faculty of Education, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
114
|
Yang L, Lu J, Li D, Xiang J, Yan T, Sun J, Wang B. Alzheimer's Disease: Insights from Large-Scale Brain Dynamics Models. Brain Sci 2023; 13:1133. [PMID: 37626490 PMCID: PMC10452161 DOI: 10.3390/brainsci13081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disease, and the condition is difficult to assess. In the past, numerous brain dynamics models have made remarkable contributions to neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain dynamics models have been developed based on dual-driven multimodal neuroimaging data and neurodynamics theory. These models bridge the gap between anatomical structure and functional dynamics and have played an important role in assisting the understanding of the brain mechanism. Large-scale brain dynamics have been widely used to explain how macroscale neuroimaging biomarkers emerge from potential neuronal population level disturbances associated with AD. In this review, we describe this emerging approach to studying AD that utilizes a biophysically large-scale brain dynamics model. In particular, we focus on the application of the model to AD and discuss important directions for the future development and analysis of AD models. This will facilitate the development of virtual brain models in the field of AD diagnosis and treatment and add new opportunities for advancing clinical neuroscience.
Collapse
Affiliation(s)
- Lan Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Jiayu Lu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Ting Yan
- Teranslational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China;
| | - Jie Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| |
Collapse
|
115
|
Kaptan M, Horn U, Vannesjo SJ, Mildner T, Weiskopf N, Finsterbusch J, Brooks JCW, Eippert F. Reliability of resting-state functional connectivity in the human spinal cord: Assessing the impact of distinct noise sources. Neuroimage 2023; 275:120152. [PMID: 37142169 PMCID: PMC10262064 DOI: 10.1016/j.neuroimage.2023.120152] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023] Open
Abstract
The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T. When investigating connectivity in the entire cervical spinal cord, we observed fair to good reliability for dorsal-dorsal and ventral-ventral connectivity, whereas reliability was poor for within- and between-hemicord dorsal-ventral connectivity. Considering how prone spinal cord fMRI is to noise, we extensively investigated the impact of distinct noise sources and made two crucial observations: removal of physiological noise led to a reduction in functional connectivity strength and reliability - due to the removal of stable and participant-specific noise patterns - whereas removal of thermal noise considerably increased the detectability of functional connectivity without a clear influence on reliability. Finally, we also assessed connectivity within spinal cord segments and observed that while the pattern of connectivity was similar to that of whole cervical cord, reliability at the level of single segments was consistently poor. Taken together, our results demonstrate the presence of reliable resting-state functional connectivity in the human spinal cord even after thoroughly accounting for physiological and thermal noise, but at the same time urge caution if focal changes in connectivity (e.g. due to segmental lesions) are to be studied, especially in a longitudinal manner.
Collapse
Affiliation(s)
- Merve Kaptan
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Ulrike Horn
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - S Johanna Vannesjo
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Toralf Mildner
- Methods & Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, University of Leipzig, Leipzig, Germany
| | - Jürgen Finsterbusch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia Wellcome Wolfson Brain Imaging Centre (UWWBIC), Norwich, UK
| | - Falk Eippert
- Max Planck Research Group Pain Perception, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| |
Collapse
|
116
|
Gao J, Zhao L, Zhong T, Li C, He Z, Wei Y, Zhang S, Guo L, Liu T, Han J, Jiang X, Zhang T. Prediction of cognitive scores by joint use of movie-watching fMRI connectivity and eye tracking via Attention-CensNet. PSYCHORADIOLOGY 2023; 3:kkad011. [PMID: 38666131 PMCID: PMC10939348 DOI: 10.1093/psyrad/kkad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 04/28/2024]
Abstract
Background Brain functional connectivity under the naturalistic paradigm has been shown to be better at predicting individual behaviors than other brain states, such as rest and doing tasks. Nevertheless, the state-of-the-art methods have found it difficult to achieve desirable results from movie-watching paradigm functional magnetic resonance imaging (mfMRI) -induced brain functional connectivity, especially when there are fewer datasets. Incorporating other physical measurements into the prediction method may enhance accuracy. Eye tracking, becoming popular due to its portability and lower expense, can provide abundant behavioral features related to the output of human's cognition, and thus might supplement the mfMRI in observing participants' subconscious behaviors. However, there are very few studies on how to effectively integrate the multimodal information to strengthen the performance by a unified framework. Objective A fusion approach with mfMRI and eye tracking, based on convolution with edge-node switching in graph neural networks (CensNet), is proposed in this article. Methods In this graph model, participants are designated as nodes, mfMRI derived functional connectivity as node features, and different eye-tracking features are used to compute similarity between participants to construct heterogeneous graph edges. By taking multiple graphs as different channels, we introduce squeeze-and-excitation attention module to CensNet (A-CensNet) to integrate graph embeddings from multiple channels into one. Results The proposed model outperforms those using a single modality and single channel, and state-of-the-art methods. Conclusions The results indicate that brain functional activities and eye behaviors might complement each other in interpreting trait-like phenotypes.
Collapse
Affiliation(s)
- Jiaxing Gao
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Zhao
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Tianyang Zhong
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Changhe Li
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhibin He
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaonei Wei
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shu Zhang
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lei Guo
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Junwei Han
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xi Jiang
- School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Tuo Zhang
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
117
|
Páscoa Dos Santos F, Vohryzek J, Verschure PFMJ. Multiscale effects of excitatory-inhibitory homeostasis in lesioned cortical networks: A computational study. PLoS Comput Biol 2023; 19:e1011279. [PMID: 37418506 DOI: 10.1371/journal.pcbi.1011279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/18/2023] [Indexed: 07/09/2023] Open
Abstract
Stroke-related disruptions in functional connectivity (FC) often spread beyond lesioned areas and, given the localized nature of lesions, it is unclear how the recovery of FC is orchestrated on a global scale. Since recovery is accompanied by long-term changes in excitability, we propose excitatory-inhibitory (E-I) homeostasis as a driving mechanism. We present a large-scale model of the neocortex, with synaptic scaling of local inhibition, showing how E-I homeostasis can drive the post-lesion restoration of FC and linking it to changes in excitability. We show that functional networks could reorganize to recover disrupted modularity and small-worldness, but not network dynamics, suggesting the need to consider forms of plasticity beyond synaptic scaling of inhibition. On average, we observed widespread increases in excitability, with the emergence of complex lesion-dependent patterns related to biomarkers of relevant side effects of stroke, such as epilepsy, depression and chronic pain. In summary, our results show that the effects of E-I homeostasis extend beyond local E-I balance, driving the restoration of global properties of FC, and relating to post-stroke symptomatology. Therefore, we suggest the framework of E-I homeostasis as a relevant theoretical foundation for the study of stroke recovery and for understanding the emergence of meaningful features of FC from local dynamics.
Collapse
Affiliation(s)
- Francisco Páscoa Dos Santos
- Eodyne Systems SL, Barcelona, Spain
- Department of Information and Communication Technologies, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, United Kingdom
| | - Paul F M J Verschure
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
118
|
Sergiou CS, Tatti E, Romanella SM, Santarnecchi E, Weidema AD, Rassin EG, Franken IH, van Dongen JD. The effect of HD-tDCS on brain oscillations and frontal synchronicity during resting-state EEG in violent offenders with a substance dependence. Int J Clin Health Psychol 2023; 23:100374. [PMID: 36875007 PMCID: PMC9982047 DOI: 10.1016/j.ijchp.2023.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders. Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task. Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention. This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation.
Collapse
Affiliation(s)
- Carmen S. Sergiou
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Elisa Tatti
- City College of New York (CUNY) School of Medicine, New York, NY, USA
| | - Sara M. Romanella
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alix D. Weidema
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Eric G.C Rassin
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Ingmar H.A. Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Josanne D.M. van Dongen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
119
|
Zhao Y, Boley M, Pelentritou A, Woods W, Liley D, Kuhlmann L. Inference-based time-resolved stability analysis of nonlinear whole-cortex modeling: application to Xenon anaesthesia. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082665 DOI: 10.1109/embc40787.2023.10340417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This study characterizes the neurophysiological mechanisms underlying electromagnetic imaging signals using stability analysis. Researchers have proposed that transitions between conscious awake and anaesthetised states, and other brain states more generally, may result from system stability changes. The concept of stability in dynamical systems theory provides a mathematical framework to describe this possibility. In particular, the degree to which a system's trajectory in phase space is affected by small perturbations determines the stability. Previous studies using linear or oscillator-based whole-brain models cannot represent complex cerebrocortical dynamics, or model parameters were pre-assumed or inferred from data but did not change over time. This study proposes a nonlinear neurophysiologically plausible whole-cortex modeling framework to analyze the stability of brain dynamics for the emergence and disappearance of consciousness using time-varying parameters estimated from the data.Clinical relevance- Depth of anaesthesia is typically measured through changes in EEG statistics like the bispectral index and spectral entropy. However, these monitors have been found to fail in preventing awareness during surgery and postoperative recall. Our whole-cortex stability analysis may be useful in measuring anaesthesia levels in clinical settings, as it changes with the level of consciousness and is independent of individual differences and anaesthetic agents. The proposed method can also be used to, for example, identify critical brain regions for consciousness, locate the epileptogenic zone and investigate the dominance of extrinsic or intrinsic factors in brain functions.
Collapse
|
120
|
Fallahi A, Hashemi-Fesharaki SS, Hoseini-Tabatabaei N, Pooyan M, Nazem-Zadeh MR. Dynamic Functional Connectivity Analysis Using Network-Based Brain State Identification, Application on Temporal Lobe Epilepsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082832 DOI: 10.1109/embc40787.2023.10339957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Epilepsy is a brain network disorder caused by discharges of interconnected groups of neurons and resulting brain dysfunction. The brain network can be characterized by intra- and inter-regional functional connectivity (FC). However, since the BOLD signal is inherently non-stationary, the FC is evidenced to be varying over time. Considering the dynamic characteristics of the functional network, we aimed to obtain dynamic brain states and their properties using network-based analyses for the comparison of healthy control and temporal lobe epilepsy (TLE) groups and also lateralization of TLE patients. We used dwelling time, transition time, and brain network connection in each state as the dynamic features for this purpose. Results showed a significant difference in dwelling time and transition time between the healthy control group and both left TLE and right TLE groups and also a significant difference in brain network connections between the left and right TLE groups.
Collapse
|
121
|
Kanda K, Tei S, Takahashi H, Fujino J. Neural basis underlying the sense of coherence in medical professionals revealed by the fractional amplitude of low-frequency fluctuations. PLoS One 2023; 18:e0288042. [PMID: 37390054 PMCID: PMC10313006 DOI: 10.1371/journal.pone.0288042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Although mitigating burnout has long been a pressing issue in healthcare, recent global disasters, including the COVID-19 pandemic and wars, have exacerbated this problem. Medical professionals are frequently exposed to diverse job-induced distress; furthermore, the importance of people's sense of coherence (SOC) over work has been addressed to better deal with burnout. However, the neural mechanisms underlying SOC in medical professionals are not sufficiently investigated. In this study, the intrinsic fractional amplitude of low-frequency fluctuations (fALFF) were measured as an indicator of regional brain spontaneous activity using resting-state functional magnetic resonance imaging in registered nurses. The associations between participants' SOC levels and the fALFF values within brain regions were subsequently explored. The SOC scale scores were positively correlated with fALFF values in the right superior frontal gyrus (SFG) and the left inferior parietal lobule. Furthermore, the SOC levels of the participants mediated the link between their fALFF values in the right SFG and the depersonalization dimension of burnout. The results deepened the understanding of the counter role of SOC on burnout in medical professionals and may provide practical insights for developing efficient interventions.
Collapse
Affiliation(s)
- Kota Kanda
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Institute of Applied Brain Sciences, Waseda University, Tokorozawa, Saitama, Japan
- School of Human and Social Sciences, Tokyo International University, Kawagoe, Saitama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
122
|
Zhang M, Chowdhury S, Saggar M. Temporal Mapper: Transition networks in simulated and real neural dynamics. Netw Neurosci 2023; 7:431-460. [PMID: 37397880 PMCID: PMC10312258 DOI: 10.1162/netn_a_00301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/07/2022] [Indexed: 07/26/2023] Open
Abstract
Characterizing large-scale dynamic organization of the brain relies on both data-driven and mechanistic modeling, which demands a low versus high level of prior knowledge and assumptions about how constituents of the brain interact. However, the conceptual translation between the two is not straightforward. The present work aims to provide a bridge between data-driven and mechanistic modeling. We conceptualize brain dynamics as a complex landscape that is continuously modulated by internal and external changes. The modulation can induce transitions between one stable brain state (attractor) to another. Here, we provide a novel method-Temporal Mapper-built upon established tools from the field of topological data analysis to retrieve the network of attractor transitions from time series data alone. For theoretical validation, we use a biophysical network model to induce transitions in a controlled manner, which provides simulated time series equipped with a ground-truth attractor transition network. Our approach reconstructs the ground-truth transition network from simulated time series data better than existing time-varying approaches. For empirical relevance, we apply our approach to fMRI data gathered during a continuous multitask experiment. We found that occupancy of the high-degree nodes and cycles of the transition network was significantly associated with subjects' behavioral performance. Taken together, we provide an important first step toward integrating data-driven and mechanistic modeling of brain dynamics.
Collapse
Affiliation(s)
- Mengsen Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
| | - Samir Chowdhury
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
123
|
Heckner MK, Cieslik EC, Oliveros LKP, Eickhoff SB, Patil KR, Langner R. Predicting Executive Functioning from Brain Networks: Modality Specificity and Age Effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547036. [PMID: 37425780 PMCID: PMC10327061 DOI: 10.1101/2023.06.29.547036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Healthy aging is associated with structural and functional network changes in the brain, which have been linked to deterioration in executive functioning (EF), while their neural implementation at the individual level remains unclear. As the biomarker potential of individual resting-state functional connectivity (RSFC) patterns has been questioned, we investigated to what degree individual EF abilities can be predicted from gray-matter volume (GMV), regional homogeneity, fractional amplitude of low-frequency fluctuations (fALFF), and RSFC within EF-related, perceptuo-motor, and whole-brain networks in young and old adults. We examined whether differences in out-of-sample prediction accuracy were modality-specific and depended on age or task-demand levels. Both uni- and multivariate analysis frameworks revealed overall low prediction accuracies and moderate to weak brain-behavior associations (R2 < .07, r < .28), further challenging the idea of finding meaningful markers for individual EF performance with the metrics used. Regional GMV, well linked to overall atrophy, carried the strongest information about individual EF differences in older adults, whereas fALFF, measuring functional variability, did so for younger adults. Our study calls for future research analyzing more global properties of the brain, different task-states and applying adaptive behavioral testing to result in sensitive predictors for young and older adults, respectively.
Collapse
Affiliation(s)
- Marisa K. Heckner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Edna C. Cieslik
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lya K. Paas Oliveros
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kaustubh R. Patil
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
124
|
Sorrentino P, Lopez ET, Romano A, Granata C, Corsi MC, Sorrentino G, Jirsa V. Brain fingerprint is based on the aperiodic, scale-free, neuronal activity. Neuroimage 2023:120260. [PMID: 37392807 DOI: 10.1016/j.neuroimage.2023.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France; Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy.
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| | - Marie Constance Corsi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France
| |
Collapse
|
125
|
Yang X, Wu H, Song Y, Chen S, Ge H, Yan Z, Yuan Q, Liang X, Lin X, Chen J. Functional MRI-specific alterations in frontoparietal network in mild cognitive impairment: an ALE meta-analysis. Front Aging Neurosci 2023; 15:1165908. [PMID: 37448688 PMCID: PMC10336325 DOI: 10.3389/fnagi.2023.1165908] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Background Mild cognitive impairment (MCI) depicts a transitory phase between healthy elderly and the onset of Alzheimer's disease (AD) with worsening cognitive impairment. Some functional MRI (fMRI) research indicated that the frontoparietal network (FPN) could be an essential part of the pathophysiological mechanism of MCI. However, damaged FPN regions were not consistently reported, especially their interactions with other brain networks. We assessed the fMRI-specific anomalies of the FPN in MCI by analyzing brain regions with functional alterations. Methods PubMed, Embase, and Web of Science were searched to screen neuroimaging studies exploring brain function alterations in the FPN in MCI using fMRI-related indexes, including the amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity. We integrated distinctive coordinates by activating likelihood estimation, visualizing abnormal functional regions, and concluding functional alterations of the FPN. Results We selected 29 studies and found specific changes in some brain regions of the FPN. These included the bilateral dorsolateral prefrontal cortex, insula, precuneus cortex, anterior cingulate cortex, inferior parietal lobule, middle temporal gyrus, superior frontal gyrus, and parahippocampal gyrus. Any abnormal alterations in these regions depicted interactions between the FPN and other networks. Conclusion The study demonstrates specific fMRI neuroimaging alterations in brain regions of the FPN in MCI patients. This could provide a new perspective on identifying early-stage patients with targeted treatment programs. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023432042, identifier: CRD42023432042.
Collapse
Affiliation(s)
- Xinyi Yang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
126
|
Li A, Liu H, Lei X, He Y, Wu Q, Yan Y, Zhou X, Tian X, Peng Y, Huang S, Li K, Wang M, Sun Y, Yan H, Zhang C, He S, Han R, Wang X, Liu B. Hierarchical fluctuation shapes a dynamic flow linked to states of consciousness. Nat Commun 2023; 14:3238. [PMID: 37277338 DOI: 10.1038/s41467-023-38972-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Consciousness arises from the spatiotemporal neural dynamics, however, its relationship with neural flexibility and regional specialization remains elusive. We identified a consciousness-related signature marked by shifting spontaneous fluctuations along a unimodal-transmodal cortical axis. This simple signature is sensitive to altered states of consciousness in single individuals, exhibiting abnormal elevation under psychedelics and in psychosis. The hierarchical dynamic reflects brain state changes in global integration and connectome diversity under task-free conditions. Quasi-periodic pattern detection revealed that hierarchical heterogeneity as spatiotemporally propagating waves linking to arousal. A similar pattern can be observed in macaque electrocorticography. Furthermore, the spatial distribution of principal cortical gradient preferentially recapitulated the genetic transcription levels of the histaminergic system and that of the functional connectome mapping of the tuberomammillary nucleus, which promotes wakefulness. Combining behavioral, neuroimaging, electrophysiological, and transcriptomic evidence, we propose that global consciousness is supported by efficient hierarchical processing constrained along a low-dimensional macroscale gradient.
Collapse
Affiliation(s)
- Ang Li
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Haiyang Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100101, China
- Department of Anesthesiology, Qinghai Provincial Traffic Hospital, Xining, 810001, China
| | - Xu Lei
- Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University, Chongqing, 400715, China
- Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, 400715, China
| | - Yini He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yan Yan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xin Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Xiaohan Tian
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yingjie Peng
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shangzheng Huang
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaixin Li
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Yuqing Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China
| | - Cheng Zhang
- The Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Sheng He
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100101, China.
| | - Xiaoqun Wang
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- New Cornerstone Science Laboratory, Beijing Normal University, Beijing, 100875, China.
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China.
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
127
|
Wang Y, Guo Y. LOCUS: A REGULARIZED BLIND SOURCE SEPARATION METHOD WITH LOW-RANK STRUCTURE FOR INVESTIGATING BRAIN CONNECTIVITY. Ann Appl Stat 2023; 17:1307-1332. [PMID: 39040949 PMCID: PMC11262594 DOI: 10.1214/22-aoas1670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Network-oriented research has been increasingly popular in many scientific areas. In neuroscience research, imaging-based network connectivity measures have become the key for understanding brain organizations, potentially serving as individual neural fingerprints. There are major challenges in analyzing connectivity matrices, including the high dimensionality of brain networks, unknown latent sources underlying the observed connectivity, and the large number of brain connections leading to spurious findings. In this paper we propose a novel blind source separation method with low-rank structure and uniform sparsity (LOCUS) as a fully data-driven decomposition method for network measures. Compared with the existing method that vectorizes connectivity matrices ignoring brain network topology, LOCUS achieves more efficient and accurate source separation for connectivity matrices using low-rank structure. We propose a novel angle-based uniform sparsity regularization that demonstrates better performance than the existing sparsity controls for low-rank tensor methods. We propose a highly efficient iterative node-rotation algorithm that exploits the block multiconvexity of the objective function to solve the nonconvex optimization problem for learning LOCUS. We illustrate the advantage of LOCUS through extensive simulation studies. Application of LOCUS to Philadelphia Neurodevelopmental Cohort neuroimaging study reveals biologically insightful connectivity traits which are not found using the existing method.
Collapse
Affiliation(s)
- Yikai Wang
- Department of Biostatistics and Bioinformatics, Emory University
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Emory University
| |
Collapse
|
128
|
Nandi MK, de Candia A, Sarracino A, Herrmann HJ, de Arcangelis L. Fluctuation-dissipation relations in the imbalanced Wilson-Cowan model. Phys Rev E 2023; 107:064307. [PMID: 37464662 DOI: 10.1103/physreve.107.064307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023]
Abstract
The relation between spontaneous and stimulated brain activity is a fundamental question in neuroscience which has received wide attention in experimental studies. Recently, it has been suggested that the evoked response to external stimuli can be predicted from temporal correlations of spontaneous activity. Previous theoretical results, confirmed by the comparison with magnetoencephalography data for human brains, were obtained for the Wilson-Cowan model in the condition of balance of excitation and inhibition, a signature of a healthy brain. Here we extend previous studies to imbalanced conditions by examining a region of parameter space around the balanced fixed point. Analytical results are compared to numerical simulations of Wilson-Cowan networks. We evidence that in imbalanced conditions the functional form of the time correlation and response functions can show several behaviors, exhibiting also an oscillating regime caused by the emergence of complex eigenvalues. The analytical predictions are fully in agreement with numerical simulations, validating the role of cross-correlations in the response function. Furthermore, we identify the leading role of inhibitory neurons in controlling the overall activity of the system, tuning the level of excitability and imbalance.
Collapse
Affiliation(s)
- Manoj Kumar Nandi
- Department of Engineering, University of Campania "Luigi Vanvitelli" 81031 Aversa (Caserta), Italy
| | - Antonio de Candia
- Department of Physics "E. Pancini", University of Naples Federeico II, 80126 Naples, Italy
- INFN, Section of Naples, Gruppo collegato di Salerno, 84084 Fisciano, Italy
| | - Alessandro Sarracino
- Department of Engineering, University of Campania "Luigi Vanvitelli" 81031 Aversa (Caserta), Italy
- Institute for Complex Systems-CNR, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - Hans J Herrmann
- PMMH, ESPCI, 7 quai St. Bernard, Paris 75005, France
- Department of Physics, Federal University of Ceará, Fortaleza, Ceará 60451-970, Brazil
| | - Lucilla de Arcangelis
- Department of Mathematics & Physics, University of Campania "Luigi Vanvitelli" Viale Lincoln, 5, 81100 Caserta, Italy
| |
Collapse
|
129
|
Pang JC, Aquino KM, Oldehinkel M, Robinson PA, Fulcher BD, Breakspear M, Fornito A. Geometric constraints on human brain function. Nature 2023; 618:566-574. [PMID: 37258669 PMCID: PMC10266981 DOI: 10.1038/s41586-023-06098-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/18/2023] [Indexed: 06/02/2023]
Abstract
The anatomy of the brain necessarily constrains its function, but precisely how remains unclear. The classical and dominant paradigm in neuroscience is that neuronal dynamics are driven by interactions between discrete, functionally specialized cell populations connected by a complex array of axonal fibres1-3. However, predictions from neural field theory, an established mathematical framework for modelling large-scale brain activity4-6, suggest that the geometry of the brain may represent a more fundamental constraint on dynamics than complex interregional connectivity7,8. Here, we confirm these theoretical predictions by analysing human magnetic resonance imaging data acquired under spontaneous and diverse task-evoked conditions. Specifically, we show that cortical and subcortical activity can be parsimoniously understood as resulting from excitations of fundamental, resonant modes of the brain's geometry (that is, its shape) rather than from modes of complex interregional connectivity, as classically assumed. We then use these geometric modes to show that task-evoked activations across over 10,000 brain maps are not confined to focal areas, as widely believed, but instead excite brain-wide modes with wavelengths spanning over 60 mm. Finally, we confirm predictions that the close link between geometry and function is explained by a dominant role for wave-like activity, showing that wave dynamics can reproduce numerous canonical spatiotemporal properties of spontaneous and evoked recordings. Our findings challenge prevailing views and identify a previously underappreciated role of geometry in shaping function, as predicted by a unifying and physically principled model of brain-wide dynamics.
Collapse
Affiliation(s)
- James C Pang
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia.
| | - Kevin M Aquino
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
- BrainKey Inc., San Francisco, CA, USA
| | - Marianne Oldehinkel
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Peter A Robinson
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Ben D Fulcher
- School of Physics, University of Sydney, Camperdown, New South Wales, Australia
| | - Michael Breakspear
- School of Psychological Sciences, College of Engineering, Science and the Environment, University of Newcastle, Callaghan, New South Wales, Australia
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
130
|
Ghosh S, Raj A, Nagarajan SS. A joint subspace mapping between structural and functional brain connectomes. Neuroimage 2023; 272:119975. [PMID: 36870432 PMCID: PMC11244732 DOI: 10.1016/j.neuroimage.2023.119975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Understanding the connection between the brain's structural connectivity and its functional connectivity is of immense interest in computational neuroscience. Although some studies have suggested that whole brain functional connectivity is shaped by the underlying structure, the rule by which anatomy constraints brain dynamics remains an open question. In this work, we introduce a computational framework that identifies a joint subspace of eigenmodes for both functional and structural connectomes. We found that a small number of those eigenmodes are sufficient to reconstruct functional connectivity from the structural connectome, thus serving as low-dimensional basis function set. We then develop an algorithm that can estimate the functional eigen spectrum in this joint space from the structural eigen spectrum. By concurrently estimating the joint eigenmodes and the functional eigen spectrum, we can reconstruct a given subject's functional connectivity from their structural connectome. We perform elaborate experiments and demonstrate that the proposed algorithm for estimating functional connectivity from the structural connectome using joint space eigenmodes gives competitive performance as compared to the existing benchmark methods with better interpretability.
Collapse
Affiliation(s)
- Sanjay Ghosh
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Ave, San Francisco, 94143, California, USA.
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Ave, San Francisco, 94143, California, USA.
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 513 Parnassus Ave, San Francisco, 94143, California, USA.
| |
Collapse
|
131
|
Bernardi D, Shannahoff-Khalsa D, Sale J, Wright JA, Fadiga L, Papo D. The time scales of irreversibility in spontaneous brain activity are altered in obsessive compulsive disorder. Front Psychiatry 2023; 14:1158404. [PMID: 37234212 PMCID: PMC10208430 DOI: 10.3389/fpsyt.2023.1158404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 05/27/2023] Open
Abstract
We study how obsessive-compulsive disorder (OCD) affects the complexity and time-reversal symmetry-breaking (irreversibility) of the brain resting-state activity as measured by magnetoencephalography (MEG). Comparing MEG recordings from OCD patients and age/sex matched control subjects, we find that irreversibility is more concentrated at faster time scales and more uniformly distributed across different channels of the same hemisphere in OCD patients than in control subjects. Furthermore, the interhemispheric asymmetry between homologous areas of OCD patients and controls is also markedly different. Some of these differences were reduced by 1-year of Kundalini Yoga meditation treatment. Taken together, these results suggest that OCD alters the dynamic attractor of the brain's resting state and hint at a possible novel neurophysiological characterization of this psychiatric disorder and how this therapy can possibly modulate brain function.
Collapse
Affiliation(s)
- Davide Bernardi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
| | - David Shannahoff-Khalsa
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
- Center for Integrative Medicine, University of California, San Diego, La Jolla, CA, United States
- The Khalsa Foundation for Medical Science, Del Mar, CA, United States
| | - Jeff Sale
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA, United States
| | - Jon A. Wright
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, United States
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| | - David Papo
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
132
|
Bartnik A, Fuchs TA, Ashton K, Kuceyeski A, Li X, Mallory M, Oship D, Bergsland N, Ramasamy D, Jakimovski D, Benedict RHB, Weinstock-Guttman B, Zivadinov R, Dwyer MG. Functional alteration due to structural damage is network dependent: insight from multiple sclerosis. Cereb Cortex 2023; 33:6090-6102. [PMID: 36585775 PMCID: PMC10498137 DOI: 10.1093/cercor/bhac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/01/2023] Open
Abstract
Little is known about how the brain's functional organization changes over time with respect to structural damage. Using multiple sclerosis as a model of structural damage, we assessed how much functional connectivity (FC) changed within and between preselected resting-state networks (RSNs) in 122 subjects (72 with multiple sclerosis and 50 healthy controls). We acquired the structural, diffusion, and functional MRI to compute functional connectomes and structural disconnectivity profiles. Change in FC was calculated by comparing each multiple sclerosis participant's pairwise FC to controls, while structural disruption (SD) was computed from abnormalities in diffusion MRI via the Network Modification tool. We used an ordinary least squares regression to predict the change in FC from SD for 9 common RSNs. We found clear differences in how RSNs functionally respond to structural damage, namely that higher-order networks were more likely to experience changes in FC in response to structural damage (default mode R2 = 0.160-0.207, P < 0.001) than lower-order sensory networks (visual network 1 R2 = 0.001-0.007, P = 0.157-0.387). Our findings suggest that functional adaptability to structural damage depends on how involved the affected network is in higher-order processing.
Collapse
Affiliation(s)
- Alexander Bartnik
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Tom A Fuchs
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Kira Ashton
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Amy Kuceyeski
- Department of Radiology, Weill Medical College of Cornell University, New York, NY 10065, United States
| | - Xian Li
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Psychological and Brain Science Department, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Matthew Mallory
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Devon Oship
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Niels Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan 20148, Italy
| | - Deepa Ramasamy
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Dejan Jakimovski
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Ralph H B Benedict
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Robert Zivadinov
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| | - Michael G Dwyer
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY 14203, United States
| |
Collapse
|
133
|
Klar P, Çatal Y, Langner R, Huang Z, Northoff G. Scale-free dynamics in the core-periphery topography and task alignment decline from conscious to unconscious states. Commun Biol 2023; 6:499. [PMID: 37161021 PMCID: PMC10170069 DOI: 10.1038/s42003-023-04879-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
Scale-free physiological processes are ubiquitous in the human organism. Resting-state functional MRI studies observed the loss of scale-free dynamics under anesthesia. In contrast, the modulation of scale-free dynamics during task-related activity remains an open question. We investigate scale-free dynamics in the cerebral cortex's unimodal periphery and transmodal core topography in rest and task states during three conscious levels (awake, sedation, and anesthesia) complemented by computational modelling (Stuart-Landau model). The empirical findings demonstrate that the loss of the brain's intrinsic scale-free dynamics in the core-periphery topography during anesthesia, where pink noise transforms into white noise, disrupts the brain's neuronal alignment with the task's temporal structure. The computational model shows that the stimuli's scale-free dynamics, namely pink noise distinguishes from brown and white noise, also modulate task-related activity. Together, we provide evidence for two mechanisms of consciousness, temporo-spatial nestedness and alignment, suggested by the Temporo-Spatial Theory of Consciousness (TTC).
Collapse
Affiliation(s)
- Philipp Klar
- Medical Faculty, C. & O. Vogt-Institute for Brain Research, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Yasir Çatal
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada
| | - Robert Langner
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Zirui Huang
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Georg Northoff
- The Royal's Institute of Mental Health Research & University of Ottawa. Brain and Mind Research Institute, Centre for Neural Dynamics, Faculty of Medicine, University of Ottawa, Ottawa, 145 Carling Avenue, Rm. 6435, Ottawa, ON, K1Z 7K4, Canada
- Centre for Cognition and Brain Disorders, Hangzhou Normal University, Tianmu Road 305, Hangzhou, Zhejiang Province, 310013, China
| |
Collapse
|
134
|
Nanda A, Johnson GW, Mu Y, Ahrens MB, Chang C, Englot DJ, Breakspear M, Rubinov M. Time-resolved correlation of distributed brain activity tracks E-I balance and accounts for diverse scale-free phenomena. Cell Rep 2023; 42:112254. [PMID: 36966391 PMCID: PMC10518034 DOI: 10.1016/j.celrep.2023.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/27/2023] Open
Abstract
Much of systems neuroscience posits the functional importance of brain activity patterns that lack natural scales of sizes, durations, or frequencies. The field has developed prominent, and sometimes competing, explanations for the nature of this scale-free activity. Here, we reconcile these explanations across species and modalities. First, we link estimates of excitation-inhibition (E-I) balance with time-resolved correlation of distributed brain activity. Second, we develop an unbiased method for sampling time series constrained by this time-resolved correlation. Third, we use this method to show that estimates of E-I balance account for diverse scale-free phenomena without need to attribute additional function or importance to these phenomena. Collectively, our results simplify existing explanations of scale-free brain activity and provide stringent tests on future theories that seek to transcend these explanations.
Collapse
Affiliation(s)
- Aditya Nanda
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA.
| | - Graham W Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Yu Mu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Misha B Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA
| | - Dario J Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael Breakspear
- School of Psychology, University of Newcastle, Callaghan, NSW 2308, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mikail Rubinov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
135
|
FoMO and the brain: Loneliness and problematic social networking site use mediate the association between the topology of the resting-state EEG brain network and fear of missing out. COMPUTERS IN HUMAN BEHAVIOR 2023. [DOI: 10.1016/j.chb.2022.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
136
|
Kurtin DL, Giunchiglia V, Vohryzek J, Cabral J, Skeldon AC, Violante IR. Moving from phenomenological to predictive modelling: Progress and pitfalls of modelling brain stimulation in-silico. Neuroimage 2023; 272:120042. [PMID: 36965862 DOI: 10.1016/j.neuroimage.2023.120042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Brain stimulation is an increasingly popular neuromodulatory tool used in both clinical and research settings; however, the effects of brain stimulation, particularly those of non-invasive stimulation, are variable. This variability can be partially explained by an incomplete mechanistic understanding, coupled with a combinatorial explosion of possible stimulation parameters. Computational models constitute a useful tool to explore the vast sea of stimulation parameters and characterise their effects on brain activity. Yet the utility of modelling stimulation in-silico relies on its biophysical relevance, which needs to account for the dynamics of large and diverse neural populations and how underlying networks shape those collective dynamics. The large number of parameters to consider when constructing a model is no less than those needed to consider when planning empirical studies. This piece is centred on the application of phenomenological and biophysical models in non-invasive brain stimulation. We first introduce common forms of brain stimulation and computational models, and provide typical construction choices made when building phenomenological and biophysical models. Through the lens of four case studies, we provide an account of the questions these models can address, commonalities, and limitations across studies. We conclude by proposing future directions to fully realise the potential of computational models of brain stimulation for the design of personalized, efficient, and effective stimulation strategies.
Collapse
Affiliation(s)
- Danielle L Kurtin
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | | | - Jakub Vohryzek
- Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, UK
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Anne C Skeldon
- Department of Mathematics, Centre for Mathematical and Computational Biology, University of Surrey, Guildford, United Kingdom
| | - Ines R Violante
- Neuromodulation Laboratory, School of Psychology, University of Surrey, Guildford, GU2 7XH, United Kingdom
| |
Collapse
|
137
|
Luppi AI, Singleton SP, Hansen JY, Bzdok D, Kuceyeski A, Betzel RF, Misic B. Transitions between cognitive topographies: contributions of network structure, neuromodulation, and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532981. [PMID: 36993597 PMCID: PMC10055141 DOI: 10.1101/2023.03.16.532981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Patterns of neural activity underlie human cognition. Transitions between these patterns are orchestrated by the brain's network architecture. What are the mechanisms linking network structure to cognitively relevant activation patterns? Here we implement principles of network control to investigate how the architecture of the human connectome shapes transitions between 123 experimentally defined cognitive activation maps (cognitive topographies) from the NeuroSynth meta-analytic engine. We also systematically incorporate neurotransmitter receptor density maps (18 receptors and transporters) and disease-related cortical abnormality maps (11 neurodegenerative, psychiatric and neurodevelopmental diseases; N = 17 000 patients, N = 22 000 controls). Integrating large-scale multimodal neuroimaging data from functional MRI, diffusion tractography, cortical morphometry, and positron emission tomography, we simulate how anatomically-guided transitions between cognitive states can be reshaped by pharmacological or pathological perturbation. Our results provide a comprehensive look-up table charting how brain network organisation and chemoarchitecture interact to manifest different cognitive topographies. This computational framework establishes a principled foundation for systematically identifying novel ways to promote selective transitions between desired cognitive topographies.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | | | - Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, NY, U.S.A
| | - Richard F. Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, U.S.A
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
138
|
Kurtin DL, Scott G, Hebron H, Skeldon AC, Violante IR. Task-based differences in brain state dynamics and their relation to cognitive ability. Neuroimage 2023; 271:119945. [PMID: 36870433 DOI: 10.1016/j.neuroimage.2023.119945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Transient patterns of interregional connectivity form and dissipate in response to varying cognitive demands. Yet, it is not clear how different cognitive demands influence brain state dynamics, and whether these dynamics relate to general cognitive ability. Here, using functional magnetic resonance imaging (fMRI) data, we characterised shared, recurrent, global brain states in 187 participants across the working memory, emotion, language, and relation tasks from the Human Connectome Project. Brain states were determined using Leading Eigenvector Dynamics Analysis (LEiDA). In addition to the LEiDA-based metrics of brain state lifetimes and probabilities, we also computed information-theoretic measures of Block Decomposition Method of complexity, Lempel-Ziv complexity and transition entropy. Information theoretic metrics are notable in their ability to compute relationships amongst sequences of states over time, compared to lifetime and probability, which capture the behaviour of each state in isolation. We then related task-based brain state metrics to fluid intelligence. We observed that brain states exhibited stable topology across a range of numbers of clusters (K = 2:15). Most metrics of brain state dynamics, including state lifetime, probability, and all information theoretic metrics, reliably differed between tasks. However, relationships between state dynamic metrics and cognitive abilities varied according to the task, the metric, and the value of K, indicating that there are contextual relationships between task-dependant state dynamics and trait cognitive ability. This study provides evidence that the brain reconfigures across time in response to cognitive demands, and that there are contextual, rather than generalisable, relationships amongst task, state dynamics, and cognitive ability.
Collapse
Affiliation(s)
- Danielle L Kurtin
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Gregory Scott
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK; Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Henry Hebron
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK
| | - Anne C Skeldon
- UK Dementia Research Institute, Care Research and Technology Centre at Imperial College, London and the University of Surrey, Guildford, UK; Department of Mathematics, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Ines R Violante
- NeuroModulation Lab, Department of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
139
|
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111:1391-1401.e5. [PMID: 36889313 DOI: 10.1016/j.neuron.2023.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Maciej Jedynak
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Olivier David
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Sina Mansour
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
140
|
Amalric M, Cantlon JF. Entropy, complexity, and maturity in children’s neural responses to naturalistic video lessons. Cortex 2023; 163:14-25. [PMID: 37037065 DOI: 10.1016/j.cortex.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 11/29/2022] [Accepted: 02/17/2023] [Indexed: 03/19/2023]
Abstract
Temporal characteristics of neural signals are often overlooked in traditional fMRI developmental studies but are critical to studying brain functions in ecologically valid settings. In the present study, we explore the temporal properties of children's neural responses during naturalistic mathematics and grammar tasks. To do so, we introduce a novel measure in developmental fMRI: neural entropy, which indicates temporal complexity of BOLD signals. We show that temporal patterns of neural activity have lower complexity and greater variability in children than in adults in the association cortex but not in the sensory-motor cortex. We also show that neural entropy is associated with both child-adult similarity in functional connectivity and neural synchrony, and that neural entropy increases with the size of functionally connected networks in the association cortex. In addition, neural entropy increases with functional maturity (i.e., child-adult neural synchrony) in content-specific regions. These exploratory findings suggest the hypothesis that neural entropy indexes the increasing breadth and diversity of neural processes available to children for analyzing mathematical information over development.
Collapse
Affiliation(s)
- Marie Amalric
- Carnegie Mellon University, Department of Psychology, CAOs Laboratory, USA.
| | - Jessica F Cantlon
- Carnegie Mellon University, Department of Psychology, CAOs Laboratory, USA
| |
Collapse
|
141
|
Hashemi M, Vattikonda AN, Jha J, Sip V, Woodman MM, Bartolomei F, Jirsa VK. Amortized Bayesian inference on generative dynamical network models of epilepsy using deep neural density estimators. Neural Netw 2023; 163:178-194. [PMID: 37060871 DOI: 10.1016/j.neunet.2023.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Whole-brain modeling of epilepsy combines personalized anatomical data with dynamical models of abnormal activities to generate spatio-temporal seizure patterns as observed in brain imaging data. Such a parametric simulator is equipped with a stochastic generative process, which itself provides the basis for inference and prediction of the local and global brain dynamics affected by disorders. However, the calculation of likelihood function at whole-brain scale is often intractable. Thus, likelihood-free algorithms are required to efficiently estimate the parameters pertaining to the hypothetical areas, ideally including the uncertainty. In this study, we introduce the simulation-based inference for the virtual epileptic patient model (SBI-VEP), enabling us to amortize the approximate posterior of the generative process from a low-dimensional representation of whole-brain epileptic patterns. The state-of-the-art deep learning algorithms for conditional density estimation are used to readily retrieve the statistical relationships between parameters and observations through a sequence of invertible transformations. We show that the SBI-VEP is able to efficiently estimate the posterior distribution of parameters linked to the extent of the epileptogenic and propagation zones from sparse intracranial electroencephalography recordings. The presented Bayesian methodology can deal with non-linear latent dynamics and parameter degeneracy, paving the way for fast and reliable inference on brain disorders from neuroimaging modalities.
Collapse
|
142
|
Merege-Filho CAA, Gil SS, Kirwan JP, Murai IH, Dantas WS, Nucci MP, Pastorello B, de Lima AP, Bazán PR, Pereira RMR, de Sá-Pinto AL, Lima FR, Brucki SMD, de Cleva R, Santo MA, Leite CDC, Otaduy MCG, Roschel H, Gualano B. Exercise modifies hypothalamic connectivity and brain functional networks in women after bariatric surgery: a randomized clinical trial. Int J Obes (Lond) 2023; 47:165-174. [PMID: 36585494 PMCID: PMC10134041 DOI: 10.1038/s41366-022-01251-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Obesity is a disease that may involve disrupted connectivity of brain networks. Bariatric surgery is an effective treatment for obesity, and the positive effects on obesity-related conditions may be enhanced by exercise. Herein, we aimed to investigate the possible synergistic effects of Roux-en-Y Gastric Bypass (RYGB) and exercise training on brain functional networks. METHODS Thirty women eligible for bariatric surgery were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 15, age = 41.0 ± 7.3 years) or RYGB plus Exercise Training (RYGB + ET: n = 15, age = 41.9 ± 7.2 years). Clinical, laboratory, and brain functional connectivity parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6-month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). RESULTS Exercise superimposed on bariatric surgery (RYGB + ET) increased connectivity between hypothalamus and sensorial regions (seed-to-voxel analyses of hypothalamic connectivity), and decreased default mode network (DMN) and posterior salience (pSAL) network connectivity (ROI-to-ROI analyses of brain networks connectivity) when compared to RYGB alone (all p-FDR < 0.05). Increases in basal ganglia (BG) network connectivity were only observed in the exercised training group (within-group analyses). CONCLUSION Exercise training is an important component in the management of post-bariatric patients and may improve the hypothalamic connectivity and brain functional networks that are involved in controlling food intake. TRIAL REGISTRATION Clinicaltrial.gov: NCT02441361.
Collapse
Affiliation(s)
- Carlos A A Merege-Filho
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Saulo S Gil
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Igor H Murai
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mariana P Nucci
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Bruno Pastorello
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Alisson Padilha de Lima
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Paulo R Bazán
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Rosa M R Pereira
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana L de Sá-Pinto
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Fernanda R Lima
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Sonia M D Brucki
- Cognitive and Behavioral Neurology Unit, Department of Neurology, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto de Cleva
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Marco A Santo
- Gastroenterology Department, Digestive Surgery Division Department of Digestive Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Claudia da Costa Leite
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Maria Concepción García Otaduy
- Laboratory of Magnetic Resonance Imaging in Neuroradiology (LIM-44), Hospital das Clinicas HCFMUSP, Faculdade de Medicina Universidade de São Paulo, São Paulo, Brazil
| | - Hamilton Roschel
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Physical Education and Sport; Laboratory of Assessment and Conditioning in Rheumatology; Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
- Rheumatology Division, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
143
|
Wang D, Tang R, Lin H, Liu L, Xu N, Sun Y, Zhao X, Wang Z, Wang D, Mai Z, Zhou Y, Gao N, Song C, Zhu L, Wu T, Liu M, Xing G. Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing. Nat Commun 2023; 14:1068. [PMID: 36828856 PMCID: PMC9957988 DOI: 10.1038/s41467-023-36728-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Neuromorphic computing using nonvolatile memories is expected to tackle the memory wall and energy efficiency bottleneck in the von Neumann system and to mitigate the stagnation of Moore's law. However, an ideal artificial neuron possessing bio-inspired behaviors as exemplified by the requisite leaky-integrate-fire and self-reset (LIFT) functionalities within a single device is still lacking. Here, we report a new type of spiking neuron with LIFT characteristics by manipulating the magnetic domain wall motion in a synthetic antiferromagnetic (SAF) heterostructure. We validate the mechanism of Joule heating modulated competition between the Ruderman-Kittel-Kasuya-Yosida interaction and the built-in field in the SAF device, enabling it with a firing rate up to 17 MHz and energy consumption of 486 fJ/spike. A spiking neuron circuit is implemented with a latency of 170 ps and power consumption of 90.99 μW. Moreover, the winner-takes-all is executed with a current ratio >104 between activated and inhibited neurons. We further establish a two-layer spiking neural network based on the developed spintronic LIFT neurons. The architecture achieves 88.5% accuracy on the handwritten digit database benchmark. Our studies corroborate the circuit compatibility of the spintronic neurons and their great potential in the field of intelligent devices and neuromorphic computing.
Collapse
Affiliation(s)
- Di Wang
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ruifeng Tang
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huai Lin
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Long Liu
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nuo Xu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
| | - Yan Sun
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xuefeng Zhao
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ziwei Wang
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dandan Wang
- Jiufengshan Laboratory, Wuhan, 430206, Hubei, China
| | - Zhihong Mai
- Jiufengshan Laboratory, Wuhan, 430206, Hubei, China
| | - Yongjian Zhou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Nan Gao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Cheng Song
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lijun Zhu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, 100083, Beijing, China
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Ming Liu
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guozhong Xing
- Key Laboratory of Microelectronics Devices & Integration Technology, Institute of Microelectronics, Chinese Academy of Sciences, 100029, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| |
Collapse
|
144
|
Manos T, Diaz-Pier S, Fortel I, Driscoll I, Zhan L, Leow A. Enhanced simulations of whole-brain dynamics using hybrid resting-state structural connectomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528836. [PMID: 36824821 PMCID: PMC9948985 DOI: 10.1101/2023.02.16.528836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The human brain, composed of billions of neurons and synaptic connections, is an intricate network coordinating a sophisticated balance of excitatory and inhibitory activity between brain regions. The dynamical balance between excitation and inhibition is vital for adjusting neural input/output relationships in cortical networks and regulating the dynamic range of their responses to stimuli. To infer this balance using connectomics, we recently introduced a computational framework based on the Ising model, first developed to explain phase transitions in ferromagnets, and proposed a novel hybrid resting-state structural connectome (rsSC). Here, we show that a generative model based on the Kuramoto phase oscillator can be used to simulate static and dynamic functional connectomes (FC) with rsSC as the coupling weight coefficients, such that the simulated FC well aligns with the observed FC when compared to that simulated with traditional structural connectome. Simulations were performed using the open source framework The Virtual Brain on High Performance Computing infrastructure.
Collapse
|
145
|
Dziego CA, Bornkessel-Schlesewsky I, Jano S, Chatburn A, Schlesewsky M, Immink MA, Sinha R, Irons J, Schmitt M, Chen S, Cross ZR. Neural and cognitive correlates of performance in dynamic multi-modal settings. Neuropsychologia 2023; 180:108483. [PMID: 36638860 DOI: 10.1016/j.neuropsychologia.2023.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The endeavour to understand human cognition has largely relied upon investigation of task-related brain activity. However, resting-state brain activity can also offer insights into individual information processing and performance capabilities. Previous research has identified electroencephalographic resting-state characteristics (most prominently: the individual alpha frequency; IAF) that predict cognitive function. However, it has largely overlooked a second component of electrophysiological signals: aperiodic 1/ƒ activity. The current study examined how both oscillatory and aperiodic resting-state EEG measures, alongside traditional cognitive tests, can predict performance in a dynamic and complex, semi-naturalistic cognitive task. Participants' resting-state EEG was recorded prior to engaging in a Target Motion Analysis (TMA) task in a simulated submarine control room environment (CRUSE), which required participants to integrate dynamically changing information over time. We demonstrated that the relationship between IAF and cognitive performance extends from simple cognitive tasks (e.g., digit span) to complex, dynamic measures of information processing. Further, our results showed that individual 1/ƒ parameters (slope and intercept) differentially predicted performance across practice and testing sessions, whereby flatter slopes and higher intercepts were associated with improved performance during learning. In addition to the EEG predictors, we demonstrate a link between cognitive skills most closely related to the TMA task (i.e., spatial imagery) and subsequent performance. Overall, the current study highlights (1) how resting-state metrics - both oscillatory and aperiodic - have the potential to index higher-order cognitive capacity, while (2) emphasising the importance of examining these electrophysiological components within more dynamic settings and over time.
Collapse
Affiliation(s)
- Chloe A Dziego
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia.
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Sophie Jano
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| | - Maarten A Immink
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia; Sport, Health, Activity, Performance and Exercise (SHAPE) Research Centre, Flinders University, South Australia, Australia
| | - Ruchi Sinha
- Centre for Workplace Excellence, University of South Australia, 61-68 North Terrace, Adelaide, South Australia, Australia
| | - Jessica Irons
- Undersea Command & Control Maritime Division, Defence Science and Technology Group, Australia
| | - Megan Schmitt
- Undersea Command & Control Maritime Division, Defence Science and Technology Group, Australia
| | - Steph Chen
- Human and Decision Sciences Division, Defence Science and Technology Group, Australia
| | - Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
146
|
Cnudde K, Kim G, Murch WS, Handy TC, Protzner AB, Kam JWY. EEG complexity during mind wandering: A multiscale entropy investigation. Neuropsychologia 2023; 180:108480. [PMID: 36621593 DOI: 10.1016/j.neuropsychologia.2023.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/16/2022] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Our attention often drifts away from the ongoing task to task-unrelated thoughts, a phenomenon commonly referred to as mind wandering. Ample studies dedicated to delineating its electrophysiological correlates have revealed distinct event-related potentials (ERP) and spectral patterns associated with mind wandering. It remains less clear whether the complexity of the electroencephalography (EEG) changes when our minds wander, a metric that captures the predictability of the time series at varying timescales. Accordingly, this study investigated whether mind wandering impacts EEG signal complexity. We further explored whether such effects differ across timescales, and change in a context-dependent manner as indexed by global and local levels of processing. To address this, we recorded participants' EEG while they completed Navon's global and local processing task and occasionally reported whether they were on-task or mind wandering throughout the task. We found that brain signal complexity as indexed by multiscale entropy decreased at medium timescales in centro-parietal regions and increased at coarse timescales in anterior and posterior regions during mind wandering, as compared to the on-task state, for global processing. Moreover, global processing showed increased complexity at fine to medium timescales compared to local processing. Finally, behavioral performance revealed a context-dependent effect in accuracy measures, with mind wandering showing lower accuracy compared to the on-task state only during the local condition. Taken together, these results indicate that changes in brain signal complexity across timescales may be an important feature of mind wandering.
Collapse
Affiliation(s)
- Kelsey Cnudde
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4.
| | - Gahyun Kim
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - W Spencer Murch
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Department of Sociology & Anthropology, Concordia University, 1455 de Maisonneuve Blvd W, Montreal, Quebec, Canada, H3G 1M8
| | - Todd C Handy
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 1N4; Mathison Centre for Mental Health, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4Z6
| | - Julia W Y Kam
- Department of Psychology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4; Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4; Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
147
|
Sastry NC, Roy D, Banerjee A. Stability of sensorimotor network sculpts the dynamic repertoire of resting state over lifespan. Cereb Cortex 2023; 33:1246-1262. [PMID: 35368068 PMCID: PMC9930636 DOI: 10.1093/cercor/bhac133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/08/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Abstract
Temporally stable patterns of neural coordination among distributed brain regions are crucial for survival. Recently, many studies highlight association between healthy aging and modifications in organization of functional brain networks, across various time-scales. Nonetheless, quantitative characterization of temporal stability of functional brain networks across healthy aging remains unexplored. This study introduces a data-driven unsupervised approach to capture high-dimensional dynamic functional connectivity (dFC) via low-dimensional patterns and subsequent estimation of temporal stability using quantitative metrics. Healthy aging related changes in temporal stability of dFC were characterized across resting-state, movie-viewing, and sensorimotor tasks (SMT) on a large (n = 645) healthy aging dataset (18-88 years). Prominent results reveal that (1) whole-brain temporal dynamics of dFC movie-watching task is closer to resting-state than to SMT with an overall trend of highest temporal stability observed during SMT followed by movie-watching and resting-state, invariant across lifespan aging, (2) in both tasks conditions stability of neurocognitive networks in young adults is higher than older adults, and (3) temporal stability of whole brain resting-state follows a U-shaped curve along lifespan-a pattern shared by sensorimotor network stability indicating their deeper relationship. Overall, the results can be applied generally for studying cohorts of neurological disorders using neuroimaging tools.
Collapse
Affiliation(s)
- Nisha Chetana Sastry
- Cognitive Brain Dynamics Laboratory, National Brain Research Centre, NH 8, Manesar, Gurgaon 122052, India
| | - Dipanjan Roy
- School of Artificial Intelligence & Data Science, Centre for Brain Science & Applications, Indian Institute of Technology, Jodhpur NH 62, Surpura Bypass Rd, Karwar, Rajasthan 342030, India
| | - Arpan Banerjee
- Cognitive Brain Dynamics Laboratory, National Brain Research Centre, NH 8, Manesar, Gurgaon 122052, India
| |
Collapse
|
148
|
Krohn S, von Schwanenflug N, Waschke L, Romanello A, Gell M, Garrett DD, Finke C. A spatiotemporal complexity architecture of human brain activity. SCIENCE ADVANCES 2023; 9:eabq3851. [PMID: 36724223 PMCID: PMC9891702 DOI: 10.1126/sciadv.abq3851] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 05/07/2023]
Abstract
The human brain operates in large-scale functional networks. These networks are an expression of temporally correlated activity across brain regions, but how global network properties relate to the neural dynamics of individual regions remains incompletely understood. Here, we show that the brain's network architecture is tightly linked to critical episodes of neural regularity, visible as spontaneous "complexity drops" in functional magnetic resonance imaging signals. These episodes closely explain functional connectivity strength between regions, subserve the propagation of neural activity patterns, and reflect interindividual differences in age and behavior. Furthermore, complexity drops define neural activity states that dynamically shape the connectivity strength, topological configuration, and hierarchy of brain networks and comprehensively explain known structure-function relationships within the brain. These findings delineate a principled complexity architecture of neural activity-a human "complexome" that underpins the brain's functional network organization.
Collapse
Affiliation(s)
- Stephan Krohn
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nina von Schwanenflug
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonhard Waschke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Amy Romanello
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Gell
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience and Medicine (INM-7), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, RWTH Aachen University, Aachen, Germany
| | - Douglas D. Garrett
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Carsten Finke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
149
|
Cui H, Dai W, Zhu Y, Kan X, Gu AAC, Lukemire J, Zhan L, He L, Guo Y, Yang C. BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:493-506. [PMID: 36318557 PMCID: PMC10079627 DOI: 10.1109/tmi.2022.3218745] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mapping the connectome of the human brain using structural or functional connectivity has become one of the most pervasive paradigms for neuroimaging analysis. Recently, Graph Neural Networks (GNNs) motivated from geometric deep learning have attracted broad interest due to their established power for modeling complex networked data. Despite their superior performance in many fields, there has not yet been a systematic study of how to design effective GNNs for brain network analysis. To bridge this gap, we present BrainGB, a benchmark for brain network analysis with GNNs. BrainGB standardizes the process by (1) summarizing brain network construction pipelines for both functional and structural neuroimaging modalities and (2) modularizing the implementation of GNN designs. We conduct extensive experiments on datasets across cohorts and modalities and recommend a set of general recipes for effective GNN designs on brain networks. To support open and reproducible research on GNN-based brain network analysis, we host the BrainGB website at https://braingb.us with models, tutorials, examples, as well as an out-of-box Python package. We hope that this work will provide useful empirical evidence and offer insights for future research in this novel and promising direction.
Collapse
|
150
|
von Schwanenflug N, Ramirez-Mahaluf JP, Krohn S, Romanello A, Heine J, Prüss H, Crossley NA, Finke C. Reduced resilience of brain state transitions in anti-N-methyl-D-aspartate receptor encephalitis. Eur J Neurosci 2023; 57:568-579. [PMID: 36514280 DOI: 10.1111/ejn.15901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Patients with anti-N-methyl-aspartate receptor (NMDA) receptor encephalitis suffer from a severe neuropsychiatric syndrome, yet most patients show no abnormalities in routine magnetic resonance imaging. In contrast, advanced neuroimaging studies have consistently identified disrupted functional connectivity in these patients, with recent work suggesting increased volatility of functional state dynamics. Here, we investigate these network dynamics through the spatiotemporal trajectory of meta-state transitions, yielding a time-resolved account of brain state exploration in anti-NMDA receptor encephalitis. To this end, resting-state functional magnetic resonance imaging data were acquired in 73 patients with anti-NMDA receptor encephalitis and 73 age- and sex-matched healthy controls. Time-resolved functional connectivity was clustered into brain meta-states, giving rise to a time-resolved transition network graph with states as nodes and transitions between brain meta-states as weighted, directed edges. Network topology, robustness and transition cost of these transition networks were compared between groups. Transition networks of patients showed significantly lower local efficiency (t = -2.41, pFDR = .029), lower robustness (t = -2.01, pFDR = .048) and higher leap size (t = 2.18, pFDR = .037) compared with controls. Furthermore, the ratio of within-to-between module transitions and state similarity was significantly lower in patients. Importantly, alterations of brain state transitions correlated with disease severity. Together, these findings reveal systematic alterations of transition networks in patients, suggesting that anti-NMDA receptor encephalitis is characterized by reduced stability of brain state transitions and that this reduced resilience of transition networks plays a clinically relevant role in the manifestation of the disease.
Collapse
Affiliation(s)
- Nina von Schwanenflug
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juan P Ramirez-Mahaluf
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Stephan Krohn
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Amy Romanello
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josephine Heine
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Nicolas A Crossley
- Department of Psychiatry, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Carsten Finke
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|