101
|
Three novel mutations in CYB5R3 gene causing NADH-cytochrome b5 reductase enzyme deficiency leads to recessive congenital methaemoglobinemia. Mol Biol Rep 2022; 49:2141-2147. [PMID: 35064402 DOI: 10.1007/s11033-021-07031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Methemoglobin is the reduced form of haemoglobin that is normally found in the blood in levels < 1%. Methemoglobinemia can occur as a congenital or acquired disease. Two types of recessive congenital methaemoglobinemia (RCM) are caused by the NADH-dependent cytochrome b5 reductase enzyme deficiency of the CYB5R3 gene. RCM-I is characterized by higher methaemoglobin levels (> 2 g/dL), causing only cyanosis, whereas RCM-II is associated with cyanosis with neurological impairment. METHODS Routine haematological investigations were done by standard method. The methaemoglobin level was evaluated by the potassium ferricyanide assay. NADH-cytochrome b5 reductase (cytb5r) enzyme activities were measured by standard methods, and molecular analysis was performed by polymerase chain reaction (PCR) followed by DNA sequencing. The interpretation of mutation effect and the molecular modeling were performed by using specific software DEEP VIEW SWISS-PDB VIEWER and Pymol molecular graphics program. RESULTS The present study discovered three novel homozygous pathogenic variants of CYB5R3 causing RCM I and II in four unrelated Indian patients. In patient-1 and patient-2 of RCM type I caused due to novel c.175C>T (p.Arg59Cys) and other reported c.469T>C (p.Phe157Ser) missense pathogenic variants respectively, whereas patient-3 and patient-4 presented with the RCM type II are related to developmental delay with cyanosis since birth due to a novel homozygous (g.25679_25679delA) splice-site deletion and novel homozygous c.824_825insC (p.Pro278ThrfsTer367) single nucleotide insertion. The CYB5R3 transcript levels were estimated by qRT-PCR in the splice-site deletion, which was 0.33fold of normal healthy control. The insertion of nucleotide C resulted in a frameshift of termination codon are associated with neurological impairment. CONCLUSIONS Molecular diagnosis of RCM can help to conduct genetic counselling for novel mutations and, subsequently, prenatal diagnosis of high-risk genetic disorders.
Collapse
|
102
|
Han C, Khodadadi-Jamayran A, Lorch AH, Jin Q, Serafin V, Zhu P, Politanska Y, Sun L, Gutierrez-Diaz BT, Pryzhkova MV, Abdala-Valencia H, Bartom ET, Buldini B, Basso G, Velu SE, Sarma K, Mattamana BB, Cho BK, Obeng RC, Goo YA, Jordan PW, Tsirigos A, Zhou Y, Ntziachristos P. SF3B1 homeostasis is critical for survival and therapeutic response in T cell leukemia. SCIENCE ADVANCES 2022; 8:eabj8357. [PMID: 35061527 PMCID: PMC8782448 DOI: 10.1126/sciadv.abj8357] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/29/2021] [Indexed: 05/05/2023]
Abstract
The production of noncanonical mRNA transcripts is associated with cell transformation. Driven by our previous findings on the sensitivity of T cell acute lymphoblastic leukemia (T-ALL) cells to SF3B1 inhibitors, we identified that SF3B1 inhibition blocks T-ALL growth in vivo with no notable associated toxicity. We also revealed protein stabilization of the U2 complex component SF3B1 via deubiquitination. Our studies showed that SF3B1 inhibition perturbs exon skipping, leading to nonsense-mediated decay and diminished levels of DNA damage response-related transcripts, such as the serine/threonine kinase CHEK2, and impaired DNA damage response. We also identified that SF3B1 inhibition leads to a general decrease in R-loop formation. We further demonstrate that clinically used SF3B1 inhibitors synergize with CHEK2 inhibitors and chemotherapeutic drugs to block leukemia growth. Our study provides the proof of principle for posttranslational regulation of splicing components and associated roles and therapeutic implications for the U2 complex in T cell leukemia.
Collapse
Affiliation(s)
- Cuijuan Han
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA
| | - Adam H. Lorch
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qi Jin
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valentina Serafin
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, Padua University, Padova, Italy
| | - Ping Zhu
- H3 Biomedicine Inc., Cambridge, MA, USA
| | - Yuliya Politanska
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Limin Sun
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Blanca T. Gutierrez-Diaz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marina V. Pryzhkova
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Hiam Abdala-Valencia
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth Thomas Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Barbara Buldini
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, Padua University, Padova, Italy
| | - Giuseppe Basso
- Division of Pediatric Hematology, Oncology and Stem Cell Transplant, Maternal and Child Health Department, Padua University, Padova, Italy
| | - Sadanandan E. Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kavitha Sarma
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Basil B. Mattamana
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Byoung-Kyu Cho
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Rebecca C. Obeng
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Young Ah Goo
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aristotelis Tsirigos
- Applied Bioinformatics Laboratories, Office of Science and Research, New York University School of Medicine, New York, NY, USA
- Department of Pathology and Laura & Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY, USA
- Institute for Computational Medicine, NYU School of Medicine, New York, NY, USA
| | - Yalu Zhou
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Panagiotis Ntziachristos
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| |
Collapse
|
103
|
Xu W, Biswas J, Singer RH, Rosbash M. Targeted RNA editing: novel tools to study post-transcriptional regulation. Mol Cell 2022; 82:389-403. [PMID: 34739873 PMCID: PMC8792254 DOI: 10.1016/j.molcel.2021.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
RNA binding proteins (RBPs) regulate nearly all post-transcriptional processes within cells. To fully understand RBP function, it is essential to identify their in vivo targets. Standard techniques for profiling RBP targets, such as crosslinking immunoprecipitation (CLIP) and its variants, are limited or suboptimal in some situations, e.g. when compatible antibodies are not available and when dealing with small cell populations such as neuronal subtypes and primary stem cells. This review summarizes and compares several genetic approaches recently designed to identify RBP targets in such circumstances. TRIBE (targets of RNA binding proteins identified by editing), RNA tagging, and STAMP (surveying targets by APOBEC-mediated profiling) are new genetic tools useful for the study of post-transcriptional regulation and RBP identification. We describe the underlying RNA base editing technology, recent applications, and therapeutic implications.
Collapse
Affiliation(s)
- Weijin Xu
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA.
| |
Collapse
|
104
|
Okada H, Saga Y. Repurposing of the enhancer-promoter communication underlies the compensation of Mesp2 by Mesp1. PLoS Genet 2022; 18:e1010000. [PMID: 35025872 PMCID: PMC8791502 DOI: 10.1371/journal.pgen.1010000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 01/26/2022] [Accepted: 12/17/2021] [Indexed: 11/25/2022] Open
Abstract
Organisms are inherently equipped with buffering systems against genetic perturbations. Genetic compensation, the compensatory response by upregulating another gene or genes, is one such buffering mechanism. Recently, a well-conserved compensatory mechanism was proposed: transcriptional adaptation of homologs under the nonsense-mediated mRNA decay pathways. However, this model cannot explain the onset of all compensatory events. We report a novel genetic compensation mechanism operating over the Mesp gene locus. Mesp1 and Mesp2 are paralogs located adjacently in the genome. Mesp2 loss is partially rescued by Mesp1 upregulation in the presomitic mesoderm (PSM). Using a cultured PSM induction system, we reproduced the compensatory response in vitro and found that the Mesp2-enhancer is required to promote Mesp1. We revealed that the Mesp2-enhancer directly interacts with the Mesp1 promoter, thereby upregulating Mesp1 expression upon the loss of Mesp2. Of note, this interaction is established by genomic arrangement upon PSM development independently of Mesp2 disruption. We propose that the repurposing of this established enhancer-promoter communication is the mechanism underlying this compensatory response for the upregulation of the adjacent gene. Genetic compensation, the compensatory response by upregulating another gene or genes, is one of the inherent mechanisms against gene disruption to confer cellular fitness. However, the regulatory mechanisms are largely unknown. Nonsense-mediated mutant mRNA degradation was recently proposed as a conserved mechanism across species to upregulate homologous genes to compensate for a disrupted gene, but this cannot explain compensation events with no mutant mRNA. This study investigated the compensation mechanism operating over adjacent paralogs, Mesp1 and Mesp2, in the genome. Mesp genes encode essential transcription factors in the presomitic mesoderm for development. In general, an enhancer is considered to activate a target gene when it physically interacts with the target. The communication of the Mesp2-enhancer with the Mesp1 promoter is established upon differentiation of the presomitic mesoderm, but this communication activates Mesp1 only when Mesp2 is disrupted, leading to compensation. We revealed a novel compensation mechanism depending on the repurposing of this enhancer-promoter communication by gene disruption. Our study also provides new insight into transcriptional regulation by providing the concept that an enhancer changes its target even among its physically interacting genes in a context-dependent manner.
Collapse
Affiliation(s)
- Hajime Okada
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
105
|
Marin Rubio LA, Aroca-Aguilar JD, Luis-Hidalgo M, Escribano J, Ontañon J. RNA and protein expression analysis of HLA-DQB1*03:01:01:21Q allele: A null allele renamed as HLA-DQB1*03:01:01:21N. HLA 2022; 99:160-166. [PMID: 34997833 DOI: 10.1111/tan.14537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
The characterization of the expression profile of HLA questionable alleles (Q) is clinically relevant in allogeneic hematopoietic stem cell transplantation (HSTC) because an aberrant expression of these alleles could lead to transplantation-related complications. HLA-DQB1*03:01:01:21Q shows a substitution at the donor splice site of intron 3 that potentially could affect the expression of this allele. In order to determine their expression profile at RNA and protein level, we analyzed the presence of the HLA-DQ7 molecule by complement-dependent cytotoxicity test (CDC) and flow cytometry, and their RNA processing by cDNA analyses and sequencing by Sanger methods. Our results reveal that HLA-DQ7 is not detectable by serological methods, this is confirmed by cDNA methods demonstrating the absence of specific HLA-DQB1*03:01:01:21Q mRNA, probably due to an intron 3 retention that creates a premature TGA stop codon, leading to mRNA degradation via nonsense-mediated decay (NMD). These findings demonstrate that the HLA-DQB1*03:01:01:21Q allele is nonexpressed, thus it has been renamed as DQB1*03:01:01:21N.
Collapse
Affiliation(s)
- Luis Alberto Marin Rubio
- Immunology Unit, Clinical Analysis Department, Albacete University Hospital Complex, Albacete, Spain
| | - Jose Daniel Aroca-Aguilar
- Área de Genética, Facultad de Medicina de Albacete/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Mar Luis-Hidalgo
- Histocompatibilidad, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Julio Escribano
- Área de Genética, Facultad de Medicina de Albacete/Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, Albacete, Spain
| | - Jesus Ontañon
- Immunology Unit, Clinical Analysis Department, Albacete University Hospital Complex, Albacete, Spain
| |
Collapse
|
106
|
Peng Q, Ma K, Wang L, Zhu Y, Zhang Y, Rao C, Luo D, Jiang Z, Lai W, Lu H, Duan C, Zhou Z, Lu X. Case Report: A Novel Intronic Mutation in AIFM1 Associated With Fatal Encephalomyopathy and Mitochondrial Disease in Infant. Front Pediatr 2022; 10:889089. [PMID: 35712626 PMCID: PMC9194441 DOI: 10.3389/fped.2022.889089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The AIFM1 gene is located on chromosome Xq26.1 and encodes a flavoprotein essential for nuclear disassembly in apoptotic cells. Mutations in this gene can cause variable clinical phenotypes, but genotype-phenotype correlations of AIFM1-related disorder have not yet been fully determined because of the clinical scarcity. CASE PRESENTATION We describe a 4-month-old infant with mitochondrial encephalopathy, carrying a novel intronic variant in AIFM1 (NM_004208.4: c.1164 + 5G > A). TA cloning of the complementary DNA (cDNA) and Sanger sequencing revealed the simultaneous presence of an aberrant transcript with exon 11 skipping (89 bp) and a normal transcript through analysis of mRNA extracted from the patient's fibroblasts, which is consistent with direct RNA sequencing results. CONCLUSION We verified the pathogenic effect of the AIFM1 c.1164 + 5G > A splicing variant, which disturbed normal mRNA splicing. Our findings expand the mutation spectrum of AIFM1 and point out the necessity of intronic sequence analysis and the importance for integrative functional studies in the interpretation of sequence variants.
Collapse
Affiliation(s)
- Qi Peng
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Keze Ma
- Pediatric Intensive Care Unit, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Linsheng Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yinghua Zhu
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Yaozhong Zhang
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Chunbao Rao
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Dong Luo
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Zaixue Jiang
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Wei Lai
- Department of Radiology, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Huiling Lu
- Pediatric Intensive Care Unit, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Chaohui Duan
- Laboratory of Clinical, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiaomei Lu
- Laboratory Department, Dongguan Children's Hospital Affiliated to Guangdong Medical University, Dongguan, China.,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China.,Key Laboratory for Children's Genetics and Infectious Diseases of Dongguan, Dongguan, China
| |
Collapse
|
107
|
Yamada C, Kubota T, Ishimi T, Takeyari S, Yamamoto K, Nakayama H, Ohata Y, Fujiwara M, Kitaoka T, Ozono K. A novel <i>COL1A1</i> deletion/insertion pathogenic variant in a patient with osteogenesis imperfecta. Clin Pediatr Endocrinol 2022; 31:205-208. [PMID: 35928384 PMCID: PMC9297176 DOI: 10.1297/cpe.2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chieko Yamada
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Ishimi
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichi Yamamoto
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hirofumi Nakayama
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
108
|
Seymen F, Zhang H, Kasimoglu Y, Koruyucu M, Simmer JP, Hu JCC, Kim JW. Novel Mutations in GPR68 and SLC24A4 Cause Hypomaturation Amelogenesis Imperfecta. J Pers Med 2021; 12:jpm12010013. [PMID: 35055328 PMCID: PMC8781920 DOI: 10.3390/jpm12010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
Amelogenesis imperfecta (AI) is a rare genetic condition affecting the quantity and/or quality of tooth enamel. Hypomaturation AI is characterized by brownish-yellow discoloration with increased opacity and poorly mineralized enamel prone to fracture and attrition. We recruited three families affected by hypomaturation AI and performed whole exome sequencing with selected individuals in each family. Bioinformatic analysis and Sanger sequencing identified and confirmed mutations and segregation in the families. Family 1 had a novel homozygous frameshift mutation in GPR68 gene (NM_003485.3:c.78_83delinsC, p.(Val27Cysfs*146)). Family 2 had a novel homozygous nonsense mutation in SLC24A4 gene (NM_153646.4:c.613C>T, NP_705932.2:p.(Arg205*)). Family 3 also had a homozygous missense mutation in SLC24A4 gene which was reported previously (c.437C>T, p.(Ala146Val)). This report not only expands the mutational spectrum of the AI-causing genes but also improves our understanding of normal and pathologic amelogenesis.
Collapse
Affiliation(s)
- Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - Hong Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Yelda Kasimoglu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey; (F.S.); (Y.K.); (M.K.)
| | - James P. Simmer
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jung-Wook Kim
- Department of Pediatric Dentistry, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea
- Department of Molecular Genetics, School of Dentistry & DRI, Seoul National University, Seoul 03080, Korea
- Correspondence:
| |
Collapse
|
109
|
De S, Edwards DM, Dwivedi V, Wang J, Varsally W, Dixon HL, Singh AK, Owuamalam PO, Wright MT, Summers RP, Hossain MN, Price EM, Wojewodzic MW, Falciani F, Hodges NJ, Saponaro M, Tanaka K, Azzalin CM, Baumann P, Hebenstreit D, Brogna S. Genome-wide chromosomal association of Upf1 is linked to Pol II transcription in Schizosaccharomyces pombe. Nucleic Acids Res 2021; 50:350-367. [PMID: 34928380 PMCID: PMC8754637 DOI: 10.1093/nar/gkab1249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Although the RNA helicase Upf1 has hitherto been examined mostly in relation to its cytoplasmic role in nonsense mediated mRNA decay (NMD), here we report high-throughput ChIP data indicating genome-wide association of Upf1 with active genes in Schizosaccharomyces pombe. This association is RNase sensitive, correlates with Pol II transcription and mRNA expression levels. Changes in Pol II occupancy were detected in a Upf1 deficient (upf1Δ) strain, prevalently at genes showing a high Upf1 relative to Pol II association in wild-type. Additionally, an increased Ser2 Pol II signal was detected at all highly transcribed genes examined by ChIP-qPCR. Furthermore, upf1Δ cells are hypersensitive to the transcription elongation inhibitor 6-azauracil. A significant proportion of the genes associated with Upf1 in wild-type conditions are also mis-regulated in upf1Δ. These data envisage that by operating on the nascent transcript, Upf1 might influence Pol II phosphorylation and transcription.
Collapse
Affiliation(s)
- Sandip De
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - David M Edwards
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Vibha Dwivedi
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Jianming Wang
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Wazeer Varsally
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Hannah L Dixon
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Anand K Singh
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Interdisciplinary School of Life Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Precious O Owuamalam
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Matthew T Wright
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Reece P Summers
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Md Nazmul Hossain
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Department of Microbial Biotechnology, Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Emily M Price
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Marcin W Wojewodzic
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK.,Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway & Department of Research, Cancer Registry of Norway, Oslo University Hospital, Oslo, Norway & Environmental Genomics, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Francesco Falciani
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Nikolas J Hodges
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, UK
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, UK
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Saverio Brogna
- School of Biosciences and Birmingham Centre of Genome Biology (BCGB), University of Birmingham, UK
| |
Collapse
|
110
|
Molina‐Berenguer M, Vila‐Julià F, Pérez‐Ramos S, Salcedo‐Allende MT, Cámara Y, Torres‐Torronteras J, Martí R. Dysfunctional mitochondrial translation and combined oxidative phosphorylation deficiency in a mouse model of hepatoencephalopathy due to
Gfm1
mutations. FASEB J 2021; 36:e22091. [DOI: 10.1096/fj.202100819rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Miguel Molina‐Berenguer
- Research Group on Neuromuscular and Mitochondrial Diseases Vall d'Hebron Research Institute Universitat Autònoma de Barcelona Barcelona Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Ferran Vila‐Julià
- Research Group on Neuromuscular and Mitochondrial Diseases Vall d'Hebron Research Institute Universitat Autònoma de Barcelona Barcelona Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Sandra Pérez‐Ramos
- Research Group on Neuromuscular and Mitochondrial Diseases Vall d'Hebron Research Institute Universitat Autònoma de Barcelona Barcelona Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Maria Teresa Salcedo‐Allende
- Pathology Department Vall d'Hebron Research Institute Hospital Universitari Vall d'Hebron Universitat Autònoma de Barcelona Barcelona Spain
| | - Yolanda Cámara
- Research Group on Neuromuscular and Mitochondrial Diseases Vall d'Hebron Research Institute Universitat Autònoma de Barcelona Barcelona Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Javier Torres‐Torronteras
- Research Group on Neuromuscular and Mitochondrial Diseases Vall d'Hebron Research Institute Universitat Autònoma de Barcelona Barcelona Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER) Instituto de Salud Carlos III Madrid Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases Vall d'Hebron Research Institute Universitat Autònoma de Barcelona Barcelona Spain
- Biomedical Network Research Centre on Rare Diseases (CIBERER) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
111
|
Bongiorno R, Colombo MP, Lecis D. Deciphering the nonsense-mediated mRNA decay pathway to identify cancer cell vulnerabilities for effective cancer therapy. J Exp Clin Cancer Res 2021; 40:376. [PMID: 34852841 PMCID: PMC8638473 DOI: 10.1186/s13046-021-02192-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
112
|
Soohoo SM, Tiwari PB, Suzuki YJ, Brelidze TI. Investigation of PAS and CNBH domain interactions in hERG channels and effects of long-QT syndrome-causing mutations with surface plasmon resonance. J Biol Chem 2021; 298:101433. [PMID: 34801551 PMCID: PMC8693265 DOI: 10.1016/j.jbc.2021.101433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/29/2022] Open
Abstract
Human ether-á-go-go-related gene (hERG) channels are key regulators of cardiac repolarization, neuronal excitability, and tumorigenesis. hERG channels contain N-terminal Per-Arnt-Sim (PAS) and C-terminal cyclic nucleotide-binding homology (CNBH) domains with many long-QT syndrome (LQTS)-causing mutations located at the interface between these domains. Despite the importance of PAS/CNBH domain interactions, little is known about their affinity. Here, we used the surface plasmon resonance (SPR) technique to investigate interactions between isolated PAS and CNBH domains and the effects of LQTS-causing mutations R20G, N33T, and E58D, located at the PAS/CNBH domain interface, on these interactions. We determined that the affinity of the PAS/CNBH domain interactions was ∼1.4 μM. R20G and E58D mutations had little effect on the domain interaction affinity, while N33T abolished the domain interactions. Interestingly, mutations in the intrinsic ligand, a conserved stretch of amino acids occupying the beta-roll cavity in the CNBH domain, had little effect on the affinity of PAS/CNBH domain interactions. Additionally, we determined that the isolated PAS domains formed oligomers with an interaction affinity of ∼1.6 μM. Coexpression of the isolated PAS domains with the full-length hERG channels or addition of the purified PAS protein inhibited hERG currents. These PAS/PAS interactions can have important implications for hERG function in normal and pathological conditions associated with increased surface density of channels or interaction with other PAS-domain-containing proteins. Taken together, our study provides the first account of the binding affinities for wild-type and mutant hERG PAS and CNBH domains and highlights the potential functional significance of PAS/PAS domain interactions.
Collapse
Affiliation(s)
- Stephanie M Soohoo
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Purushottam B Tiwari
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, District of Columbia, USA.
| |
Collapse
|
113
|
Palma MB, Tronik-Le Roux D, Amín G, Castañeda S, Möbbs AM, Scarafia MA, La Greca A, Daouya M, Poras I, Inda AM, Moro LN, Carosella ED, García MN, Miriuka SG. HLA-G gene editing in tumor cell lines as a novel alternative in cancer immunotherapy. Sci Rep 2021; 11:22158. [PMID: 34773056 PMCID: PMC8589947 DOI: 10.1038/s41598-021-01572-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022] Open
Abstract
Cancer immunotherapies based mainly on the blockade of immune-checkpoint (IC) molecules by anti-IC antibodies offer new alternatives for treatment in oncological diseases. However, a considerable proportion of patients remain unresponsive to them. Hence, the development of novel clinical immunotherapeutic approaches and/or targets are crucial.W In this context, targeting the immune-checkpoint HLA-G/ILT2/ILT4 has caused great interest since it is abnormally expressed in several malignancies generating a tolerogenic microenvironment. Here, we used CRISPR/Cas9 gene editing to block the HLA-G expression in two tumor cell lines expressing HLA-G, including a renal cell carcinoma (RCC7) and a choriocarcinoma (JEG-3). Different sgRNA/Cas9 plasmids targeting HLA-G exon 1 and 2 were transfected in both cell lines. Downregulation of HLA-G was reached to different degrees, including complete silencing. Most importantly, HLA-G - cells triggered a higher in vitro response of immune cells with respect to HLA-G + wild type cells. Altogether, we demonstrated for the first time the HLA-G downregulation through gene editing. We propose this approach as a first step to develop novel clinical immunotherapeutic approaches in cancer.
Collapse
Affiliation(s)
- María Belén Palma
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
| | - Diana Tronik-Le Roux
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, University of Paris, Paris, France
| | | | | | - Alan M Möbbs
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
| | | | | | - Marina Daouya
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, University of Paris, Paris, France
| | - Isabelle Poras
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, University of Paris, Paris, France
| | - Ana María Inda
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
- Comisión de Investigaciones Científicas (CIC), Buenos Aires, Argentina
| | - Lucía N Moro
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Edgardo D Carosella
- Atomic Energy and Alternative Energies Agency (CEA), Hematology and Immunology Research Division, Saint-Louis Hospital, Paris, France
- U976 HIPI Unit, University of Paris, Paris, France
| | - Marcela N García
- Cátedra de Citología, Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - Santiago G Miriuka
- LIAN-CONICET, Fundación FLENI, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
114
|
Han H, Jiang G, Kumari R, Silic MR, Owens JL, Hu C, Mittal SK, Zhang G. Loss of smarcad1a accelerates tumorigenesis of malignant peripheral nerve sheath tumors in zebrafish. Genes Chromosomes Cancer 2021; 60:743-761. [PMID: 34296799 PMCID: PMC9585957 DOI: 10.1002/gcc.22983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a type of sarcoma that generally originates from Schwann cells. The prognosis for this type of malignancy is relatively poor due to complicated genetic alterations and the lack of specific targeted therapy. Chromosome fragment 4q22-23 is frequently deleted in MPNSTs and other human tumors, suggesting tumor suppressor genes may reside in this region. Here, we provide evidence that SMARCAD1, a known chromatin remodeler, is a novel tumor suppressor gene located in 4q22-23. We identified two human homologous smarcad1 genes (smarcad1a and smarcad1b) in zebrafish, and both genes share overlapping expression patterns during embryonic development. We demonstrated that two smarcad1a loss-of-function mutants, sa1299 and p403, can accelerate MPNST tumorigenesis in the tp53 mutant background, suggesting smarcad1a is a bona fide tumor suppressor gene for MPNSTs. Moreover, we found that DNA double-strand break (DSB) repair might be compromised in both mutants compared to wildtype zebrafish, as indicated by pH2AX, a DNA DSB marker. In addition, both SMARCAD1 gene knockdown and overexpression in human cells were able to inhibit tumor growth and displayed similar DSB repair responses, suggesting proper SMARCAD1 gene expression level or gene dosage is critical for cell growth. Given that mutations of SMARCAD1 sensitize cells to poly ADP ribose polymerase inhibitors in yeast and the human U2OS osteosarcoma cell line, the identification of SMARCAD1 as a novel tumor suppressor gene might contribute to the development of new cancer therapies for MPNSTs.
Collapse
Affiliation(s)
- Han Han
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Guangzhen Jiang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Present address:
College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Rashmi Kumari
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Martin R. Silic
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
| | - Jake L. Owens
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
| | - Chang‐Deng Hu
- Department of Medicinal Chemistry and Molecular PharmacologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
| | - Suresh K. Mittal
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
| | - GuangJun Zhang
- Department of Comparative PathobiologyPurdue UniversityWest LafayetteIndianaUSA
- Purdue University Center for Cancer ResearchPurdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Inflammation, Immunology and Infectious Disease (PI4D)Purdue UniversityWest LafayetteIndianaUSA
- Purdue Institute for Integrative Neuroscience (PIIN)Purdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
115
|
Koeppel F, Muller E, Harlé A, Guien C, Sujobert P, Trabelsi Grati O, Kosmider O, Miguet L, Mauvieux L, Cayre A, Salgado D, Preudhomme C, Karayan-Tapon L, Tachon G, Coulet F, Lespagnol A, Beroud C, Leroy K, Rouleau E, Soubeyran I. Standardisation of pathogenicity classification for somatic alterations in solid tumours and haematologic malignancies. Eur J Cancer 2021; 159:1-15. [PMID: 34700215 DOI: 10.1016/j.ejca.2021.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The difficulty in interpreting somatic alterations is correlated with the increase in sequencing panel size. To correctly guide the clinical management of patients with cancer, there needs to be accurate classification of pathogenicity followed by actionability assessment. Here, we describe a specific detailed workflow for the classification of the pathogenicity of somatic variants in cancer into five categories: benign, likely benign, unknown significance, likely pathogenic and pathogenic. METHODS Classification is obtained by combining a set of eight relevant criteria in favour of either a pathogenic or a benign effect (pathogenic stand-alone, pathogenic very strong, pathogenic strong, pathogenic moderate, pathogenic supporting, benign supporting, benign strong and benign stand-alone). RESULTS Our guide is concordant with the ACMG/AMP 2015 guidelines for germline variants. Interpretation of somatic variants requires considering specific criteria, such as the disease and therapeutic context, co-occurring genomic events in the tumour when available and the use of cancer-specific variant databases. In addition, the gene role in tumorigenesis (oncogene or tumour suppressor gene) also needs to be taken into consideration. CONCLUSION Our classification could contribute to homogenize best practices on somatic variant pathogenicity interpretation and improve interpretation consistency both within and between laboratories.
Collapse
Affiliation(s)
- Florence Koeppel
- Gustave Roussy, Direction de la Recherche, Villejuif, F-94805, France
| | - Etienne Muller
- Laboratoire de Biologie et Génétique du Cancer, Centre François Baclesse, Caen, 14000, France; Inserm U1245, Normandie Univ, UNIROUEN, Normandy Centre for Genomic and Personalized Medicine, Rouen, 76031, France
| | - Alexandre Harlé
- Université de Lorraine CNRS UMR 7039 CRAN, Service de Biopathologie, Institut de Cancérologie de Lorraine, Vandœuvre-lès-Nancy, F-54519, France
| | - Céline Guien
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Pierre Sujobert
- Hospices Civils de Lyon, Groupement Hospitalier Sud, Service d'hématologie biologique, Pierre-Bénite, France; Cancer Research Center of Lyon, INSERM U1052 UMR CNRS 5286, Equipe labellisée Ligue Contre le Cancer, Université de Lyon, Lyon, France
| | - Olfa Trabelsi Grati
- Unité de pharmacogénomique, Service de Génétique, Institut Curie, 26 rue d'Ulm, Paris, 75005, France
| | - Olivier Kosmider
- AP-HP Centre, Hôpital Cochin, Service d'hématologie Biologique et Université de Paris, Paris-Descartes, France
| | - Laurent Miguet
- Laboratoire d'hématologie, CHRU Strasbourg, INSERM U1113, Avenue Molière, Strasbourg, 67100, France
| | - Laurent Mauvieux
- Laboratoire d'hématologie, CHRU Strasbourg, INSERM U1113, Avenue Molière, Strasbourg, 67100, France
| | - Anne Cayre
- LBM OncoGenAuvergne, UF de Pathologie, Centre Jean Perrin, 58 Rue Montalembert, BP392, Clermont-Ferrand, 63011, France
| | - David Salgado
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Claude Preudhomme
- Center of Pathology, Laboratory of Hematology, University Hospital of Lille, Lille, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, INSERMU1084 et CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, France
| | - Gaëlle Tachon
- Université de Poitiers, INSERMU1084 et CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, France
| | - Florence Coulet
- Genetics Department, Assistance publique - Hôpitaux de Paris, Pitié Salpêtrière Hôpital, Paris, France
| | - Alexandra Lespagnol
- CHU Pontchaillou - Laboratoire de Génétique Somatique des Cancers, Rennes, France
| | - Christophe Beroud
- Aix Marseille Univ, INSERM, MMG, Bioinformatics & Genetics, Marseille, France; AP-HM, Hôpital d'Enfants de la Timone, Département de Génétique Médicale et de Biologie Cellulaire, Marseille, France
| | - Karen Leroy
- AP-HP Centre, Hôpital Européen Georges Pompidou, Service de Biochimie et Université de Paris, France
| | - Etienne Rouleau
- Gustave Roussy, Département de biologie et pathologie médicales, Villejuif, F-94805, France.
| | - Isabelle Soubeyran
- Unité de Pathologie Moléculaire et Inserm U1218, Institut Bergonié, 229 cours de l'Argonne, Bordeaux, 33076, France
| |
Collapse
|
116
|
Ramms DJ, Raimondi F, Arang N, Herberg FW, Taylor SS, Gutkind JS. G αs-Protein Kinase A (PKA) Pathway Signalopathies: The Emerging Genetic Landscape and Therapeutic Potential of Human Diseases Driven by Aberrant G αs-PKA Signaling. Pharmacol Rev 2021; 73:155-197. [PMID: 34663687 PMCID: PMC11060502 DOI: 10.1124/pharmrev.120.000269] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many of the fundamental concepts of signal transduction and kinase activity are attributed to the discovery and crystallization of cAMP-dependent protein kinase, or protein kinase A. PKA is one of the best-studied kinases in human biology, with emphasis in biochemistry and biophysics, all the way to metabolism, hormone action, and gene expression regulation. It is surprising, however, that our understanding of PKA's role in disease is largely underappreciated. Although genetic mutations in the PKA holoenzyme are known to cause diseases such as Carney complex, Cushing syndrome, and acrodysostosis, the story largely stops there. With the recent explosion of genomic medicine, we can finally appreciate the broader role of the Gαs-PKA pathway in disease, with contributions from aberrant functioning G proteins and G protein-coupled receptors, as well as multiple alterations in other pathway components and negative regulators. Together, these represent a broad family of diseases we term the Gαs-PKA pathway signalopathies. The Gαs-PKA pathway signalopathies encompass diseases caused by germline, postzygotic, and somatic mutations in the Gαs-PKA pathway, with largely endocrine and neoplastic phenotypes. Here, we present a signaling-centric review of Gαs-PKA-driven pathophysiology and integrate computational and structural analysis to identify mutational themes commonly exploited by the Gαs-PKA pathway signalopathies. Major mutational themes include hotspot activating mutations in Gαs, encoded by GNAS, and mutations that destabilize the PKA holoenzyme. With this review, we hope to incite further study and ultimately the development of new therapeutic strategies in the treatment of a wide range of human diseases. SIGNIFICANCE STATEMENT: Little recognition is given to the causative role of Gαs-PKA pathway dysregulation in disease, with effects ranging from infectious disease, endocrine syndromes, and many cancers, yet these disparate diseases can all be understood by common genetic themes and biochemical signaling connections. By highlighting these common pathogenic mechanisms and bridging multiple disciplines, important progress can be made toward therapeutic advances in treating Gαs-PKA pathway-driven disease.
Collapse
Affiliation(s)
- Dana J Ramms
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Francesco Raimondi
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Nadia Arang
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Friedrich W Herberg
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - Susan S Taylor
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| | - J Silvio Gutkind
- Department of Pharmacology (D.J.R., N.A., J.S.G.), Department of Chemistry and Biochemistry (S.S.T.), and Moores Cancer Center (D.J.R., N.A., J.S.G.), University of California, San Diego, La Jolla, California; Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore, Pisa, Italy (F.R.); and Department of Biochemistry, University of Kassel, Kassel, Germany (F.W.H.)
| |
Collapse
|
117
|
Abrahams L, Savisaar R, Mordstein C, Young B, Kudla G, Hurst LD. Evidence in disease and non-disease contexts that nonsense mutations cause altered splicing via motif disruption. Nucleic Acids Res 2021; 49:9665-9685. [PMID: 34469537 PMCID: PMC8464065 DOI: 10.1093/nar/gkab750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/21/2022] Open
Abstract
Transcripts containing premature termination codons (PTCs) can be subject to nonsense-associated alternative splicing (NAS). Two models have been evoked to explain this, scanning and splice motif disruption. The latter postulates that exonic cis motifs, such as exonic splice enhancers (ESEs), are disrupted by nonsense mutations. We employ genome-wide transcriptomic and k-mer enrichment methods to scrutinize this model. First, we show that ESEs are prone to disruptive nonsense mutations owing to their purine richness and paucity of TGA, TAA and TAG. The motif model correctly predicts that NAS rates should be low (we estimate 5–30%) and approximately in line with estimates for the rate at which random point mutations disrupt splicing (8–20%). Further, we find that, as expected, NAS-associated PTCs are predictable from nucleotide-based machine learning approaches to predict splice disruption and, at least for pathogenic variants, are enriched in ESEs. Finally, we find that both in and out of frame mutations to TAA, TGA or TAG are associated with exon skipping. While a higher relative frequency of such skip-inducing mutations in-frame than out of frame lends some credence to the scanning model, these results reinforce the importance of considering splice motif modulation to understand the etiology of PTC-associated disease.
Collapse
Affiliation(s)
- Liam Abrahams
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Rosina Savisaar
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Christine Mordstein
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.,MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.,Aarhus University, Department of Molecular Biology and Genetics, C F Møllers Allé 3, 8000 Aarhus, Denmark
| | - Bethan Young
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Grzegorz Kudla
- MRC Human Genetics Unit, The University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
118
|
Abstract
The standard genetic code (SGC) has been extensively analyzed for the biological ramifications of its nonrandom structure. For instance, mismatch errors due to point mutation or mistranslation have an overall smaller effect on the amino acid polar requirement under the SGC than under random genetic codes (RGCs). A similar observation was recently made for frameshift errors, prompting the assertion that the SGC has been shaped by natural selection for frameshift-robustness-conservation of certain amino acid properties upon a frameshift mutation or translational frameshift. However, frameshift-robustness confers no benefit because frameshifts usually create premature stop codons that cause nonsense-mediated mRNA decay or production of nonfunctional truncated proteins. We here propose that the frameshift-robustness of the SGC is a byproduct of its mismatch-robustness. Of 564 amino acid properties considered, the SGC exhibits mismatch-robustness in 93-133 properties and frameshift-robustness in 55 properties, respectively, and that the latter is largely a subset of the former. For each of the 564 real and 564 randomly constructed fake properties of amino acids, there is a positive correlation between mismatch-robustness and frameshift-robustness across one million RGCs; this correlation arises because most amino acid changes resulting from a frameshift are also achievable by a mismatch error. Importantly, the SGC does not show significantly higher frameshift-robustness in any of the 55 properties than RGCs of comparable mismatch-robustness. These findings support that the frameshift-robustness of the SGC need not originate through direct selection and can instead be a site effect of its mismatch-robustness.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
119
|
Smith CCR, Rieseberg LH, Hulke BS, Kane NC. Aberrant RNA splicing due to genetic incompatibilities in sunflower hybrids. Evolution 2021; 75:2747-2758. [PMID: 34533836 DOI: 10.1111/evo.14360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/27/2021] [Accepted: 09/01/2021] [Indexed: 01/18/2023]
Abstract
Genome-scale studies have revealed divergent mRNA splicing patterns between closely related species or populations. However, it is unclear whether splicing differentiation is a simple byproduct of population divergence, or whether it also acts as a mechanism for reproductive isolation. We examined mRNA splicing in wild × domesticated sunflower hybrids and observed 45 novel splice forms that were not found in the wild or domesticated parents, in addition to 16 high-expression parental splice forms that were absent in one or more hybrids. We identify loci associated with variation in the levels of these splice forms, finding that many aberrant transcripts were regulated by multiple alleles with nonadditive interactions. We identified particular spliceosome components that were associated with 21 aberrant isoforms, more than half of which were located in or near regulatory QTL. These incompatibilities often resulted in alteration in the protein-coding regions of the novel transcripts in the form of frameshifts and truncations. By associating the splice variation in these genes with size and growth rate measurements, we found that the cumulative expression of all aberrant transcripts was correlated with a significant reduction in growth rate. Our results lead us to propose a model where divergent splicing regulatory loci could act as incompatibility loci that contribute to the evolution of reproductive isolation.
Collapse
Affiliation(s)
- Chris C R Smith
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| | - Loren H Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, VCR 2A5, Canada
| | - Brent S Hulke
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, North Dakota, 58102
| | - Nolan C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, 80309
| |
Collapse
|
120
|
Koschak A, Fernandez-Quintero ML, Heigl T, Ruzza M, Seitter H, Zanetti L. Cav1.4 dysfunction and congenital stationary night blindness type 2. Pflugers Arch 2021; 473:1437-1454. [PMID: 34212239 PMCID: PMC8370969 DOI: 10.1007/s00424-021-02570-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/04/2022]
Abstract
Cav1.4 L-type Ca2+ channels are predominantly expressed in retinal neurons, particularly at the photoreceptor terminals where they mediate sustained Ca2+ entry needed for continuous neurotransmitter release at their ribbon synapses. Cav1.4 channel gating properties are controlled by accessory subunits, associated regulatory proteins, and also alternative splicing. In humans, mutations in the CACNA1F gene encoding for Cav1.4 channels are associated with X-linked retinal disorders such as congenital stationary night blindness type 2. Mutations in the Cav1.4 protein result in a spectrum of altered functional channel activity. Several mouse models broadened our understanding of the role of Cav1.4 channels not only as Ca2+ source at retinal synapses but also as synaptic organizers. In this review, we highlight different structural and functional phenotypes of Cav1.4 mutations that might also occur in patients with congenital stationary night blindness type 2. A further important yet mostly neglected aspect that we discuss is the influence of alternative splicing on channel dysfunction. We conclude that currently available functional phenotyping strategies should be refined and summarize potential specific therapeutic options for patients carrying Cav1.4 mutations. Importantly, the development of new therapeutic approaches will permit a deeper understanding of not only the disease pathophysiology but also the physiological function of Cav1.4 channels in the retina.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Calcium Channel Agonists/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Eye Diseases, Hereditary/genetics
- Eye Diseases, Hereditary/metabolism
- Genetic Diseases, X-Linked/genetics
- Genetic Diseases, X-Linked/metabolism
- Humans
- Mutation/physiology
- Myopia/genetics
- Myopia/metabolism
- Night Blindness/genetics
- Night Blindness/metabolism
- Retina/drug effects
- Retina/metabolism
- Synapses/drug effects
- Synapses/genetics
- Synapses/metabolism
Collapse
Affiliation(s)
- Alexandra Koschak
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria.
| | - Monica L Fernandez-Quintero
- Institute of General, Inorganic and Theoretical Chemistry, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Thomas Heigl
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Marco Ruzza
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Hartwig Seitter
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| | - Lucia Zanetti
- Institute of Pharmacy, Pharmacology and Toxicology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82/III, 6020, Innsbruck, Austria
| |
Collapse
|
121
|
Ma Z, Qin G, Zhang Y, Liu C, Wei M, Cen Z, Yan Y, Luo T, Li Z, Liang H, Huang D, Deng G. Bacterial leaf streak 1 encoding a mitogen-activated protein kinase confers resistance to bacterial leaf streak in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1084-1101. [PMID: 34101285 DOI: 10.1111/tpj.15368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 05/25/2023]
Abstract
Bacterial leaf streak (BLS) is a major bacterial disease of rice. Utilization of host genetic resistance has become one of the most important strategies for controlling BLS. However, only a few resistance genes have been characterized. Previously, a recessive BLS resistance gene bls1 was roughly mapped on chromosome 6. Here, we further delineated bls1 to a 21 kb region spanning four genes. Genetic analysis confirmed that the gene encoding a mitogen-activated protein kinase (OsMAPK6) is the target of the allelic genes BLS1 and bls1. Overexpression of BLS1 weakened resistance to the specific Xanthomonas oryzae pv. oryzicola (Xoc) strain JZ-8, while low expression of bls1 increased resistance. However, both overexpression of BLS1 and low expression of bls1 could increase no-race-specific broad-spectrum resistance. These results indicate that BLS1 and bls1 negatively regulate race-specific resistance to Xoc strain JZ-8 but positively and negatively control broad-spectrum resistance, respectively. Subcellular localization demonstrated that OsMAPK6 was localized in the nucleus. RGA4, which is known to mediate resistance to Xoc, is the potential target of OsMAPK6. Overexpression of BLS1 and low expression of bls1 showed increase in salicylic acid and induced expression of defense-related genes, simultaneously increasing broad-spectrum resistance. Moreover, low expression of bls1 showed increase an in jasmonic acid and abscisic acid, in company with an increase in resistance to Xoc strain JZ-8. Collectively, our study provides new insights into the understanding of BLS resistance and facilitates the development of rice host-resistant cultivars.
Collapse
Affiliation(s)
- Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenlu Cen
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yong Yan
- Microbiology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenjing Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Haifu Liang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Guofu Deng
- Guangxi Key Laboratory of Rice Genetics and Breeding, Guangxi Crop Genetic Improvement and Biotechnology Lab, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
122
|
Kataoka N, Matsumoto E, Masaki S. Mechanistic Insights of Aberrant Splicing with Splicing Factor Mutations Found in Myelodysplastic Syndromes. Int J Mol Sci 2021; 22:ijms22157789. [PMID: 34360561 PMCID: PMC8346168 DOI: 10.3390/ijms22157789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pre-mRNA splicing is an essential process for gene expression in higher eukaryotes, which requires a high order of accuracy. Mutations in splicing factors or regulatory elements in pre-mRNAs often result in many human diseases. Myelodysplastic syndrome (MDS) is a heterogeneous group of chronic myeloid neoplasms characterized by many symptoms and a high risk of progression to acute myeloid leukemia. Recent findings indicate that mutations in splicing factors represent a novel class of driver mutations in human cancers and affect about 50% of Myelodysplastic syndrome (MDS) patients. Somatic mutations in MDS patients are frequently found in genes SF3B1, SRSF2, U2AF1, and ZRSR2. Interestingly, they are involved in the recognition of 3' splice sites and exons. It has been reported that mutations in these splicing regulators result in aberrant splicing of many genes. In this review article, we first describe molecular mechanism of pre-mRNA splicing as an introduction and mainly focus on those four splicing factors to describe their mutations and their associated aberrant splicing patterns.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Correspondence: ; Tel.: +81-3-5841-5372; Fax: +81-3-5841-8014
| | - Eri Matsumoto
- Laboratory of Cellular Biochemistry, Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| | - So Masaki
- Laboratory of Molecular Medicinal Science, Department of Pharmaceutical Sciences, Ritsumeikan University, Shiga 525-8577, Japan;
| |
Collapse
|
123
|
Zhang H, Wu Z, Yang L, Zhang Z, Chen H, Ren J. Novel mutations in the Myo5a gene cause a dilute coat color phenotype in mice. FASEB J 2021; 35:e21261. [PMID: 33715225 DOI: 10.1096/fj.201903141rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 11/11/2022]
Abstract
C57BL/6 laboratory mice usually show black coat color. We observed a dilute (gray) coat color phenotype in progenies of two C57BL/6 mice. This phenotype is inherited in an autosomal recessive mode. To uncover the molecular mechanism underlying this naturally occurring phenotypic variation, we performed whole-genome sequencing (25×) on 10 offspring of the two founder mice. The whole-genome DNA sequencing and additional RNA-Seq data reveal that Myo5a is the gene responsible for the coat color dilution in C57BL/6 mice, and novel mutations in the Myo5a gene are likely causal. We further performed reverse transcription-quantitative PCR, and showed increased expression of truncated Myo5a transcripts encoding dysfunctional proteins and decreased expression of Myo5a full-length transcripts encoding functional proteins in mutant individuals. The decrease in full-length messenger RNA abundance was accompanied by reduced Myo5a protein level and deficient melanosome transport, a potential mechanistic link between the Myo5a mutations and the dilute color phenotype. This study not only advances our understanding of the molecular mechanisms of pigmentation in mice, but also provides a typical case of deciphering the molecular basis of phenotypic variation in mice by genomic analyses and subsequent functional work.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongping Wu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lijuan Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhen Zhang
- College of Biotechnology, Guilin Medical University, Guilin, China
| | - Hao Chen
- College of Life Science, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jun Ren
- College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
124
|
Chen ZZ, Wang JY, Kang Y, Yang QY, Gu XY, Zhi DL, Yan L, Long CZ, Shen B, Niu YY. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res 2021; 42:469-477. [PMID: 34213093 PMCID: PMC8317192 DOI: 10.24272/j.issn.2095-8137.2021.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/28/2021] [Indexed: 01/23/2023] Open
Abstract
Mutations of PTEN-induced kinase I (PINK1) cause early-onset Parkinson's disease (PD) with selective neurodegeneration in humans. However, current PINK1 knockout mouse and pig models are unable to recapitulate the typical neurodegenerative phenotypes observed in PD patients. This suggests that generating PINK1 disease models in non-human primates (NHPs) that are close to humans is essential to investigate the unique function of PINK1 in primate brains. Paired single guide RNA (sgRNA)/Cas9-D10A nickases and truncated sgRNA/Cas9, both of which can reduce off-target effects without compromising on-target editing, are two optimized strategies in the CRISPR/Cas9 system for establishing disease animal models. Here, we combined the two strategies and injected Cas9-D10A mRNA and two truncated sgRNAs into one-cell-stage cynomolgus zygotes to target the PINK1 gene. We achieved precise and efficient gene editing of the target site in three newborn cynomolgus monkeys. The frame shift mutations of PINK1 in mutant fibroblasts led to a reduction in mRNA. However, western blotting and immunofluorescence staining confirmed the PINK1 protein levels were comparable to that in wild-type fibroblasts. We further reprogramed mutant fibroblasts into induced pluripotent stem cells (iPSCs), which showed similar ability to differentiate into dopamine (DA) neurons. Taken together, our results showed that co-injection of Cas9-D10A nickase mRNA and sgRNA into one-cell-stage cynomolgus embryos enabled the generation of human disease models in NHPs and target editing by pair truncated sgRNA/Cas9-D10A in PINK1 gene exon 2 did not impact protein expression.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jian-Ying Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qiao-Yan Yang
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Xue-Ying Gu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Da-Long Zhi
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medicine University, Xi'an, Shaanxi 710032, China
| | - Li Yan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Cheng-Zu Long
- Leon H Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China. E-mail:
| | - Yu-Yu Niu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. E-mail:
| |
Collapse
|
125
|
El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, De La Grange P, Nau V, Gaillon T, Bienvenu T, Jacquemin-Sablon H, Goossens M, Amselem S, Giurgea I. Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Mol Psychiatry 2021; 26:3572-3585. [PMID: 33867523 DOI: 10.1038/s41380-021-01072-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Among the genetic factors playing a key role in the etiology of intellectual disabilities (IDs) and autism spectrum disorders (ASDs), several encode RNA-binding proteins (RBPs). In this study, we deciphered the molecular and cellular bases of ID-ASD in a patient followed from birth to the age of 21, in whom we identified a de novo CSDE1 (Cold Shock Domain-containing E1) nonsense variation. CSDE1 encodes an RBP that regulates multiple cellular pathways by monitoring the translation and abundance of target transcripts. Analyses performed on the patient's primary fibroblasts showed that the identified CSDE1 variation leads to haploinsufficiency. We identified through RNA-seq assays the Wnt/β-catenin signaling and cellular adhesion as two major deregulated pathways. These results were further confirmed by functional studies involving Wnt-specific luciferase and substrate adhesion assays. Additional data support a disease model involving APC Down-Regulated-1 (APCDD1) and cadherin-2 (CDH2), two components of the Wnt/β-catenin pathway, CDH2 being also pivotal for cellular adhesion. Our study, which relies on both the deep phenotyping and long-term follow-up of a patient with CSDE1 haploinsufficiency and on ex vivo studies, sheds new light on the CSDE1-dependent deregulated pathways in ID-ASD.
Collapse
Affiliation(s)
- E El Khouri
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - J Ghoumid
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - D Haye
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - F Giuliano
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - L Drevillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,CHU Caen Normandie, Caen, France
| | - A Briand-Suleau
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | | | - V Nau
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - T Gaillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - T Bienvenu
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | - H Jacquemin-Sablon
- INSERM UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - M Goossens
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - S Amselem
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - I Giurgea
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France. .,Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.
| |
Collapse
|
126
|
Bella F, Campo S. Long non-coding RNAs and their involvement in bipolar disorders. Gene 2021; 796-797:145803. [PMID: 34175394 DOI: 10.1016/j.gene.2021.145803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/22/2021] [Indexed: 01/22/2023]
Abstract
Non-coding RNAs (nc-RNAs) can be defined as RNA molecules that are not translated into proteins. Although the functional meaning of many nc-RNAs remains still to be verified, several of these molecules have a clear biological importance, which goes from translation of mRNAs to DNA replication. Indeed, regulatory nc-RNAs can be classified into two groups: short non-coding RNAs (sncRNAs) and long-non coding RNAs (lncRNAs). In the last years, lncRNAs have gained increasing importance in the study of gene regulation, helping authors understand the molecular mechanisms underlying cellular physiology and pathology. LncRNAs are greater than 200 bp and accumulate in nucleus, cytoplasm and exosomes with high tissue specificity, acting in cis or in trans in order to exert enhancer or silencer modulation on gene expression. Such regulatory features, which are widespread in human cells and tissues, can be disrupted in several morbid states. Recent evidences may suggest a disruption of lncRNAs in bipolar disorders, a cluster of severe, chronic and disabling psychiatric diseases, which are characterized by major depressive states cyclically alternating with manic episodes. Here, the authors reviewed genes, classification, biogenesis, structures, functions and databases regarding lncRNAs, and also focused on bipolar disorders, in which some lncRNAs, especially those involved in inflammation and neuronal development, has reported to be dysregulated.
Collapse
Affiliation(s)
- Fabrizio Bella
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, via Consolare Valeria, 1, Messina 98125 Italy.
| |
Collapse
|
127
|
Ho AT, Hurst LD. Effective Population Size Predicts Local Rates but Not Local Mitigation of Read-through Errors. Mol Biol Evol 2021; 38:244-262. [PMID: 32797190 PMCID: PMC7783166 DOI: 10.1093/molbev/msaa210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In correctly predicting that selection efficiency is positively correlated with the effective population size (Ne), the nearly neutral theory provides a coherent understanding of between-species variation in numerous genomic parameters, including heritable error (germline mutation) rates. Does the same theory also explain variation in phenotypic error rates and in abundance of error mitigation mechanisms? Translational read-through provides a model to investigate both issues as it is common, mostly nonadaptive, and has good proxy for rate (TAA being the least leaky stop codon) and potential error mitigation via "fail-safe" 3' additional stop codons (ASCs). Prior theory of translational read-through has suggested that when population sizes are high, weak selection for local mitigation can be effective thus predicting a positive correlation between ASC enrichment and Ne. Contra to prediction, we find that ASC enrichment is not correlated with Ne. ASC enrichment, although highly phylogenetically patchy, is, however, more common both in unicellular species and in genes expressed in unicellular modes in multicellular species. By contrast, Ne does positively correlate with TAA enrichment. These results imply that local phenotypic error rates, not local mitigation rates, are consistent with a drift barrier/nearly neutral model.
Collapse
Affiliation(s)
- Alexander T Ho
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Corresponding author: E-mail:
| | - Laurence D Hurst
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
128
|
Alexandre-Moreno S, Bonet-Fernández JM, Atienzar-Aroca R, Aroca-Aguilar JD, Escribano J. Null cyp1b1 Activity in Zebrafish Leads to Variable Craniofacial Defects Associated with Altered Expression of Extracellular Matrix and Lipid Metabolism Genes. Int J Mol Sci 2021; 22:ijms22126430. [PMID: 34208498 PMCID: PMC8234340 DOI: 10.3390/ijms22126430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary CYP1B1 is a cytochrome P450 monooxygenase involved in oxidative metabolism of different endogenous lipids and drugs. The loss of function (LoF) of this gene underlies many cases of recessive primary congenital glaucoma (PCG), an infrequent disease and a common cause of infantile loss of vision in children. To the best of our knowledge, this is the first study to generate a cyp1b1 knockout zebrafish model. The zebrafish line did not exhibit glaucoma-related phenotypes; however, adult mutant zebrafish presented variable craniofacial alterations, including uni- or bilateral craniofacial alterations with incomplete penetrance and variable expressivity. Transcriptomic analyses of seven-dpf cyp1b1-KO zebrafish revealed differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism and inflammation. Overall, this study provides evidence for the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, as well as for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying cyp1b1 disruption-associated pathogenicity. Abstract CYP1B1 loss of function (LoF) is the main known genetic alteration present in recessive primary congenital glaucoma (PCG), an infrequent disease characterized by delayed embryonic development of the ocular iridocorneal angle; however, the underlying molecular mechanisms are poorly understood. To model CYP1B1 LoF underlying PCG, we developed a cyp1b1 knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries the c.535_667del frameshift mutation that results in the 72% mRNA reduction with the residual mRNA predicted to produce an inactive truncated protein (p.(His179Glyfs*6)). Microphthalmia and jaw maldevelopment were observed in 23% of F0 somatic mosaic mutant larvae (144 hpf). These early phenotypes were not detected in cyp1b1-KO F3 larvae (144 hpf), but 27% of adult (four months) zebrafish exhibited uni- or bilateral craniofacial alterations, indicating the existence of incomplete penetrance and variable expressivity. These phenotypes increased to 86% in the adult offspring of inbred progenitors with craniofacial defects. No glaucoma-related phenotypes were observed in cyp1b1 mutants. Transcriptomic analyses of the offspring (seven dpf) of cyp1b1-KO progenitors with adult-onset craniofacial defects revealed functionally enriched differentially expressed genes related to extracellular matrix and cell adhesion, cell growth and proliferation, lipid metabolism (retinoids, steroids and fatty acids and oxidation–reduction processes that include several cytochrome P450 genes) and inflammation. In summary, this study shows the complexity of the phenotypes and molecular pathways associated with cyp1b1 LoF, with species dependency, and provides evidence for the dysregulation of extracellular matrix gene expression as one of the mechanisms underlying the pathogenicity associated with cyp1b1 disruption.
Collapse
Affiliation(s)
- Susana Alexandre-Moreno
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan-Manuel Bonet-Fernández
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Raquel Atienzar-Aroca
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José-Daniel Aroca-Aguilar
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.-D.A.-A.); (J.E.)
| | - Julio Escribano
- Área de Genética, Facultad de Medicina de Albacete, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Universidad de Castilla-La Mancha, 02006 Albacete, Spain; (S.A.-M.); (J.-M.B.-F.); (R.A.-A.)
- Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality (OFTARED), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.-D.A.-A.); (J.E.)
| |
Collapse
|
129
|
Tan L, Cheng W, Liu F, Wang DO, Wu L, Cao N, Wang J. Positive natural selection of N6-methyladenosine on the RNAs of processed pseudogenes. Genome Biol 2021; 22:180. [PMID: 34120636 PMCID: PMC8201931 DOI: 10.1186/s13059-021-02402-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Canonical nonsense-mediated decay (NMD) is an important splicing-dependent process for mRNA surveillance in mammals. However, processed pseudogenes are not able to trigger NMD due to their lack of introns. It is largely unknown whether they have evolved other surveillance mechanisms. RESULTS Here, we find that the RNAs of pseudogenes, especially processed pseudogenes, have dramatically higher m6A levels than their cognate protein-coding genes, associated with de novo m6A peaks and motifs in human cells. Furthermore, pseudogenes have rapidly accumulated m6A motifs during evolution. The m6A sites of pseudogenes are evolutionarily younger than neutral sites and their m6A levels are increasing, supporting the idea that m6A on the RNAs of pseudogenes is under positive selection. We then find that the m6A RNA modification of processed, rather than unprocessed, pseudogenes promotes cytosolic RNA degradation and attenuates interference with the RNAs of their cognate protein-coding genes. We experimentally validate the m6A RNA modification of two processed pseudogenes, DSTNP2 and NAP1L4P1, which promotes the RNA degradation of both pseudogenes and their cognate protein-coding genes DSTN and NAP1L4. In addition, the m6A of DSTNP2 regulation of DSTN is partially dependent on the miRNA miR-362-5p. CONCLUSIONS Our discovery reveals a novel evolutionary role of m6A RNA modification in cleaning up the unnecessary processed pseudogene transcripts to attenuate their interference with the regulatory network of protein-coding genes.
Collapse
Affiliation(s)
- Liqiang Tan
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weisheng Cheng
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fang Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dan Ohtan Wang
- Center for Biosystems Dynamics Research, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Linwei Wu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nan Cao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jinkai Wang
- Department of Medical Informatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
130
|
Garbarino J, Eckroate J, Sundaram RK, Jensen RB, Bindra RS. Loss of ATRX confers DNA repair defects and PARP inhibitor sensitivity. Transl Oncol 2021; 14:101147. [PMID: 34118569 PMCID: PMC8203843 DOI: 10.1016/j.tranon.2021.101147] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 02/01/2023] Open
Abstract
Drug screen shows that ATRX KO leads to PARP inhibitor sensitivity in glioma cells. PARPi leads to greater levels of replication stress in ATRX KO cells than WT. IDH1 R132H and ATRX KO have similar levels of PARP inhibitor sensitivity. ATRi and PARPi have greater synergy in ATRX KO cells.
Alpha Thalassemia/Mental Retardation Syndrome X-Linked (ATRX) is mutated frequently in gliomas and represents a potential target for cancer therapies. ATRX is known to function as a histone chaperone that helps incorporate histone variant, H3.3, into the genome. Studies have implicated ATRX in key DNA damage response (DDR) pathways but a distinct role in DNA repair has yet to be fully elucidated. To further investigate the function of ATRX in the DDR, we created isogenic wild-type (WT) and ATRX knockout (KO) model cell lines using CRISPR-based gene targeting. These studies revealed that loss of ATRX confers sensitivity to poly(ADP)-ribose polymerase (PARP) inhibitors, which was linked to an increase in replication stress, as detected by increased activation of the ataxia telangiectasia and Rad3-related (ATR) signaling axis. ATRX mutations frequently co-occur with mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2), and the latter mutations also induce HR defects and PARP inhibitor sensitivity. We found that the magnitude of PARP inhibitor sensitivity was equal in the context of each mutation alone, although no further sensitization was observed in combination, suggesting an epistatic interaction. Finally, we observed enhanced synergistic tumor cell killing in ATRX KO cells with ATR and PARP inhibition, which is commonly seen in HR-defective cells. Taken together, these data reveal that ATRX may be used as a molecular marker for DDR defects and PARP inhibitor sensitivity, independent of IDH1/2 mutations. These data highlight the important role of common glioma-associated mutations in the regulation of DDR, and novel avenues for molecularly guided therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Garbarino
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT 06511, USA
| | - Jillian Eckroate
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ranjini K Sundaram
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
131
|
Transposon-mediated insertional mutagenesis unmasks recessive insecticide resistance in the aphid Myzus persicae. Proc Natl Acad Sci U S A 2021; 118:2100559118. [PMID: 34074777 PMCID: PMC8201860 DOI: 10.1073/pnas.2100559118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The evolution of resistance to insecticides threatens the sustainable control of many of the world's most damaging insect crop pests and disease vectors. To effectively combat resistance, it is important to understand its underlying genetic architecture, including the type and number of genetic variants affecting resistance and their interactions with each other and the environment. While significant progress has been made in characterizing the individual genes or mutations leading to resistance, our understanding of how genetic variants interact to influence its phenotypic expression remains poor. Here, we uncover a mechanism of insecticide resistance resulting from transposon-mediated insertional mutagenesis of a genetically dominant but insecticide-susceptible allele that enables the adaptive potential of a previously unavailable recessive resistance allele to be unlocked. Specifically, we identify clones of the aphid pest Myzus persicae that carry a resistant allele of the essential voltage-gated sodium channel (VGSC) gene with the recessive M918T and L1014F resistance mutations, in combination with an allele lacking these mutations but carrying a Mutator-like element transposon insertion that disrupts the coding sequence of the VGSC. This results in the down-regulation of the dominant susceptible allele and monoallelic expression of the recessive resistant allele, rendering the clones resistant to the insecticide bifenthrin. These findings are a powerful example of how transposable elements can provide a source of evolutionary potential that can be revealed by environmental and genetic perturbation, with applied implications for the control of highly damaging insect pests.
Collapse
|
132
|
Manotas H, Payán-Gómez C, Roa MF, Piñeros JG. TARP syndrome associated with renal malformation and optic nerve atrophy. BMJ Case Rep 2021; 14:14/5/e240601. [PMID: 34031074 DOI: 10.1136/bcr-2020-240601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Talipes equinovarus, atrial septal defect, Robin sequence and persistent left superior vena cava (TARP) syndrome is a congenital disease caused by mutations in the RBBM10 gene. It has a low prevalence and a high rate of mortality in the neonatal stage. In this case report, we present a case of a 32-week gestational age preterm newborn with a prenatal diagnosis of intrauterine growth restriction, with a persistent left superior vena cava, interatrial communication and a horseshoe kidney. Additionally, postnatal optic nerve atrophy was diagnosed. By using exome sequencing, the pathogenic variant c.1877del; p.his626Lefus*78 was identified in the RMB10 gene. Due to a lack of reports in the medical literature, the phenotype has not fully been described. Here, we report on a patient with TARP syndrome and a previously unreported mutation, c.1877del; p.his627Leufs*78, which is predicted to generate a truncated and/or protein decay of the RBM10 transcript.
Collapse
Affiliation(s)
- Hernan Manotas
- Department of Pediatrics at Fundación Santa Fé de Bogotá, Hospital Universitario de la Fundacion Santa Fe de Bogota, Bogota, Colombia
| | - César Payán-Gómez
- Faculty of Natural Sciences, Universidad del Rosario, Bogota, Colombia
| | - Maria Fernanda Roa
- Department of Pediatrics at Fundación Santa Fé de Bogotá, University Hospital of the Fundacion Santa Fe de Bogota, Bogota, Colombia
| | - Juan Gabriel Piñeros
- Department of Pediatrics at Fundación Santa Fé de Bogotá, Hospital Universitario de la Fundacion Santa Fe de Bogota, Bogota, Colombia
| |
Collapse
|
133
|
Li L, Pastor J, Zhang J, Davidson T, Hu MC, Moe OW. In search of alternatively spliced alpha-Klotho Kl1 protein in mouse brain. FASEB Bioadv 2021; 3:531-540. [PMID: 34258522 PMCID: PMC8255843 DOI: 10.1096/fba.2020-00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/01/2023] Open
Abstract
Alpha‐Klotho is a multi‐functional protein essential for maintenance of a myriad of cell functions. αKlotho is a single transmembrane protein with a large extracellular segment consisting of two domains (termed Kl1 and Kl2) which is shed into the extracellular fluid by proteolytic cleavage to furnish circulating soluble αKlotho. Based on cDNA sequence, an alternatively spliced mRNA is predicted to translate to a putative soluble αKlotho protein in mouse and human with only the Kl1 domain that represents a “spliced αKlotho Kl1” (spKl1) and is released from the cell without membrane targeting or cleavage. The existence of this protein remains in silico for two decades. We generated a novel antibody (anti‐spE15) against the 15 amino acid epitope (E15; VSPLTKPSVGLLLPH) which is not present in Kl1 or full‐length αKlotho and validated its specific reactivity against spKl1 in vitro. Using anti‐spE15 and two well‐established anti‐αKlotho monoclonal antibodies, we performed immunoblots, immunoprecipitation, and immunohistochemistry to investigate for expression of spKl1 in the mouse brain. We found anti‐spE15 labeling in mouse brain but were not able to see co‐labelling of Kl1 and spE15 epitopes on the same protein, which is the pre‐requisite for the existence of a spKl1 polypeptide, indicating that anti‐spE15 likely binds to another protein other than the putative spKl1. In isolated choroid plexus from mouse brain, we found strong staining with anti‐spE15, but did not find the spliced αKlotho transcript. We conclude that using reliable reagents and inclusion of proper controls, there is no evidence of the spKl1 protein in the mouse brain.
Collapse
Affiliation(s)
- Liping Li
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research Dallas TX USA
| | - Johanne Pastor
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research Dallas TX USA
| | - Jianning Zhang
- Division of Nephrology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX USA
| | - Taylor Davidson
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research Dallas TX USA
| | - Ming-Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research Dallas TX USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research Dallas TX USA.,Division of Nephrology Department of Internal Medicine University of Texas Southwestern Medical Center Dallas TX USA.,Department of Physiology University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
134
|
Findley AS, Monziani A, Richards AL, Rhodes K, Ward MC, Kalita CA, Alazizi A, Pazokitoroudi A, Sankararaman S, Wen X, Lanfear DE, Pique-Regi R, Gilad Y, Luca F. Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions. eLife 2021; 10:e67077. [PMID: 33988505 PMCID: PMC8248987 DOI: 10.7554/elife.67077] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type, and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average, half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.
Collapse
Affiliation(s)
- Anthony S Findley
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Alan Monziani
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Allison L Richards
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Katherine Rhodes
- Department of Human Genetics, University of ChicagoChicagoUnited States
| | - Michelle C Ward
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Cynthia A Kalita
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | | | - Sriram Sankararaman
- Department of Computer Science, UCLALos AngelesUnited States
- Department of Human Genetics, UCLALos AngelesUnited States
- Department of Computational Medicine, UCLALos AngelesUnited States
| | - Xiaoquan Wen
- Department of Biostatistics, University of MichiganAnn ArborUnited States
| | - David E Lanfear
- Center for Individualized and Genomic Medicine Research, Henry Ford HospitalDetroitUnited States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| | - Yoav Gilad
- Department of Human Genetics, University of ChicagoChicagoUnited States
- Department of Medicine, University of ChicagoChicagoUnited States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Obstetrics and Gynecology, Wayne State UniversityDetroitUnited States
| |
Collapse
|
135
|
Plyasova AA, Zhdanov DD. Alternative Splicing of Human Telomerase Reverse Transcriptase (hTERT) and Its Implications in Physiological and Pathological Processes. Biomedicines 2021; 9:526. [PMID: 34065134 PMCID: PMC8150890 DOI: 10.3390/biomedicines9050526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing (AS) of human telomerase catalytic subunit (hTERT, human telomerase reverse transcriptase) pre-mRNA strongly regulates telomerase activity. Several proteins can regulate AS in a cell type-specific manner and determine the functions of cells. In addition to being involved in telomerase activity regulation, AS provides cells with different splice variants that may have alternative biological activities. The modulation of telomerase activity through the induction of hTERT AS is involved in the development of different cancer types and embryos, and the differentiation of stem cells. Regulatory T cells may suppress the proliferation of target human and murine T and B lymphocytes and NK cells in a contact-independent manner involving activation of TERT AS. This review focuses on the mechanism of regulation of hTERT pre-mRNA AS and the involvement of splice variants in physiological and pathological processes.
Collapse
Affiliation(s)
| | - Dmitry D. Zhdanov
- Institute of Biomedical Chemistry, Pogodinskaya st 10/8, 119121 Moscow, Russia;
| |
Collapse
|
136
|
Kitamura Y, Uranishi K, Hirasaki M, Nishimoto M, Suzuki A, Okuda A. Identification of germ cell-specific Mga variant mRNA that promotes meiosis via impediment of a non-canonical PRC1. Sci Rep 2021; 11:9737. [PMID: 33958653 PMCID: PMC8102552 DOI: 10.1038/s41598-021-89123-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023] Open
Abstract
A non-canonical PRC1 (PRC1.6) prevents precocious meiotic onset. Germ cells alleviate its negative effect by reducing their amount of MAX, a component of PRC1.6, as a prerequisite for their bona fide meiosis. Here, we found that germ cells produced Mga variant mRNA bearing a premature termination codon (PTC) during meiosis as an additional mechanism to impede the function of PRC1.6. The variant mRNA encodes an anomalous MGA protein that lacks the bHLHZ domain and thus functions as a dominant negative regulator of PRC1.6. Notwithstanding the presence of PTC, the Mga variant mRNA are rather stably present in spermatocytes and spermatids due to their intrinsic inefficient background of nonsense-mediated mRNA decay. Thus, our data indicate that meiosis is controlled in a multi-layered manner in which both MAX and MGA, which constitute the core of PRC1.6, are at least used as targets to deteriorate the integrity of the complex to ensure progression of meiosis.
Collapse
Affiliation(s)
- Yuka Kitamura
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Masataka Hirasaki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
- Department of Clinical Cancer Genomics, International Medical Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Masazumi Nishimoto
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
- Biomedical Research Center, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan.
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, 1397-1, Yamane Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
137
|
Chayut N, Yuan H, Saar Y, Zheng Y, Sun T, Zhou X, Hermanns A, Oren E, Faigenboim A, Hui M, Fei Z, Mazourek M, Burger J, Tadmor Y, Li L. Comparative transcriptome analyses shed light on carotenoid production and plastid development in melon fruit. HORTICULTURE RESEARCH 2021; 8:112. [PMID: 33931604 PMCID: PMC8087762 DOI: 10.1038/s41438-021-00547-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/24/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Carotenoids, such as β-carotene, accumulate in chromoplasts of various fleshy fruits, awarding them with colors, aromas, and nutrients. The Orange (CmOr) gene controls β-carotene accumulation in melon fruit by posttranslationally enhancing carotenogenesis and repressing β-carotene turnover in chromoplasts. Carotenoid isomerase (CRTISO) isomerizes yellow prolycopene into red lycopene, a prerequisite for further metabolism into β-carotene. We comparatively analyzed the developing fruit transcriptomes of orange-colored melon and its two isogenic EMS-induced mutants, low-β (Cmor) and yofi (Cmcrtiso). The Cmor mutation in low-β caused a major transcriptomic change in the mature fruit. In contrast, the Cmcrtiso mutation in yofi significantly changed the transcriptome only in early fruit developmental stages. These findings indicate that melon fruit transcriptome is primarily altered by changes in carotenoid metabolic flux and plastid conversion, but minimally by carotenoid composition in the ripe fruit. Clustering of the differentially expressed genes into functional groups revealed an association between fruit carotenoid metabolic flux with the maintenance of the photosynthetic apparatus in fruit chloroplasts. Moreover, large numbers of thylakoid localized photosynthetic genes were differentially expressed in low-β. CmOR family proteins were found to physically interact with light-harvesting chlorophyll a-b binding proteins, suggesting a new role of CmOR for chloroplast maintenance in melon fruit. This study brings more insights into the cellular and metabolic processes associated with fruit carotenoid accumulation in melon fruit and reveals a new maintenance mechanism of the photosynthetic apparatus for plastid development.
Collapse
Affiliation(s)
- Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Yuval Saar
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anna Hermanns
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Elad Oren
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Adi Faigenboim
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Maixia Hui
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
| | - Zhangjun Fei
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, P.O. Box 1021, Ramat Yishay, 30095, Israel.
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
138
|
Koller U, Bauer JW. Gene Replacement Therapies for Genodermatoses: A Status Quo. Front Genet 2021; 12:658295. [PMID: 33995490 PMCID: PMC8120236 DOI: 10.3389/fgene.2021.658295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Epidermolysis bullosa (EB) is a genodermatosis, characterized by the formation of extended blisters and lesions on the skin and mucous membranes upon minimal mechanical trauma. The disease is caused by mutations in genes encoding proteins that are essential for skin stability. Functional impairment, reduction, or absence of one of these proteins results in skin fragility due to reduced connectivity between dermis and epidermis. Currently, gene therapy represents the only treatment option with the potential to cure this severe blistering skin disease. Two promising forms of gene therapy are potentially feasible for EB: gene replacement and genome editing. While genome editing for genodermatoses remains at the preclinical stage, gene replacement approaches are clinically advanced and have been applied already to a small number of patients with junctional and dystrophic forms of EB. Here, the viral transduction of the “wild-type” transgene into skin stem cells, followed by autologous grafting of corrected epidermal sheets, led to the regeneration of stable skin. Recent developments regarding designer nuclease-based gene editing strategies enable the establishment of alternative options to restore the gene function in genodermatoses. This is particularly true in cases wherein genetic constellation hinders gene therapy-based gene replacement.
Collapse
Affiliation(s)
- Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
139
|
Novel manifestations of Warburg micro syndrome type 1 caused by a new splicing variant of RAB3GAP1: a case report. BMC Neurol 2021; 21:180. [PMID: 33910511 PMCID: PMC8080372 DOI: 10.1186/s12883-021-02204-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study aimed to determine the underlying genetic factors causing the possible Warburg micro syndrome (WARBM) phenotype in two Iranian patients. CASE PRESENTATION A 5-year-old female and a 4.5-year-old male were referred due to microcephaly, global developmental delay, and dysmorphic features. After doing neuroimaging and clinical examinations, due to the heterogeneity of neurodevelopmental disorders, we subjected 7 family members to whole-exome sequencing. Three candidate variants were confirmed by Sanger sequencing and allele frequency of each variant was also determined in 300 healthy ethnically matched people using the tetra-primer amplification refractory mutation system-PCR and PCR-restriction fragment length polymorphism. To show the splicing effects, reverse transcription-PCR (RT-PCR) and RT-qPCR were performed, followed by Sanger sequencing. A novel homozygous variant-NM_012233.2: c.151-5 T > G; p.(Gly51IlefsTer15)-in the RAB3GAP1 gene was identified as the most likely disease-causing variant. RT-PCR/RT-qPCR showed that this variant can activate a cryptic site of splicing in intron 3, changing the splicing and gene expression processes. We also identified some novel manifestations in association with WARBM type 1 to touch upon abnormal philtrum, prominent antitragus, downturned corners of the mouth, malaligned teeth, scrotal hypoplasia, low anterior hairline, hypertrichosis of upper back, spastic diplegia to quadriplegia, and cerebral white matter signal changes. CONCLUSIONS Due to the common phenotypes between WARBMs and Martsolf syndrome (MIM: 212720), we suggest using the "RABopathies" term that can in turn cover a broad range of manifestations. This study can per se increase the genotype-phenotype spectrum of WARBM type 1.
Collapse
|
140
|
Ka HI, Seo H, Choi Y, Kim J, Cho M, Choi SY, Park S, Han S, An J, Chung HS, Yang Y, Kim MJ. Loss of splicing factor IK impairs normal skeletal muscle development. BMC Biol 2021; 19:44. [PMID: 33789631 PMCID: PMC8015194 DOI: 10.1186/s12915-021-00980-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND IK is a splicing factor that promotes spliceosome activation and contributes to pre-mRNA splicing. Although the molecular mechanism of IK has been previously reported in vitro, the physiological role of IK has not been fully understood in any animal model. Here, we generate an ik knock-out (KO) zebrafish using the CRISPR/Cas9 system to investigate the physiological roles of IK in vivo. RESULTS The ik KO embryos display severe pleiotropic phenotypes, implying an essential role of IK in embryonic development in vertebrates. RNA-seq analysis reveals downregulation of genes involved in skeletal muscle differentiation in ik KO embryos, and there exist genes having improper pre-mRNA splicing among downregulated genes. The ik KO embryos display impaired neuromuscular junction (NMJ) and fast-twitch muscle development. Depletion of ik reduces myod1 expression and upregulates pax7a, preventing normal fast muscle development in a non-cell-autonomous manner. Moreover, when differentiation is induced in IK-depleted C2C12 myoblasts, myoblasts show a reduced ability to form myotubes. However, inhibition of IK does not influence either muscle cell proliferation or apoptosis in zebrafish and C2C12 cells. CONCLUSION This study provides that the splicing factor IK contributes to normal skeletal muscle development in vivo and myogenic differentiation in vitro.
Collapse
Affiliation(s)
- Hye In Ka
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.,Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Hyemin Seo
- Howard Hughes Medical Institute and Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Youngsook Choi
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Joohee Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Mina Cho
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Sujeong Park
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Sora Han
- Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jinsu An
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hak Suk Chung
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Young Yang
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea. .,Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
141
|
Spangenberg L, Guecaimburú R, Tapié A, Vivas S, Rodríguez S, Graña M, Naya H, Raggio V. Novel frameshift mutation in PURA gene causes severe encephalopathy of unclear cause. Mol Genet Genomic Med 2021; 9:e1622. [PMID: 33750045 PMCID: PMC8172205 DOI: 10.1002/mgg3.1622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 01/07/2023] Open
Abstract
Background The etiology of many genetic diseases is challenging. This is especially true for developmental disorders of the central nervous system, since several genes can be involved. Many of such pathologies are considered rare diseases, since they affect less than 1 in 2000 people. Due to their low frequency, they present several difficulties for patients, from the delay in the diagnosis to the lack of treatments. Next‐generation sequencing techniques have improved the search for diagnosis in several pathologies. Many studies have shown that the use of whole‐exome/genome sequencing in rare Mendelian diseases has a diagnostic yield between 30% and 50% depending on the disease. Methods Here, we present the case of an undiagnosed 6‐year‐old boy with severe encephalopathy of unclear cause, whose etiological diagnosis was achieved by whole‐genome sequencing. Results We found a novel variant that has not been previously reported in patients nor it has been described in GnomAD. Segregation analysis supports a de novo mutation, since it is not present in healthy parents. The change is predicted to be harmful to protein function, since it falls in the first quarter of the protein producing an altered reading frame and generating a premature stop codon. Additionally, the variant is classified as pathogenic according to ACMG criteria (PVS1, PM2, and PP3). Furthermore, there are several reported frameshift mutations in nearby codons as well as nonsense mutations that are predicted as pathogenic in other studies. Conclusion We found a novel de novo frameshift mutation in the PURA gene (MIM number 600473), c.151_161del, with sufficient evidence of its pathogenicity.
Collapse
Affiliation(s)
- Lucía Spangenberg
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Informática y Ciencias de la computación, Facultad de Ingeniería, Universidad Católica del Uruguay, Montevideo, Uruguay
| | | | - Alejandra Tapié
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Susana Vivas
- Equipo de Enfermedades Raras, CRENADECER, BPS, Montevideo, Uruguay
| | - Soledad Rodríguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Martín Graña
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Víctor Raggio
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
142
|
Halloy F, Iyer PS, Ghidini A, Lysenko V, Barman-Aksözen J, Grubenmann CP, Jucker J, Wildner-Verhey van Wijk N, Ruepp MD, Minder EI, Minder AE, Schneider-Yin X, Theocharides APA, Schümperli D, Hall J. Repurposing of glycine transport inhibitors for the treatment of erythropoietic protoporphyria. Cell Chem Biol 2021; 28:1221-1234.e6. [PMID: 33756123 DOI: 10.1016/j.chembiol.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/19/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietic protoporphyria (EPP) is a rare disease in which patients experience severe light sensitivity. It is caused by a deficiency of ferrochelatase (FECH), the last enzyme in heme biosynthesis (HBS). The lack of FECH causes accumulation of its photoreactive substrate protoporphyrin IX (PPIX) in patients' erythrocytes. Here, we explored an approach for the treatment of EPP by decreasing PPIX synthesis using small-molecule inhibitors directed to factors in the HBS pathway. We generated a FECH-knockout clone from K562 erythroleukemia cells, which accumulates PPIX and undergoes oxidative stress upon light exposure. We used these matched cell lines to screen a set of publicly available inhibitors of factors in the HBS pathway. Inhibitors of the glycine transporters GlyT1 and GlyT2 lowered levels of PPIX and markers of oxidative stress selectively in K56211B4 cells, and in primary erythroid cultures from an EPP patient. Our findings open the door to investigation of glycine transport inhibitors for HBS disorders.
Collapse
Affiliation(s)
- François Halloy
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Pavithra S Iyer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Alice Ghidini
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Veronika Lysenko
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Jasmin Barman-Aksözen
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Chia-Pei Grubenmann
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Jessica Jucker
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | | | - Marc-David Ruepp
- UK Dementia Research Institute at King's College London, SE5 9RT London, UK; Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF London, UK
| | - Elisabeth I Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Anna-Elisabeth Minder
- Department for Endocrinology, Diabetology, Porphyria, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Xiaoye Schneider-Yin
- Institute of Laboratory Medicine, Municipal Hospital Waid and Triemli, 8063 Zurich, Switzerland
| | - Alexandre P A Theocharides
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, 8091 Zurich, Switzerland
| | - Daniel Schümperli
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Jonathan Hall
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
143
|
Boussaid I, Le Goff S, Floquet C, Gautier EF, Raimbault A, Viailly PJ, Al Dulaimi D, Burroni B, Dusanter-Fourt I, Hatin I, Mayeux P, Cosson B, Fontenay M. Integrated analyses of translatome and proteome identify the rules of translation selectivity in RPS14-deficient cells. Haematologica 2021; 106:746-758. [PMID: 32327500 PMCID: PMC7927886 DOI: 10.3324/haematol.2019.239970] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
In ribosomopathies, the Diamond-Blackfan anemia (DBA) or 5q- syndrome, ribosomal protein (RP) genes are affected by mutation or deletion, resulting in bone marrow erythroid hypoplasia. Unbalanced production of ribosomal subunits leading to a limited ribosome cellular content regulates translation at the expense of the master erythroid transcription factor GATA1. In RPS14-deficient cells mimicking 5q- syndrome erythroid defects, we show that the transcript length, codon bias of the coding sequence (CDS) and 3’UTR (untranslated region) structure are the key determinants of translation. In these cells, short transcripts with a structured 3’UTR and high codon adaptation index (CAI) showed a decreased translation efficiency. Quantitative analysis of the whole proteome confirmed that the post-transcriptional changes depended on the transcript characteristics that governed the translation efficiency in conditions of low ribosome availability. In addition, proteins involved in normal erythroid differentiation share most determinants of translation selectivity. Our findings thus indicate that impaired erythroid maturation due to 5q- syndrome may proceed from a translational selectivity at the expense of the erythroid differentiation program, and suggest that an interplay between the CDS and UTR may regulate mRNA translation.
Collapse
Affiliation(s)
- Ismael Boussaid
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris
| | - Salomé Le Goff
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris,Laboratoire d’Excellence du Globule Rouge GR-Ex, Université de Paris, Paris
| | - Célia Floquet
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris
| | - Emilie-Fleur Gautier
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris,Centre-Université de Paris Cochin, Service de Pathologie, Paris, France
| | - Anna Raimbault
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris
| | - Pierre-Julien Viailly
- Centre Henri-Becquerel, Institut de Recherche et d’Innovation Biomedicale de Haute Normandie, INSERM U1245, Rouen
| | - Dina Al Dulaimi
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris
| | - Barbara Burroni
- Assistance Publique-Hôpitaux de Paris, Centre-Université de Paris - Cochin, Service de Pathologie, Paris
| | | | - Isabelle Hatin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université de Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex
| | - Patrick Mayeux
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris,Laboratoire d’Excellence du Globule Rouge GR-Ex, Université de Paris, Paris,Centre-Université de Paris Cochin, Service de Pathologie, Paris, France
| | - Bertrand Cosson
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR 7216, Paris
| | - Michaela Fontenay
- Université de Paris, Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris,Laboratoire d’Excellence du Globule Rouge GR-Ex, Université de Paris, Paris,Centre-Université de Paris Cochin, Service de Pathologie, Paris, France.,Centre Henri-Becquerel, Institut de Recherche et d’Innovation Biomedicale de Haute Normandie, INSERM U1245, Rouen,Assistance Publique- Hôpitaux de Paris, Centre-Université de Paris - Hôpital Cochin, Service d’Hématologie Biologique, Paris, France
| |
Collapse
|
144
|
Brenes O, Barbieri R, Vásquez M, Vindas-Smith R, Roig J, Romero A, del Valle G, Bermúdez-Guzmán L, Bertelli S, Pusch M, Morales F. Functional and Structural Characterization of ClC-1 and Na v1.4 Channels Resulting from CLCN1 and SCN4A Mutations Identified Alone and Coexisting in Myotonic Patients. Cells 2021; 10:cells10020374. [PMID: 33670307 PMCID: PMC7918176 DOI: 10.3390/cells10020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/25/2022] Open
Abstract
Non-dystrophic myotonias have been linked to loss-of-function mutations in the ClC-1 chloride channel or gain-of-function mutations in the Nav1.4 sodium channel. Here, we describe a family with members diagnosed with Thomsen’s disease. One novel mutation (p.W322*) in CLCN1 and one undescribed mutation (p.R1463H) in SCN4A are segregating in this family. The CLCN1-p.W322* was also found in an unrelated family, in compound heterozygosity with the known CLCN1-p.G355R mutation. One reported mutation, SCN4A-p.T1313M, was found in a third family. Both CLCN1 mutations exhibited loss-of-function: CLCN1-p.W322* probably leads to a non-viable truncated protein; for CLCN1-p.G355R, we predict structural damage, triggering important steric clashes. The SCN4A-p.R1463H produced a positive shift in the steady-state inactivation increasing window currents and a faster recovery from inactivation. These gain-of-function effects are probably due to a disruption of interaction R1463-D1356, which destabilizes the voltage sensor domain (VSD) IV and increases the flexibility of the S4-S5 linker. Finally, modelling suggested that the p.T1313M induces a strong decrease in protein flexibility on the III-IV linker. This study demonstrates that CLCN1-p.W322* and SCN4A-p.R1463H mutations can act alone or in combination as inducers of myotonia. Their co-segregation highlights the necessity for carrying out deep genetic analysis to provide accurate genetic counseling and management of patients.
Collapse
Affiliation(s)
- Oscar Brenes
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, 11501 San José, Costa Rica;
- Centro de Investigación en Neurociencias (CIN), Universidad de Costa Rica, 11501 San José, Costa Rica
| | | | - Melissa Vásquez
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
| | - Rebeca Vindas-Smith
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
| | - Jeffrey Roig
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
| | - Adarli Romero
- Escuela de Biología, Universidad de Costa Rica, 11501 San José, Costa Rica;
| | - Gerardo del Valle
- Laboratorio de Neurofisiología (Neurolab), 11801 San José, Costa Rica;
| | - Luis Bermúdez-Guzmán
- Sección de Genética y Biotecnología, Escuela de Biología, Universidad de Costa Rica, 11501 San José, Costa Rica;
| | - Sara Bertelli
- Istituto di Biofisica, CNR, 16149 Genova, Italy; (R.B.); (S.B.)
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Michael Pusch
- Istituto di Biofisica, CNR, 16149 Genova, Italy; (R.B.); (S.B.)
- Correspondence: (M.P.); (F.M.); Tel.: +39-0106475-553/522 (M.P.); +506-2511-2124 (F.M.)
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, 11501 San José, Costa Rica; (M.V.); (R.V.-S.); (J.R.)
- Correspondence: (M.P.); (F.M.); Tel.: +39-0106475-553/522 (M.P.); +506-2511-2124 (F.M.)
| |
Collapse
|
145
|
Jung H, Lee KS, Choi JK. Comprehensive characterisation of intronic mis-splicing mutations in human cancers. Oncogene 2021; 40:1347-1361. [PMID: 33420369 PMCID: PMC7892346 DOI: 10.1038/s41388-020-01614-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 12/21/2022]
Abstract
Previous studies studying mis-splicing mutations were based on exome data and thus our current knowledge is largely limited to exons and the canonical splice sites. To comprehensively characterise intronic mis-splicing mutations, we analysed 1134 pan-cancer whole genomes and transcriptomes together with 3022 normal control samples. The ratio-based splicing analysis resulted in 678 somatic intronic mutations, with 46% residing in deep introns. Among the 309 deep intronic single nucleotide variants, 245 altered core splicing codes, with 38% activating cryptic splice sites, 12% activating cryptic polypyrimidine tracts, and 36% and 12% disrupting authentic polypyrimidine tracts and branchpoints, respectively. All the intronic cryptic splice sites were created at pre-existing GT/AG dinucleotides or by GC-to-GT conversion. Notably, 85 deep intronic mutations indicated gain of splicing enhancers or loss of splicing silencers. We found that 64 tumour suppressors were affected by intronic mutations and blood cancers showed higher proportion of deep intronic mutations. In particular, a telomere maintenance gene, POT1, was recurrently mis-spliced by deep intronic mutations in blood cancers. We validated a pseudoexon activation involving a splicing silencer in POT1 by CRISPR/Cas9. Our results shed light on previously unappreciated mechanisms by which noncoding mutations acting on splicing codes in deep introns contribute to tumourigenesis.
Collapse
Affiliation(s)
- Hyunchul Jung
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- Cancer Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Cambridge, UK.
| | - Kang Seon Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Jung Kyoon Choi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
- Penta Medix Co., Ltd., Seongnam-si, Gyeongi-do, 13449, Republic of Korea.
| |
Collapse
|
146
|
Knockout of myoc Provides Evidence for the Role of Myocilin in Zebrafish Sex Determination Associated with Wnt Signalling Downregulation. BIOLOGY 2021; 10:biology10020098. [PMID: 33573230 PMCID: PMC7912607 DOI: 10.3390/biology10020098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/16/2022]
Abstract
Myocilin is a secreted glycoprotein with a poorly understood biological function and it is mainly known as the first glaucoma gene. To explore the normal role of this protein in vivo we developed a myoc knockout (KO) zebrafish line using CRISPR/Cas9 genome editing. This line carries a homozygous variant (c.236_239delinsAAAGGGGAAGGGGA) that is predicted to result in a loss-of-function of the protein because of a premature termination codon p.(V75EfsX60) that resulted in a significant reduction of myoc mRNA levels. Immunohistochemistry showed the presence of myocilin in wild-type embryonic (96 h post-fertilization) anterior segment eye structures and caudal muscles. The protein was also detected in different adult ocular and non-ocular tissues. No gross macroscopic or microscopic alterations were identified in the KO zebrafish, but, remarkably, we observed absence of females among the adult KO animals and apoptosis in the immature juvenile gonad (28 dpf) of these animals, which is characteristic of male development. Transcriptomic analysis showed that adult KO males overexpressed key genes involved in male sex determination and presented differentially expressed Wnt signalling genes. These results show that myocilin is required for ovary differentiation in zebrafish and provides in vivo support for the role of myocilin as a Wnt signalling pathway modulator. In summary, this myoc KO zebrafish line can be useful to investigate the elusive function of this protein, and it provides evidence for the unexpected function of myocilin as a key factor in zebrafish sex determination.
Collapse
|
147
|
Kim A, Lee KG, Kwon Y, Lee KI, Yang HM, Habib O, Kim J, Kim ST, Kim SJ, Kim JS, Hwang DY. Off-the-Shelf, Immune-Compatible Human Embryonic Stem Cells Generated Via CRISPR-Mediated Genome Editing. Stem Cell Rev Rep 2021; 17:1053-1067. [PMID: 33423156 PMCID: PMC8166669 DOI: 10.1007/s12015-020-10113-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 10/27/2022]
Abstract
Human embryonic stem cells (hESCs) hold promise in regenerative medicine but allogeneic immune rejections caused by highly polymorphic human leukocyte antigens (HLAs) remain a barrier to their clinical applications. Here, we used a CRISPR/Cas9-mediated HLA-editing strategy to generate a variety of HLA homozygous-like hESC lines from pre-established hESC lines. We edited four pre-established HLA-heterozygous hESC lines and created a mini library of 14 HLA-edited hESC lines in which single HLA-A and HLA-B alleles and both HLA-DR alleles are disrupted. The HLA-edited hESC derivatives elicited both low T cell- and low NK cell-mediated immune responses. Our library would cover about 40% of the Asian-Pacific population. We estimate that HLA-editing of only 19 pre-established hESC lines would give rise to 46 different hESC lines to cover 90% of the Asian-Pacific population. This study offers an opportunity to generate an off-the-shelf HLA-compatible hESC bank, available for immune-compatible cell transplantation, without embryo destruction. Graphical Abstract.
Collapse
Affiliation(s)
- Annie Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, Republic of Korea.,Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kun-Gu Lee
- Department of Biomedical Science, Graduate School of CHA University, Seongnam, South Korea
| | - Yeongbeen Kwon
- Samsung Advanced Institute for Health Sciences & Technology(SAIHST), Graduate School, Department of Health Sciences & Technology, Sungkyunkwan University, Seoul, South Korea.,Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Kang-In Lee
- Department of Biomedical Science, Graduate School of CHA University, Seongnam, South Korea.,ToolGen, Inc., Seoul, South Korea
| | - Heung-Mo Yang
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,GenNbio Inc., Seoul, South Korea.,Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Omer Habib
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea.,Department of Chemistry, Hanyang University, Seoul, Republic of Korea
| | | | - Sang-Tae Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, Republic of Korea.,Department of Life Sciences, The Catholic University of Korea, Bucheon-si, Gyeonggi-do, South Korea
| | - Sung Joo Kim
- Transplantation Research Center, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Republic of Korea.,GenNbio Inc., Seoul, South Korea.,Department of Medicine, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, Republic of Korea. .,Department of Chemistry, Seoul National University, Seoul, Republic of Korea.
| | - Dong-Youn Hwang
- Department of Biomedical Science, Graduate School of CHA University, Seongnam, South Korea.
| |
Collapse
|
148
|
Intron retention-induced neoantigen load correlates with unfavorable prognosis in multiple myeloma. Oncogene 2021; 40:6130-6138. [PMID: 34504297 PMCID: PMC8426332 DOI: 10.1038/s41388-021-02005-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/17/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Neoantigen peptides arising from genetic alterations may serve as targets for personalized cancer vaccines and as positive predictors of response to immune checkpoint therapy. Mutations in genes regulating RNA splicing are common in hematological malignancies leading to dysregulated splicing and intron retention (IR). In this study, we investigated IR as a potential source of tumor neoantigens in multiple myeloma (MM) patients and the relationship of IR-induced neoantigens (IR-neoAg) with clinical outcomes. MM-specific IR events were identified in RNA-sequencing data from the Multiple Myeloma Research Foundation CoMMpass study after removing IR events that also occurred in normal plasma cells. We quantified the IR-neoAg load by assessing IR-induced novel peptides that were predicted to bind to major histocompatibility complex (MHC) molecules. We found that high IR-neoAg load was associated with poor overall survival in both newly diagnosed and relapsed MM patients. Further analyses revealed that poor outcome in MM patients with high IR-neoAg load was associated with high expression levels of T-cell co-inhibitory molecules and elevated interferon signaling activity. We also found that MM cells exhibiting high IR levels had lower MHC-II protein abundance and treatment of MM cells with a spliceosome inhibitor resulted in increased MHC-I protein abundance. Our findings suggest that IR-neoAg may represent a novel biomarker of MM patient clinical outcome and further that targeting RNA splicing may serve as a potential therapeutic strategy to prevent MM immune escape and promote response to checkpoint blockade.
Collapse
|
149
|
McHugh DR, Cotton CU, Hodges CA. Synergy between Readthrough and Nonsense Mediated Decay Inhibition in a Murine Model of Cystic Fibrosis Nonsense Mutations. Int J Mol Sci 2020; 22:ijms22010344. [PMID: 33396210 PMCID: PMC7794695 DOI: 10.3390/ijms22010344] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Many heritable genetic disorders arise from nonsense mutations, which generate premature termination codons (PTCs) in transcribed mRNA. PTCs ablate protein synthesis by prematurely terminating the translation of mutant mRNA, as well as reducing mutant mRNA quantity through targeted degradation by nonsense-mediated decay (NMD) mechanisms. Therapeutic strategies for nonsense mutations include facilitating ribosomal readthrough of the PTC and/or inhibiting NMD to restore protein function. However, the efficacy of combining readthrough agents and NMD inhibitors has not been thoroughly explored. In this study, we examined combinations of known NMD inhibitors and readthrough agents using functional analysis of the CFTR protein in primary cells from a mouse model carrying a G542X nonsense mutation in Cftr. We observed synergy between an inhibitor of the NMD component SMG-1 (SMG1i) and the readthrough agents G418, gentamicin, and paromomycin, but did not observe synergy with readthrough caused by amikacin, tobramycin, PTC124, escin, or amlexanox. These results indicate that treatment with NMD inhibitors can increase the quantity of functional protein following readthrough, and that combining NMD inhibitors and readthrough agents represents a potential therapeutic option for treating nonsense mutations.
Collapse
Affiliation(s)
- Daniel R. McHugh
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
| | - Calvin U. Cotton
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA
| | - Craig A. Hodges
- Department of Genetics and Genome Sciences, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Department of Pediatrics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106, USA;
- Correspondence:
| |
Collapse
|
150
|
Sun J, She P, Liu X, Gao B, Jin D, Zhong TP. Disruption of Abcc6 Transporter in Zebrafish Causes Ocular Calcification and Cardiac Fibrosis. Int J Mol Sci 2020; 22:ijms22010278. [PMID: 33383974 PMCID: PMC7795442 DOI: 10.3390/ijms22010278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE), caused by ABCC6/MRP6 mutation, is a heritable multisystem disorder in humans. The progressive clinical manifestations of PXE are accompanied by ectopic mineralization in various connective tissues. However, the pathomechanisms underlying the PXE multisystem disorder remains obscure, and effective treatment is currently available. In this study, we generated zebrafish abcc6a mutants using the transcription activator-like effector nuclease (TALEN) technique. In young adult zebrafish, abcc6a is expressed in the eyes, heart, intestine, and other tissues. abcc6a mutants exhibit extensive calcification in the ocular sclera and Bruch's membrane, recapitulating part of the PXE manifestations. Mutations in abcc6a upregulate extracellular matrix (ECM) genes, leading to fibrotic heart with reduced cardiomyocyte number. We found that abcc6a mutation reduced levels of both vitamin K and pyrophosphate (PPi) in the serum and diverse tissues. Vitamin K administration increased the gamma-glutamyl carboxylated form of matrix gla protein (cMGP), alleviating ectopic calcification and fibrosis in vertebrae, eyes, and hearts. Our findings contribute to a comprehensive understanding of PXE pathophysiology from zebrafish models.
Collapse
Affiliation(s)
- Jianjian Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China;
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Xu Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Bangjun Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Daqin Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
| | - Tao P. Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai 200241, China; (P.S.); (X.L.); (B.G.); (D.J.)
- Correspondence: ; Tel.: +86-021-54345021
| |
Collapse
|