101
|
Seenappa LM, Jakubowski A, Steinbuck MP, Palmer E, Haqq CM, Carter C, Fontenot J, Villinger F, McNeil LK, DeMuth PC. Amphiphile-CpG vaccination induces potent lymph node activation and COVID-19 immunity in mice and non-human primates. NPJ Vaccines 2022; 7:128. [PMID: 36307453 PMCID: PMC9616425 DOI: 10.1038/s41541-022-00560-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Despite the success of currently authorized vaccines for the reduction of severe COVID-19 disease risk, rapidly emerging viral variants continue to drive pandemic waves of infection, resulting in numerous global public health challenges. Progress will depend on future advances in prophylactic vaccine activity, including advancement of candidates capable of generating more potent induction of cross-reactive T cells and durable cross-reactive antibody responses. Here we evaluated an Amphiphile (AMP) adjuvant, AMP-CpG, admixed with SARS-CoV-2 Spike receptor binding domain (RBD) immunogen, as a lymph node-targeted protein subunit vaccine (ELI-005) in mice and non-human primates (NHPs). AMP-mediated targeting of CpG DNA to draining lymph nodes resulted in comprehensive local immune activation characterized by extensive transcriptional reprogramming, inflammatory proteomic milieu, and activation of innate immune cells as key orchestrators of antigen-directed adaptive immunity. Prime-boost immunization with AMP-CpG in mice induced potent and durable T cell responses in multiple anatomical sites critical for prophylactic efficacy and prevention of severe disease. Long-lived memory responses were rapidly expanded upon re-exposure to antigen. In parallel, RBD-specific antibodies were long-lived, and exhibited cross-reactive recognition of variant RBD. AMP-CpG-adjuvanted prime-boost immunization in NHPs was safe and well tolerated, while promoting multi-cytokine-producing circulating T cell responses cross-reactive across variants of concern (VOC). Expansion of RBD-specific germinal center (GC) B cells in lymph nodes correlated to rapid seroconversion with variant-specific neutralizing antibody responses exceeding those measured in convalescent human plasma. These results demonstrate the promise of lymph-node adjuvant-targeting to coordinate innate immunity and generate robust adaptive responses critical for vaccine efficacy.
Collapse
Affiliation(s)
- Lochana M Seenappa
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA
| | - Aniela Jakubowski
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA
| | - Martin P Steinbuck
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA
| | - Erica Palmer
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA
| | - Christopher M Haqq
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA
| | - Crystal Carter
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, 70560, LA, USA
| | - Jane Fontenot
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, 70560, LA, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, 70560, LA, USA
| | - Lisa K McNeil
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA
| | - Peter C DeMuth
- Elicio Therapeutics, 451 D Street, 5th Floor, Suite 501, Boston, 02210, MA, USA.
| |
Collapse
|
102
|
Kubale J, Gleason C, Carreño JM, Srivastava K, Singh G, Gordon A, Krammer F, Simon V. SARS-CoV-2 Spike-Binding Antibody Longevity and Protection from Reinfection with Antigenically Similar SARS-CoV-2 Variants. mBio 2022; 13:e0178422. [PMID: 35997286 PMCID: PMC9600418 DOI: 10.1128/mbio.01784-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022] Open
Abstract
The PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2) cohort follows health care workers with and without documented coronavirus disease 2019 (COVID-19) since April 2020. We report our findings regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-binding antibody stability and protection from infection in the pre-variant era. We analyzed data from 400 health care workers (150 seropositive and 250 seronegative at enrollment) for a median of 84 days. The SARS-CoV-2 spike-binding antibody titers were highly variable with antibody levels decreasing over the first 3 months, followed by a relative stabilization. We found that both more advanced age (>40 years) and female sex were associated with higher antibody levels (1.6-fold and 1.4-fold increases, respectively). Only six percent of the initially seropositive participants "seroreverted." We documented a total of 11 new SARS-CoV-2 infections (10 naive participants and 1 previously infected participant without detectable antibodies; P < 0.01), indicating that spike antibodies limit the risk of reinfection. These observations, however, only apply to SARS-CoV-2 variants antigenically similar to the ancestral SARS-CoV-2 ones. In conclusion, SARS-CoV-2 antibody titers mounted upon infection are stable over several months and provide protection from infection with antigenically similar viruses. IMPORTANCE SARS-CoV-2 is the cause of one of the largest noninfluenza pandemics of this century. This exceptional public health crisis highlights the urgent need for better understanding of the correlates of protection from infection and severe COVID-19. We established the PARIS cohort to determine durability and effectiveness of SARS-CoV-2 immune responses. Here, we report on the kinetics of SARS-CoV-2 spike-binding antibody after SARS-CoV-2 infection as well as reinfection rates using data collected between April 2020 and August 2021. We found that antibody levels stabilized at individual steady state levels after an initial decrease with seroreversion being found in only 6% of the convalescent participants. SARS-CoV-2 infections only occurred in participants without detectable spike-binding antibodies, indicating significant protection from reinfection with antigenically similar viruses. Our data indicate the importance of spike-binding antibody titers in protection prior to vaccination and the wide circulation of antigenically diverse variants of concern.
Collapse
Affiliation(s)
- John Kubale
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles Gleason
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Komal Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - PARIS Study Team
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aubree Gordon
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
103
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
104
|
Day S, Kaur C, Cheeseman HM, de Groot E, McFarlane LR, Tanaka M, Coelho S, Cole T, Lemm NM, Lim A, Sanders RW, Asquith B, Shattock RJ, Pollock KM. Comparison of blood and lymph node cells after intramuscular injection with HIV envelope immunogens. Front Immunol 2022; 13:991509. [PMID: 36275655 PMCID: PMC9579690 DOI: 10.3389/fimmu.2022.991509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background Harnessing CD4+ T cell help in the lymph nodes through rational antigen design could enhance formation of broadly neutralizing antibodies (bNAbs) during experimental HIV immunization. This process has remained hidden due to difficulty with direct study, with clinical studies instead focusing on responses in the blood as a proxy for the secondary lymphoid tissue. Methods To address this, lymph node cells (LNC) were collected using ultrasound guided fine needle aspiration of axillary lymph nodes from 11 HIV negative participants in an experimental HIV immunogen study (European AIDS Vaccine Initiative EAVI2020_01 study, NCT04046978). Cells from lymph node and blood (PBMC), were collected after intramuscular injection with HIV Env Mosaic immunogens based on HIV Envelope glycoprotein and combined with a liposomal toll-like receptor-4 adjuvant; monophosphoryl lipid A. Simultaneously sampled cells from both blood and lymph node in the same donors were compared for phenotype, function, and antigen-specificity. Results Unsupervised cluster analysis revealed tissue-specific differences in abundance, distribution, and functional response of LNC compared with PBMC. Monocytes were virtually absent from LNC, which were significantly enriched for CD4+ T cells compared with CD8+ T cells. T follicular helper cells with germinal center features were enriched in LNC, which contained specific CD4+ and CD8+ T cell subsets including CD4+ T cells that responded after a single injection with HIV Env Mosaic immunogens combined with adjuvant. Tissue-specific differences in response to an MHC-II dependent superantigen, staphylococcal enterotoxin B, indicated divergence in antigen presentation function between blood and lymph node. Conclusions LNC are phenotypically and functionally distinct from PBMC, suggesting that whole blood is only a limited proxy of the T cell lymphatic response to immunization. HIV-specific CD4+ T cells in the lymph node are rapidly inducible upon experimental injection with HIV immunogens. Monitoring evolution of CD4+ T cell memory in LNC with repeated experimental HIV immunization could indicate the strategies most likely to be successful in inducing HIV-specific bNAbs.
Collapse
Affiliation(s)
- Suzanne Day
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Charandeep Kaur
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Hannah M. Cheeseman
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Emily de Groot
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Leon R. McFarlane
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Maniola Tanaka
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Sofia Coelho
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Tom Cole
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Nana-Marie Lemm
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Adrian Lim
- Department of Breast Radiology, Charing Cross Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Rogier W. Sanders
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers (UMC), University of Amsterdam, Amsterdam, Netherlands
- Infectious Diseases, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- Dept Microbiology and Immunology, Weill Cornell Medical Center, Cornell University, New York, NY, United States
| | - Becca Asquith
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Robin J. Shattock
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Katrina M. Pollock
- Department of Infectious Disease, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial Clinical Research Facility, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| |
Collapse
|
105
|
Desikan R, Linderman SL, Davis C, Zarnitsyna VI, Ahmed H, Antia R. Vaccine models predict rules for updating vaccines against evolving pathogens such as SARS-CoV-2 and influenza in the context of pre-existing immunity. Front Immunol 2022; 13:985478. [PMID: 36263031 PMCID: PMC9574365 DOI: 10.3389/fimmu.2022.985478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, vaccines for SARS-CoV-2 and influenza viruses are updated if the new vaccine induces higher antibody-titers to circulating variants than current vaccines. This approach does not account for complex dynamics of how prior immunity skews recall responses to the updated vaccine. We: (i) use computational models to mechanistically dissect how prior immunity influences recall responses; (ii) explore how this affects the rules for evaluating and deploying updated vaccines; and (iii) apply this to SARS-CoV-2. Our analysis of existing data suggests that there is a strong benefit to updating the current SARS-CoV-2 vaccines to match the currently circulating variants. We propose a general two-dose strategy for determining if vaccines need updating as well as for vaccinating high-risk individuals. Finally, we directly validate our model by reanalysis of earlier human H5N1 influenza vaccine studies.
Collapse
Affiliation(s)
- Rajat Desikan
- Clinical Pharmacology Modeling & Simulation, GlaxoSmithKline (GSK), Stevenage, Hertfordshire, United Kingdom
| | - Susanne L. Linderman
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | - Carl Davis
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | | | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
106
|
Alsoussi WB, Malladi SK, Zhou JQ, Liu Z, Ying B, Kim W, Schmitz AJ, Lei T, Horvath SC, Sturtz AJ, McIntire KM, Evavold B, Han F, Scheaffer SM, Fox IF, Parra-Rodriguez L, Nachbagauer R, Nestorova B, Chalkias S, Farnsworth CW, Klebert MK, Pusic I, Strnad BS, Middleton WD, Teefey SA, Whelan SP, Diamond MS, Paris R, O’Halloran JA, Presti RM, Turner JS, Ellebedy AH. SARS-CoV-2 Omicron boosting induces de novo B cell response in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.22.509040. [PMID: 36172127 PMCID: PMC9516848 DOI: 10.1101/2022.09.22.509040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses of these vaccines and the development of new variant-derived ones 1-4 . SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells (MBCs) 5-9 . It remains unclear, however, whether the additional doses induce germinal centre (GC) reactions where reengaged B cells can further mature and whether variant-derived vaccines can elicit responses to novel epitopes specific to such variants. Here, we show that boosting with the original SARS- CoV-2 spike vaccine (mRNA-1273) or a B.1.351/B.1.617.2 (Beta/Delta) bivalent vaccine (mRNA-1273.213) induces robust spike-specific GC B cell responses in humans. The GC response persisted for at least eight weeks, leading to significantly more mutated antigen-specific MBC and bone marrow plasma cell compartments. Interrogation of MBC-derived spike-binding monoclonal antibodies (mAbs) isolated from individuals boosted with either mRNA-1273, mRNA-1273.213, or a monovalent Omicron BA.1-based vaccine (mRNA-1273.529) revealed a striking imprinting effect by the primary vaccination series, with all mAbs (n=769) recognizing the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted approach, we isolated mAbs that recognized the spike protein of the SARS-CoV-2 Omicron (BA.1) but not the original SARS-CoV-2 spike from the mRNA-1273.529 boosted individuals. The latter mAbs were less mutated and recognized novel epitopes within the spike protein, suggesting a naïve B cell origin. Thus, SARS-CoV-2 boosting in humans induce robust GC B cell responses, and immunization with an antigenically distant spike can overcome the antigenic imprinting by the primary vaccination series.
Collapse
Affiliation(s)
- Wafaa B. Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Sameer K. Malladi
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Julian Q. Zhou
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Baoling Ying
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- These authors contributed equally to this work
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Aaron J. Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Stephen C. Horvath
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Alexandria J. Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Katherine M. McIntire
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Birk Evavold
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Fangjie Han
- Department of Emergency Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Suzanne M. Scheaffer
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Isabella F. Fox
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Luis Parra-Rodriguez
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | | | | | | | - Christopher W. Farnsworth
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael K. Klebert
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
| | - Iskra Pusic
- Division of Oncology, Department of Medicine, Washington University School of Medicine; St. Louis, MO, USA
| | - Benjamin S. Strnad
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - William D. Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sharlene A. Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Sean P.J. Whelan
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
| | - Michael S. Diamond
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine; St. Louis, MO, USA
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | | | - Jane A. O’Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
| | - Rachel M. Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine; St. Louis, MO, USA
- Infectious Disease Clinical Research Unit, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| | - Jackson S. Turner
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine; St. Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine; St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine; St. Louis, MO, USA
| |
Collapse
|
107
|
Wall I, Boulat V, Shah A, Blenman KRM, Wu Y, Alberts E, Calado DP, Salgado R, Grigoriadis A. Leveraging the Dynamic Immune Environment Triad in Patients with Breast Cancer: Tumour, Lymph Node, and Peripheral Blood. Cancers (Basel) 2022; 14:4505. [PMID: 36139665 PMCID: PMC9496983 DOI: 10.3390/cancers14184505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
During the anti-tumour response to breast cancer, the primary tumour, the peripheral blood, and the lymph nodes each play unique roles. Immunological features at each site reveal evidence of continuous immune cross-talk between them before, during and after treatment. As such, immune responses to breast cancer are found to be highly dynamic and truly systemic, integrating three distinct immune sites, complex cell-migration highways, as well as the temporal dimension of disease progression and treatment. In this review, we provide a connective summary of the dynamic immune environment triad of breast cancer. It is critical that future studies seek to establish dynamic immune profiles, constituting multiple sites, that capture the systemic immune response to breast cancer and define patient-selection parameters resulting in more significant overall responses and survival rates for breast cancer patients.
Collapse
Affiliation(s)
- Isobelle Wall
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Victoire Boulat
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aekta Shah
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Department of Pathology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai 400012, India
| | - Kim R. M. Blenman
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University, New Haven, CT 06510, USA
- Department of Computer Science, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Yin Wu
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Elena Alberts
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Dinis Pedro Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Salgado
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Anita Grigoriadis
- Cancer Bioinformatics, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
108
|
He C, Yang J, Hong W, Chen Z, Peng D, Lei H, Alu A, He X, Bi Z, Jiang X, Jia G, Yang Y, Zhou Y, Yu W, Tang C, Huang Q, Yang M, Li B, Li J, Wang J, Que H, Chen L, Ren W, Wan D, Li J, Wang W, Shen G, Zhao Z, Yang L, Yang J, Wang Z, Su Z, Wei Y, Cen X, Tanaka Y, Song X, Lu S, Peng X, Lu G, Wei X. A self-assembled trimeric protein vaccine induces protective immunity against Omicron variant. Nat Commun 2022; 13:5459. [PMID: 36115859 PMCID: PMC9482656 DOI: 10.1038/s41467-022-33209-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
The recently emerged Omicron (B.1.1.529) variant has rapidly surpassed Delta to become the predominant circulating SARS-CoV-2 variant, given the higher transmissibility rate and immune escape ability, resulting in breakthrough infections in vaccinated individuals. A new generation of SARS-CoV-2 vaccines targeting the Omicron variant are urgently needed. Here, we developed a subunit vaccine named RBD-HR/trimer by directly linking the sequence of RBD derived from the Delta variant (containing L452R and T478K) and HR1 and HR2 in SARS-CoV-2 S2 subunit in a tandem manner, which can self-assemble into a trimer. In multiple animal models, vaccination of RBD-HR/trimer formulated with MF59-like oil-in-water adjuvant elicited sustained humoral immune response with high levels of broad-spectrum neutralizing antibodies against Omicron variants, also inducing a strong T cell immune response in vivo. In addition, our RBD-HR/trimer vaccine showed a strong boosting effect against Omicron variants after two doses of mRNA vaccines, featuring its capacity to be used in a prime-boost regimen. In mice and non-human primates, RBD-HR/trimer vaccination could confer a complete protection against live virus challenge of Omicron and Delta variants. The results qualified RBD-HR/trimer vaccine as a promising next-generation vaccine candidate for prevention of SARS-CoV-2, which deserved further evaluation in clinical trials.
Collapse
Affiliation(s)
- Cai He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jingyun Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zimin Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Dandan Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Hong Lei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xiaohua Jiang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Guowen Jia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Yun Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Yanan Zhou
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Wenhai Yu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Cong Tang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Qing Huang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Mengli Yang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Bai Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Jingmei Li
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Junbin Wang
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Wenyan Ren
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Dandan Wan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jiong Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhiwei Zhao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Li Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Jinliang Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhenling Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Zhaoming Su
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
| | - Xiaobo Cen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Xiangrong Song
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.
| | - Shuaiyao Lu
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
| | - Xiaozhong Peng
- National Kunming High-level Biosafety Primate Research Center, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan, China.
- State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Guangwen Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
109
|
Jonny J, Putranto TA, Irfon R, Sitepu EC. Developing dendritic cell for SARS-CoV-2 vaccine: Breakthrough in the pandemic. Front Immunol 2022; 13:989685. [PMID: 36148241 PMCID: PMC9485669 DOI: 10.3389/fimmu.2022.989685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Finding a vaccine that can last a long time and effective against viruses with high mutation rates such as SARS-CoV-2 is still a challenge today. The various vaccines that have been available have decreased in effectiveness and require booster administration. As the professional antigen presenting cell, Dendritic Cells can also activate the immune system, especially T cells. This ability makes dendritic cells have been developed as vaccines for some types of diseases. In SARS-CoV-2 infection, T cells play a vital role in eliminating the virus, and their presence can be detected in the long term. Hence, this condition shows that the formation of T cell immunity is essential to prevent and control the course of the disease. The construction of vaccines oriented to induce strong T cells response can be formed by utilizing dendritic cells. In this article, we discuss and illustrate the role of dendritic cells and T cells in the pathogenesis of SARS-CoV-2 infection and summarizing the crucial role of dendritic cells in the formation of T cell immunity. We arrange the basis concept of developing dendritic cells for SARS-CoV-2 vaccines. A dendritic cell-based vaccine for SARS-CoV-2 has the potential to be an effective vaccine that solves existing problems.
Collapse
|
110
|
Qi F, Cao Y, Zhang S, Zhang Z. Single-cell analysis of the adaptive immune response to SARS-CoV-2 infection and vaccination. Front Immunol 2022; 13:964976. [PMID: 36119105 PMCID: PMC9478577 DOI: 10.3389/fimmu.2022.964976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 12/04/2022] Open
Abstract
Amid the ongoing Coronavirus Disease 2019 (COVID-19) pandemic, vaccination and early therapeutic interventions are the most effective means to combat and control the severity of the disease. Host immune responses to SARS-CoV-2 and its variants, particularly adaptive immune responses, should be fully understood to develop improved strategies to implement these measures. Single-cell multi-omic technologies, including flow cytometry, single-cell transcriptomics, and single-cell T-cell receptor (TCR) and B-cell receptor (BCR) profiling, offer a better solution to examine the protective or pathological immune responses and molecular mechanisms associated with SARS-CoV-2 infection, thus providing crucial support for the development of vaccines and therapeutics for COVID-19. Recent reviews have revealed the overall immune landscape of natural SARS-CoV-2 infection, and this review will focus on adaptive immune responses (including T cells and B cells) to SARS-CoV-2 revealed by single-cell multi-omics technologies. In addition, we explore how the single-cell analyses disclose the critical components of immune protection and pathogenesis during SARS-CoV-2 infection through the comparison between the adaptive immune responses induced by natural infection and by vaccination.
Collapse
Affiliation(s)
- Furong Qi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
| | - Yingyin Cao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shuye Zhang
- Clinical Center for BioTherapy and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Single-Cell Omics Reasearch and Application, Shenzhen, China
- Shenzhen Research Center for Communicable Disease Diagnosis and Treatment of Chinese Academy of Medical Science, Shenzhen, China
| |
Collapse
|
111
|
Lelievre JD, Bauer J. What are the prospects for durable immune control? Infect Dis Now 2022; 52:S4-S6. [PMID: 36113766 PMCID: PMC9472462 DOI: 10.1016/j.idnow.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
During the SARS CoV-2 primary infection, the neutralizing antibodies focused against the spike (S) glycoproteins are responsible for blockage of virus-host cell interaction. The cellular response mediated by CD4+ and CD8+ T-cells is responsible for control of viremia. Immune memory against SARS-CoV-2 depends on virus type, replication kinetics and route of penetration. The formation and persistence of germinal centers are critical for the generation of affinity-matured plasma cells and memory B cells capable of mediating durable immunity. They can persist up to 30 weeks after vaccination and several months after infection. Heterogeneity in the longevity of the vaccination-induced GC response is significant.
Collapse
Affiliation(s)
- J D Lelievre
- Immunologie clinique et maladies infectieuses, Hôpital Henri-Mondor, 94000 Créteil, France
| | - J Bauer
- Service Universitaire des Maladies Infectieuses et du Voyageurs, CH Dron, 59200 Tourcoing, France.
| |
Collapse
|
112
|
Buckner CM, Kardava L, Merhebi OE, Narpala SR, Serebryannyy L, Lin BC, Wang W, Zhang X, de Assis FL, Kelly SE, Teng IT, McCormack GE, Praiss LH, Seamon CA, Rai MA, Kalish H, Kwong PD, Proschan MA, McDermott AB, Fauci AS, Chun TW, Moir S. Recent SARS-CoV-2 infection abrogates antibody and B-cell responses to booster vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.08.30.22279344. [PMID: 36093348 PMCID: PMC9460969 DOI: 10.1101/2022.08.30.22279344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SARS-CoV-2 mRNA booster vaccines provide protection from severe disease, eliciting strong immunity that is further boosted by previous infection. However, it is unclear whether these immune responses are affected by the interval between infection and vaccination. Over a two-month period, we evaluated antibody and B-cell responses to a third dose mRNA vaccine in 66 individuals with different infection histories. Uninfected and post-boost but not previously infected individuals mounted robust ancestral and variant spike-binding and neutralizing antibodies, and memory B cells. Spike-specific B-cell responses from recent infection were elevated at pre-boost but comparatively less so at 60 days post-boost compared to uninfected individuals, and these differences were linked to baseline frequencies of CD27 lo B cells. Day 60 to baseline ratio of BCR signaling measured by phosphorylation of Syk was inversely correlated to days between infection and vaccination. Thus, B-cell responses to booster vaccines are impeded by recent infection.
Collapse
Affiliation(s)
- Clarisa M. Buckner
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
- These authors contributed equally
| | - Lela Kardava
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
- These authors contributed equally
| | - Omar El Merhebi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Sandeep R. Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leonid Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bob C. Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Wang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Xiaozhen Zhang
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Felipe Lopes de Assis
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Sophie E.M. Kelly
- Bioengineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Genevieve E. McCormack
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Lauren H. Praiss
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Catherine A. Seamon
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda 20892 MD, USA
| | - M. Ali Rai
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Heather Kalish
- Bioengineering and Physical Sciences Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael A. Proschan
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony S. Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda 20892 MD, USA
- Lead contact
| |
Collapse
|
113
|
Protective Immunity of COVID-19 Vaccination with ChAdOx1 nCoV-19 Following Previous SARS-CoV-2 Infection: A Humoral and Cellular Investigation. Viruses 2022; 14:v14091916. [PMID: 36146723 PMCID: PMC9504152 DOI: 10.3390/v14091916] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Infections caused by SARS-CoV-2 induce a severe acute respiratory syndrome called COVID-19 and have led to more than six million deaths worldwide. Vaccination is the most effective preventative measure, and cellular and humoral immunity is crucial to developing individual protection. Here, we aim to investigate hybrid immunity against SARS-CoV-2 triggered by the ChAadOx1 nCoV-19 vaccine in a Brazilian cohort. We investigated the immune response from ChAadOx1 nCoV-19 vaccination in naïve (noCOVID-19) and previously infected individuals (COVID-19) by analyzing levels of D-dimers, total IgG, neutralizing antibodies (Nabs), IFN-γ (interferon-γ) secretion, and immunophenotyping of memory lymphocytes. No significant differences in D-dimer levels were observed 7 or 15 days after vaccination (DAV). All vaccinated individuals presented higher levels of total IgG or Nabs with a positive correlation (R = 0.88). Individuals in the COVID-19 group showed higher levels of antibody and memory B cells, with a faster antibody response starting at 7 DAV compared to noCOVID-19 at 15 DAV. Further, ChAadOx1 nCoV-19 vaccination led to enhanced IFN-γ production (15 DAV) and an increase in activated T CD4+ naïve cells in noCOVID-19 individuals in contrast with COVID-19 individuals. Hence, our data support that hybrid immunity triggered by ChAadOx1 nCoV-19 vaccination is associated with enhanced humoral response, together with a balanced cellular response.
Collapse
|
114
|
Abstract
Despite effective spike-based vaccines and monoclonal antibodies, the SARS-CoV-2 pandemic continues more than two and a half years post-onset. Relentless investigation has outlined a causative dynamic between host-derived antibodies and reciprocal viral subversion. Integration of this paradigm into the architecture of next generation antiviral strategies, predicated on a foundational understanding of the virology and immunology of SARS-CoV-2, will be critical for success. This review aims to serve as a primer on the immunity endowed by antibodies targeting SARS-CoV-2 spike protein through a structural perspective. We begin by introducing the structure and function of spike, polyclonal immunity to SARS-CoV-2 spike, and the emergence of major SARS-CoV-2 variants that evade immunity. The remainder of the article comprises an in-depth dissection of all major epitopes on SARS-CoV-2 spike in molecular detail, with emphasis on the origins, neutralizing potency, mechanisms of action, cross-reactivity, and variant resistance of representative monoclonal antibodies to each epitope.
Collapse
Affiliation(s)
- John M Errico
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Lucas J Adams
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO, United States; Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, United States; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, United States.
| |
Collapse
|
115
|
Wu S, Yin Y, Wang X. The epigenetic regulation of the germinal center response. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194828. [PMID: 35643396 DOI: 10.1016/j.bbagrm.2022.194828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
In response to T-cell-dependent antigens, antigen-experienced B cells migrate to the center of the B-cell follicle to seed the germinal center (GC) response after cognate interactions with CD4+ T cells. These GC B cells eventually mature into memory and long-lived antibody-secreting plasma cells, thus generating long-lived humoral immunity. Within GC, B cells undergo somatic hypermutation of their B cell receptors (BCR) and positive selection for the emergence of high-affinity antigen-specific B-cell clones. However, this process may be dangerous, as the accumulation of aberrant mutations could result in malignant transformation of GC B cells or give rise to autoreactive B cell clones that can cause autoimmunity. Because of this, better understanding of GC development provides diagnostic and therapeutic clues to the underlying pathologic process. A productive GC response is orchestrated by multiple mechanisms. An emerging important regulator of GC reaction is epigenetic modulation, which has key transcriptional regulatory properties. In this review, we summarize the current knowledge on the biology of epigenetic mechanisms in the regulation of GC reaction and outline its importance in identification of immunotherapy decision making.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuye Yin
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoming Wang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
116
|
Cao S, Zhang Q, Song L, Xiao M, Chen Y, Wang D, Li M, Hu J, Lin L, Zheng Y, Zhou K, Ye S, Zhou J, Zhou YN, Cui J, Wang J, Sun J, Tao J, Chen Z, Chen R, Zhou P, Shi Z, Wei S, Zhao L, Wang H, Tong X, Li X, Men D, Hou B, Zhang XE. Dysregulation of Innate and Adaptive Immune Responses in Asymptomatic SARS-CoV-2 Infection with Delayed Viral Clearance. Int J Biol Sci 2022; 18:4648-4657. [PMID: 35874943 PMCID: PMC9305270 DOI: 10.7150/ijbs.72963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022] Open
Abstract
Asymptomatic infection with SARS-CoV-2 is a major concern in the control of the COVID-19 pandemic. Many questions concerning asymptomatic infection remain to be answered, for example, what are the differences in infectivity and the immune response between asymptomatic and symptomatic infections? In this study, based on a cohort established by the Wuchang District Health Bureau of Wuhan in the early stage of the COVID-19 pandemic in Wuhan in 2019, we conducted a comprehensive analysis of the clinical, virological, immunological, and epidemiological data of asymptomatic infections. The major findings of this study included: 1) the asymptomatic cohort enrolled this study exhibited low-grade but recurrent activity of viral replication; 2) despite a lack of overt clinical symptoms, asymptomatic infections exhibited ongoing innate and adaptive immune responses; 3) however, the immune response from asymptomatic infections was not activated adequately, which may lead to delayed viral clearance. Given the fragile equilibrium between viral infection and host immunity, and the delayed viral clearance in asymptomatic individuals, close viral monitoring should be scheduled, and therapeutic intervention may be needed.
Collapse
Affiliation(s)
- Shanshan Cao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Liu Song
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhong Xiao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Yexing Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinchao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lin Lin
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujian Ye
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ya Na Zhou
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jing Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,Hubei University, Wuhan 430074, China
| | - Jingzhi Wang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Jing Sun
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Junxiu Tao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Zhou Chen
- Wuchang District Hospital of Traditional Chinese Medicine, Wuhan 430060, China
| | - Rong Chen
- Jiyuqiao Street Community Health Service Center, Wuchang District, Wuhan 430081, China
| | - Peng Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhengli Shi
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linhua Zhao
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoling Tong
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaodong Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan 430074, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baidong Hou
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
117
|
Kared H, Wolf AS, Alirezaylavasani A, Ravussin A, Solum G, Tran TT, Lund-Johansen F, Vaage JT, Nissen-Meyer LS, Nygaard UC, Hungnes O, Robertson AH, Næss LM, Trogstad L, Magnus P, Munthe LA, Mjaaland S. Immune responses in Omicron SARS-CoV-2 breakthrough infection in vaccinated adults. Nat Commun 2022; 13:4165. [PMID: 35851055 PMCID: PMC9293966 DOI: 10.1038/s41467-022-31888-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
The SARS-CoV-2 Omicron variant has more than 15 mutations in the receptor binding domain of the Spike protein enabling increased transmissibility and viral escape from antibodies in vaccinated individuals. It is unclear how vaccine immunity protects against Omicron infection. Here we show that vaccinated participants at a super-spreader event have robust recall response of humoral and pre-existing cellular immunity induced by the vaccines, and an emergent de novo T cell response to non-Spike antigens. Individuals with Omicron SARS-CoV-2 breakthrough infections have significantly increased activated SARS-CoV-2 wild type Spike-specific cytotoxic T cells, activated follicular helper (TFH) cells, functional T cell responses, boosted humoral responses, and rapid release of Spike and RBD-specific IgG+ B cell plasmablasts and memory B cells into circulation. Omicron breakthrough infection affords significantly increased de novo memory T cell responses to non-Spike viral antigens. Concerted T and B cell responses may provide durable and broad immunity.
Collapse
Affiliation(s)
- Hassen Kared
- KG Jebsen Centre for B cell malignancy, Institute of Clinical medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| | - Asia-Sophia Wolf
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Amin Alirezaylavasani
- KG Jebsen Centre for B cell malignancy, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Anthony Ravussin
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Guri Solum
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Trung The Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- ImmunoLingo Convergence Center, Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | | | | | - Unni C Nygaard
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Olav Hungnes
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna H Robertson
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Lisbeth Meyer Næss
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Lill Trogstad
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| | - Per Magnus
- Center for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ludvig A Munthe
- KG Jebsen Centre for B cell malignancy, Institute of Clinical medicine, University of Oslo, Oslo, Norway.
- Department of Immunology, Oslo University Hospital, Oslo, Norway.
| | - Siri Mjaaland
- Division of Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
118
|
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) accelerated development of messenger RNA (mRNA) vaccines, which have proven to be highly effective against COVID-19. However, antibody responses vary widely and wane over time. This study evaluated the range and kinetics of the primary antibody response to SARS-CoV-2 mRNA-based vaccination in parallel with the B cells that are involved in generating and maintaining this response. These include plasmablasts, the antibody-secreting cells that arise rapidly yet transiently following immunization, and memory B cells, a heterogeneous population that can provide long-lasting immunity. Our results show that the antibody response was tightly linked to early plasmablasts, while the cellular response was sustained by a distinct population of memory B cells. Messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective at inducing protective immunity. However, weak antibody responses are seen in some individuals, and cellular correlates of immunity remain poorly defined, especially for B cells. Here we used unbiased approaches to longitudinally dissect primary antibody, plasmablast, and memory B cell (MBC) responses to the two-dose mRNA-1273 vaccine in SARS-CoV-2–naive adults. Coordinated immunoglobulin A (IgA) and IgG antibody responses were preceded by bursts of spike-specific plasmablasts after both doses but earlier and more intensely after dose 2. While antibody and B cell cellular responses were generally robust, they also varied within the cohort and decreased over time after a dose-2 peak. Both antigen-nonspecific postvaccination plasmablast frequency after dose 1 and their spike-specific counterparts early after dose 2 correlated with subsequent antibody levels. This correlation between early plasmablasts and antibodies remained for titers measured at 6 months after vaccination. Several distinct antigen-specific MBC populations emerged postvaccination with varying kinetics, including two MBC populations that correlated with 2- and 6-month antibody titers. Both were IgG-expressing MBCs: one less mature, appearing as a correlate after the first dose, while the other MBC correlate showed a more mature and resting phenotype, emerging as a correlate later after dose 2. This latter MBC was also a major contributor to the sustained spike-specific MBC response observed at month 6. Thus, these plasmablasts and MBCs that emerged after both the first and second doses with distinct kinetics are potential determinants of the magnitude and durability of antibodies in response to mRNA-based vaccination.
Collapse
|
119
|
Yavlinsky A, Beale S, Nguyen V, Shrotri M, Byrne T, Geismar C, Fragaszy E, Hoskins S, Fong WLE, Navaratnam AMD, Braithwaite I, Patel P, Kovar J, Hayward A, Aldridge RW. Anti-spike antibody trajectories in individuals previously immunised with BNT162b2 or ChAdOx1 following a BNT162b2 booster dose. Wellcome Open Res 2022. [DOI: 10.12688/wellcomeopenres.17914.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: The two most common SARS-CoV-2 vaccines in the UK, BNT162b2 (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca), employ different immunogenic mechanisms. Compared to BNT162b2, two-dose immunisation with ChAdOx1 induces substantially lower peak anti-spike antibody (anti-S) levels and is associated with a higher risk of breakthrough infections. To provide preliminary indication of how a third booster BNT162b2 dose impacts anti-S levels, we performed a cross-sectional analysis using capillary blood samples from vaccinated adults participating in Virus Watch, a prospective community cohort study in England and Wales. Methods: Blood samples were analysed using Roche Elecsys Anti-SARS-CoV-2 S immunoassay. We analysed anti-S levels by week since the third dose for vaccines administered on or after 1 September 2021 and stratified the results by second-dose vaccine type (ChAdOx1 or BNT162b2), age, sex and clinical vulnerability. Results: Anti-S levels peaked at two weeks post-booster for BNT162b2 (22,185 U/mL; 95%CI: 21,406-22,990) and ChAdOx1 second-dose recipients (19,203 U/mL; 95%CI: 18,094-20,377). These were higher than the corresponding peak antibody levels post-second dose for BNT162b2 (12,386 U/mL; 95%CI: 9,801-15,653, week 2) and ChAdOx1 (1,192 U/mL; 95%CI: 818-1735, week 3). No differences emerged by second dose vaccine type, age, sex or clinical vulnerability. Anti-S levels declined post-booster for BNT162b2 (half-life=44 days) and ChAdOx1 second dose recipients (half-life=40 days). These rates of decline were steeper than those post-second dose for BNT162b2 (half-life=54 days) and ChAdOx1 (half-life=80 days). Conclusions: Our findings suggest that peak anti-S levels are higher post-booster than post-second dose, but levels are projected to be similar after six months for BNT162b2 recipients. Higher peak anti-S levels post-booster may partially explain the increased effectiveness of booster vaccination compared to two-dose vaccination against symptomatic infection with the Omicron variant. Faster waning trajectories post-third dose may have implications for the timing of future booster campaigns or four-dose vaccination regimens for the clinically vulnerable.
Collapse
|
120
|
Naik S, Fuchs E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 2022; 607:249-255. [PMID: 35831602 DOI: 10.1038/s41586-022-04919-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/30/2022] [Indexed: 01/01/2023]
Abstract
Our body has a remarkable ability to remember its past encounters with allergens, pathogens, wounds and irritants, and to react more quickly to the next experience. This accentuated sensitivity also helps us to cope with new threats. Despite maintaining a state of readiness and broadened resistance to subsequent pathogens, memories can also be maladaptive, leading to chronic inflammatory disorders and cancers. With the ever-increasing emergence of new pathogens, allergens and pollutants in our world, the urgency to unravel the molecular underpinnings of these phenomena has risen to new heights. Here we reflect on how the field of inflammatory memory has evolved, since 2007, when researchers realized that non-specific memory is contained in the nucleus and propagated at the epigenetic level. We review the flurry of recent discoveries revealing that memory is not just a privilege of the immune system but also extends to epithelia of the skin, lung, intestine and pancreas, and to neurons. Although still unfolding, epigenetic memories of inflammation have now been linked to possible brain disorders such as Alzheimer disease, and to an elevated risk of cancer. In this Review, we consider the consequences-good and bad-of these epigenetic memories and their implications for human health and disease.
Collapse
Affiliation(s)
- Shruti Naik
- Department of Pathology, New York University Langone Health, New York, NY, USA. .,Department of Medicine, New York University Langone Health, New York, NY, USA. .,Ronald O. Perelman Department of Dermatology, New York University Langone Health, New York, NY, USA. .,Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA.
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
121
|
Cervantes O, Talavera IC, Every E, Coler B, Li M, Li A, Li H, Adams Waldorf K. Role of hormones in the pregnancy and sex-specific outcomes to infections with respiratory viruses. Immunol Rev 2022; 308:123-148. [PMID: 35373371 PMCID: PMC9189035 DOI: 10.1111/imr.13078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/13/2023]
Abstract
Pregnant women infected with pathogenic respiratory viruses, such as influenza A viruses (IAV) and coronaviruses, are at higher risk for mortality, hospitalization, preterm birth, and stillbirth. Several factors are likely to contribute to the susceptibility of pregnant individuals to severe lung disease including changes in pulmonary physiology, immune defenses, and effector functions of some immune cells. Pregnancy is also a physiologic state characterized by higher levels of multiple hormones that may impact the effector functions of immune cells, such as progesterone, estrogen, human chorionic gonadotropin, prolactin, and relaxin. Each of these hormones acts to support a tolerogenic immune state of pregnancy, which helps prevent fetal rejection, but may also contribute to an impaired antiviral response. In this review, we address the unique role of adaptive and innate immune cells in the control of pathogenic respiratory viruses and how pregnancy and specific hormones can impact their effector actions. We highlight viruses with sex-specific differences in infection outcomes and why pregnancy hormones may contribute to fetal protection but aid the virus at the expense of the mother's health.
Collapse
Affiliation(s)
- Orlando Cervantes
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Irene Cruz Talavera
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Emma Every
- University of Washington School of Medicine, Spokane, Washington, United States of America
| | - Brahm Coler
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, United States of America
| | - Miranda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Department of Biological Sciences, Columbia University, New York City, New York, United States of America
| | - Amanda Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Case Western Reserve, Cleveland, Ohio, United States of America
| | - Hanning Li
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
122
|
Rossi CM, Lenti MV, Merli S, Di Sabatino A. Role of IgM Memory B Cells and Spleen Function in COVID-19. Front Immunol 2022; 13:889876. [PMID: 35844543 PMCID: PMC9280616 DOI: 10.3389/fimmu.2022.889876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
IgM memory B cells, are a peculiar subset of memory B cells, which probably originates in the spleen and outside germinal centers and provide a rapid line of defence against mucosal infections. Their role in counteracting COVID-19 is still elusive but, recent evidence, mainly boosted by studies on spleen function/involvement in COVID-19, seems to support the notion that this subset of memory B cells could exert a protective role against this virus, along with other coronaviruses, particularly in the acute setting of the infection, as outlined by worst clinical outcomes observed in unvaccinated patients with impaired IgM B memory response and spleen function. Herein we critically summarise the current landscape of studies on IgM memory B cells, focusing on the clinical impact of their depletion, by comparing the COVID-19-related splenic dysfunction with other hypo- and asplenic conditions and by adding recent data on follow-up studies and postulate a mechanistic explanation for their reduced numbers. The early detection of an impaired IgM memory B cell response in patients with COVID-19 may contribute to their improved care through different strategies, such as through tailored vaccine strategies, prompt hospital admission and/or administration of anti-infective treatments, thus resulting in an better prognosis, although at present management algorithms are still unavailable. Moreover, further studies with longer follow-up are needed to assess the evolution of COVID-19-associated/exacerbated immune deficit.
Collapse
|
123
|
Astakhova EA, Byazrova MG, Yusubalieva GM, Kulemzin SV, Kruglova NA, Prilipov AG, Baklaushev VP, Gorchakov AA, Taranin AV, Filatov AV. Functional Profiling of In Vitro Reactivated Memory B Cells Following Natural SARS-CoV-2 Infection and Gam-COVID-Vac Vaccination. Cells 2022; 11:1991. [PMID: 35805076 PMCID: PMC9265778 DOI: 10.3390/cells11131991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
Both SARS-CoV-2 infection and vaccination have previously been demonstrated to elicit robust, yet somewhat limited immunity against the evolving variants of SARS-CoV-2. Nevertheless, reports performing side-by-side comparison of immune responses following infection vs. vaccination have been relatively scarce. The aim of this study was to compare B-cell response to adenovirus-vectored vaccination in SARS-CoV-2-naive individuals with that observed in the COVID-19 convalescent patients six months after the first encounter with the viral antigens. We set out to use a single analytical platform and performed comprehensive analysis of serum levels of receptor binding domain (RBD)-specific and virus-neutralizing antibodies, frequencies of RBD-binding circulating memory B cells (MBCs), MBC-derived antibody-secreting cells, as well as RBD-specific and virus-neutralizing activity of MBC-derived antibodies after Gam-COVID-Vac (Sputnik V) vaccination and/or natural SARS-CoV-2 infection. Overall, natural immunity was superior to Gam-COVID-Vac vaccination. The levels of neutralizing MBC-derived antibodies in the convalescent patients turned out to be significantly higher than those found following vaccination. Our results suggest that after six months, SARS-CoV-2-specific MBC immunity is more robust in COVID-19 convalescent patients than in Gam-COVID-Vac recipients. Collectively, our data unambiguously indicate that natural immunity outperforms Gam-COVID-Vac-induced immunity six months following recovery/vaccination, which should inform healthcare and vaccination decisions.
Collapse
Affiliation(s)
- Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia; (E.A.A.); (M.G.B.); (A.G.P.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia; (E.A.A.); (M.G.B.); (A.G.P.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Immunology, Institute of Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Laboratory of Cell Technology, Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the FMBA of Russia, 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
| | - Sergey V. Kulemzin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.V.K.); (A.A.G.); (A.V.T.)
| | - Natalia A. Kruglova
- Laboratory of Gene Therapy of Socially Significant Diseases, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Alexey G. Prilipov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia; (E.A.A.); (M.G.B.); (A.G.P.)
- Laboratory of Molecular Genetics, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Vladimir P. Baklaushev
- Laboratory of Cell Technology, Federal Research and Clinical Center for Specialized Types of Medical Care and Medical Technologies of the FMBA of Russia, 115682 Moscow, Russia; (G.M.Y.); (V.P.B.)
| | - Andrey A. Gorchakov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.V.K.); (A.A.G.); (A.V.T.)
| | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.V.K.); (A.A.G.); (A.V.T.)
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, 115522 Moscow, Russia; (E.A.A.); (M.G.B.); (A.G.P.)
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
124
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
125
|
Selvavinayagam ST, Yong YK, Tan HY, Zhang Y, Subramanian G, Rajeshkumar M, Vasudevan K, Jayapal P, Narayanasamy K, Ramesh D, Palani S, Larsson M, Shankar EM, Raju S. Factors Associated With the Decay of Anti-SARS-CoV-2 S1 IgG Antibodies Among Recipients of an Adenoviral Vector-Based AZD1222 and a Whole-Virion Inactivated BBV152 Vaccine. Front Med (Lausanne) 2022; 9:887974. [PMID: 35770011 PMCID: PMC9235407 DOI: 10.3389/fmed.2022.887974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background The magnitude of protection conferred following recovery from COVID-19 or by vaccine administration, and the duration of protective immunity developed, remains ambiguous. Methods We investigated the factors associated with anti-SARS-CoV-2 S1 IgG decay in 519 individuals who recovered from COVID-19 illness or received COVID-19 vaccination with two commercial vaccines, viz., an adenoviral vector-based (AZD1222) and a whole-virion-based inactivated (BBV152) vaccine in Chennai, India from March to December 2021. Blood samples collected during regular follow-up post-infection/-vaccination were examined for anti-SARS-CoV-2 S1 IgG by a commercial automated chemiluminescent immunoassay (CLIA). Results Age and underlying comorbidities were the two variables that were independently associated with the development of a breakthrough infection. Individuals who were >60 years of age with underlying comorbid conditions (viz., hypertension, diabetes mellitus and cardiovascular disease) had a ~15 times and ~10 times greater odds for developing a breakthrough infection and hospitalization, respectively. The time elapsed since the first booster dose was associated with attrition in anti-SARS-CoV-2 IgG, where each month passed was associated with an ebb in the anti-SARS-CoV-2 IgG antibody levels by a coefficient of -6 units. Conclusions Our findings advocate that the elderly with underlying comorbidities be administered with appropriate number of booster doses with AZD1222 and BBV152 against COVID-19.
Collapse
Affiliation(s)
| | - Yean Kong Yong
- Laboratory Center, Xiamen University Malaysia, Sepang, Malaysia
| | - Hong Yien Tan
- School of Traditional Chinese Medicine, Xiamen University Malaysia, Sepang, Malaysia
| | - Ying Zhang
- Chemical Engineering, Xiamen University Malaysia, Sepang, Malaysia
| | - Gurunathan Subramanian
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Manivannan Rajeshkumar
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Kalaivani Vasudevan
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Priyanka Jayapal
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | | | - Dinesh Ramesh
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Sampath Palani
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Marie Larsson
- Department of Biomedicine and Clinical Sciences, Linkoping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| |
Collapse
|
126
|
Andreano E, Paciello I, Marchese S, Donnici L, Pierleoni G, Piccini G, Manganaro N, Pantano E, Abbiento V, Pileri P, Benincasa L, Giglioli G, Leonardi M, Maes P, De Santi C, Sala C, Montomoli E, De Francesco R, Rappuoli R. Anatomy of Omicron BA.1 and BA.2 neutralizing antibodies in COVID-19 mRNA vaccinees. Nat Commun 2022; 13:3375. [PMID: 35697673 PMCID: PMC9189263 DOI: 10.1038/s41467-022-31115-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/05/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 vaccines, administered to billions of people worldwide, mitigate the effects of the COVID-19 pandemic, however little is known about the molecular basis of antibody cross-protection to emerging variants, such as Omicron BA.1, its sublineage BA.2, and other coronaviruses. To answer this question, 276 neutralizing monoclonal antibodies (nAbs), previously isolated from seronegative and seropositive donors vaccinated with BNT162b2 mRNA vaccine, were tested for neutralization against the Omicron BA.1 and BA.2 variants, and SARS-CoV-1 virus. Only 14.2, 19.9 and 4.0% of tested antibodies neutralize BA.1, BA.2, and SARS-CoV-1 respectively. These nAbs recognize mainly the SARS-CoV-2 receptor binding domain (RBD) and target Class 3 and Class 4 epitope regions on the SARS-CoV-2 spike protein. Interestingly, around 50% of BA.2 nAbs did not neutralize BA.1 and among these, several targeted the NTD. Cross-protective antibodies derive from a variety of germlines, the most frequents of which were the IGHV1-58;IGHJ3-1, IGHV2-5;IGHJ4-1 and IGHV1-69;IGHV4-1. Only 15.6, 20.3 and 7.8% of predominant gene-derived nAbs elicited against the original Wuhan virus cross-neutralize Omicron BA.1, BA.2 and SARS-CoV-1 respectively. Our data provide evidence, at molecular level, of the presence of cross-neutralizing antibodies induced by vaccination and map conserved epitopes on the S protein that can inform vaccine design.
Collapse
Affiliation(s)
- Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Giulio Pierleoni
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
| | | | - Noemi Manganaro
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Elisa Pantano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Piero Pileri
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | - Piet Maes
- KU Leuven, Rega Institute, Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Leuven, Belgium
| | - Concetta De Santi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Emanuele Montomoli
- VisMederi S.r.l, Siena, Italy
- VisMederi Research S.r.l., Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Raffaele De Francesco
- Department of Pharmacological and Biomolecular Sciences DiSFeB, University of Milan, Milan, Italy
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy.
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy.
| |
Collapse
|
127
|
Paschold L, Klee B, Gottschick C, Willscher E, Diexer S, Schultheiß C, Simnica D, Sedding D, Girndt M, Gekle M, Mikolajczyk R, Binder M. Rapid Hypermutation B Cell Trajectory Recruits Previously Primed B Cells Upon Third SARS-Cov-2 mRNA Vaccination. Front Immunol 2022; 13:876306. [PMID: 35615365 PMCID: PMC9126551 DOI: 10.3389/fimmu.2022.876306] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
The COVID-19 pandemic shows that vaccination strategies building on an ancestral viral strain need to be optimized for the control of potentially emerging viral variants. Therefore, aiming at strong B cell somatic hypermutation to increase antibody affinity to the ancestral strain - not only at high antibody titers - is a priority when utilizing vaccines that are not targeted at individual variants since high affinity may offer some flexibility to compensate for strain-individual mutations. Here, we developed a next-generation sequencing based SARS-CoV-2 B cell tracking protocol to rapidly determine the level of immunoglobulin somatic hypermutation at distinct points during the immunization period. The percentage of somatically hypermutated B cells in the SARS-CoV-2 specific repertoire was low after the primary vaccination series, evolved further over months and increased steeply after boosting. The third vaccination mobilized not only naïve, but also antigen-experienced B cell clones into further rapid somatic hypermutation trajectories indicating increased affinity. Together, the strongly mutated post-booster repertoires and antibodies deriving from this may explain why the third, but not the primary vaccination series, offers some protection against immune-escape variants such as Omicron B.1.1.529.
Collapse
Affiliation(s)
- Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Donjete Simnica
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
128
|
Jonny J, Putranto TA, Sitepu EC, Irfon R. Dendritic cell vaccine as a potential strategy to end the COVID-19 pandemic. Why should it be Ex Vivo? Expert Rev Vaccines 2022; 21:1111-1120. [PMID: 35593184 DOI: 10.1080/14760584.2022.2080658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Developing a safe and efficacious vaccine that can induce broad and long-term immunity for SARS-CoV-2 infection is the most critical research to date. As the most potent APCs, dendritic cells (DCs) can induce a robust T cell immunity. In addition, DCs also play an essential role in COVID-19 pathogenesis, making them a potential vaccination target. However, the DCs-based vaccine with ex vivo loading has not yet been explored for COVID-19. AREAS COVERED This review aims to provide the rationale for developing a DCs-based vaccine with ex vivo loading of SARS-CoV-2 antigen. Here, we discuss the role of DCs in immunity and the effect of SARS-CoV-2 infection on DCs. Then, we propose the mechanism of the DCs-based vaccine in inducing immunity and highlight the benefits of ex vivo loading of antigen. EXPERT OPINION We make the case that an ex vivo loaded DC-based vaccination is appropriate for COVID-19 prevention.
Collapse
Affiliation(s)
- Jonny Jonny
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| | | | | | - Raoulian Irfon
- Cellcure Center, Gatot Soebroto Central Army Hospital, Jakarta, Indonesia
| |
Collapse
|
129
|
Goel RR, Painter MM, Lundgreen KA, Apostolidis SA, Baxter AE, Giles JR, Mathew D, Pattekar A, Reynaldi A, Khoury DS, Gouma S, Hicks P, Dysinger S, Hicks A, Sharma H, Herring S, Korte S, Kc W, Oldridge DA, Erickson RI, Weirick ME, McAllister CM, Awofolaju M, Tanenbaum N, Dougherty J, Long S, D'Andrea K, Hamilton JT, McLaughlin M, Williams JC, Adamski S, Kuthuru O, Drapeau EM, Davenport MP, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. Cell 2022; 185:1875-1887.e8. [PMID: 35523182 PMCID: PMC8989683 DOI: 10.1016/j.cell.2022.04.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/20/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
We examined antibody and memory B cell responses longitudinally for ∼9-10 months after primary 2-dose SARS-CoV-2 mRNA vaccination and 3 months after a 3rd dose. Antibody decay stabilized between 6 and 9 months, and antibody quality continued to improve for at least 9 months after 2-dose vaccination. Spike- and RBD-specific memory B cells remained durable over time, and 40%-50% of RBD-specific memory B cells simultaneously bound the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells were efficiently reactivated by a 3rd dose of wild-type vaccine and correlated with the corresponding increase in neutralizing antibody titers. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit the added protection afforded by repeat short interval boosting. These data provide insight into the quantity and quality of mRNA-vaccine-induced immunity over time through 3 or more antigen exposures.
Collapse
Affiliation(s)
- Rishi R Goel
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark M Painter
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kendall A Lundgreen
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sokratis A Apostolidis
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Rheumatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy E Baxter
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josephine R Giles
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Divij Mathew
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ajinkya Pattekar
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Sigrid Gouma
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip Hicks
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Dysinger
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Hicks
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Harsh Sharma
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Herring
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Scott Korte
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wumesh Kc
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek A Oldridge
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel I Erickson
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madison E Weirick
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher M McAllister
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Moses Awofolaju
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Tanenbaum
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeanette Dougherty
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sherea Long
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kurt D'Andrea
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacob T Hamilton
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maura McLaughlin
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justine C Williams
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon Adamski
- Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oliva Kuthuru
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Drapeau
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bates
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Allison R Greenplate
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E John Wherry
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Immune Health, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
130
|
Desikan R, Linderman SL, Davis C, Zarnitsyna V, Ahmed H, Antia R. Modeling suggests that multiple immunizations or infections will reveal the benefits of updating SARS-CoV-2 vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.21.492928. [PMID: 35665010 PMCID: PMC9164442 DOI: 10.1101/2022.05.21.492928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
When should vaccines to evolving pathogens such as SARS-CoV-2 be updated? Our computational models address this focusing on updating SARS-CoV-2 vaccines to the currently circulating Omicron variant. Current studies typically compare the antibody titers to the new variant following a single dose of the original-vaccine versus the updated-vaccine in previously immunized individuals. These studies find that the updated-vaccine does not induce higher titers to the vaccine-variant compared with the original-vaccine, suggesting that updating may not be needed. Our models recapitulate this observation but suggest that vaccination with the updated-vaccine generates qualitatively different humoral immunity, a small fraction of which is specific for unique epitopes to the new variant. Our simulations suggest that these new variant-specific responses could dominate following subsequent vaccination or infection with either the currently circulating or future variants. We suggest a two-dose strategy for determining if the vaccine needs updating and for vaccinating high-risk individuals.
Collapse
Affiliation(s)
- Rajat Desikan
- Clinical Pharmacology Modeling & Simulation, GlaxoSmithKline (GSK), Gunnels Wood Rd, Stevenage, Hertfordshire, SG1 2NY, United Kingdom
- These authors contributed equally
| | - Susanne L. Linderman
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Carl Davis
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Veronika Zarnitsyna
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
- These authors contributed equally
| |
Collapse
|
131
|
Bae S, Ko JH, Choi JY, Park WJ, Lim SY, Ahn JY, Song KH, Lee KH, Song YG, Chan Kim Y, Park YS, Choi WS, Jeong HW, Kim SW, Kwon KT, Kang ES, Kim AR, Jang S, Kim B, Kim SS, Jang HC, Choi JY, Kim SH, Peck KR. Heterologous ChAdOx1 and BNT162b2 vaccination induces strong neutralizing antibody responses against SARS-CoV-2 including delta variant with tolerable reactogenicity. Clin Microbiol Infect 2022; 28:1390.e1-1390.e7. [PMID: 35598855 PMCID: PMC9117169 DOI: 10.1016/j.cmi.2022.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/11/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES We assessed humoral responses and reactogenicity following the heterologous vaccination compared to the homologous vaccination groups. METHODS We enrolled healthcare workers (HCWs) who were either vaccinated with ChAdOx1 followed by BNT162b2 (heterologous group) or two doses of ChAdOx1 (ChAdOx1 group) or BNT162b2 (BNT162b2 group). Immunogenicity was assessed by measuring antibody titers against receptor-binding domain (RBD) of SARS-CoV-2 spike protein in all participants and neutralizing antibody titer in 100 participants per group. Reactogenicity was evaluated by a questionnaire-based survey. RESULTS We enrolled 499 HCWs (ChAdOx1, n=199; BNT162b2, n=200; heterologous ChAdOx1/BNT162b2, n=100). The geometric mean titer of anti-RBD antibody at 14 days after the booster dose was significantly higher in the heterologous group (11780.55 BAU/mL [95% CI, 10891.52-12742.14]) than in the ChAdOx1 (1561.51 [1415.03-1723.15]) or BNT162b2 (2895.90 [2664.01-3147.98]) groups (both P value<.001). The neutralizing antibody titer of the heterologous group (geometric mean ND50, 2367.74 [1970.03-2845.74]) was comparable to that of the BNT162b2 group (2118.63 [1755.88-2556.32], P >.05) but higher than that of the ChAdOx1 group (391.77 [326.16-470.59], P value<.001). Compared with those against wild-type SARS-CoV-2, the geometric mean neutralizing antibody titers against the delta variant at 14 days after the boosting were reduced by 3.0-fold in the heterologous group (geometric mean ND50. 872.01 [95% CI, 685.33-1109.54]), 4.0-fold in the BNT162b2 group (337.93 [262.78-434.57]), and 3.2-fold in the ChAdOx1 group (206.61 [144.05-296.34]). The local or systemic reactogenicity after the booster dose in the heterologous group was higher than that of the ChAdOx1 group but comparable to that of the BNT162b2 group. CONCLUSIONS Heterologous ChAdOx1 followed by BNT162b2 vaccination with a 12-week interval induced a robust humoral immune response against SARS-CoV-2 including the delta variant that was comparable to the homologous BNT162b2 vaccination and stronger than the homologous ChAdOx1 vaccination, with a tolerable reactogenicity profile.
Collapse
Affiliation(s)
- Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ju-Yeon Choi
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Woo-Jung Park
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin Young Ahn
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Kyoung Hwa Lee
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young Goo Song
- Division of Infectious Diseases, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Chan Kim
- Division of Infectious Disease, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Yoon Soo Park
- Division of Infectious Disease, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, South Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju, South Korea
| | - Shin-Woo Kim
- Department of Internal Medicine, Kyungpook National University, School of Medicine, Daegu, South Korea
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ah-Ra Kim
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sundong Jang
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Byoungguk Kim
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Sung Soon Kim
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Hee-Chang Jang
- National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju-si, Chungcheongbuk-do, South Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| |
Collapse
|
132
|
Jahn S, Diamanti E, Herbst M. Immunologie Update für Dermatologen – woran wird geforscht? AKTUELLE DERMATOLOGIE 2022. [DOI: 10.1055/a-1773-9174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfassungImmuntherapien haben die Behandlung der chronischen Dermatosen enorm vorangebracht. Immunologische Diagnostik bestimmt den Alltag in der Praxis. Viele Dermatologen impfen. Nicht zuletzt die allgegenwärtige Corona-Pandemie und die Entwicklung entsprechender Impfstoffe verdeutlichen das große Forschungspotenzial in der Immunologie. Wir versuchen, einen Überblick zu geben, woran aktuell immunologisch geforscht wird und was wir in naher Zukunft zu erwarten haben.
Collapse
Affiliation(s)
- Sigbert Jahn
- Immundermatologische Spezialsprechstunde, Dermatologische Facharztpraxis Dr. Herbst & Kollegen, Darmstadt, Darmstadt, Germany
| | - Evangelia Diamanti
- Immundermatologische Spezialsprechstunde, Dermatologische Facharztpraxis Dr. Herbst & Kollegen, Darmstadt, Darmstadt, Germany
| | - Matthias Herbst
- Immundermatologische Spezialsprechstunde, Dermatologische Facharztpraxis Dr. Herbst & Kollegen, Darmstadt, Darmstadt, Germany
| |
Collapse
|
133
|
Kudryavtsev I, Rubinstein A, Golovkin A, Kalinina O, Vasilyev K, Rudenko L, Isakova-Sivak I. Dysregulated Immune Responses in SARS-CoV-2-Infected Patients: A Comprehensive Overview. Viruses 2022; 14:1082. [PMID: 35632823 PMCID: PMC9147674 DOI: 10.3390/v14051082] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in humans more than two years ago and caused an unprecedented socio-economic burden on all countries around the world. Since then, numerous studies have attempted to identify various mechanisms involved in the alterations of innate and adaptive immunity in COVID-19 patients, with the ultimate goal of finding ways to correct pathological changes and improve disease outcomes. State-of-the-art research methods made it possible to establish precise molecular mechanisms which the new virus uses to trigger multisystem inflammatory syndrome and evade host antiviral immune responses. In this review, we present a comprehensive analysis of published data that provide insight into pathological changes in T and B cell subsets and their phenotypes, accompanying the acute phase of the SARS-CoV-2 infection. This knowledge might help reveal new biomarkers that can be utilized to recognize case severity early as well as to provide additional objective information on the effective formation of SARS-CoV-2-specific immunity and predict long-term complications of COVID-19, including a large variety of symptoms termed the 'post-COVID-19 syndrome'.
Collapse
Affiliation(s)
- Igor Kudryavtsev
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Artem Rubinstein
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Alexey Golovkin
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.G.); (O.K.)
| | - Olga Kalinina
- Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia; (A.G.); (O.K.)
| | - Kirill Vasilyev
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| | - Irina Isakova-Sivak
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia; (I.K.); (A.R.); (K.V.); (L.R.)
| |
Collapse
|
134
|
Rodda LB, Morawski PA, Pruner KB, Fahning ML, Howard CA, Franko N, Logue J, Eggenberger J, Stokes C, Golez I, Hale M, Gale M, Chu HY, Campbell DJ, Pepper M. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell 2022; 185:1588-1601.e14. [PMID: 35413241 PMCID: PMC8926873 DOI: 10.1016/j.cell.2022.03.018] [Citation(s) in RCA: 126] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Immune memory is tailored by cues that lymphocytes perceive during priming. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic created a situation in which nascent memory could be tracked through additional antigen exposures. Both SARS-CoV-2 infection and vaccination induce multifaceted, functional immune memory, but together, they engender improved protection from disease, termed hybrid immunity. We therefore investigated how vaccine-induced memory is shaped by previous infection. We found that following vaccination, previously infected individuals generated more SARS-CoV-2 RBD-specific memory B cells and variant-neutralizing antibodies and a distinct population of IFN-γ and IL-10-expressing memory SARS-CoV-2 spike-specific CD4+ T cells than previously naive individuals. Although additional vaccination could increase humoral memory in previously naive individuals, it did not recapitulate the distinct CD4+ T cell cytokine profile observed in previously infected subjects. Thus, imprinted features of SARS-CoV-2-specific memory lymphocytes define hybrid immunity.
Collapse
Affiliation(s)
- Lauren B Rodda
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Peter A Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Kurt B Pruner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Mitchell L Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Christian A Howard
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Jennifer Logue
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Julie Eggenberger
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Caleb Stokes
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Inah Golez
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA 98109, USA
| | - Helen Y Chu
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Daniel J Campbell
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA; Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA 98101, USA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| |
Collapse
|
135
|
Kim W, Zhou JQ, Horvath SC, Schmitz AJ, Sturtz AJ, Lei T, Liu Z, Kalaidina E, Thapa M, Alsoussi WB, Haile A, Klebert MK, Suessen T, Parra-Rodriguez L, Mudd PA, Whelan SPJ, Middleton WD, Teefey SA, Pusic I, O'Halloran JA, Presti RM, Turner JS, Ellebedy AH. Germinal centre-driven maturation of B cell response to mRNA vaccination. Nature 2022; 604:141-145. [PMID: 35168246 PMCID: PMC9204750 DOI: 10.1038/s41586-022-04527-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Germinal centres (GC) are lymphoid structures in which B cells acquire affinity-enhancing somatic hypermutations (SHM), with surviving clones differentiating into memory B cells (MBCs) and long-lived bone marrow plasma cells1-5 (BMPCs). SARS-CoV-2 mRNA vaccination induces a persistent GC response that lasts for at least six months in humans6-8. The fate of responding GC B cells as well as the functional consequences of such persistence remain unknown. Here, we detected SARS-CoV-2 spike protein-specific MBCs in 42 individuals who had received two doses of the SARS-CoV-2 mRNA vaccine BNT162b2 six month earlier. Spike-specific IgG-secreting BMPCs were detected in 9 out of 11 participants. Using a combined approach of sequencing the B cell receptors of responding blood plasmablasts and MBCs, lymph node GC B cells and plasma cells and BMPCs from eight individuals and expression of the corresponding monoclonal antibodies, we tracked the evolution of 1,540 spike-specific B cell clones. On average, early blood spike-specific plasmablasts exhibited the lowest SHM frequencies. By contrast, SHM frequencies of spike-specific GC B cells increased by 3.5-fold within six months after vaccination. Spike-specific MBCs and BMPCs accumulated high levels of SHM, which corresponded with enhanced anti-spike antibody avidity in blood and enhanced affinity as well as neutralization capacity of BMPC-derived monoclonal antibodies. We report how the notable persistence of the GC reaction induced by SARS-CoV-2 mRNA vaccination in humans culminates in affinity-matured long-term antibody responses that potently neutralize the virus.
Collapse
Affiliation(s)
- Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen C Horvath
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Alexandria J Sturtz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Tingting Lei
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Elizaveta Kalaidina
- Division of Allergy and Immunology, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Mahima Thapa
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Wafaa B Alsoussi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, St Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Luis Parra-Rodriguez
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Philip A Mudd
- Department of Emergency Medicine, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO, USA
| | - Iskra Pusic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jane A O'Halloran
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St Louis, MO, USA.
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
136
|
Shafqat A, Shafqat S, Salameh SA, Kashir J, Alkattan K, Yaqinuddin A. Mechanistic Insights Into the Immune Pathophysiology of COVID-19; An In-Depth Review. Front Immunol 2022; 13:835104. [PMID: 35401519 PMCID: PMC8989408 DOI: 10.3389/fimmu.2022.835104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which causes coronavirus-19 (COVID-19), has caused significant morbidity and mortality globally. In addition to the respiratory manifestations seen in severe cases, multi-organ pathologies also occur, making management a much-debated issue. In addition, the emergence of new variants can potentially render vaccines with a relatively limited utility. Many investigators have attempted to elucidate the precise pathophysiological mechanisms causing COVID-19 respiratory and systemic disease. Spillover of lung-derived cytokines causing a cytokine storm is considered the cause of systemic disease. However, recent studies have provided contradictory evidence, whereby the extent of cytokine storm is insufficient to cause severe illness. These issues are highly relevant, as management approaches considering COVID-19 a classic form of acute respiratory distress syndrome with a cytokine storm could translate to unfounded clinical decisions, detrimental to patient trajectory. Additionally, the precise immune cell signatures that characterize disease of varying severity remain contentious. We provide an up-to-date review on the immune dysregulation caused by COVID-19 and highlight pertinent discussions in the scientific community. The response from the scientific community has been unprecedented regarding the development of highly effective vaccines and cutting-edge research on novel therapies. We hope that this review furthers the conversations held by scientists and informs the aims of future research projects, which will potentially further our understanding of COVID-19 and its immune pathogenesis.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | | | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
137
|
Kang CK, Kim M, Hong J, Kim G, Lee S, Chang E, Choe PG, Kim NJ, Kim IS, Seo JY, Song D, Lee DS, Shin HM, Kim YW, Lee CH, Park WB, Kim HR, Oh MD. Distinct Immune Response at 1 Year Post-COVID-19 According to Disease Severity. Front Immunol 2022; 13:830433. [PMID: 35392102 PMCID: PMC8980227 DOI: 10.3389/fimmu.2022.830433] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/23/2022] [Indexed: 01/10/2023] Open
Abstract
Background Despite the fact of ongoing worldwide vaccination programs for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), understanding longevity, breadth, and type of immune response to coronavirus disease-19 (COVID-19) is still important to optimize the vaccination strategy and estimate the risk of reinfection. Therefore, we performed thorough immunological assessments 1 year post-COVID-19 with different severity. Methods We analyzed peripheral blood mononuclear cells and plasma samples at 1 year post-COVID-19 in patients who experienced asymptomatic, mild, and severe illness to assess titers of various isotypes of antibodies (Abs) against SARS-CoV-2 antigens, phagocytic capability, and memory B- and T-cell responses. Findings A total of 24 patients (7, 9, and 8 asymptomatic, mild, and severe patients, respectively) and eight healthy volunteers were included in this study. We firstly showed that disease severity is correlated with parameters of immune responses at 1 year post-COVID-19 that play an important role in protecting against reinfection with SARS-CoV-2, namely, the phagocytic capacity of Abs and memory B-cell responses. Interpretation Various immune responses at 1 year post-COVID-19, particularly the phagocytic capacity and memory B-cell responses, were dependent on the severity of the prior COVID-19. Our data could provide a clue for a tailored vaccination strategy after natural infection according to the severity of COVID-19.
Collapse
Affiliation(s)
- Chang Kyung Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Minji Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Jisu Hong
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Soojin Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Euijin Chang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Pyoeng Gyun Choe
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Nam Joong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Ik Soo Kim
- Department of Microbiology, School of Medicine, Gachon University, Incheon, South Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong, South Korea
| | - Dong-Sup Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Yong-Woo Kim
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Chang-Han Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- BrainKorea21 (BK21) FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon, South Korea
| | - Myoung-don Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
138
|
Getting to the (germinal) center of humoral immune responses to SARS-CoV-2. Cell 2022; 185:945-948. [PMID: 35303427 PMCID: PMC8928419 DOI: 10.1016/j.cell.2022.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Long-term protection against SARS-CoV-2 requires effective and durable immunity. In this issue of Cell, two papers closely examine germinal centers, the physiological birthplace of adaptive immunity, to quantify the specificity, breadth, magnitude, and persistence of systemic and local humoral immune responses following natural infection with, or vaccination against, SARS-CoV-2.
Collapse
|
139
|
Charmetant X, Espi M, Benotmane I, Barateau V, Heibel F, Buron F, Gautier-Vargas G, Delafosse M, Perrin P, Koenig A, Cognard N, Levi C, Gallais F, Manière L, Rossolillo P, Soulier E, Pierre F, Ovize A, Morelon E, Defrance T, Fafi-Kremer S, Caillard S, Thaunat O. Infection or a third dose of mRNA vaccine elicits neutralizing antibody responses against SARS-CoV-2 in kidney transplant recipients. Sci Transl Med 2022; 14:eabl6141. [PMID: 35103481 PMCID: PMC8939774 DOI: 10.1126/scitranslmed.abl6141] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Transplant recipients, who receive therapeutic immunosuppression to prevent graft rejection, are characterized by high coronavirus disease 2019 (COVID-19)-related mortality and defective response to vaccines. We observed that previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but not the standard two-dose regimen of vaccination, provided protection against symptomatic COVID-19 in kidney transplant recipients. We therefore compared the cellular and humoral immune responses of these two groups of patients. Neutralizing anti-receptor-binding domain (RBD) immunoglobulin G (IgG) antibodies were identified as the primary correlate of protection for transplant recipients. Analysis of virus-specific B and T cell responses suggested that the generation of neutralizing anti-RBD IgG may have depended on cognate T-B cell interactions that took place in germinal center, potentially acting as a limiting checkpoint. High-dose mycophenolate mofetil, an immunosuppressive drug, was associated with fewer antigen-specific B and T follicular helper (TFH) cells after vaccination; this was not observed in patients recently infected with SARS-CoV-2. Last, we observed that, in two independent prospective cohorts, administration of a third dose of SARS-CoV-2 mRNA vaccine restored neutralizing titers of anti-RBD IgG in about 40% of individuals who had not previously responded to two doses of vaccine. Together, these findings suggest that a third dose of SARS-CoV-2 mRNA vaccine improves the RBD-specific responses of transplant patients treated with immunosuppressive drugs.
Collapse
Affiliation(s)
- Xavier Charmetant
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
| | - Maxime Espi
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
| | - Ilies Benotmane
- Department of Nephrology and Transplantation, Strasbourg University Hospital, 67000 Strasbourg, France
- Department of Virology, Strasbourg University Hospital, 67000 Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Véronique Barateau
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
| | - Francoise Heibel
- Department of Nephrology and Transplantation, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Fanny Buron
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
| | - Gabriela Gautier-Vargas
- Department of Nephrology and Transplantation, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Marion Delafosse
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
| | - Peggy Perrin
- Department of Nephrology and Transplantation, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Alice Koenig
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
- Claude Bernard University (Lyon 1), 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne France
| | - Noëlle Cognard
- Department of Nephrology and Transplantation, Strasbourg University Hospital, 67000 Strasbourg, France
| | - Charlène Levi
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
| | - Floriane Gallais
- Department of Virology, Strasbourg University Hospital, 67000 Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Louis Manière
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
| | - Paola Rossolillo
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, 67400 Illkirch, France
| | - Eric Soulier
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Florian Pierre
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Anne Ovize
- Eurofins Biomnis Laboratory, 69007 Lyon, France
| | - Emmanuel Morelon
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
- Claude Bernard University (Lyon 1), 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne France
| | - Thierry Defrance
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
| | - Samira Fafi-Kremer
- Department of Virology, Strasbourg University Hospital, 67000 Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sophie Caillard
- Department of Nephrology and Transplantation, Strasbourg University Hospital, 67000 Strasbourg, France
- Department of Virology, Strasbourg University Hospital, 67000 Strasbourg, France
- Inserm UMR S1109, LabEx Transplantex, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Olivier Thaunat
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Univ. Lyon, 21 avenue Tony Garnier, 69007 Lyon, France
- Hospices Civils de Lyon, Edouard Herriot Hospital, Department of Transplantation, Nephrology and Clinical Immunology, 5, place d’Arsonval, 69003 Lyon, France
- Claude Bernard University (Lyon 1), 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne France
| |
Collapse
|
140
|
Byazrova MG, Kulemzin SV, Astakhova EA, Belovezhets TN, Efimov GA, Chikaev AN, Kolotygin IO, Gorchakov AA, Taranin AV, Filatov AV. Memory B Cells Induced by Sputnik V Vaccination Produce SARS-CoV-2 Neutralizing Antibodies Upon Ex Vivo Restimulation. Front Immunol 2022; 13:840707. [PMID: 35280987 PMCID: PMC8907154 DOI: 10.3389/fimmu.2022.840707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
The development of effective vaccines against SARS-CoV-2 remains a global health priority. Despite extensive use, the effects of Sputnik V on B cell immunity need to be explored in detail. We performed comprehensive profiling of humoral and B cell responses in a cohort of vaccinated subjects (n = 22), and demonstrate that Sputnik vaccination results in robust B cell immunity. We show that B memory cell (MBC) and antibody responses to Sputnik V were heavily dependent on whether the vaccinee had a history of SARS-CoV-2 infection or not. 85 days after the first dose of the vaccine, ex vivo stimulated MBCs from the vast majority of Sputnik V vaccinees produced antibodies that robustly neutralized the Wuhan Spike-pseudotyped lentivirus. MBC-derived antibodies from all previously infected and some of the naïve vaccine recipients could also cross-neutralize Beta (B.1.351) variant of SARS-CoV-2. Virus-neutralizing activity of MBC-derived antibodies correlated well with that of the serum antibodies, suggesting the interplay between the MBC and long-lived plasma cell responses. Thus, our in-depth analysis of MBC responses in Sputnik V vaccinees complements traditional serological approaches and may provide important outlook into future B cell responses upon re-encounter with the emerging variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey V. Kulemzin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A. Astakhova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana N. Belovezhets
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Grigory A. Efimov
- Laboratory of Transplantation Immunology, National Research Center for Hematology, Moscow, Russia
| | - Anton N. Chikaev
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ilya O. Kolotygin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Andrey A. Gorchakov
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander V. Taranin
- Laboratory of Immunogenetics, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexander V. Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
141
|
Goel RR, Painter MM, Lundgreen KA, Apostolidis SA, Baxter AE, Giles JR, Mathew D, Pattekar A, Reynaldi A, Khoury DS, Gouma S, Hicks P, Dysinger S, Hicks A, Sharma H, Herring S, Korte S, KC W, Oldridge DA, Erickson RI, Weirick ME, McAllister CM, Awofolaju M, Tanenbaum N, Dougherty J, Long S, D’Andrea K, Hamilton JT, McLaughlin M, Williams JC, Adamski S, Kuthuru O, Drapeau EM, Davenport MP, Hensley SE, Bates P, Greenplate AR, Wherry EJ. Efficient recall of Omicron-reactive B cell memory after a third dose of SARS-CoV-2 mRNA vaccine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.20.481163. [PMID: 35233575 PMCID: PMC8887077 DOI: 10.1101/2022.02.20.481163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3 rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ∼9-10 months after the primary 2-dose mRNA vaccine series, as well as for ∼3 months after a 3 rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3 rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ∼40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3 rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3 rd dose. In contrast, pre-3 rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections. GRAPHICAL SUMMARY
Collapse
Affiliation(s)
- Rishi R. Goel
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Mark M. Painter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Kendall A. Lundgreen
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sokratis A. Apostolidis
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
- Division of Rheumatology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Amy E. Baxter
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Josephine R. Giles
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Divij Mathew
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Ajinkya Pattekar
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales; Sydney, Australia
| | - David S. Khoury
- Kirby Institute, University of New South Wales; Sydney, Australia
| | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Philip Hicks
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sarah Dysinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Amanda Hicks
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Harsh Sharma
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Sarah Herring
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Scott Korte
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Wumesh KC
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Division of Cardiovascular Medicine, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Derek A. Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Rachel I. Erickson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Madison E. Weirick
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Christopher M. McAllister
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Moses Awofolaju
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Nicole Tanenbaum
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Jeanette Dougherty
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Sherea Long
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Kurt D’Andrea
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Jacob T. Hamilton
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Maura McLaughlin
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Justine C. Williams
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Sharon Adamski
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - Oliva Kuthuru
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Elizabeth M. Drapeau
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | | | - Scott E. Hensley
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Allison R. Greenplate
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
| | - E. John Wherry
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Immune Health, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USAs
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| |
Collapse
|
142
|
Portilho AI, Lima GG, De Gaspari E. SARS-CoV-2 vaccines: Potential refinements through induction of mucosal and trained immunity. Clinics (Sao Paulo) 2022; 77:100057. [PMID: 35679760 PMCID: PMC9148925 DOI: 10.1016/j.clinsp.2022.100057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/21/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Amanda Izeli Portilho
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Gradute Program Interunits in Biotechnology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Gabrielle Gimenes Lima
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Gradute Program Interunits in Biotechnology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, SP, Brazil; Gradute Program Interunits in Biotechnology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|