101
|
Caliebe A, Tekola‐Ayele F, Darst BF, Wang X, Song YE, Gui J, Sebro RA, Balding DJ, Saad M, Dubé M. Including diverse and admixed populations in genetic epidemiology research. Genet Epidemiol 2022; 46:347-371. [PMID: 35842778 PMCID: PMC9452464 DOI: 10.1002/gepi.22492] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
The inclusion of ancestrally diverse participants in genetic studies can lead to new discoveries and is important to ensure equitable health care benefit from research advances. Here, members of the Ethical, Legal, Social, Implications (ELSI) committee of the International Genetic Epidemiology Society (IGES) offer perspectives on methods and analysis tools for the conduct of inclusive genetic epidemiology research, with a focus on admixed and ancestrally diverse populations in support of reproducible research practices. We emphasize the importance of distinguishing socially defined population categorizations from genetic ancestry in the design, analysis, reporting, and interpretation of genetic epidemiology research findings. Finally, we discuss the current state of genomic resources used in genetic association studies, functional interpretation, and clinical and public health translation of genomic findings with respect to diverse populations.
Collapse
Affiliation(s)
- Amke Caliebe
- Institute of Medical Informatics and StatisticsKiel University and University Hospital Schleswig‐HolsteinKielGermany
| | - Fasil Tekola‐Ayele
- Epidemiology Branch, Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Burcu F. Darst
- Center for Genetic EpidemiologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Public Health Sciences DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Xuexia Wang
- Department of MathematicsUniversity of North TexasDentonTexasUSA
| | - Yeunjoo E. Song
- Department of Population and Quantitative Health SciencesCase Western Reserve UniversityClevelandOhioUSA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth CollegeOne Medical Center Dr.LebanonNew HampshireUSA
| | | | - David J. Balding
- Melbourne Integrative Genomics, Schools of BioSciences and of Mathematics & StatisticsUniversity of MelbourneMelbourneAustralia
| | - Mohamad Saad
- Qatar Computing Research InstituteHamad Bin Khalifa UniversityDohaQatar
- Neuroscience Research Center, Faculty of Medical SciencesLebanese UniversityBeirutLebanon
| | - Marie‐Pierre Dubé
- Department of Medicine, and Social and Preventive MedicineUniversité de MontréalMontréalQuébecCanada
- Beaulieu‐Saucier Pharmacogenomcis CentreMontreal Heart InstituteMontrealCanada
| | | |
Collapse
|
102
|
Hong EP, Kim BJ, Youn DH, Lee JJ, Jeon HJ, Choi HJ, Cho YJ, Jeon JP. Updated Genome-Wide Association Study of Intracranial Aneurysms by Genotype Correction and Imputation in Koreans. World Neurosurg 2022; 166:e109-e117. [PMID: 35792225 DOI: 10.1016/j.wneu.2022.06.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Compared to European, Japanese, and Chinese populations, genetic studies on intracranial aneurysms (IAs) in Koreans are lacking. We conducted an updated genome-wide association study (GWAS) to more accurately identify candidate variations predicting IA by genotype correction and imputation than in the first Korean GWAS. METHODS We performed a high-throughput imputation of single-nucleotide polymorphisms (SNPs) and genotype missing values for 250 IA and 296 controls. Out of a total of 7,333,746 sites with an imputation R2 score of ≥0.5, 6,105,212 SNPs were analyzed. A high-throughput GWAS was performed after adjusting for clinical variables and 4 principal component analysis values. RESULTS A total of 39 SNPs reached a significant genome-wide threshold (P < 5 × 10-8). After pruning by pairwise linkage disequilibrium (r2 < 0.8), 11 SNPs were consistently associated with IA. Six tagging SNPs, including rs3120004, rs1851347, rs1522095, rs7779989, rs12935558, rs3826442, and rs2440154, showed strong linkage disequilibrium tower tagging haplotype structures. Among them, rs3120004 tagged a large and strong haplotype structure between LOC440704 and RGS18 genes in 1q31.2 (odds ratio, 2.34; 95% confidence interval, 1.74-3.14; P = 1.4 × 10-8). The rs2440154 (SLC47A1, 17p11.2) SNP increased the risk of IA most significantly (odds ratio, 2.90; 95% confidence interval, 2.07-4.08; P = 8.2 × 10-10). The region encompassing rs3826442 (MYH13, 17p13.1) showed a high recombination rate of approximately 70 cM/Mbp. CONCLUSIONS Our updated GWAS using high-throughput imputation approaches can be an informative milestone in understanding IA formation via susceptibility loci in this stage before large-scale genome-wide association meta-analysis.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jae Jun Lee
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hong Jun Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea.
| | | |
Collapse
|
103
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
104
|
Lu C, Ahmed R, Lamri A, Anand SS. Use of race, ethnicity, and ancestry data in health research. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0001060. [PMID: 36962630 PMCID: PMC10022242 DOI: 10.1371/journal.pgph.0001060] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Race, ethnicity, and ancestry are common classification variables used in health research. However, there has been no formal agreement on the definitions of these terms, resulting in misuse, confusion, and a lack of clarity surrounding these concepts for researchers and their readers. This article examines past and current understandings of race, ethnicity, and ancestry in research, identifies the distinctions between these terms, examines the reliability of these terms, and provides researchers with guidance on how to use these terms. Although race, ethnicity, and ancestry are often treated synonymously, they should be considered as distinct terms in the context of health research. Researchers should carefully consider which term is most appropriate for their study, define and use the terms consistently, and consider how their classification may be used in future research by others. The classification should be self-reported rather than assigned by an observer wherever possible.
Collapse
Affiliation(s)
- Clara Lu
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Rabeeyah Ahmed
- Arts and Science Program, McMaster University, Hamilton, Ontario, Canada
| | - Amel Lamri
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sonia S. Anand
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
105
|
Ilori T, Watanabe A, Ng KH, Solarin A, Sinha A, Gbadegesin R. Genetics of Chronic Kidney Disease in Low-Resource Settings. Semin Nephrol 2022; 42:151314. [PMID: 36801667 PMCID: PMC10272019 DOI: 10.1016/j.semnephrol.2023.151314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Advances in kidney genomics in the past 20 years has opened the door for more precise diagnosis of kidney disease and identification of new and specific therapeutic agents. Despite these advances, an imbalance exists between low-resource and affluent regions of the world. Individuals of European ancestry from the United States, United Kingdom, and Iceland account for 16% of the world's population, but represent more than 80% of all genome-wide association studies. South Asia, Southeast Asia, Latin America, and Africa together account for 57% of the world population but less than 5% of genome-wide association studies. Implications of this difference include limitations in new variant discovery, inaccurate interpretation of the effect of genetic variants in non-European populations, and unequal access to genomic testing and novel therapies in resource-poor regions. It also further introduces ethical, legal, and social pitfalls, and ultimately may propagate global health inequities. Ongoing efforts to reduce the imbalance in low-resource regions include funding and capacity building, population-based genome sequencing, population-based genome registries, and genetic research networks. More funding, training, and capacity building for infrastructure and expertise is needed in resource-poor regions. Focusing on this will ensure multiple-fold returns on investments in genomic research and technology.
Collapse
Affiliation(s)
- Titilayo Ilori
- Division of Nephrology, Boston University School of Medicine, Boston, MA
| | - Andreia Watanabe
- Division of Molecular Medicine, Department of Pediatrics, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kar-Hui Ng
- Department of Pediatrics, Yong Loo Lin School of Medicine, Singapore
| | - Adaobi Solarin
- Department of Pediatrics and Child Health, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Rasheed Gbadegesin
- Division of Nephrology, Department of Pediatrics, Duke University School of Medicine, Durham, NC.
| |
Collapse
|
106
|
Kotan LD. Comparative Analyses of Turkish Variome and Widely Used Genomic Variation Databases for the Evaluation of Rare Sequence Variants in Turkish Individuals: Idiopathic Hypogonadotropic Hypogonadism as a Disease Model. J Clin Res Pediatr Endocrinol 2022; 14:293-301. [PMID: 35438269 PMCID: PMC9422916 DOI: 10.4274/jcrpe.galenos.2022.2022-3-11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022] Open
Abstract
Objective With the increasing use of whole-exome sequencing, one of the challenges in identifying the causal allele for a Mendelian disease is the lack of availability of population-specific human genetic variation reference databases. The people of Turkey were not represented in GnomAD or other publicly available large databases until recently, when the first comprehensive genomic variation database, Turkish Variome (TRV), was published. The aim of this study was to evaluate whether TRV or other publicly available large genomic variation databases can reliably be used for rare disease variant evaluation in Turkish individuals. Methods Sixty non-disease-causing, non-synonymous variants (minor allele frequencies >1%) were identified in 58 genes that are known to be associated with idiopathic hypogonadotropic hypogonadism from a large Turkish patient cohort. The allelic frequencies of these variants were then compared with those in various public genomic variation databases, including TRV. Results Our cohort variants showed the highest correlations with those in the TRV, Iranome, and The Greater Middle East Variome, in decreasing order. Conclusion These results suggest that the TRV is the appropriate database to use for rare genomic variant evaluations in the Turkish population. Our data also suggest that variomes from geographic neighborhoods may serve as substitute references for populations devoid of their own genomic variation databases.
Collapse
Affiliation(s)
- Leman Damla Kotan
- Çukurova University Faculty of Medicine, Department of
Pediatric Endocrinology, Adana, Turkey
| |
Collapse
|
107
|
Paine SK, Das S, Bhattacharyya C, Biswas NK, Rao R, De A, Basu A. Autosomal recessive inheritance of a novel missense mutation of ITGB4 for Epidermolysis-Bullosa pyloric-atresia: a case report. Mol Genet Genomics 2022; 297:1581-1586. [PMID: 35997841 DOI: 10.1007/s00438-022-01941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Epidermolysis-Bullosa (EB), a rare Mendelian disorder, exhibits complex phenotypic and locus-heterogeneity. We identified a nuclear family of clinically unaffected parents with two offsprings manifesting EB-Pyloric-Atresia (EB-PA), with a variable clinical severity. We generated whole exome sequence data on all four individuals to (1) identify the causal mutation behind EB-PA (2) understand the background genetic variation for phenotype variability of the siblings. We assumed an autosomal recessive mode of inheritance and used suites of bioinformatic and computational tools to collate information through global databases to identify the causal genetic variant for the disease. We also investigated variations in key genes that are likely to impact phenotype severity. We identified a novel missense mutation in the ITGB4 gene (p.Ala1227Asp), for which the parents were heterozygous and the children homozygous. The mutation in ITGB4 gene, predicted to reduce the stability of the primary alpha6beta4-plectin complex compared to all previously studied mutations on ITGB4 reported to cause EB.
Collapse
Affiliation(s)
| | - Subrata Das
- National Institute of BioMedical Genomics, Kalyani, India
| | | | | | | | - Abhishek De
- Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Analabha Basu
- National Institute of BioMedical Genomics, Kalyani, India.
| |
Collapse
|
108
|
Mathur R, Fang F, Gaddis N, Hancock DB, Cho MH, Hokanson JE, Bierut LJ, Lutz SM, Young K, Smith AV, Silverman EK, Page GP, Johnson EO. GAWMerge expands GWAS sample size and diversity by combining array-based genotyping and whole-genome sequencing. Commun Biol 2022; 5:806. [PMID: 35953715 PMCID: PMC9372058 DOI: 10.1038/s42003-022-03738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Genome-wide association studies (GWAS) have made impactful discoveries for complex diseases, often by amassing very large sample sizes. Yet, GWAS of many diseases remain underpowered, especially for non-European ancestries. One cost-effective approach to increase sample size is to combine existing cohorts, which may have limited sample size or be case-only, with public controls, but this approach is limited by the need for a large overlap in variants across genotyping arrays and the scarcity of non-European controls. We developed and validated a protocol, Genotyping Array-WGS Merge (GAWMerge), for combining genotypes from arrays and whole-genome sequencing, ensuring complete variant overlap, and allowing for diverse samples like Trans-Omics for Precision Medicine to be used. Our protocol involves phasing, imputation, and filtering. We illustrated its ability to control technology driven artifacts and type-I error, as well as recover known disease-associated signals across technologies, independent datasets, and ancestries in smoking-related cohorts. GAWMerge enables genetic studies to leverage existing cohorts to validly increase sample size and enhance discovery for understudied traits and ancestries.
Collapse
Affiliation(s)
- Ravi Mathur
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Nathan Gaddis
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Dana B Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| | - Sharon M Lutz
- PRecisiOn Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care, Boston, MA, USA
| | - Kendra Young
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, CO, USA
| | - Albert V Smith
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Grier P Page
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA
- Fellow Program, RTI International, Research Triangle Park, NC, USA
| | - Eric O Johnson
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, Research Triangle Park, NC, USA.
- Fellow Program, RTI International, Research Triangle Park, NC, USA.
| |
Collapse
|
109
|
Huang QQ, Sallah N, Dunca D, Trivedi B, Hunt KA, Hodgson S, Lambert SA, Arciero E, Wright J, Griffiths C, Trembath RC, Hemingway H, Inouye M, Finer S, van Heel DA, Lumbers RT, Martin HC, Kuchenbaecker K. Transferability of genetic loci and polygenic scores for cardiometabolic traits in British Pakistani and Bangladeshi individuals. Nat Commun 2022; 13:4664. [PMID: 35945198 PMCID: PMC9363492 DOI: 10.1038/s41467-022-32095-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/15/2022] [Indexed: 12/30/2022] Open
Abstract
Individuals with South Asian ancestry have a higher risk of heart disease than other groups but have been largely excluded from genetic research. Using data from 22,000 British Pakistani and Bangladeshi individuals with linked electronic health records from the Genes & Health cohort, we conducted genome-wide association studies of coronary artery disease and its key risk factors. Using power-adjusted transferability ratios, we found evidence for transferability for the majority of cardiometabolic loci powered to replicate. The performance of polygenic scores was high for lipids and blood pressure, but lower for BMI and coronary artery disease. Adding a polygenic score for coronary artery disease to clinical risk factors showed significant improvement in reclassification. In Mendelian randomisation using transferable loci as instruments, our findings were consistent with results in European-ancestry individuals. Taken together, trait-specific transferability of trait loci between populations is an important consideration with implications for risk prediction and causal inference.
Collapse
Affiliation(s)
- Qin Qin Huang
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Neneh Sallah
- Institute of Health Informatics, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Diana Dunca
- Institute of Health Informatics, University College London, London, UK
- UCL Genetics Institute, University College London, London, UK
| | - Bhavi Trivedi
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karen A Hunt
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sam Hodgson
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Samuel A Lambert
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Elena Arciero
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford, UK
| | - Chris Griffiths
- Institute of Population Health Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Richard C Trembath
- Department of Medical and Molecular Genetics, King's College London, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, University College London, London, UK
- University College London Hospitals Biomedical Research Centre (UCLH BRC), London, UK
| | - Michael Inouye
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- British Heart Foundation Cambridge Centre of Research Excellence, Department of Clinical Medicine, University of Cambridge, Cambridge, UK
- Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Sarah Finer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - David A van Heel
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - R Thomas Lumbers
- Institute of Health Informatics, University College London, London, UK
- University College London Hospitals Biomedical Research Centre (UCLH BRC), London, UK
- British Heart Foundation Research Accelerator, University College London, London, UK
| | - Hilary C Martin
- Department of Human Genetics, Wellcome Sanger Institute, Cambridge, UK
| | - Karoline Kuchenbaecker
- UCL Genetics Institute, University College London, London, UK.
- Division of Psychiatry, University College London, London, UK.
| |
Collapse
|
110
|
Bajaj A, Senthivel V, Bhoyar R, Jain A, Imran M, Rophina M, Divakar MK, Jolly B, Verma A, Mishra A, Sharma D, Deepti S, Sharma G, Bansal R, Yadav R, Scaria V, Naik N, Sivasubbu S. 1029 genomes of self-declared healthy individuals from India reveal prevalent and clinically relevant cardiac ion channelopathy variants. Hum Genomics 2022; 16:30. [PMID: 35932045 PMCID: PMC9354277 DOI: 10.1186/s40246-022-00402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The prevalence and genetic spectrum of cardiac channelopathies exhibit population-specific differences. We aimed to understand the spectrum of cardiac channelopathy-associated variations in India, which is characterised by a genetically diverse population and is largely understudied in the context of these disorders. RESULTS We utilised the IndiGenomes dataset comprising 1029 whole genomes from self-declared healthy individuals as a template to filter variants in 36 genes known to cause cardiac channelopathies. Our analysis revealed 186,782 variants, of which we filtered 470 variants that were identified as possibly pathogenic (440 nonsynonymous, 30 high-confidence predicted loss of function ). About 26% (124 out of 470) of these variants were unique to the Indian population as they were not reported in the global population datasets and published literature. Classification of 470 variants by ACMG/AMP guidelines unveiled 13 pathogenic/likely pathogenic (P/LP) variants mapping to 19 out of the 1029 individuals. Further query of 53 probands in an independent cohort of cardiac channelopathy, using exome sequencing, revealed the presence of 3 out of the 13 P/LP variants. The identification of p.G179Sfs*62, p.R823W and c.420 + 2 T > C variants in KCNQ1, KCNH2 and CASQ2 genes, respectively, validate the significance of the P/LP variants in the context of clinical applicability as well as for large-scale population analysis. CONCLUSION A compendium of ACMG/AMP classified cardiac channelopathy variants in 1029 self-declared healthy Indian population was created. A conservative genotypic prevalence was estimated to be 0.9-1.8% which poses a huge public health burden for a country with large population size like India. In the majority of cases, these disorders are manageable and the risk of sudden cardiac death can be alleviated by appropriate lifestyle modifications as well as treatment regimens/clinical interventions. Clinical utility of the obtained variants was demonstrated using a cardiac channelopathy patient cohort. Our study emphasises the need for large-scale population screening to identify at-risk individuals and take preventive measures. However, we suggest cautious clinical interpretation to be exercised by taking other cardiac channelopathy risk factors into account.
Collapse
Affiliation(s)
- Anjali Bajaj
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vigneshwar Senthivel
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rahul Bhoyar
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Abhinav Jain
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mohamed Imran
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mercy Rophina
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Mohit Kumar Divakar
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Bani Jolly
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ankit Verma
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Anushree Mishra
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India
| | - Disha Sharma
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Siddharthan Deepti
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Gautam Sharma
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Raghav Bansal
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Rakesh Yadav
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Vinod Scaria
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Nitish Naik
- grid.413618.90000 0004 1767 6103Department of Cardiology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029 India
| | - Sridhar Sivasubbu
- grid.417639.eCSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi, 110025 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
111
|
Vaidyanathan S, Trumbull AM, Bar L, Rao M, Yu Y, Sellers ZM. CFTR genotype analysis of Asians in international registries highlights disparities in the diagnosis and treatment of Asian patients with cystic fibrosis. Genet Med 2022; 24:2180-2186. [PMID: 35857025 DOI: 10.1016/j.gim.2022.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022] Open
Abstract
PURPOSE Cystic fibrosis (CF) is not well-characterized in Asians, potentially resulting in delayed diagnosis and poor prognosis. We characterized CF in Asian subgroups to address these disparities. METHODS De-identified ethnicity and CFTR variant data were obtained from the United States, United Kingdom, and Canadian CF registries. We measured the prevalence of CF, CFTR variant allele frequencies, effectiveness of screening panels, and eligibility for modulator therapies. RESULTS The prevalence of CF was 1 in 74,982 people (Canada) to 1 in 13,340 people (United Kingdom) for South Asians and 1 in 256,541 (Canada) to 1 in 52,563 (United Kingdom) for other Asians, suggesting 26,000 to 146,000 patients with CF in South Asia. p.(F508del) variant was markedly less frequent in Asians than in non-Hispanic Whites. Splicing and nonsense variants occurred at high allelic frequencies in Asians, resulting in 41% to 49% of South Asians and 21% to 39% of other Asians being ineligible for CFTR modulator therapies. Hologic/EU2v1 panels failed to identify 37% to 47% of South Asian and 23% to 46% of other Asian patients with CF. CONCLUSIONS Among Asians, CF appears to be more common in South Asians. A significant CF population may exist in South Asia. CFTR variants in South and other Asians markedly differ from non-Hispanic Whites causing inequities in newborn screening, diagnosis, and treatment. New strategies are necessary to mitigate these health care disparities.
Collapse
Affiliation(s)
| | | | - Lilly Bar
- Center for Asian Health Research and Education, Stanford University, Stanford, CA
| | - Manaeha Rao
- Center for Asian Health Research and Education, Stanford University, Stanford, CA
| | - Yunnan Yu
- Center for Asian Health Research and Education, Stanford University, Stanford, CA
| | | |
Collapse
|
112
|
Panikker P, Roy S, Ghosh A, Poornachandra B, Ghosh A. Advancing precision medicines for ocular disorders: Diagnostic genomics to tailored therapies. Front Med (Lausanne) 2022; 9:906482. [PMID: 35911417 PMCID: PMC9334564 DOI: 10.3389/fmed.2022.906482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
Successful sequencing of the human genome and evolving functional knowledge of gene products has taken genomic medicine to the forefront, soon combining broadly with traditional diagnostics, therapeutics, and prognostics in patients. Recent years have witnessed an extraordinary leap in our understanding of ocular diseases and their respective genetic underpinnings. As we are entering the age of genomic medicine, rapid advances in genome sequencing, gene delivery, genome surgery, and computational genomics enable an ever-increasing capacity to provide a precise and robust diagnosis of diseases and the development of targeted treatment strategies. Inherited retinal diseases are a major source of blindness around the world where a large number of causative genes have been identified, paving the way for personalized diagnostics in the clinic. Developments in functional genetics and gene transfer techniques has also led to the first FDA approval of gene therapy for LCA, a childhood blindness. Many such retinal diseases are the focus of various clinical trials, making clinical diagnoses of retinal diseases, their underlying genetics and the studies of natural history important. Here, we review methodologies for identifying new genes and variants associated with various ocular disorders and the complexities associated with them. Thereafter we discuss briefly, various retinal diseases and the application of genomic technologies in their diagnosis. We also discuss the strategies, challenges, and potential of gene therapy for the treatment of inherited and acquired retinal diseases. Additionally, we discuss the translational aspects of gene therapy, the important vector types and considerations for human trials that may help advance personalized therapeutics in ophthalmology. Retinal disease research has led the application of precision diagnostics and precision therapies; therefore, this review provides a general understanding of the current status of precision medicine in ophthalmology.
Collapse
Affiliation(s)
| | - Shomereeta Roy
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Anuprita Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | | | - Arkasubhra Ghosh
- Grow Research Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| |
Collapse
|
113
|
Badshah N, Mattison KA, Ahmad S, Chopra P, Johnston HR, Ahmad S, Khan SH, Sarwar MT, Cutler DJ, Taylor M, Vadlamani G, Zwick ME, Escayg A. Novel Missense CNTNAP2 Variant Identified in Two Consanguineous Pakistani Families With Developmental Delay, Epilepsy, Intellectual Disability, and Aggressive Behavior. Front Neurol 2022; 13:918022. [PMID: 35911904 PMCID: PMC9329621 DOI: 10.3389/fneur.2022.918022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
We report the genetic analysis of two consanguineous pedigrees of Pakistani ancestry in which two siblings in each family exhibited developmental delay, epilepsy, intellectual disability and aggressive behavior. Whole-genome sequencing was performed in Family 1, and we identified ~80,000 variants located in regions of homozygosity. Of these, 615 variants had a minor allele frequency ≤ 0.001, and 21 variants had CADD scores ≥ 15. Four homozygous exonic variants were identified in both affected siblings: PDZD7 (c.1348_1350delGAG, p.Glu450del), ALG6 (c.1033G>C, p.Glu345Gln), RBM20 (c.1587C>G, p.Ser529Arg), and CNTNAP2 (c.785G>A, p.Gly228Arg). Sanger sequencing revealed co-segregation of the PDZD7, RBM20, and CNTNAP2 variants with disease in Family 1. Pathogenic variants in PDZD7 and RBM20 are associated with autosomal recessive non-syndromic hearing loss and autosomal dominant dilated cardiomyopathy, respectively, suggesting that these variants are unlikely likely to contribute to the clinical presentation. Gene panel analysis was performed on the two affected siblings in Family 2, and they were found to also be homozygous for the p.Gly228Arg CNTNAP2 variant. Together these families provide a LOD score 2.9 toward p.Gly228Arg CNTNAP2 being a completely penetrant recessive cause of this disease. The clinical presentation of the affected siblings in both families is also consistent with previous reports from individuals with homozygous CNTNAP2 variants where at least one allele was a nonsense variant, frameshift or small deletion. Our data suggests that homozygous CNTNAP2 missense variants can also contribute to disease, thereby expanding the genetic landscape of CNTNAP2 dysfunction.
Collapse
Affiliation(s)
- Noor Badshah
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A. Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- Genetics and Molecular Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Sohail Ahmad
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Pankaj Chopra
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | | | - Shakoor Ahmad
- Department of Animal Health, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sher Hayat Khan
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Tahir Sarwar
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Micheal Taylor
- Department of Pediatric Neurology, Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
| | - Gayatri Vadlamani
- Department of Pediatric Neurology, Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
| | - Michael E. Zwick
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- *Correspondence: Andrew Escayg
| |
Collapse
|
114
|
Kohailan M, Aamer W, Syed N, Padmajeya S, Hussein S, Sayed A, Janardhanan J, Palaniswamy S, El Hajj N, Al-Shabeeb Akil A, Fakhro KA. Patterns and distribution of de novo mutations in multiplex Middle Eastern families. J Hum Genet 2022; 67:579-588. [PMID: 35718832 PMCID: PMC9510050 DOI: 10.1038/s10038-022-01054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/10/2022]
Abstract
While de novo mutations (DNMs) are key to genetic diversity, they are also responsible for a high number of rare disorders. To date, no study has systematically examined the rate and distribution of DNMs in multiplex families in highly consanguineous populations. Leveraging WGS profiles of 645 individuals in 146 families, we implemented a combinatorial approach using 3 complementary tools for DNM discovery in 353 unique trio combinations. We found a total of 27,168 DNMs (median: 70 single-nucleotide and 6 insertion-deletions per individual). Phasing revealed around 80% of DNMs were paternal in origin. Notably, using whole-genome methylation data of spermatogonial stem cells, these DNMs were significantly more likely to occur at highly methylated CpGs (OR: 2.03; p value = 6.62 × 10−11). We then examined the effects of consanguinity and ethnicity on DNMs, and found that consanguinity does not seem to correlate with DNM rate, and special attention has to be considered while measuring such a correlation. Additionally, we found that Middle-Eastern families with Arab ancestry had fewer DNMs than African families, although not significant (p value = 0.16). Finally, for families with diseased probands, we examined the difference in DNM counts and putative impact across affected and unaffected siblings, but did not find significant differences between disease groups, likely owing to the enrichment for recessive disorders in this part of the world, or the small sample size per clinical condition. This study serves as a reference for DNM discovery in multiplex families from the globally under-represented populations of the Middle-East.
Collapse
Affiliation(s)
- Muhammad Kohailan
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Najeeb Syed
- Biomedical Informatics Division, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sujitha Padmajeya
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sura Hussein
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Amira Sayed
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Jyothi Janardhanan
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | | | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | | | - Khalid A Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar. .,Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar. .,Department of Genetic Medicine, Weill-Cornell Medical College, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
115
|
Kohailan M, Al-Saei O, Padmajeya S, Aamer W, Elbashir N, Al-Shabeeb Akil A, Kamboh AR, Fakhro K. A de novo start-loss in EFTUD2 associated with mandibulofacial dysostosis with microcephaly: case report. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006206. [PMID: 35732499 PMCID: PMC9235844 DOI: 10.1101/mcs.a006206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Mandibulofacial dysostosis with microcephaly (MFDM) is a rare genetic disorder inherited in an autosomal dominant pattern. Major characteristics include developmental delay, craniofacial malformations such as malar and mandibular hypoplasia, and ear anomalies. Here, we report a 4.5-yr-old female patient with symptoms fitting MFDM. Using whole-genome sequencing, we identified a de novo start-codon loss (c.3G > T) in the EFTUD2. We examined EFTUD2 expression in the patient by RNA sequencing and observed a notable functional consequence of the variant on gene expression in the patient. We identified a novel variant for the development of MFDM in humans. To the best of our knowledge, this is the first report of a start-codon loss in EFTUD2 associated with MFDM.
Collapse
Affiliation(s)
- Muhammad Kohailan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar
| | - Omayma Al-Saei
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | | | - Waleed Aamer
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | - Najwa Elbashir
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar
| | | | - Abdul-Rauf Kamboh
- Department of Pediatric Ophthalmology, Sidra Medicine, Doha 26999, Qatar
| | - Khalid Fakhro
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha 34110, Qatar.,Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar.,Department of Genetic Medicine, Weill-Cornell Medical College, Doha 24144, Qatar
| |
Collapse
|
116
|
Cross-continental admixture in the Kho population from northwest Pakistan. Eur J Hum Genet 2022; 30:740-746. [PMID: 35217804 DOI: 10.1038/s41431-022-01057-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/25/2021] [Accepted: 01/25/2022] [Indexed: 01/01/2023] Open
Abstract
Northern Pakistan is home to many diverse ethnicities and languages. The region acted as a prime corridor for ancient invasions and population migrations between Western Eurasia and South Asia. Kho, one of the major ethnic groups living in this region, resides in the remote and isolated mountainous region in the Chitral Valley of the Hindu Kush Mountain range. They are culturally and linguistically distinct from the rest of the Pakistani population groups and their genetic ancestry is still unknown. In this study, we generated genome-wide genotype data of ~1 M loci (Illumina WeGene array) for 116 unrelated Kho individuals and carried out comprehensive analyses in the context of worldwide extant and ancient anatomically modern human populations across Eurasia. The results inferred that the Kho can trace a large proportion of their ancestry to the population who migrated south from the Southern Siberian steppes during the second millennium BCE ~110 generations ago. An additional wave of gene flow from a population carrying East Asian ancestry was also identified in the Kho that occurred ~60 generations ago and may possibly be linked to the expansion of the Tibetan Empire during 7th to 9th centuries CE (current era) in the northwestern regions of the Indian sub-continent. We identified several candidate regions suggestive of positive selection in the Kho, that included genes mainly involved in pigmentation, immune responses, muscular development, DNA repair, and tumor suppression.
Collapse
|
117
|
Duarte-García A, Hocaoglu M, Osei-Onomah SA, Dabit JY, Giblon RE, Helmick CG, Crowson CS. Population-based incidence and time to classification of systemic lupus erythematosus by three different classification criteria: a Lupus Midwest Network (LUMEN) study. Rheumatology (Oxford) 2022; 61:2424-2431. [PMID: 34718442 PMCID: PMC10061051 DOI: 10.1093/rheumatology/keab807] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/27/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE To estimate the incidence and time-to-classification of SLE by the 1997 ACR (ACR97) criteria, the SLICC criteria, and the European Alliance of Associations for Rheumatology/ACR (EULAR/ACR) criteria. METHODS We identified all incident SLE cases from 2000-2018 in the well-defined Olmsted County population. Clinical data included in the ACR97, SLICC and EULAR/ACR criteria were manually abstracted from medical records. All incident cases met at least one of the three classification criteria. Time-to-classification was estimated from the first documented lupus-attributable disease manifestation to the time of criteria fulfilment by each of the three definitions. Annual incidence rates were age or age/sex adjusted to the 2000 US population. RESULTS Of 139 incident cases there were 126 cases by the EULAR/ACR criteria, corresponding to an age/sex-adjusted incidence of 4.5 per 100 000 population (95% CI: 3.7, 5.2). The age/sex-incidence was higher than that of the SLICC criteria (113 cases; 4.0 per 100 000 [95% CI: 3.3, 4.7], P = 0.020) and the ACR97 (92 cases; 3.3 per 100 000 [95% CI: 2.6, 3.9], P < 0.001). The median time from first disease manifestation to criteria fulfilment was shorter for the EULAR/ACR criteria (29.4 months) than the ACR97 criteria (47.0 months, P < 0.001) and similar to the SLICC criteria (30.6 months, P = 0.83). CONCLUSION The incidence of SLE was higher by the EULAR/ACR criteria compared with the ACR97 and the SLICC criteria, and the EULAR/ACR criteria classified patients earlier that the ACR97 criteria but similar to the SLICC criteria.
Collapse
Affiliation(s)
- Alí Duarte-García
- Division of Rheumatology, Department of Medicine
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery
| | | | | | | | - Rachel E Giblon
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Charles G Helmick
- Centers for Diseases Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Population Health, Atlanta, GA, USA
| | - Cynthia S Crowson
- Division of Rheumatology, Department of Medicine
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| |
Collapse
|
118
|
Ma LY, Han L, Niu M, Chen L, Yu YZ, Feng T. Screening of the TMEM151A Gene in Patients With Paroxysmal Kinesigenic Dyskinesia and Other Movement Disorders. Front Neurol 2022; 13:865690. [PMID: 35707035 PMCID: PMC9189402 DOI: 10.3389/fneur.2022.865690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background Paroxysmal kinesigenic dyskinesia (PKD) is a rare neurological disorder characterized by recurrent involuntary movements usually triggered by sudden movements. Mutations in the TMEM151A gene were found to be the causative factor of PKD in recent studies. It has also been revealed that loss-of-function is the mechanism by which TMEM151A mutations cause PKD. Methods To investigate the genetic basis of PKD and broaden the clinical spectrum of the TMEM151A mutations, we recruited 181 patients of Chinese origin with movement disorders (MDs), including 39 PRRT2-negative PKD, 3 paroxysmal exercise-induced dyskinesia (PED), 2 paroxysmal non-kinesigenic dyskinesia (PNKD), 127 isolated dystonia, 8 choreas, and 2 myoclonus-dystonia syndromes. Whole-exome sequencing was applied to identify their possible disease-causing mutations. Then, Sanger sequencing was performed for validation and co-segregation analysis. Genetic analysis was also performed on additional family members of patients with TMEM151A mutations. Clinical manifestations of all PKD cases with mutations in TMEM151A reported, so far, were reviewed. Results Two novel variants of the TMEM151A gene (NM_153266.4, NP_694998.1), c.627_643dup (p.A215Gfs*53) and c.627delG (p.L210Wfs*52), were identified in 2 patients with PKD by whole-exome sequencing and further Sanger sequencing. Both variants were inherited by the patients from their respective mothers. No mutation of the TMEM151A gene was found in the other type of movement disorders. In reviewing the clinical presentation of TMEM151A-related PKD, no statistically significant difference in the age of onset, family history, duration of attacks, laterality, and phenotype was found between genders. More male patients received treatment and had a good response. A higher proportion of female patients did not receive any treatment, possibly because they had a milder condition of the disease. Conclusions This study further validated the role of TMEM151A in PKD. Future studies on protein function will be needed to ascertain the pathogenesis of TMEM151A in PKD.
Collapse
Affiliation(s)
- Ling-Yan Ma
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lin Han
- Running Gene Inc., Beijing, China
| | - Meng Niu
- Department of Neurology, Hengshui Eighth People's Hospital, Hebei, China
| | - Lu Chen
- Department of Encephalopathy, Dong Fang Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ya-Zhen Yu
- Department of Pediatrics, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Ya-Zhen Yu
| | - Tao Feng
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, China
- Tao Feng
| |
Collapse
|
119
|
Cong PK, Bai WY, Li JC, Yang MY, Khederzadeh S, Gai SR, Li N, Liu YH, Yu SH, Zhao WW, Liu JQ, Sun Y, Zhu XW, Zhao PP, Xia JW, Guan PL, Qian Y, Tao JG, Xu L, Tian G, Wang PY, Xie SY, Qiu MC, Liu KQ, Tang BS, Zheng HF. Genomic analyses of 10,376 individuals in the Westlake BioBank for Chinese (WBBC) pilot project. Nat Commun 2022; 13:2939. [PMID: 35618720 PMCID: PMC9135724 DOI: 10.1038/s41467-022-30526-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.
Collapse
Affiliation(s)
- Pei-Kuan Cong
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wei-Yang Bai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jin-Chen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng-Yuan Yang
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Saber Khederzadeh
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Si-Rui Gai
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Nan Li
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Yu-Heng Liu
- The High-Performance Computing Center, Westlake University, Hangzhou, Zhejiang, China
| | - Shi-Hui Yu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Wei-Wei Zhao
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Jun-Quan Liu
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Yi Sun
- Clinical Genome Center, KingMed Diagnostics, Co., Ltd., Guangzhou, Guangdong, China
| | - Xiao-Wei Zhu
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Pian-Pian Zhao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiang-Wei Xia
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Peng-Lin Guan
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yu Qian
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jian-Guo Tao
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lin Xu
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Geng Tian
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Ping-Yu Wang
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Shu-Yang Xie
- WBBC Shandong Center, Binzhou Medical University, Yantai, Shandong, China
| | - Mo-Chang Qiu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Ke-Qi Liu
- WBBC Jiangxi Center, Jiangxi Medical College, Shangrao, Jiangxi, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Hou-Feng Zheng
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
120
|
Li C, Hou Y, Ou R, Gu X, Chen Y, Zhang L, Liu K, Lin J, Cao B, Wei Q, Chen X, Song W, Zhao B, Wu Y, Cui Y, Shang H. Genetic Determinants of Survival in Parkinson's Disease in the Asian Population. Mov Disord 2022; 37:1624-1633. [PMID: 35616254 DOI: 10.1002/mds.29069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Patients with Parkinson's disease (PD) have reduced life expectancy compared to the general population. Genetic variation was shown to play a role in the heterogeneity of survival for patients with PD, although the underlying genetic background remains poorly studied. OBJECTIVE The aim was to explore the genetic determinants influencing the survival of PD. METHODS We performed a genome-wide association analysis using a Cox proportional hazards model in a longitudinal cohort of 1080 Chinese patients with PD. Furthermore, we built a clinical-genetic model to predict the survival of patients using clinical variables combined with polygenic risk score (PRS) of survival of PD. RESULTS The cohort was followed up for an average of 7.13 years, with 85 incidents of death. One locus rs12628329 (RPL3) was significantly associated with reduced survival time by ~10.8 months (P = 2.72E-08, β = 1.79, standard error = 0.32). Functional exploration suggested this variant could upregulate the expression of RPL3 and induce apoptosis and cell death. In addition, adding PRS of survival in the prediction model substantially improved survival predictability (concordance index [Cindex]: 0.936) compared with the clinical model (Cindex: 0.860). CONCLUSIONS These findings improve the current understanding of the genetic cause of survival of PD and provide a novel target RPL3 for further research on PD pathogenesis and potential therapeutic options. Our results also demonstrate the potential utility of PRS of survival in identifying patients with shorter survival and providing personalized clinical monitoring and treatment. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Gu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yongping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Xueping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Song
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyuan Cui
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, National Clinical Research Center for Geriatric, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
121
|
Desai S, Mishra R, Ahmad S, Hait S, Joshi A, Dutt A. TMC-SNPdb 2.0: an ethnic-specific database of Indian germline variants. Database (Oxford) 2022; 2022:6583650. [PMID: 35551364 PMCID: PMC9216475 DOI: 10.1093/database/baac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023]
Abstract
Cancer is a somatic disease. The lack of Indian-specific reference germline variation resources limits the ability to identify true cancer-associated somatic variants among Indian cancer patients. We integrate two recent studies, the GenomeAsia 100K and the Genomics for Public Health in India (IndiGen) program, describing genome sequence variations across 598 and 1029 healthy individuals of Indian origin, respectively, along with the unique variants generated from our in-house 173 normal germline samples derived from cancer patients to generate the Tata Memorial Centre-SNP database (TMC-SNPdb) 2.0. To show its utility, GATK/Mutect2-based somatic variant calling was performed on 224 in-house tumor samples to demonstrate a reduction in false-positive somatic variants. In addition to the ethnic-specific variants from GenomeAsia 100K and IndiGenomes databases, 305 132 unique variants generated from 173 in-house normal germline samples derived from cancer patients of Indian origin constitute the Indian specific, TMC-SNPdb 2.0. Of 305 132 unique variants, 11.13% were found in the coding region with missense variants (31.3%) as the most predominant category. Among the non-coding variations, intronic variants (49%) were the highest contributors. The non-synonymous to synonymous SNP ratio was observed to be 1.9, consistent with the previous version of TMC-SNPdb and literature. Using TMC SNPdb 2.0, we analyzed a whole-exome sequence from 224 in-house tumor samples (180 paired and 44 orphans). We show an average depletion of 3.44% variants per paired tumor and significantly higher depletion (P-value < 0.001) for orphan tumors (4.21%), demonstrating the utility of the rare, unique variants found in the ethnic-specific variant datasets in reducing the false-positive somatic mutations. TMC-SNPdb 2.0 is the most exhaustive open-source reference database of germline variants occurring across 1800 Indian individuals to analyze cancer genomes and other genetic disorders. The database and toolkit package is available for download at the following: Database URL http://www.actrec.gov.in/pi-webpages/AmitDutt/TMCSNPdb2/TMCSNPdb2.html.
Collapse
Affiliation(s)
| | | | - Suhail Ahmad
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Supriya Hait
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Asim Joshi
- Integrated Cancer Genomics Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400094, India
| | - Amit Dutt
- *Corresponding author: Tel: +91-22-27405056/30435056; Fax: +91-22-27405085;
| |
Collapse
|
122
|
Kidd KK, Evsanaa B, Togtokh A, Brissenden JE, Roscoe JM, Dogan M, Neophytou PI, Gurkan C, Bulbul O, Cherni L, Speed WC, Murtha M, Kidd JR, Pakstis AJ. North Asian population relationships in a global context. Sci Rep 2022; 12:7214. [PMID: 35508562 PMCID: PMC9068624 DOI: 10.1038/s41598-022-10706-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/01/2022] [Indexed: 12/20/2022] Open
Abstract
Population genetic studies of North Asian ethnic groups have focused on genetic variation of sex chromosomes and mitochondria. Studies of the extensive variation available from autosomal variation have appeared infrequently. We focus on relationships among population samples using new North Asia microhaplotype data. We combined genotypes from our laboratory on 58 microhaplotypes, distributed across 18 autosomes, on 3945 individuals from 75 populations with corresponding data extracted for 26 populations from the Thousand Genomes consortium and for 22 populations from the GenomeAsia 100 K project. A total of 7107 individuals in 122 total populations are analyzed using STRUCTURE, Principal Component Analysis, and phylogenetic tree analyses. North Asia populations sampled in Mongolia include: Buryats, Mongolians, Altai Kazakhs, and Tsaatans. Available Siberians include samples of Yakut, Khanty, and Komi Zyriane. Analyses of all 122 populations confirm many known relationships and show that most populations from North Asia form a cluster distinct from all other groups. Refinement of analyses on smaller subsets of populations reinforces the distinctiveness of North Asia and shows that the North Asia cluster identifies a region that is ancestral to Native Americans.
Collapse
Affiliation(s)
- Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA.
| | - Baigalmaa Evsanaa
- Department of Nephrology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ariunaa Togtokh
- Department of Nephrology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | | | - Janet M Roscoe
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,The Scarborough Hospital, Toronto, ON, Canada
| | - Mustafa Dogan
- Department of Genetics and Bioengineering, International Burch University, Sarajevo, Bosnia and Herzegovina
| | | | - Cemal Gurkan
- Turkish Cypriot DNA Laboratory, Committee On Missing Persons in Cyprus Turkish Cypriot Member Office, Nicosia, North Cyprus, Turkey.,Dr. Fazıl Küçük Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus, Turkey
| | - Ozlem Bulbul
- Institute of Forensic Science, Istanbul University, Cerrahpasa, 34500, Istanbul, Turkey
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.,Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| | - William C Speed
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Michael Murtha
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Judith R Kidd
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, USA
| |
Collapse
|
123
|
Mishra R, Kulshreshtha S, Mandal K, Khurana A, Diego‐Álvarez D, Pradas L, Saxena R, Phadke S, Moirangthem A, Masih S, Sud S, Verma IC, Dua Puri R.
COASY
related pontocerebellar hypoplasia type 12: A common Indian mutation with expansion of the phenotypic spectrum. Am J Med Genet A 2022; 188:2339-2350. [DOI: 10.1002/ajmg.a.62768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Ranjana Mishra
- Institute of Medical Genetics and Genomics, Sir Gangaram Hospital New Delhi India
| | - Samarth Kulshreshtha
- Institute of Medical Genetics and Genomics, Sir Gangaram Hospital New Delhi India
| | - Kausik Mandal
- Sanjay Gandhi Post‐Graduate Institute Lucknow Uttar Pradesh India
| | | | | | | | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Gangaram Hospital New Delhi India
| | - Shubha Phadke
- Sanjay Gandhi Post‐Graduate Institute Lucknow Uttar Pradesh India
| | | | - Suzena Masih
- Sanjay Gandhi Post‐Graduate Institute Lucknow Uttar Pradesh India
| | - Seema Sud
- Department of CT Scan and MRI Sir Gangaram Hospital New Delhi India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Gangaram Hospital New Delhi India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Gangaram Hospital New Delhi India
| |
Collapse
|
124
|
Ray A, Chattopadhyay E, Singh R, Ghosh S, Bera A, Sarma M, Munot M, Desai U, Rajan S, Prabhudesai P, Prakash AK, Roy Chowdhury S, Bhowmick N, Dhar R, Udwadia ZF, Dey A, Mitra S, Joshi JM, Maitra A, Roy B. Genetic insight into Birt-Hogg-Dubé syndrome in Indian patients reveals novel mutations at FLCN. Orphanet J Rare Dis 2022; 17:176. [PMID: 35477461 PMCID: PMC9044636 DOI: 10.1186/s13023-022-02326-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Birt-Hogg-Dubé syndrome (BHDS) is a rare monogenic condition mostly associated with germline mutations at FLCN. It is characterized by either one or more manifestations of primary spontaneous pneumothorax (PSP), skin fibrofolliculomas and renal carcinoma (chromophobe). Here, we comprehensively studied the mutational background of 31 clinically diagnosed BHDS patients and their 74 asymptomatic related members from 15 Indian families. Results Targeted amplicon next-generation sequencing (NGS) and Sanger sequencing of FLCN in patients and asymptomatic members revealed a total of 76 variants. Among these variants, six different types of pathogenic FLCN mutations were detected in 26 patients and some asymptomatic family members. Two of the variants were novel mutations: an 11-nucleotide deletion (c.1150_1160delGTCCAGTCAGC) and a splice acceptor mutation (c.1301-1G > A). Two variants were Clinvar reported pathogenic mutations: a stop-gain (c.634C > T) and a 4-nucleotide duplication (c.1329_1332dupAGCC). Two known variants were: hotspot deletion (c.1285delC) and a splice donor mutation (c.1300 + 1G > A). FLCN mutations could not be detected in patients and asymptomatic members from 5 families. All these mutations greatly affected the protein stability and FLCN-FNIP2 interaction as observed by molecular docking method. Family-based association study inferred pathogenic FLCN mutations are significantly associated with BHDS. Conclusion Six pathogenic FLCN mutations were detected in patients from 10 families out of 15 families in the cohort. Therefore, genetic screening is necessary to validate the clinical diagnosis. The pathogenic mutations at FLCN affects the protein–protein interaction, which plays key roles in various metabolic pathways. Since, pathogenic mutations could not be detected in exonic regions of FLCN in 5 families, whole genome sequencing is necessary to detect all mutations at FLCN and/or any undescribed gene/s that may also be implicated in BHDS. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02326-5.
Collapse
Affiliation(s)
- Anindita Ray
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Esita Chattopadhyay
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Richa Singh
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India.,Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Arnab Bera
- Department of Pulmonary Medicine, RG Kar Medical College and Hospital, Kolkata, India.,Respiratory Medicine and Critical Care, Medica Superspeciality Hospital, Kolkata, India
| | - Mridul Sarma
- Department of Chest Medicine, Calcutta National Medical College, Kolkata, India.,Narayana Superspeciality Hospital, Guwahati, India
| | - Mahavir Munot
- Department of Pulmonary Medicine, TNMC and BYL Nair Hospital, Mumbai, India
| | - Unnati Desai
- Department of Pulmonary Medicine, TNMC and BYL Nair Hospital, Mumbai, India
| | - Sujeet Rajan
- Department of Chest Medicine, Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | | | - Ashish K Prakash
- Department of Respiratory and Sleep Medicine, Medanta- The Medicity, Gurgram, India
| | - Sushmita Roy Chowdhury
- Apollo Hospital Kolkata, Pulmonology, India.,Fortis Hospital Kolkata, Pulmonology, India
| | - Niladri Bhowmick
- Department of General Medicine, IPGMER&SSKM Hospital, Kolkata, India
| | - Raja Dhar
- CMRI, C K Birla Group of Hospitals, Kolkata, India
| | | | - Atin Dey
- Department of Pulmonary Medicine, RG Kar Medical College and Hospital, Kolkata, India
| | - Subhra Mitra
- Department of Chest Medicine, Calcutta National Medical College, Kolkata, India
| | - Jyotsna M Joshi
- Department of Pulmonary Medicine, TNMC and BYL Nair Hospital, Mumbai, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Bidyut Roy
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
125
|
Lu TP, Kamatani Y, Belbin G, Park T, Hsiao CK. Editorial: Current Status and Future Challenges of Biobank Data Analysis. Front Genet 2022; 13:882611. [PMID: 35495141 PMCID: PMC9047950 DOI: 10.3389/fgene.2022.882611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tzu-Pin Lu
- Department of Public Health, College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yoichiro Kamatani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Gillian Belbin
- Institute of Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taesung Park
- Department of Statistics, Seoul National University, Seoul, South Korea
| | - Chuhsing Kate Hsiao
- Department of Public Health, College of Public Health, Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
- *Correspondence: Chuhsing Kate Hsiao,
| |
Collapse
|
126
|
Ghosh A, Das C, Ghose S, Maitra A, Roy B, Majumder PP, Biswas NK. Integrative analysis of genomic and transcriptomic data of normal, tumour and co-occurring leukoplakia tissue triads drawn from patients with gingivobuccal oral cancer identifies signatures of tumour initiation and progression. J Pathol 2022; 257:593-606. [PMID: 35358331 PMCID: PMC9545831 DOI: 10.1002/path.5900] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/16/2022]
Abstract
A thickened, white patch — leukoplakia — in the oral cavity is usually benign, but sometimes (in ~9% of individuals) it progresses to malignant tumour. Because the genomic basis of this progression is poorly understood, we undertook this study and collected samples of four tissues — leukoplakia, tumour, adjacent normal, and blood — from each of 28 patients suffering from gingivobuccal oral cancer. We performed multiomics analysis of the 112 collected tissues (four tissues per patient from 28 patients) and integrated information on progressive changes in the mutational and transcriptional profiles of each patient to create this genomic narrative. Additionally, we generated and analysed whole‐exome sequence data from leukoplakia tissues collected from 11 individuals not suffering from oral cancer. Nonsynonymous somatic mutations in the CASP8 gene were identified as the likely events to initiate malignant transformation, since these were frequently shared between tumour and co‐occurring leukoplakia. CASP8 alterations were also shown to enhance expressions of genes that favour lateral spread of mutant cells. During malignant transformation, additional pathogenic mutations are acquired in key genes (TP53, NOTCH1, HRAS) (41% of patients); chromosomal‐instability (arm‐level deletions of 19p and q, focal‐deletion of DNA‐repair pathway genes and NOTCH1, amplification of EGFR) (77%), and increased APOBEC‐activity (23%) are also observed. These additional alterations were present singly (18% of patients) or in combination (68%). Some of these alterations likely impact immune‐dynamics of the evolving transformed tissue; progression to malignancy is associated with immune suppression through infiltration of regulatory T‐cells (56%), depletion of cytotoxic T‐cells (68%), and antigen‐presenting dendritic cells (72%), with a concomitant increase in inflammation (92%). Patients can be grouped into three clusters by the estimated time to development of cancer from precancer by acquiring additional mutations (range: 4–10 years). Our findings provide deep molecular insights into the evolutionary processes and trajectories of oral cancer initiation and progression. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Arnab Ghosh
- National Institute of Biomedical Genomics, Kalyani, India
| | | | - Sandip Ghose
- Dr. R. Ahmed Dental College and Hospital, Kolkata, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, India
| | - Bidyut Roy
- Indian Statistical Institute, Kolkata, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, Kalyani, India.,Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
127
|
Foo CTY, To YH, Irwanto A, Ng AYJ, Yan B, Chew STH, Liu J, Ti LK. Variant landscape of the RYR1 gene based on whole genome sequencing of the Singaporean population. Sci Rep 2022; 12:5429. [PMID: 35361824 PMCID: PMC8971428 DOI: 10.1038/s41598-022-09310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
The RYR1 gene codes for a ryanodine receptor which is a calcium release channel in the skeletal muscle sarcoplasmic reticulum. It is associated with Malignant Hyperthermia (MH) and congenital myopathies including Central Core Disease (CCD), Multiminicore Disease (MMD) and Congenital Fibre-Type Disproportion (CFTD). There is currently little information on the epidemiology of RYR1 variants in Asians. Our study aims to describe the RYR1 variant landscape in a Singapore cohort unselected for RYR1-associated conditions. Data was retrieved from the SG10K pilot project, where whole genome sequencing was performed on volunteers unselected and undetermined for RYR1-associated conditions. Variants were classified based on pathogenicity using databases ClinVar and InterVar. Allele frequencies of pathogenic variants were compared between Chinese, Indians and Malays. Using databases ExAC, GnomAD and GenomeAsia 100k study, we further compared local allele frequencies to those in Europe, America and Asia. Data was analysed using R Commander. Significant P value was set at p < 0.05. Majority of the RYR1 variants were missense mutations. We identified four pathogenic and four likely pathogenic RYR1 variants. All were related to the aforementioned RYR1-associated conditions. There were 6 carriers of RYR1 pathogenic variants amongst 4810 individuals, corresponding to an allele frequency of 0.06%. The prevalence of pathogenic variants was the highest amongst Indians (4 in 1127 individuals) (p = 0.030). Majority of pathogenic and likely pathogenic mutations were missense and located in mutational hotspots. These variants also occurred at higher frequencies in Asians than globally. This study describes the variant landscape of the RYR1 gene in Singapore. This knowledge will facilitate genetic screening for RYR1-related conditions.
Collapse
Affiliation(s)
- Claribel Tian Yu Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yi Hui To
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Astrid Irwanto
- Nalagenetics Pte. Ltd, Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Alvin Yu-Jin Ng
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Benedict Yan
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | | | - Jianjun Liu
- Agency for Science, Technology and Research, Genome Institute of Singapore, Singapore, Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lian Kah Ti
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Anaesthesia, National University Health System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| |
Collapse
|
128
|
Roca-Umbert A, Caro-Consuegra R, Londono-Correa D, Rodriguez-Lozano GF, Vicente R, Bosch E. Understanding signatures of positive natural selection in human zinc transporter genes. Sci Rep 2022; 12:4320. [PMID: 35279701 PMCID: PMC8918337 DOI: 10.1038/s41598-022-08439-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential micronutrient with a tightly regulated systemic and cellular homeostasis. In humans, some zinc transporter genes (ZTGs) have been previously reported as candidates for strong geographically restricted selective sweeps. However, since zinc homeostasis is maintained by the joint action of 24 ZTGs, other more subtle modes of selection could have also facilitated human adaptation to zinc availability. Here, we studied whether the complete set of ZTGs are enriched for signals of positive selection in worldwide populations and population groups from South Asia. ZTGs showed higher levels of genetic differentiation between African and non-African populations than would be randomly expected, as well as other signals of polygenic selection outside Africa. Moreover, in several South Asian population groups, ZTGs were significantly enriched for SNPs with unusually extended haplotypes and displayed SNP genotype-environmental correlations when considering zinc deficiency levels in soil in that geographical area. Our study replicated some well-characterized targets for positive selection in East Asia and sub-Saharan Africa, and proposes new candidates for follow-up in South Asia (SLC39A5) and Africa (SLC39A7). Finally, we identified candidate variants for adaptation in ZTGs that could contribute to different disease susceptibilities and zinc-related human health traits.
Collapse
Affiliation(s)
- Ana Roca-Umbert
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Rocio Caro-Consuegra
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Diego Londono-Correa
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Gabriel Felipe Rodriguez-Lozano
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Ruben Vicente
- Laboratory of Molecular Physiology, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain
| | - Elena Bosch
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, 08003, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 43206, Reus, Spain.
| |
Collapse
|
129
|
Holling T, Bhavani GS, von Elsner L, Shah H, Kausthubham N, Bhattacharyya SS, Shukla A, Mortier GR, Schinke T, Danyukova T, Pohl S, Kutsche K, Girisha KM. A homozygous hypomorphic BNIP1 variant causes an increase in autophagosomes and reduced autophagic flux and results in a spondylo-epiphyseal dysplasia. Hum Mutat 2022; 43:625-642. [PMID: 35266227 DOI: 10.1002/humu.24368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 01/18/2023]
Abstract
BNIP1 (BCL2 interacting protein 1) is a soluble N-ethylmaleimide-sensitive factor-attachment protein receptor involved in ER membrane fusion. We identified the homozygous BNIP1 intronic variant c.84+3A>T in the apparently unrelated patients 1 and 2 with disproportionate short stature. Radiographs showed abnormalities affecting both the axial and appendicular skeleton and spondylo-epiphyseal dysplasia. We detected ~80% aberrantly spliced BNIP1 pre-mRNAs, reduced BNIP1 mRNA level to ~80%, and BNIP1 protein level reduction by ~50% in patient 1 compared to control fibroblasts. The BNIP1 ortholog in drosophila, Sec. 20, regulates autophagy and lysosomal degradation. We assessed lysosome positioning and identified a decrease in lysosomes in the perinuclear region and an increase in the cell periphery in patient 1 cells. Immunofluorescence microscopy and immunoblotting demonstrated an increase in LC3B-positive structures and LC3B-II levels, respectively, in patient 1 fibroblasts under steady-state condition. Treatment of serum-starved fibroblasts with or without bafilomycin A1 identified significantly decreased autophagic flux in patient 1 cells. Our data suggest a block at the terminal stage of autolysosome formation and/or clearance in patient fibroblasts. BNIP1 together with RAB33B and VPS16, disease genes for Smith-McCort dysplasia 2 and a multisystem disorder with short stature, respectively, highlight the importance of autophagy in skeletal development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tess Holling
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hitesh Shah
- Department of Orthopedics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | | | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Geert R Mortier
- Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatyana Danyukova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Pohl
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
130
|
Whole-genome sequencing of 1,171 elderly admixed individuals from São Paulo, Brazil. Nat Commun 2022; 13:1004. [PMID: 35246524 PMCID: PMC8897431 DOI: 10.1038/s41467-022-28648-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS. Whole genome sequencing (WGS) data on non-European and admixed individuals remains scarce. Here, the authors analyse WGS data from 1,171 admixed elderly Brazilians from a census cohort, characterising population-specific genetic variation and exploring the clinical utility of this expanded dataset.
Collapse
|
131
|
Ou M, Leung HM, Leung AS, Luk HM, Yan B, Liu CM, Tong TF, Mok MS, Ko WY, Law WC, Lam TW, Lo IM, Luo R. HKG: an open genetic variant database of 205 Hong Kong cantonese exomes. NAR Genom Bioinform 2022; 4:lqac005. [PMID: 35156024 PMCID: PMC8826781 DOI: 10.1093/nargab/lqac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Abstract
HKG is the first fully accessible variant database for Hong Kong Cantonese, constructed from 205 novel whole-exome sequencing data. There has long been a research gap in the understanding of the genetic architecture of southern Chinese subgroups, including Hong Kong Cantonese. HKG detected 196 325 high-quality variants with 5.93% being novel, and 25 472 variants were found to be unique in HKG compared to three Chinese populations sampled from 1000 Genomes (CHN). PCA illustrates the uniqueness of HKG in CHN, and the admixture study estimated the ancestral composition of HKG and CHN, with a gradient change from north to south, consistent with their geological distribution. ClinVar, CIViC and PharmGKB annotated 599 clinically significant variants and 360 putative loss-of-function variants, substantiating our understanding of population characteristics for future medical development. Among the novel variants, 96.57% were singleton and 6.85% were of high impact. With a good representation of Hong Kong Cantonese, we demonstrated better variant imputation using reference with the addition of HKG data, thus successfully filling the data gap in southern Chinese to facilitate the regional and global development of population genetics.
Collapse
Affiliation(s)
- Min Ou
- Department of Computer Science, The University of Hong Kong, Hong Kong
| | | | | | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, Hong Kong
| | - Bin Yan
- Department of Computer Science, The University of Hong Kong, Hong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| | - Chi-Man Liu
- Department of Computer Science, The University of Hong Kong, Hong Kong
| | | | | | | | | | - Tak-Wah Lam
- Department of Computer Science, The University of Hong Kong, Hong Kong
| | | | - Ruibang Luo
- Department of Computer Science, The University of Hong Kong, Hong Kong
| |
Collapse
|
132
|
Tiew PY, Mac Aogáin M, Chotirmall SH. The current understanding and future directions for sputum microbiome profiling in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2022; 28:121-133. [PMID: 34839338 DOI: 10.1097/mcp.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Next-generation sequencing (NGS) has deepened our understanding of the respiratory microbiome in health and disease. The number of microbiome studies employing sputum as an airway surrogate has continued to increase over the past decade to include multiple large multicentre and longitudinal studies of the microbiome in chronic obstructive pulmonary disease (COPD). In this review, we summarize the recent advances to our understanding of the bacteriome, virome and mycobiome in COPD. RECENT FINDINGS Diverse microbiome profiles are reported in COPD. The neutrophilic Haemophilus-predominant bacteriome remains a prominent COPD phenotype, relatively stable over time and during exacerbations. Studies of the virome remain limited but reveal a potential involvement of viruses and bacteriophages particularly during COPD exacerbations and advancing disease severity. Mycobiome signatures, even in stable COPD are associated with poorer clinical outcomes including mortality. SUMMARY The sputum microbiome in COPD is being increasingly recognized for its clinical relevance, even in the stable state. Future studies integrating microbial kingdoms holistically (i.e. bacterial, viral and fungal) will provide deeper insight into its functionality including the relevance of microbial interactions and effect of treatment on microbiome-associated clinical outcomes.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore
| | - Micheál Mac Aogáin
- Biochemical Genetics Laboratory, Department of Biochemistry, St. James's Hospital
- Clinical Biochemistry Unit, School of Medicine, Trinity College Dublin, Ireland
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
133
|
Marwaha S, Knowles JW, Ashley EA. A guide for the diagnosis of rare and undiagnosed disease: beyond the exome. Genome Med 2022; 14:23. [PMID: 35220969 PMCID: PMC8883622 DOI: 10.1186/s13073-022-01026-w] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Rare diseases affect 30 million people in the USA and more than 300-400 million worldwide, often causing chronic illness, disability, and premature death. Traditional diagnostic techniques rely heavily on heuristic approaches, coupling clinical experience from prior rare disease presentations with the medical literature. A large number of rare disease patients remain undiagnosed for years and many even die without an accurate diagnosis. In recent years, gene panels, microarrays, and exome sequencing have helped to identify the molecular cause of such rare and undiagnosed diseases. These technologies have allowed diagnoses for a sizable proportion (25-35%) of undiagnosed patients, often with actionable findings. However, a large proportion of these patients remain undiagnosed. In this review, we focus on technologies that can be adopted if exome sequencing is unrevealing. We discuss the benefits of sequencing the whole genome and the additional benefit that may be offered by long-read technology, pan-genome reference, transcriptomics, metabolomics, proteomics, and methyl profiling. We highlight computational methods to help identify regionally distant patients with similar phenotypes or similar genetic mutations. Finally, we describe approaches to automate and accelerate genomic analysis. The strategies discussed here are intended to serve as a guide for clinicians and researchers in the next steps when encountering patients with non-diagnostic exomes.
Collapse
Affiliation(s)
- Shruti Marwaha
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
| | - Joshua W Knowles
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine, Diabetes Research Center, Cardiovascular Institute and Prevention Research Center, Stanford, CA, USA
| | - Euan A Ashley
- Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA, USA.
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
134
|
Choe EK, Shivakumar M, Verma A, Verma SS, Choi SH, Kim JS, Kim D. Leveraging deep phenotyping from health check-up cohort with 10,000 Korean individuals for phenome-wide association study of 136 traits. Sci Rep 2022; 12:1930. [PMID: 35121771 PMCID: PMC8817039 DOI: 10.1038/s41598-021-04580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
The expanding use of the phenome-wide association study (PheWAS) faces challenges in the context of using International Classification of Diseases billing codes for phenotype definition, imbalanced study population ethnicity, and constrained application of the results in research. We performed a PheWAS utilizing 136 deep phenotypes corroborated by comprehensive health check-ups in a Korean population, along with trans-ethnic comparisons through using the UK Biobank and Biobank Japan Project. Meta-analysis with Korean and Japanese population was done. The PheWAS associated 65 phenotypes with 14,101 significant variants (P < 4.92 × 10-10). Network analysis, visualization of cross-phenotype mapping, and causal inference mapping with Mendelian randomization were conducted. Among phenotype pairs from the genotype-driven cross-phenotype associations, we evaluated penetrance in correlation analysis using a clinical database. We focused on the application of PheWAS in order to make it robust and to aid the derivation of biological meaning post-PheWAS. This comprehensive analysis of PheWAS results based on a health check-up database will provide researchers and clinicians with a panoramic overview of the networks among multiple phenotypes and genetic variants, laying groundwork for the practical application of precision medicine.
Collapse
Affiliation(s)
- Eun Kyung Choe
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA.,Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, 06236, South Korea
| | - Manu Shivakumar
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shefali Setia Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Seung Ho Choi
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, 06236, South Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, 06236, South Korea. .,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA. .,Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
135
|
Deng L, Pan Y, Wang Y, Chen H, Yuan K, Chen S, Lu D, Lu Y, Mokhtar SS, Rahman TA, Hoh BP, Xu S. Genetic Connections and Convergent Evolution of Tropical Indigenous Peoples in Asia. Mol Biol Evol 2022; 39:msab361. [PMID: 34940850 PMCID: PMC8826522 DOI: 10.1093/molbev/msab361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Tropical indigenous peoples in Asia (TIA) attract much attention for their unique appearance, whereas their genetic history and adaptive evolution remain mysteries. We conducted a comprehensive study to characterize the genetic distinction and connection of broad geographical TIAs. Despite the diverse genetic makeup and large interarea genetic differentiation between the TIA groups, we identified a basal Asian ancestry (bASN) specifically shared by these populations. The bASN ancestry was relatively enriched in ancient Asian human genomes dated as early as ∼50,000 years before the present and diminished in more recent history. Notably, the bASN ancestry is unlikely to be derived from archaic hominins. Instead, we suggest it may be better modeled as a survived lineage of the initial peopling of Asia. Shared adaptations inherited from the ancient Asian ancestry were detected among the TIA groups (e.g., LIMS1 for hair morphology, and COL24A1 for bone formation), and they are enriched in neurological functions either at an identical locus (e.g., NKAIN3), or different loci in an identical gene (e.g., TENM4). The bASN ancestry could also have formed the substrate of the genetic architecture of the dark pigmentation observed in the TIA peoples. We hypothesize that phenotypic convergence of the dark pigmentation in TIAs could have resulted from parallel (e.g., DDB1/DAK) or genetic convergence driven by admixture (e.g., MTHFD1 and RAD18), new mutations (e.g., STK11), or notably purifying selection (e.g., MC1R). Our results provide new insights into the initial peopling of Asia and an advanced understanding of the phenotypic convergence of the TIA peoples.
Collapse
Affiliation(s)
- Lian Deng
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuwen Pan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yinan Wang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Chen
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Yuan
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sihan Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Dongsheng Lu
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Siti Shuhada Mokhtar
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Thuhairah Abdul Rahman
- Clinical Pathology Diagnostic Centre Research Laboratory, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor, Malaysia
| | - Boon-Peng Hoh
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Faculty of Medicine and Health Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
136
|
Huang T, Li J, Wang SM. Etiological roles of core promoter variation in triple-negative breast cancer. Genes Dis 2022; 10:228-238. [PMID: 37013029 PMCID: PMC10066267 DOI: 10.1016/j.gendis.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/26/2021] [Accepted: 01/12/2022] [Indexed: 10/19/2022] Open
Abstract
Abnormal gene expression plays key role in cancer development. A core promoter is located around the transcriptional start site. Through interaction between core promoter sequences and transcriptional factors, core promoter controls transcriptional initiation. We hypothesized that in cancer, core promoter sequences could be mutated to interfere the interaction with transcriptional factors, resulting in altered transcriptional initiation and abnormal gene expression and cancer development. We used triple-negative breast cancer (TNBC) as a model to test our hypothesis. We collected genome-wide core promoter variants from 279 TNBC genomes. After extensive filtering of normal genomic polymorphism, we identified 19,427 recurrent somatic variants in 1,238 core promoters of 1,274 genes and 1,694 recurrent germline variants in 272 core promoters of 294 genes. Many of the affected genes were oncogenes and tumor suppressors. Analysis of RNA-seq data from the same patient cohort identified increased or decreased gene expression in 439 somatic and 85 germline variants-affected genes, and the results were validated by luciferase reporter assay. By comparing with the core promoter variation data from 610 unclassified breast cancer, we observed that core promoter variants in TNBC were highly TNBC-specific. We further identified the drugs targeting the genes with core promoter variation. Our study demonstrates that core promoter is highly mutable in cancer, and can play etiological roles in TNBC and other types of cancer through influencing transcriptional initiation.
Collapse
|
137
|
Cheung R, Jolly S, Vimal M, Kim HL, McGonigle I. Who's afraid of genetic tests?: An assessment of Singapore's public attitudes and changes in attitudes after taking a genetic test. BMC Med Ethics 2022; 23:5. [PMID: 35081954 PMCID: PMC8791081 DOI: 10.1186/s12910-022-00744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As a consequence of precision medicine initiatives, genomic technologies have rapidly spread around the world, raising questions about genetic privacy and the ethics of data sharing. Previous scholarship in bioethics and science and technology studies has made clear that different nations have varying expectations about trust, transparency, and public reason in relation to emerging technologies and their governance. The key aims of this article are to assess genetic literacy, perceptions of genetic testing, privacy concerns, and governing norms amongst the Singapore population by collecting surveys. METHODS This study investigated genetic literacy and broad public attitudes toward genetic tests in Singapore with an online public survey (n = 560). To assess potential changes in attitudes following receipt of results from a genetic test, we also surveyed undergraduate students who underwent a genetic screen as part of a university class before and after they received their test results (n = 25). RESULTS Public participants showed broad support for the use of genetic tests; scored an average of 48.9% in genetic literacy; and expressed privacy concerns over data sharing and a desire for control over their genetic data. After taking a genetic test and receiving genetic test results, students reported less fear of genetic tests while other attitudes did not change significantly. CONCLUSION These findings highlight the potential of genetic education and active engagement with genetic testing to increase support and participation in genomic projects, PM, and biobanking initiatives; and they suggest that data privacy protections could potentially reduce discrimination by giving participants control over who can access their data. More specifically, these findings and the dataset we provide may be helpful in formulating culturally sensitive education programs and regulations concerning genomic technologies and data privacy.
Collapse
Affiliation(s)
- Ross Cheung
- School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, Singapore, 639818
| | - Shreshtha Jolly
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, Singapore, 637551
| | - Manoj Vimal
- School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, Singapore, 639818
| | - Hie Lim Kim
- Asian School of the Environment, Singapore Center for Environmental Life Sciences Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, Singapore, 637459
| | - Ian McGonigle
- School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, Singapore, 639818.
| |
Collapse
|
138
|
Jiménez-Kaufmann A, Chong AY, Cortés A, Quinto-Cortés CD, Fernandez-Valverde SL, Ferreyra-Reyes L, Cruz-Hervert LP, Medina-Muñoz SG, Sohail M, Palma-Martinez MJ, Delgado-Sánchez G, Mongua-Rodríguez N, Mentzer AJ, Hill AVS, Moreno-Macías H, Huerta-Chagoya A, Aguilar-Salinas CA, Torres M, Kim HL, Kalsi N, Schuster SC, Tusié-Luna T, Del-Vecchyo DO, García-García L, Moreno-Estrada A. Imputation Performance in Latin American Populations: Improving Rare Variants Representation With the Inclusion of Native American Genomes. Front Genet 2022; 12:719791. [PMID: 35046991 PMCID: PMC8762266 DOI: 10.3389/fgene.2021.719791] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Current Genome-Wide Association Studies (GWAS) rely on genotype imputation to increase statistical power, improve fine-mapping of association signals, and facilitate meta-analyses. Due to the complex demographic history of Latin America and the lack of balanced representation of Native American genomes in current imputation panels, the discovery of locally relevant disease variants is likely to be missed, limiting the scope and impact of biomedical research in these populations. Therefore, the necessity of better diversity representation in genomic databases is a scientific imperative. Here, we expand the 1,000 Genomes reference panel (1KGP) with 134 Native American genomes (1KGP + NAT) to assess imputation performance in Latin American individuals of mixed ancestry. Our panel increased the number of SNPs above the GWAS quality threshold, thus improving statistical power for association studies in the region. It also increased imputation accuracy, particularly in low-frequency variants segregating in Native American ancestry tracts. The improvement is subtle but consistent across countries and proportional to the number of genomes added from local source populations. To project the potential improvement with a higher number of reference genomes, we performed simulations and found that at least 3,000 Native American genomes are needed to equal the imputation performance of variants in European ancestry tracts. This reflects the concerning imbalance of diversity in current references and highlights the contribution of our work to reducing it while complementing efforts to improve global equity in genomic research.
Collapse
Affiliation(s)
- Andrés Jiménez-Kaufmann
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Amanda Y Chong
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrián Cortés
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Consuelo D Quinto-Cortés
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Selene L Fernandez-Valverde
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| | | | | | - Santiago G Medina-Muñoz
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Mashaal Sohail
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - María J Palma-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| | | | | | - Alexander J Mentzer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Adrian V S Hill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Hortensia Moreno-Macías
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico.,Departamento de Economía, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alicia Huerta-Chagoya
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Carlos A Aguilar-Salinas
- Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Unidad de Investigación de Enfermedades Metabólicas, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Mexico
| | - Michael Torres
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| | - Hie Lim Kim
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,GenomeAsia 100K (GA100K) Consortium, Singapore.,School of Biological Science, Nanyang Technological University, Singapore
| | - Namrata Kalsi
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,GenomeAsia 100K (GA100K) Consortium, Singapore
| | - Stephan C Schuster
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,GenomeAsia 100K (GA100K) Consortium, Singapore.,School of Biological Science, Nanyang Technological University, Singapore
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico.,Instituto de Investigaciones Biomédicas de la UNAM, Mexico City, Mexico
| | - Diego Ortega Del-Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano (LIIGH), UNAM, Juriquilla, Mexico
| | | | - Andrés Moreno-Estrada
- Laboratorio Nacional de Genómica para la Biodiversidad (UGA-LANGEBIO), Unidad de Genómica Avanzada, Irapuato, Mexico
| |
Collapse
|
139
|
Vecchyo DOD, Lohmueller KE, Novembre J. Haplotype-based inference of the distribution of fitness effects. Genetics 2022; 220:6501446. [PMID: 35100400 PMCID: PMC8982047 DOI: 10.1093/genetics/iyac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/18/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Recent genome sequencing studies with large sample sizes in humans have discovered a vast quantity of low-frequency variants, providing an important source of information to analyze how selection is acting on human genetic variation. In order to estimate the strength of natural selection acting on low-frequency variants, we have developed a likelihood-based method that uses the lengths of pairwise identity-by-state between haplotypes carrying low-frequency variants. We show that in some non-equilibrium populations (such as those that have had recent population expansions) it is possible to distinguish between positive or negative selection acting on a set of variants. With our new framework, one can infer a fixed selection intensity acting on a set of variants at a particular frequency, or a distribution of selection coefficients for standing variants and new mutations. We show an application of our method to the UK10K phased haplotype dataset of individuals.
Collapse
Affiliation(s)
- Diego Ortega-Del Vecchyo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, 76230, México
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
| | - Kirk E Lohmueller
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, 90095, United States of America
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, Illinois, 60637, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, 60637, United States of America
| |
Collapse
|
140
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
141
|
Hwang MY, Choi NH, Won HH, Kim BJ, Kim YJ. Analyzing the Korean reference genome with meta-imputation increased the imputation accuracy and spectrum of rare variants in the Korean population. Front Genet 2022; 13:1008646. [PMID: 36506321 PMCID: PMC9731225 DOI: 10.3389/fgene.2022.1008646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Genotype imputation is essential for enhancing the power of association-mapping and discovering rare and indels that are missed by most genotyping arrays. Imputation analysis can be more accurate with a population-specific reference panel or a multi-ethnic reference panel with numerous samples. The National Institute of Health, Republic of Korea, initiated the Korean Reference Genome (KRG) project to identify variants in whole-genome sequences of ∼20,000 Korean participants. In the pilot phase, we analyzed the data from 1,490 participants. The genetic characteristics and imputation performance of the KRG were compared with those of the 1,000 Genomes Project Phase 3, GenomeAsia 100K Project, ChinaMAP, NARD, and TOPMed reference panels. For comparison analysis, genotype panels were artificially generated using whole-genome sequencing data from combinations of four different ancestries (Korean, Japanese, Chinese, and European) and two population-specific optimized microarrays (Korea Biobank Array and UK Biobank Array). The KRG reference panel performed best for the Korean population (R 2 = 0.78-0.84, percentage of well-imputed is 91.9% for allele frequency >5%), although the other reference panels comprised a larger number of samples with genetically different background. By comparing multiple reference panels and multi-ethnic genotype panels, optimal imputation was obtained using reference panels from genetically related populations and a population-optimized microarray. Indeed, the reference panels of KRG and TOPMed showed the best performance when applied to the genotype panels of KBA (R 2 = 0.84) and UKB (R 2 = 0.87), respectively. Using a meta-imputation approach to merge imputation results from different reference panels increased the imputation accuracy for rare variants (∼7%) and provided additional well-imputed variants (∼20%) with comparable imputation accuracy to that of the KRG. Our results demonstrate the importance of using a population-specific reference panel and meta-imputation to assess a substantial number of accurately imputed rare variants.
Collapse
Affiliation(s)
- Mi Yeong Hwang
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea.,Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Nak-Hyeon Choi
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Hong Hee Won
- Department of Digital Health, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, South Korea
| | - Bong-Jo Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| | - Young Jin Kim
- Division of Genome Science, Department of Precision Medicine, National Institute of Health, Cheongju-si, South Korea
| |
Collapse
|
142
|
Singh PP, Suravajhala P, Basu Mallick C, Tamang R, Rai AK, Machha P, Singh R, Pathak A, Mishra VN, Shrivastava P, Singh KK, Thangaraj K, Chaubey G. COVID-19: Impact on linguistic and genetic isolates of India. Genes Immun 2022; 23:47-50. [PMID: 34635809 PMCID: PMC8504558 DOI: 10.1038/s41435-021-00150-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
Abstract
The rapid expansion of coronavirus SARS-CoV-2 has impacted various ethnic groups all over the world. The burden of infectious diseases including COVID-19 are generally reported to be higher for the Indigenous people. The historical knowledge have also suggested that the indigenous populations suffer more than the general populations in the pandemic. Recently, it has been reported that the indigenous groups of Brazil have been massively affected by COVID-19. Series of studies have shown that many of the indigenous communities reached at the verge of extinction due to this pandemic. Importantly, South Asia also has several indigenous and smaller communities, that are living in isolation. Till date, despite the two consecutive waves in India, there is no report on the impact of COVID-19 for indigenous tribes. Since smaller populations experiencing drift may have greater risk of such pandemic, we have analysed Runs of Homozygosity (ROH) among South Asian populations and identified several populations with longer homozygous segments. The longer runs of homozygosity at certain genomic regions may increases the susceptibility for COVID-19. Thus, we suggest extreme careful management of this pandemic among isolated populations of South Asia.
Collapse
Affiliation(s)
- Prajjval Pratap Singh
- grid.411507.60000 0001 2287 8816Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| | - Prashanth Suravajhala
- grid.469354.90000 0004 0610 6228Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research Statue Circle, Jaipur, Rajasthan India ,grid.411370.00000 0000 9081 2061Amrita School of Biotechnology, Amrita University Kerala India, Vallikavu, 690525 India
| | - Chandana Basu Mallick
- grid.411507.60000 0001 2287 8816Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, 221005 India
| | - Rakesh Tamang
- grid.59056.3f0000 0001 0664 9773Department of Zoology, University of Calcutta, Kolkata, 700019 India
| | - Ashutosh Kumar Rai
- grid.411975.f0000 0004 0607 035XDepartment of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Pratheusa Machha
- grid.417634.30000 0004 0496 8123CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007 India ,grid.469887.c0000 0004 7744 2771Academy of Scientific and Innovative Research, (AcSIR), Ghaziabad, 201002 India
| | - Royana Singh
- grid.411507.60000 0001 2287 8816Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Abhishek Pathak
- grid.411507.60000 0001 2287 8816Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Vijay Nath Mishra
- grid.411507.60000 0001 2287 8816Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Pankaj Shrivastava
- Department of Home (Police), DNA Fingerprinting Unit, State Forensic Science Laboratory, Government of MP, Sagar, India
| | - Keshav K. Singh
- grid.265892.20000000106344187Department of Genetics, School of Medicine, University of Alabama at Birmingham, Kaul Genetics Building, Birmingham, AL USA
| | - Kumarasamy Thangaraj
- grid.417634.30000 0004 0496 8123CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007 India ,grid.145749.a0000 0004 1767 2735Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, 500039 India
| | - Gyaneshwer Chaubey
- grid.411507.60000 0001 2287 8816Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
143
|
Rophina M, Pandhare K, Jadhao S, Nagaraj SH, Scaria V. BGvar: A comprehensive resource for blood group immunogenetics. Transfus Med 2021; 32:229-236. [PMID: 34897852 DOI: 10.1111/tme.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Blood groups form the basis of effective and safe blood transfusion. There are about 43 well-recognised human blood group systems presently known. Blood groups are molecularly determined by the presence of specific antigens on the red blood cells and are genetically determined and inherited following Mendelian principles. The lack of a comprehensive, relevant, manually compiled and genome-ready dataset of red cell antigens limited the widespread application of genomic technologies to characterise and interpret the blood group complement of an individual from genomic datasets. MATERIALS AND METHODS A range of public datasets was used to systematically annotate the variation compendium for its functionality and allele frequencies across global populations. Details on phenotype or relevant clinical importance were collated from reported literature evidence. RESULTS We have compiled the Blood Group Associated Genomic Variant Resource (BGvar), a manually curated online resource comprising all known human blood group related allelic variants including a total of 1700 International Society of Blood Transfusion approved alleles and 1706 alleles predicted and curated from literature reports. This repository includes 1682 single nucleotide variations (SNVs), 310 Insertions, Deletions (InDels) and Duplications (Copy Number Variations) and about 1360 combination mutations corresponding to 43 human blood group systems and 2 transcription factors. This compendium also encompasses gene fusion and rearrangement events occurring in human blood group genes. CONCLUSION To the best of our knowledge, BGvar is a comprehensive and a user-friendly resource with most relevant collation of blood group alleles in humans. BGvar is accessible online at URL: http://clingen.igib.res.in/bgvar/.
Collapse
Affiliation(s)
- Mercy Rophina
- Genome Informatics and Big Data, CSIR Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Kavita Pandhare
- Genome Informatics and Big Data, CSIR Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Sudhir Jadhao
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Shivashankar H Nagaraj
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Vinod Scaria
- Genome Informatics and Big Data, CSIR Institute of Genomics and Integrative Biology, Delhi, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
144
|
Guo X, Li J, Xue J, Fenech M, Wang X. Loss of Y chromosome: An emerging next-generation biomarker for disease prediction and early detection? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108389. [PMID: 34893154 DOI: 10.1016/j.mrrev.2021.108389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
As human life expectancy increases substantially and aging is the primary risk factor for most chronic diseases, there is an urgent need for advancing the development of post-genomic era biomarkers that can be used for disease prediction and early detection (DPED). Mosaic loss of Y chromosome (LOY) is the state of nullisomy Y in sub-groups of somatic cells acquired from different post-zygotic development stages and onwards throughout the lifespan. Multiple large-cohort based epidemiology studies have found that LOY in blood cells is a significant risk factor for future mortality and various diseases in males. Many features intrinsic to LOY analysis may be leveraged to enhance its use as a non-invasive, sensitive, reliable, high throughput-biomarker for DPED. Here, we review the emerging literatures in LOY studies and highlight ten strengths for using LOY as a novel biomarker for genomics-driven DPED diagnostics. Meanwhile, the current limitations in this area are also discussed. We conclude by identifying some important knowledge gaps regarding the consequences of malsegregation of the Y chromosome and propose further steps that are required before clinical implementation of LOY. Taken together, we think that LOY has substantial potential as a biomarker for DPED, despite some hurdles that still need to be addressed before its integration into healthcare becomes acceptable.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| | - Jianfei Li
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA, 5048, Australia; University of South Australia, School of Pharmacy and Medical Sciences, Adelaide, SA, 5000, Australia; Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, 650500, China; Yunnan Environmental Mutagen Society, Kunming, Yunnan, 650500, China.
| |
Collapse
|
145
|
Arciero E, Dogra SA, Malawsky DS, Mezzavilla M, Tsismentzoglou T, Huang QQ, Hunt KA, Mason D, Sharif SM, van Heel DA, Sheridan E, Wright J, Small N, Carmi S, Iles MM, Martin HC. Fine-scale population structure and demographic history of British Pakistanis. Nat Commun 2021; 12:7189. [PMID: 34893604 PMCID: PMC8664933 DOI: 10.1038/s41467-021-27394-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Previous genetic and public health research in the Pakistani population has focused on the role of consanguinity in increasing recessive disease risk, but little is known about its recent population history or the effects of endogamy. Here, we investigate fine-scale population structure, history and consanguinity patterns using genotype chip data from 2,200 British Pakistanis. We reveal strong recent population structure driven by the biraderi social stratification system. We find that all subgroups have had low recent effective population sizes (Ne), with some showing a decrease 15‒20 generations ago that has resulted in extensive identity-by-descent sharing and homozygosity, increasing the risk of recessive disorders. Our results from two orthogonal methods (one using machine learning and the other coalescent-based) suggest that the detailed reporting of parental relatedness for mothers in the cohort under-represents the true levels of consanguinity. These results demonstrate the impact of cultural practices on population structure and genomic diversity in Pakistanis, and have important implications for medical genetic studies.
Collapse
Affiliation(s)
- Elena Arciero
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Sufyan A Dogra
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Theofanis Tsismentzoglou
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Karen A Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Saghira Malik Sharif
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eamonn Sheridan
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Neil Small
- Faculty of Health Studies, University of Bradford, Richmond Road, Bradford, UK
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
146
|
Beijer D, Polavarapu K, Preethish-Kumar V, Bardhan M, Dohrn MF, Rebelo A, Züchner S, Nalini A. [CASE REPORT] Homozygous N-terminal missense variant in PLEKHG5 associated with intermediate CMT: a case report. J Neuromuscul Dis 2021; 9:347-351. [PMID: 34897098 DOI: 10.3233/jnd-210716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutations in PLEKHG5, a pleckstrin homology domain containing member of the GEF family, are associated with distal spinal muscular atrophy and intermediate Charcot-Marie-Tooth disease. Here, we describe an isolated case with distal intermediate neuropathy with scapular winging. By whole exome sequencing, we identified the homozygous PLEKHG5 Arg97Gln missense mutation, located in the N-terminal region of the protein. This mutation resides between a zinc-finger motif and a RBD domain, involved in binding rnd3, a RhoA effector protein. We conclude that based on the characteristic phenotype presented by the patient and the supportive genetic findings, the PLEKHG5 mutation is the causative variant.
Collapse
Affiliation(s)
- Danique Beijer
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario ResearchInstitute; Division of Neurology, Department of Medicine, The Ottawa Hospital; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Veeramani Preethish-Kumar
- Children's Hospital of Eastern Ontario ResearchInstitute; Division of Neurology, Department of Medicine, The Ottawa Hospital; Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Adriana Rebelo
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Stephan Züchner
- Dr. John T. Macdonald Foundation, Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
147
|
Seewaldt VL, Bernstein L. The perils of generalization: Rethinking breast cancer screening guidelines for young women of color. Cancer 2021; 127:4359-4361. [PMID: 34427914 PMCID: PMC8578311 DOI: 10.1002/cncr.33840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/29/2022]
Abstract
Women-of-Color are more likely to be diagnosed with breast cancer under the age of 40 and more likely to die (vs. non-Hispanic Whites). These finding support the concern that the United States Preventive Services Task Force breast cancer adversely impacts Women-of-Color.
Collapse
Affiliation(s)
- Victoria L. Seewaldt
- Department of Population Science, Beckman Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| | - Leslie Bernstein
- Department of Population Science, Beckman Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010
| |
Collapse
|
148
|
Zhao T, Fan S, Sun L. The global carrier frequency and genetic prevalence of Upshaw-Schulman syndrome. BMC Genom Data 2021; 22:50. [PMID: 34789164 PMCID: PMC8600861 DOI: 10.1186/s12863-021-01010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background Upshaw–Schulman syndrome (USS) is an autosomal recessive disease characterized by thrombotic microangiopathies caused by pathogenic variants in ADAMTS13. We aimed to (1) curate the ADAMTS13 gene pathogenic variant dataset and (2) estimate the carrier frequency and genetic prevalence of USS using Genome Aggregation Database (gnomAD) data. Methods Studies were comprehensively retrieved. All previously reported pathogenic ADAMTS13 variants were compiled and annotated with gnomAD allele frequencies. The pooled global and population-specific carrier frequencies and genetic prevalence of USS were calculated using the Hardy-Weinberg equation. Results We mined reported disease-causing variants that were present in the gnomAD v2.1.1, filtered by allele frequency. The pathogenicity of variants was classified according to the American College of Medical Genetics and Genomics criteria. The genetic prevalence and carrier frequency of USS were 0.43 per 1 million (95% CI: [0.36, 0.55]) and 1.31 per 1 thousand population, respectively. When the novel pathogenic/likely pathogenic variants were included, the genetic prevalence and carrier frequency were 1.1 per 1 million (95% CI: [0.89, 1.37]) and 2.1 per 1 thousand population, respectively. Conclusions The genetic prevalence and carrier frequency of USS were within the ranges of previous estimates. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01010-0.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neurology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liu Sun
- Yunnan Key Laboratory of Smart City and Cyberspace Security, Department of Information Technology, School of Mathematics and Information Technology, Yuxi Normal University, Yuxi, 653100, China.
| |
Collapse
|
149
|
NyuWa Genome resource: A deep whole-genome sequencing-based variation profile and reference panel for the Chinese population. Cell Rep 2021; 37:110017. [PMID: 34788621 DOI: 10.1016/j.celrep.2021.110017] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/04/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
The lack of haplotype reference panels and whole-genome sequencing resources specific to the Chinese population has greatly hindered genetic studies in the world's largest population. Here, we present the NyuWa genome resource, based on deep (26.2×) sequencing of 2,999 Chinese individuals, and construct a NyuWa reference panel of 5,804 haplotypes and 19.3 million variants, which is a high-quality publicly available Chinese population-specific reference panel with thousands of samples. Compared with other panels, the NyuWa reference panel reduces the Han Chinese imputation error rate by a margin ranging from 30% to 51%. Population structure and imputation simulation tests support the applicability of one integrated reference panel for northern and southern Chinese. In addition, a total of 22,504 loss-of-function variants in coding and noncoding genes are identified, including 11,493 novel variants. These results highlight the value of the NyuWa genome resource in facilitating genetic research in Chinese and Asian populations.
Collapse
|
150
|
Guo S, Jin Y, Zhou J, Zhu Q, Jiang T, Bian Y, Zhang R, Chang C, Xu L, Shen J, Zheng X, Shen Y, Qin Y, Chen J, Tang X, Cheng P, Ding Q, Zhang Y, Liu J, Cheng Q, Guo M, Liu Z, Qiu W, Qian Y, Sun Y, Shen Y, Nie H, Schrodi SJ, He D. MicroRNA Variants and HLA-miRNA Interactions are Novel Rheumatoid Arthritis Susceptibility Factors. Front Genet 2021; 12:747274. [PMID: 34777472 PMCID: PMC8585984 DOI: 10.3389/fgene.2021.747274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Genome-wide association studies have identified >100 genetic risk factors for rheumatoid arthritis. However, the reported genetic variants could only explain less than 40% heritability of rheumatoid arthritis. The majority of the heritability is still missing and needs to be identified with more studies with different approaches and populations. In order to identify novel function SNPs to explain missing heritability and reveal novel mechanism pathogenesis of rheumatoid arthritis, 4 HLA SNPs (HLA-DRB1, HLA-DRB9, HLA-DQB1, and TNFAIP3) and 225 common SNPs located in miRNA, which might influence the miRNA target binding or pre-miRNA stability, were genotyped in 1,607 rheumatoid arthritis and 1,580 matched normal individuals. We identified 2 novel SNPs as significantly associated with rheumatoid arthritis including rs1414273 (miR-548ac, OR = 0.84, p = 8.26 × 10-4) and rs2620381 (miR-627, OR = 0.77, p = 2.55 × 10-3). We also identified that rs5997893 (miR-3928) showed significant epistasis effect with rs4947332 (HLA-DRB1, OR = 4.23, p = 0.04) and rs2967897 (miR-5695) with rs7752903 (TNFAIP3, OR = 4.43, p = 0.03). In addition, we found that individuals who carried 8 risk alleles showed 15.38 (95%CI: 4.69-50.49, p < 1.0 × 10-6) times more risk of being affected by RA. Finally, we demonstrated that the targets of the significant miRNAs showed enrichment in immune related genes (p = 2.0 × 10-5) and FDA approved drug target genes (p = 0.014). Overall, 6 novel miRNA SNPs including rs1414273 (miR-548ac, p = 8.26 × 10-4), rs2620381 (miR-627, p = 2.55 × 10-3), rs4285314 (miR-3135b, p = 1.10 × 10-13), rs28477407 (miR-4308, p = 3.44 × 10-5), rs5997893 (miR-3928, p = 5.9 × 10-3) and rs45596840 (miR-4482, p = 6.6 × 10-3) were confirmed to be significantly associated with RA in a Chinese population. Our study suggests that miRNAs might be interesting targets to accelerate understanding of the pathogenesis and drug development for rheumatoid arthritis.
Collapse
Affiliation(s)
- Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yehua Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Shen
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinchun Zheng
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shen
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Qin
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihong Chen
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaorong Tang
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Cheng
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Ding
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Zhang
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Liu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingqing Cheng
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengru Guo
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyi Liu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifang Qiu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Qian
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shen
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Steven J Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|