101
|
Role of phosphatidylinositol 3,4,5-trisphosphate in cell signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:105-39. [PMID: 23775693 DOI: 10.1007/978-94-007-6331-9_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Many lipids present in cellular membranes are phosphorylated as part of signaling cascades and participate in the recruitment, localization, and activation of downstream protein effectors. Phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) is one of the most important second messengers and is capable of interacting with a variety of proteins through specific PtdIns(3,4,5)P3 binding domains. Localization and activation of these effector proteins controls a myriad of cellular functions including cell survival, proliferation, cytoskeletal rearrangement, and gene expression. Aberrations in the production and metabolism of PtdIns(3,4,5)P3 have been implicated in many human diseases including cancer, diabetes, inflammation, and heart disease. This chapter provides an overview of the role of PtdIns(3,4,5)P3 in cellular regulation and the implications of PtdIns(3,4,5)P3 dysregulation in human diseases. Additionally, recent attempts at targeting PtdIns(3,4,5)P3 signaling via small molecule inhibitors are summarized.
Collapse
|
102
|
Kuster DWD, Sequeira V, Najafi A, Boontje NM, Wijnker PJM, Witjas-Paalberends ER, Marston SB, Dos Remedios CG, Carrier L, Demmers JAA, Redwood C, Sadayappan S, van der Velden J. GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication. Circ Res 2012; 112:633-9. [PMID: 23277198 DOI: 10.1161/circresaha.112.275602] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac myosin-binding protein C (cMyBP-C) regulates cross-bridge cycling kinetics and, thereby, fine-tunes the rate of cardiac muscle contraction and relaxation. Its effects on cardiac kinetics are modified by phosphorylation. Three phosphorylation sites (Ser275, Ser284, and Ser304) have been identified in vivo, all located in the cardiac-specific M-domain of cMyBP-C. However, recent work has shown that up to 4 phosphate groups are present in human cMyBP-C. OBJECTIVE To identify and characterize additional phosphorylation sites in human cMyBP-C. METHODS AND RESULTS Cardiac MyBP-C was semipurified from human heart tissue. Tandem mass spectrometry analysis identified a novel phosphorylation site on serine 133 in the proline-alanine-rich linker sequence between the C0 and C1 domains of cMyBP-C. Unlike the known sites, Ser133 was not a target of protein kinase A. In silico kinase prediction revealed glycogen synthase kinase 3β (GSK3β) as the most likely kinase to phosphorylate Ser133. In vitro incubation of the C0C2 fragment of cMyBP-C with GSK3β showed phosphorylation on Ser133. In addition, GSK3β phosphorylated Ser304, although the degree of phosphorylation was less compared with protein kinase A-induced phosphorylation at Ser304. GSK3β treatment of single membrane-permeabilized human cardiomyocytes significantly enhanced the maximal rate of tension redevelopment. CONCLUSIONS GSK3β phosphorylates cMyBP-C on a novel site, which is positioned in the proline-alanine-rich region and increases kinetics of force development, suggesting a noncanonical role for GSK3β at the sarcomere level. Phosphorylation of Ser133 in the linker domain of cMyBP-C may be a novel mechanism to regulate sarcomere kinetics.
Collapse
Affiliation(s)
- Diederik W D Kuster
- Cell and Molecular Physiology, Health Science Division, Loyola University of Chicago, 2160 First Ave, Bldg 102, Room 4637, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
High density sphere culture of adult cardiac cells increases the levels of cardiac and progenitor markers and shows signs of vasculogenesis. BIOMED RESEARCH INTERNATIONAL 2012; 2013:696837. [PMID: 23484142 PMCID: PMC3591148 DOI: 10.1155/2013/696837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/05/2012] [Indexed: 11/17/2022]
Abstract
3D environment and high cell density play an important role in restoring and supporting the phenotypes of cells represented in cardiac tissues. The aim of this study was therefore to investigate the suitability of high density sphere (HDS) cultures for studies of cardiomyocyte-, endothelial-, and stem-cell biology. Primary adult cardiac cells from nine human biopsies were cultured using different media for up to 9 weeks. The possibilities to favor a certain cell phenotype and induce production of extra cellular matrix (ECM) were studied by histology, immunohistochemistry, and quantitative real-time PCR. Defined media gave significant increase in both cardiac- and progenitor-specific markers and also an intraluminal position of endothelial cells over time. Cardiac media showed indication of differentiation and maturity of HDS considering the ECM production and activities within NOTCH regulation but no additional cardiac differentiation. Endothelial media gave no positive effects on endothelial phenotype but increased proliferation without fibroblast overgrowth. In addition, indications for early vasculogenesis were found. It was also possible to affect the Wnt signaling in HDS by addition of a glycogen synthase kinase 3 (GSK3) inhibitor. In conclusion, these findings show the suitability of HDS as in vitro model for studies of cardiomyocyte-, endothelial-, and stem-cell biology.
Collapse
|
104
|
Mathew J, Loranger A, Gilbert S, Faure R, Marceau N. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp Cell Res 2012; 319:474-86. [PMID: 23164509 DOI: 10.1016/j.yexcr.2012.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/09/2012] [Accepted: 11/11/2012] [Indexed: 12/25/2022]
Abstract
As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.
Collapse
Affiliation(s)
- Jasmin Mathew
- Centre de recherche en cancérologie de l'Université Laval and Centre de recherche du CHUQ (L'Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
105
|
Koga K, Kenessey A, Ojamaa K. Macrophage migration inhibitory factor antagonizes pressure overload-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2012; 304:H282-93. [PMID: 23144312 DOI: 10.1152/ajpheart.00595.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Macrophage migration inhibitory factor (MIF) functions as a proinflammatory cytokine when secreted from the cell, but it also exhibits antioxidant properties by virtue of its intrinsic oxidoreductase activity. Since increased production of ROS is implicated in the development of left ventricular hypertrophy, we hypothesized that the redox activity of MIF protects the myocardium when exposed to hemodynamic stress. In a mouse model of myocardial hypertrophy induced by transverse aortic coarctation (TAC) for 10 days, we showed that growth of the MIF-deficient heart was significantly greater by 32% compared with wild-type (WT) TAC hearts and that fibrosis was increased by fourfold (2.62 ± 0.2% vs. 0.6 ± 0.1%). Circulating MIF was increased in TAC animals, and expression of MIF receptor, CD74, was increased in the hypertrophic myocardium. Gene expression analysis showed a 10-fold increase (P < 0.01) in ROS-generating mitochondrial NADPH oxidase and 2- to 3-fold reductions (P < 0.01) in mitochondrial SOD2 and mitochondrial aconitase activities, indicating enhanced oxidative injury in the hypertrophied MIF-deficient ventricle. Hypertrophic signaling pathways showed that phosphorylation of cytosolic glycogen synthase kinase-3α was greater (P < 0.05) at baseline in MIF-deficient hearts than in WT hearts and remained elevated after 10-day TAC. In the hemodynamically stressed MIF-deficient heart, nuclear p21(CIP1) increased sevenfold (P < 0.01), and the cytosolic increase of phospho-p21(CIP1) was significantly greater than in WT TAC hearts. We conclude that MIF antagonizes myocardial hypertrophy and fibrosis in response to hemodynamic stress by maintaining a redox homeostatic phenotype and attenuating stress-induced activation of hypertrophic signaling pathways.
Collapse
Affiliation(s)
- Kiyokazu Koga
- Center for Heart and Lung Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | |
Collapse
|
106
|
Ip W, Shao W, Chiang YTA, Jin T. The Wnt signaling pathway effector TCF7L2 is upregulated by insulin and represses hepatic gluconeogenesis. Am J Physiol Endocrinol Metab 2012; 303:E1166-76. [PMID: 22967502 PMCID: PMC3492858 DOI: 10.1152/ajpendo.00249.2012] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Certain single nucleotide polymorphisms (SNPs) in transcription factor 7-like 2 (TCF7L2) are strongly associated with the risk of type 2 diabetes. TCF7L2 and β-catenin (β-cat) form the bipartite transcription factor cat/TCF in stimulating Wnt target gene expression. cat/TCF may also mediate the effect of other signaling cascades, including that of cAMP and insulin in cell-type specific manners. As carriers of TCF7L2 type 2 diabetes risk SNPs demonstrated increased hepatic glucose production, we aimed to determine whether TCF7L2 expression is regulated by nutrient availability and whether TCF7L2 and Wnt regulate hepatic gluconeogenesis. We examined hepatic Wnt activity in the TOPGAL transgenic mouse, assessed hepatic TCF7L2 expression in mice upon feeding, determined the effect of insulin on TCF7L2 expression and β-cat Ser⁶⁷⁵ phosphorylation, and investigated the effect of Wnt activation and TCF7L2 knockdown on gluconeogenic gene expression and glucose production in hepatocytes. Wnt activity was observed in pericentral hepatocytes in the TOPGAL mouse, whereas TCF7L2 expression was detected in human and mouse hepatocytes. Insulin and feeding stimulated hepatic TCF7L2 expression in vitro and in vivo, respectively. In addition, insulin activated β-cat Ser⁶⁷⁵ phosphorylation. Wnt activation by intraperitoneal lithium injection repressed hepatic gluconeogenic gene expression in vivo, whereas lithium or Wnt-3a reduced gluconeogenic gene expression and glucose production in hepatic cells in vitro. Small interfering RNA-mediated TCF7L2 knockdown increased glucose production and gluconeogenic gene expression in cultured hepatocytes. These observations suggest that Wnt signaling and TCF7L2 are negative regulators of hepatic gluconeogenesis, and TCF7L2 is among the downstream effectors of insulin in hepatocytes.
Collapse
Affiliation(s)
- Wilfred Ip
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
107
|
Li J, Umar S, Amjedi M, Iorga A, Sharma S, Nadadur RD, Regitz-Zagrosek V, Eghbali M. New frontiers in heart hypertrophy during pregnancy. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2012; 2:192-207. [PMID: 22937489 PMCID: PMC3427979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
During Pregnancy, heart develops physiological left ventricular hypertrophy as a result of the natural volume overload. Previously we have characterized the molecular and functional signature of heart hypertrophy during pregnancy. Cardiac hypertrophy during pregnancy is a complex process that involves many changes including in the signalling pathways, composition of extracellular matrix as well as the levels of sex hormones. This review summarises the recent advances and the new frontiers in the context of heart hypertrophy during pregnancy. In particular we focus on structural and extracellular matrix remodelling as well as signalling pathways in pregnancy-induced physiological heart hypertrophy. Emerging evidence shows that various microRNAs modulate key components of hypertrophy, therefore the role of microRNAs in the regulation of gene expression in pregnancy induced hypertrophy is also discussed. We also review the role of ubiquitin proteasome system, the major machinery for the degradation of damaged and misfolded proteins, in heart hypertrophy. The role of sex hormones in particular estrogen in cardiac remodeling during pregnancy is also discussed. We also review pregnancy-induced cardiovascular complications such as peripartum cardiomyopathy and pre-eclampsia and how the knowledge from the animal studies may help us to develop new therapeutic strategies for better treatment of cardiovascular diseases during pregnancy. Special emphasis has to be given to the guidelines on disease management in pregnancy.
Collapse
Affiliation(s)
- Jingyuan Li
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Soban Umar
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Marjan Amjedi
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Andrea Iorga
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Salil Sharma
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Rangarajan D Nadadur
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Vera Regitz-Zagrosek
- Institute of Gender in Medicine and Center for Cardiovascular Research, Charite University HospitalBerlin, Germany
| | - Mansoureh Eghbali
- Departments of Anesthesiology and Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| |
Collapse
|
108
|
Insulin receptor expression and activity in the brains of nondiabetic sporadic Alzheimer's disease cases. Int J Alzheimers Dis 2012; 2012:321280. [PMID: 22666619 PMCID: PMC3362009 DOI: 10.1155/2012/321280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/10/2012] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated the contents of the insulin receptor-beta subunit (IRβ) and [Tyr1162/1163]-phosphorylated IRβ as surrogate indices of total IR content and IR activation in postmortem hippocampal formation brain specimens from nondiabetic sporadic Alzheimer's disease (AD) cases. We found no significant changes in the brain contents of total IRβ or [Tyr1162/1163]-phosphorylated IRβ, suggesting normal IR content and activation in the brains of nondiabetic sporadic AD cases. Moreover, total IRβ and [Tyr1162/1163]-phosphorylated IRβ levels in the hippocampal formation are not correlated with the severity of amyloid or tau-neuropathology. Exploring the regulation of glycogen synthase kinase 3 (GSK3) α/β, key IR-signaling components, we observed significantly lower levels of total GSK3 α/β in brain specimens from nondiabetic AD cases, suggesting that impaired IR signaling mechanisms might contribute to the onset and/or progression of AD dementia. Outcomes from our study support the development of insulin-sensitizing therapeutic strategies to stimulate downstream IR signaling in nondiabetic AD cases.
Collapse
|
109
|
Wilmes J, Haddad-Tóvolli R, Alesutan I, Munoz C, Sopjani M, Pelzl L, Bogatikov E, Fedele G, Faggio C, Seebohm G, Föller M, Lang F. Regulation of KCNQ1/KCNE1 by β-catenin. Mol Membr Biol 2012; 29:87-94. [PMID: 22583083 DOI: 10.3109/09687688.2012.678017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
β-catenin, a multifunctional protein expressed in all tissues including the heart stimulates the expression of several genes important for cell proliferation. Signaling involving ß-catenin participates in directing cardiac development and in the pathophysiology of cardiac hypertrophy. Nothing is known, however, on the role of β-catenin in the regulation of cardiac ion channels. The present study explored the functional interaction of β-catenin and KCNE1/KCNQ1, the K⁺ channel complex underlying the slowly activating outwardly rectifying K⁺ current. To this end, KCNE1/KCNQ1 was expressed in Xenopus oocytes with and without β-catenin and the depolarization (up to + 80 mV) induced current (I(Ks)) was determined using the two-electrode voltage clamp. As a result, β-catenin enhanced I(Ks) by 30%. The effect of β-catenin on I(Ks) was not affected by actinomycin D (10 μM), an inhibitor of transcription, indicating that β-catenin was not effective as transcription factor. Confocal microscopy revealed that β-catenin enhanced the KCNE1/KCNQ1 protein abundance in the cell membrane. Exposure of the oocytes to brefeldin A (5 μM), an inhibitor of vesicle insertion, was followed by a decline of I(Ks), which was then similar in oocytes expressing KCNE1/KCNQ1 together with β-catenin and in oocytes expressing KCNE1/KCNQ1 alone. In conclusion, β-catenin enhances I(Ks) by increasing the KCNE1/KCNQ1 protein abundance in the cell membrane, an effect requiring vesicle insertion into the cell membrane.
Collapse
Affiliation(s)
- Jan Wilmes
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Stein A, Mao Z, Morrison JP, Fanucchi MV, Postlethwait EM, Patel RP, Kraus DW, Doeller JE, Bailey SM. Metabolic and cardiac signaling effects of inhaled hydrogen sulfide and low oxygen in male rats. J Appl Physiol (1985) 2012; 112:1659-69. [PMID: 22403348 DOI: 10.1152/japplphysiol.01598.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low concentrations of inhaled hydrogen sulfide (H(2)S) induce hypometabolism in mice. Biological effects of H(2)S in in vitro systems are augmented by lowering O(2) tension. Based on this, we hypothesized that reduced O(2) tension would increase H(2)S-mediated hypometabolism in vivo. To test this, male Sprague-Dawley rats were exposed to 80 ppm H(2)S at 21% O(2) or 10.5% O(2) for 6 h followed by 1 h recovery at room air. Rats exposed to H(2)S in 10.5% O(2) had significantly decreased body temperature and respiration compared with preexposure levels. Heart rate was decreased by H(2)S administered under both O(2) levels and did not return to preexposure levels after 1 h recovery. Inhaled H(2)S caused epithelial exfoliation in the lungs and increased plasma creatine kinase-MB activity. The effect of inhaled H(2)S on prosurvival signaling was also measured in heart and liver. H(2)S in 21% O(2) increased Akt-P(Ser473) and GSK-3β-P(Ser9) in the heart whereas phosphorylation was decreased by H(2)S in 10.5% O(2), indicating O(2) dependence in regulating cardiac signaling pathways. Inhaled H(2)S and low O(2) had no effect on liver Akt. In summary, we found that lower O(2) was needed for H(2)S-dependent hypometabolism in rats compared with previous findings in mice. This highlights the possibility of species differences in physiological responses to H(2)S. Inhaled H(2)S exposure also caused tissue injury to the lung and heart, which raises concerns about the therapeutic safety of inhaled H(2)S. In conclusion, these findings demonstrate the importance of O(2) in influencing physiological and signaling effects of H(2)S in mammalian systems.
Collapse
Affiliation(s)
- Asaf Stein
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Wei BR, Simpson RM, Johann DJ, Dwyer JE, Prieto DA, Kumar M, Ye X, Luke B, Shive HR, Webster JD, Hoover SB, Veenstra TD, Blonder J. Proteomic profiling of H-Ras-G12V induced hypertrophic cardiomyopathy in transgenic mice using comparative LC-MS analysis of thin fresh-frozen tissue sections. J Proteome Res 2012; 11:1561-70. [PMID: 22214408 DOI: 10.1021/pr200612y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Determination of disease-relevant proteomic profiles from limited tissue specimens, such as pathological biopsies and tissues from small model organisms, remains an analytical challenge and a much needed clinical goal. In this study, a transgenic mouse disease model of cardiac-specific H-Ras-G12V induced hypertrophic cardiomyopathy provided a system to explore the potential of using mass spectrometry (MS)-based proteomics to obtain a disease-relevant molecular profile from amount-limited specimens that are routinely used in pathological diagnosis. Our method employs a two-stage methanol-assisted solubilization to digest lysates prepared from 8-μm-thick fresh-frozen histological tissue sections of diseased/experimental and normal/control hearts. Coupling this approach with a nanoflow reversed-phase liquid chromatography (LC) and a hybrid linear ion trap/Fourier transform-ion cyclotron resonance MS resulted in the identification of 704 and 752 proteins in hypertrophic and wild-type (control) myocardium, respectively. The disease driving H-Ras protein along with vimentin were unambiguously identified by LC-MS in hypertrophic myocardium and cross-validated by immunohistochemistry and western blotting. The pathway analysis involving proteins identified by MS showed strong association of proteomic data with cardiovascular disease. More importantly, the MS identification and subsequent cross-validation of Wnt3a and β-catenin, in conjunction with IHC identification of phosphorylated GSK-3β and nuclear localization of β-catenin, provided evidence of Wnt/β-catenin canonical pathway activation secondary to Ras activation in the course of pathogenic myocardial hypertrophic transformation. Our method yields results indicating that the described proteomic approach permits molecular discovery and assessment of differentially expressed proteins regulating H-Ras induced hypertrophic cardiomyopathy. Selected proteins and pathways can be further investigated using immunohistochemical techniques applied to serial tissue sections of similar or different origin.
Collapse
Affiliation(s)
- Bih-Rong Wei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
ter Horst P, Smits JFM, Blankesteijn WM. The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand? Acta Physiol (Oxf) 2012; 204:110-7. [PMID: 21624093 DOI: 10.1111/j.1748-1716.2011.02309.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiac hypertrophy is an enlargement of the heart muscle in response to wall stress. This hypertrophic response often leads to heart failure. In recent years, several studies have shown the involvement of Wnt signalling in hypertrophic growth. In this review, the role of Wnt signalling and the possibilities for therapeutic interventions are discussed. In healthy adult heart tissue, Wnt signalling is very low. However, under pathological condition such as hypertension, Wnt signalling is activated. In recent years, it has become clear that both β-catenin-dependent signalling and β-catenin-independent signalling are involved in hypertrophic growth. Several studies, both in vitro and in vivo, have shown that genetic interventions in Wnt signalling at different levels resulted in an attenuated or diminished hypertrophic response. Therefore, inhibition of Wnt signalling could provide a new therapeutic strategy for cardiac hypertrophy, but further research on the Wnts and Frizzleds involved in the different forms of cardiac hypertrophy will be needed to achieve this goal.
Collapse
Affiliation(s)
- P ter Horst
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | | | | |
Collapse
|
113
|
Rosc-Schlüter BI, Häuselmann SP, Lorenz V, Mochizuki M, Facciotti F, Pfister O, Kuster GM. NOX2-derived reactive oxygen species are crucial for CD29-induced pro-survival signalling in cardiomyocytes. Cardiovasc Res 2011; 93:454-62. [PMID: 22198504 DOI: 10.1093/cvr/cvr348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS The highly expressed cell adhesion receptor CD29 (β(1)-integrin) is essential for cardiomyocyte growth and survival, and its loss of function causes severe heart disease. However, CD29-induced signalling in cardiomyocytes is ill defined and may involve reactive oxygen species (ROS). A decisive source of cardiac ROS is the abundant NADPH oxidase (NOX) isoform NOX2. Because understanding of NOX-derived ROS in the heart is still poor, we sought to test the role of ROS and NOX in CD29-induced survival signalling in cardiomyocytes. METHODS AND RESULTS In neonatal rat ventricular myocytes, CD29 activation induced intracellular ROS formation (oxidative burst) as assessed by flow cytometry using the redox-sensitive fluorescent dye dichlorodihydrofluorescein diacetate. This burst was inhibited by apocynin and diphenylene iodonium. Further, activation of CD29 enhanced NOX activity (lucigenin-enhanced chemiluminescence) and activated the MEK/ERK and PI3K/Akt survival pathways. CD29 also induced phosphorylation of the inhibitory Ser9 on the pro-apoptotic kinase glycogen synthase kinase-3β in a PI3K/Akt- and MEK-dependent manner, and improved cardiomyocyte viability under conditions of oxidative stress. The ROS scavenger MnTMPyP or adenoviral co-overexpression of the antioxidant enzymes superoxide dismutase and catalase inhibited CD29-induced pro-survival signalling. Further, CD29-induced protective pathways were lost in mouse cardiomyocytes deficient for NOX2 or functional p47(phox), a regulatory subunit of NOX. CONCLUSION p47(phox)-dependent, NOX2-derived ROS are mandatory for CD29-induced pro-survival signalling in cardiomyocytes. These findings go in line with a growing body of evidence suggesting that ROS can be beneficial to the cell and support a crucial role for NOX2-derived ROS in cell survival in the heart.
Collapse
Affiliation(s)
- Berit I Rosc-Schlüter
- Myocardial Research, Department of Biomedicine, University and University Hospital Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
114
|
Bezzerri V, Borgatti M, Finotti A, Tamanini A, Gambari R, Cabrini G. Mapping the transcriptional machinery of the IL-8 gene in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:6069-81. [PMID: 22031759 DOI: 10.4049/jimmunol.1100821] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IL-8 released from bronchial epithelial cells infected with Pseudomonas aeruginosa plays a crucial role in the chronic lung pathology of patients affected by cystic fibrosis. Novel anti-inflammatory approaches will benefit from a thorough understanding of the regulatory mechanisms involved in the transcription of this chemokine to identify potential pharmacological targets. We addressed this issue by investigating the role of phosphoproteins and transcription factors (TFs) on transcription of IL-8 gene in the human bronchial epithelial IB3-1, CuFi-1, and Calu-3 cells. P. aeruginosa increased the basal phosphorylation of the ERK1/2 pathway components 90-kDa ribosomal S6 kinase (RSK)1/2 and mitogen- and stress-activated kinase-2 and of the p38 MAPK pathway components p38α/δ/γ and heat shock protein 27 (HSP27). The involvement of these kinases in the expression of IL-8 gene was confirmed with pharmacological inhibitors of ERK1/2, RSK, p38, and HSP27 both at transcription and secretion levels. Transfection of TF decoy oligodeoxynucleotides, designed to interfere with the interaction of the TFs NF-κB, NF-IL6, AP-1, CREB, and CHOP with the corresponding consensus sequences identified in the IL-8 promoter, reduced the P. aeruginosa-dependent transcription of IL-8, suggesting their participation in the transcriptional machinery. Stimulation of IB3-1 cells with IL-1β led to a similar pattern of activation, whereas the pattern of phosphoproteins and of TFs modulated by TNF-α differentiated sharply. In conclusion, the results highlight a novel role for RSK1/2 and HSP27 phosphoproteins and of the cooperative role of the TFs NF-κB, NF-IL6, AP-1, CHOP, and CREB in P. aeruginosa-dependent induction of transcription of the IL-8 gene in human bronchial epithelial cells.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Laboratory of Molecular Pathology, Department of Pathology and Diagnostics, University Hospital of Verona, 37126 Verona, Italy
| | | | | | | | | | | |
Collapse
|
115
|
Jlali M, Gigaud V, Métayer-Coustard S, Sellier N, Tesseraud S, Le Bihan-Duval E, Berri C. Modulation of glycogen and breast meat processing ability by nutrition in chickens: effect of crude protein level in 2 chicken genotypes. J Anim Sci 2011; 90:447-55. [PMID: 21984711 DOI: 10.2527/jas.2011-4405] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to evaluate the impact of 2 isoenergetic growing diets with different CP (17 vs. 23%) on the performance and breast meat quality of 2 lines of chicken divergently selected for abdominal fatness [i.e., fat and lean (LL) lines]. Growth performance, breast and abdominal fat yields, breast meat quality parameters (pH, color, drip loss), and muscle glycogen storage at death were measured. Increased dietary CP resulted in increased BW, increased breast meat yield, and reduced abdominal fatness at slaughter regardless of genotype (P < 0.001). By contrast, dietary CP affected glycogen storage and the related meat quality parameters only in the LL chickens. Giving LL chickens the low-CP diet led to reduced concentration of muscle glycogen (P < 0.01), and as a result, breast meat with a higher (P < 0.001) ultimate pH, decreased (P < 0.001) lightness, and reduced (P < 0.001) drip loss during storage. The decreased muscle glycogen content observed in LL receiving the low-CP diet compared with the high-CP diet occurred concomitantly with greater phosphorylation amount for the α-catalytic subunit of adenosine monophosphate-activated protein kinase and glycogen synthase. This was consistent with the reduced muscle glycogen content observed in LL fed the low-CP diet because adenosine monophosphate-activated protein kinase inhibits glycogen synthesis through its action on glycogen synthase. Our results demonstrated that nutrition is an effective means of modulating breast meat properties in the chicken. The results also highlighted the need to take into account interaction with the genetic background of the animal to select nutritional strategies to improve meat quality traits in poultry.
Collapse
Affiliation(s)
- M Jlali
- INRA, UR83, Recherches Avicoles, F-37380 Nouzilly, France
| | | | | | | | | | | | | |
Collapse
|
116
|
Jang HD, Shin JH, Park DR, Hong JH, Yoon K, Ko R, Ko CY, Kim HS, Jeong D, Kim N, Lee SY. Inactivation of glycogen synthase kinase-3β is required for osteoclast differentiation. J Biol Chem 2011; 286:39043-50. [PMID: 21949120 DOI: 10.1074/jbc.m111.256768] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a serine/threonine kinase originally identified as a regulator of glycogen deposition. Although the role of GSK-3β in osteoblasts is well characterized as a negative regulator of β-catenin, its effect on osteoclast formation remains largely unidentified. Here, we show that the GSK-3β inactivation upon receptor activator of NF-κB ligand (RANKL) stimulation is crucial for osteoclast differentiation. Regulation of GSK-3β activity in bone marrow macrophages by retroviral expression of the constitutively active GSK-3β (GSK3β-S9A) mutant inhibits RANKL-induced osteoclastogenesis, whereas expression of the catalytically inactive GSK-3β (GSK3β-K85R) or small interfering RNA (siRNA)-mediated GSK-3β silencing enhances osteoclast formation. Pharmacological inhibition of GSK-3β further confirmed the negative role of GSK-3β in osteoclast formation. We also show that overexpression of the GSK3β-S9A mutant in bone marrow macrophages inhibits RANKL-mediated NFATc1 induction and Ca(2+) oscillations. Remarkably, transgenic mice expressing the GSK3β-S9A mutant show an osteopetrotic phenotype due to impaired osteoclast differentiation. Further, osteoclast precursor cells from the transgenic mice show defects in expression and nuclear localization of NFATc1. These findings demonstrate a novel role for GSK-3β in the regulation of bone remodeling through modulation of NFATc1 in RANKL signaling.
Collapse
Affiliation(s)
- Hyun Duk Jang
- Division of Life and Pharmaceutical Sciences, Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Siraskar B, Völkl J, Ahmed MSE, Hierlmeier M, Gu S, Schmid E, Leibrock C, Föller M, Lang UE, Lang F. Enhanced catecholamine release in mice expressing PKB/SGK-resistant GSK3. Pflugers Arch 2011; 462:811-9. [DOI: 10.1007/s00424-011-1006-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/26/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022]
|
118
|
Cai M, Huttinger ZM, He H, Zhang W, Li F, Goodman LA, Wheeler DG, Druhan LJ, Zweier JL, Dwyer KM, He G, d'Apice AJF, Robson SC, Cowan PJ, Gumina RJ. Transgenic over expression of ectonucleotide triphosphate diphosphohydrolase-1 protects against murine myocardial ischemic injury. J Mol Cell Cardiol 2011; 51:927-35. [PMID: 21939667 DOI: 10.1016/j.yjmcc.2011.09.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/23/2011] [Accepted: 09/03/2011] [Indexed: 02/06/2023]
Abstract
Modulation of purinergic signaling is critical to myocardial homeostasis. Ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD-1; CD39) which converts the proinflammatory molecules ATP or ADP to AMP is a key regulator of purinergic modulation. However, the salutary effects of transgenic over expression of ENTPD-1 on myocardial response to ischemic injury have not been tested to date. Therefore we hypothesized that ENTPD-1 over expression affords myocardial protection from ischemia-reperfusion injury via specific cell signaling pathways. ENTPD-1 transgenic mice, which over express human ENTPDase-1, and wild-type (WT) littermates were subjected to either ex vivo or in vivo ischemia-reperfusion injury. Infarct size, inflammatory cell infiltrate and intracellular signaling molecule activation were evaluated. Infarct size was significantly reduced in ENTPD-1 versus WT hearts in both ex vivo and in vivo studies. Following ischemia-reperfusion injury, ENTPD-1 cardiac tissues demonstrated an increase in the phosphorylation of the cellular signaling molecule extracellular signal-regulated kinases 1/2 (ERK 1/2) and glycogen synthase kinase-3β (GSK-3β). Resistance to myocardial injury was abrogated by treatment with a non-selective adenosine receptor antagonist, 8-SPT or the more selective A(2B) adenosine receptor antagonist, MRS 1754, but not the A(1) selective antagonists, DPCPX. Additionally, treatment with the ERK 1/2 inhibitor PD98059 or the mitochondrial permeability transition pore opener, atractyloside, abrogated the cardiac protection provided by ENTPDase-1 expression. These results suggest that transgenic ENTPDase-1 expression preferentially conveys myocardial protection from ischemic injury via adenosine A(2B) receptor engagement and associated phosphorylation of the cellular protective signaling molecules, Akt, ERK 1/2 and GSK-3β that prevents detrimental opening of the mitochondrial permeability transition pore.
Collapse
Affiliation(s)
- Ming Cai
- Division of Cardiovascular Medicine and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Nitric oxide synthase and cyclic GMP signaling in cardiac myocytes: from contractility to remodeling. J Mol Cell Cardiol 2011; 52:330-40. [PMID: 21843527 DOI: 10.1016/j.yjmcc.2011.07.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/03/2011] [Accepted: 07/29/2011] [Indexed: 12/31/2022]
Abstract
Cyclic guanosine 3'5'monophosphate (cGMP) is the common downstream second messenger of natriuretic peptides and nitric oxide. In cardiac myocytes, the physiological effects of cGMP are exerted through the activation of protein kinase G (PKG) signaling, and the activation and/or inhibition of phosphodiesterases (PDEs), providing an integration point between cAMP and cGMP signals. Specificity of cGMP signals is achieved through compartmentalization of cGMP synthesis by guanylate cyclases, and cGMP hydrolysis by PDEs. Increasing evidence suggests that cGMP-dependent signaling pathways play an important role in inhibiting cardiac remodeling, through the inhibition Ca(2+) handling upstream of pathological Ca(2+)-dependent signaling pathways. Thus, enhancing cardiac myocyte cGMP signaling represents a promising therapeutic target for treatment of cardiovascular disease. This article is part of a Special Issue entitled "Local Signaling in Myocytes."
Collapse
|
120
|
Patterson C, Portbury A, Schisler JC, Willis MS. Tear me down: role of calpain in the development of cardiac ventricular hypertrophy. Circ Res 2011; 109:453-62. [PMID: 21817165 PMCID: PMC3151485 DOI: 10.1161/circresaha.110.239749] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cardiac hypertrophy develops most commonly in response to hypertension and is an independent risk factor for the development of heart failure. The mechanisms by which cardiac hypertrophy may be reversed to reduce this risk have not been fully determined to the point where mechanism-specific therapies have been developed. Recently, proteases in the calpain family have been implicated in the regulation of the development of cardiac hypertrophy in preclinical animal models. In this review, we summarize the molecular mechanisms by which calpain inhibition has been shown to modulate the development of cardiac (specifically ventricular) hypertrophy. The context within which calpain inhibition might be developed for therapeutic intervention of cardiac hypertrophy is then discussed.
Collapse
Affiliation(s)
- Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Departments of Medicine, Pharmacology, Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Portbury
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | | | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
121
|
Ragot K, Delmas D, Athias A, Nury T, Baarine M, Lizard G. α-Tocopherol impairs 7-ketocholesterol-induced caspase-3-dependent apoptosis involving GSK-3 activation and Mcl-1 degradation on 158N murine oligodendrocytes. Chem Phys Lipids 2011; 164:469-78. [PMID: 21575614 DOI: 10.1016/j.chemphyslip.2011.04.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/30/2022]
Abstract
In important and severe neurodegenerative pathologies, 7-ketocholesterol, mainly resulting from cholesterol autoxidation, may contribute to dys- or demyelination processes. On various cell types, 7-ketocholesterol has often been shown to induce a complex mode of cell death by apoptosis associated with phospholipidosis. On 158N murine oligodendrocytes treated with 7-ketocholesterol (20 μg/mL corresponding to 50 μM, 24-48 h), the induction of a mode of cell death by apoptosis characterised by the occurrence of cells with condensed and/or fragmented nuclei, caspase activation (including caspase-3) and internucleosomal DNA fragmentation was observed. It was associated with a loss of transmembrane mitochondrial potential (ΔΨm) measured with JC-1, with a dephosphorylation of Akt and GSK3 (especially GSK3β), and with degradation of Mcl-1. With α-tocopherol (400 μM), which was capable of counteracting 7-ketocholesterol-induced apoptosis, Akt and GSK3β dephosphorylation were inhibited as well as Mcl-1 degradation. These data underline that the potential protective effects of α-tocopherol against 7-ketocholesterol-induced apoptosis do not depend on the cell line considered, and that the cascade of events (Akt/GSK3β/Mcl-1) constitutes a link between 7-ketocholesterol-induced cytoplasmic membrane dysfunctions and mitochondrial depolarisation leading to apoptosis.
Collapse
Affiliation(s)
- Kévin Ragot
- Centre de Recherche INSERM 866 (Lipides, Nutrition, Cancer)-Equipe Biochimie Métabolique et Nutritionnelle, Université de Bourgogne, Dijon, France
| | | | | | | | | | | |
Collapse
|
122
|
Salcedo-Tello P, Ortiz-Matamoros A, Arias C. GSK3 Function in the Brain during Development, Neuronal Plasticity, and Neurodegeneration. Int J Alzheimers Dis 2011; 2011:189728. [PMID: 21660241 PMCID: PMC3109514 DOI: 10.4061/2011/189728] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/07/2011] [Indexed: 02/06/2023] Open
Abstract
GSK3 has diverse functions, including an important role in brain pathology. In this paper, we address the primary functions of GSK3 in development and neuroplasticity, which appear to be interrelated and to mediate age-associated neurological diseases. Specifically, GSK3 plays a pivotal role in controlling neuronal progenitor proliferation and establishment of neuronal polarity during development, and the upstream and downstream signals modulating neuronal GSK3 function affect cytoskeletal reorganization and neuroplasticity throughout the lifespan. Modulation of GSK3 in brain areas subserving cognitive function has become a major focus for treating neuropsychiatric and neurodegenerative diseases. As a crucial node that mediates a variety of neuronal processes, GSK3 is proposed to be a therapeutic target for restoration of synaptic functioning and cognition, particularly in Alzheimer's disease.
Collapse
Affiliation(s)
- Pamela Salcedo-Tello
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 Ciudad de México, Mexico
| | | | | |
Collapse
|
123
|
Urocortin-induced cardiomyocytes hypertrophy is associated with regulation of the GSK-3β pathway. Heart Vessels 2011; 27:202-7. [PMID: 21505854 DOI: 10.1007/s00380-011-0141-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 03/25/2011] [Indexed: 01/13/2023]
Abstract
Urocortin-1 (UCN), a member of the corticotropin-releasing factor, is a cardioprotective peptide, and is also involved in cardiac hypertrophy. The involvement of GSK-3β, a pivotal kinase in cardiac hypertrophy, in response to UCN is not yet documented. Cardiomyocytes from adult rats were stimulated for 48 h with UCN. Cell size, protein, and DNA contents were determined. Phosphorylated and total forms GSK-3β and the total amount of β-catenin were quantified by Western immunoblots. The effects of astressin, a UCN competitive receptor antagonist, were also evaluated. UCN increased cell size and the protein-to-DNA ratio, in accordance with a hypertrophic response. This effect was associated with increased phosphorylation of GSK-3β and marked accumulation of β-catenin, a downstream element to GSK-3β. All these effects were prevented by astressin and LY294002, an inhibitor of the phosphatidyl-inositol-3-kinase. UCN-induced cardiomyocytes hypertrophy is associated with regulation of GSK-3β, a pivotal kinase involved in cardiac hypertrophy, in a PI3K-dependent manner. Furthermore, the pharmacological blockade of UCN receptors was able to prevent UCN-induced hypertrophy, which leads to inhibition of the Akt/GSK-3β pathway.
Collapse
|
124
|
Yamaguchi N, Chakraborty A, Pasek DA, Molkentin JD, Meissner G. Dysfunctional ryanodine receptor and cardiac hypertrophy: role of signaling molecules. Am J Physiol Heart Circ Physiol 2011; 300:H2187-95. [PMID: 21421818 DOI: 10.1152/ajpheart.00719.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice with three amino acid mutations in the calmodulin binding domain of type-2 ryanodine receptor ion channel (Ryr2(ADA/ADA) mice) have impaired intracellular Ca(2+) handling and cardiac hypertrophy with death at an early age. In this report, the role of signaling molecules implicated in cardiac hypertrophy of Ryr2(ADA/ADA) mice was investigated. Calcineurin A-β (CNA-β) and nuclear factor of activated T cell (NFAT) signaling were monitored in mice carrying either luciferase transgene driven by NFAT-dependent promoter or knockout of CNA-β. NFAT transcriptional activity in Ryr2(ADA/ADA) hearts was not markedly upregulated at embryonic day 16.5 compared with wild-type but significantly increased at postnatal days 1 and 10. Ablation of CNA-β extended the life span of Ryr2(ADA/ADA) mice and enhanced cardiac function without improving sarcoplasmic reticulum Ca(2+) handling or suppressing the expression of genes implicated in cardiac hypertrophy. Embryonic day 16.5 Ryr2(ADA/ADA) mice had normal heart weights with no major changes in Akt1 and class II histone deacetylase phosphorylation and myocyte enhancer factor-2 activity. In contrast, phosphorylation levels of Erk1/2, p90 ribosomal S6 kinases (p90RSKs), and GSK-3β were increased in hearts of embryonic day 16.5 homozygous mutant mice. The results indicate that an impaired calmodulin regulation of RyR2 was neither associated with an altered CNA-β/NFAT, class II histone deacetylase (HDAC)/MEF2, nor Akt signaling in embryonic day 16.5 hearts; rather increased Erk1/2 and p90RSK phosphorylation levels likely leading to reduced GSK-3β activity were found to precede development of cardiac hypertrophy in mice expressing dysfunctional ryanodine receptor ion channel.
Collapse
Affiliation(s)
- Naohiro Yamaguchi
- Dept. of Biochemistry and Biophysics, Univ. of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | |
Collapse
|
125
|
Prévilon M, Pezet M, Dachez C, Mercadier JJ, Rouet-Benzineb P. Sequential alterations in Akt, GSK3β, and calcineurin signalling in the mouse left ventricle after thoracic aortic constriction. Can J Physiol Pharmacol 2011; 88:1093-101. [PMID: 21076497 DOI: 10.1139/y10-087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular hypertrophy (LVH) is an adaptive response to chronic biomechanical stress that generally progresses to maladaptive hypertrophy and heart failure (HF). We studied the activation of protein kinase B (Akt/PKB), glycogen synthase kinase 3 beta (GSK3β), and calcineurin (Cn) at 3, 7, 15, 30, and 60 days following transverse aortic constriction (TAC) in 4-week-old mice. Following TAC, GSK3β inactivation at day 3 was associated with Akt activation, whereas at days 15 and 30, it appeared to be controlled by other kinases. Moderate nonsignificant Cn activation occurred at the early stages, and peak activation at day 30, concomitant with GSK3β inactivation and overt LVH and HF. At the latest stage (day 60), despite further progression of LVH and HF, Cn activation appeared attenuated. Early stages of LVH were associated with Ca2+-handling protein upregulation, whereas major Cn activation, associated with GSK3β inactivation, appeared to engage maladaptive hypertrophy and progression to HF associated with Ca2+-handling protein downregulation.
Collapse
Affiliation(s)
- Miresta Prévilon
- Inserm and Université Paris Diderot, UMR 698, 46 rue Henri Huchard, Paris, France
| | | | | | | | | |
Collapse
|
126
|
Földes G, Mioulane M, Wright JS, Liu AQ, Novak P, Merkely B, Gorelik J, Schneider MD, Ali NN, Harding SE. Modulation of human embryonic stem cell-derived cardiomyocyte growth: a testbed for studying human cardiac hypertrophy? J Mol Cell Cardiol 2011; 50:367-76. [PMID: 21047517 PMCID: PMC3034871 DOI: 10.1016/j.yjmcc.2010.10.029] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/12/2010] [Accepted: 10/26/2010] [Indexed: 11/29/2022]
Abstract
Human embryonic stem cell-derived cardiomyocytes (hESC-CM) are being developed for tissue repair and as a model system for cardiac physiology and pathophysiology. However, the signaling requirements of their growth have not yet been fully characterized. We showed that hESC-CM retain their capacity for increase in size in long-term culture. Exposing hESC-CM to hypertrophic stimuli such as equiaxial cyclic stretch, angiotensin II, and phenylephrine (PE) increased cell size and volume, percentage of hESC-CM with organized sarcomeres, levels of ANF, and cytoskeletal assembly. PE effects on cell size were separable from those on cell cycle. Changes in cell size by PE were completely inhibited by p38-MAPK, calcineurin/FKBP, and mTOR blockers. p38-MAPK and calcineurin were also implicated in basal cell growth. Inhibitors of ERK, JNK, and CaMK II partially reduced PE effects; PKG or GSK3β inhibitors had no effect. The role of p38-MAPK was confirmed by an additional pharmacological inhibitor and adenoviral infection of hESC-CM with a dominant-inhibitory form of p38-MAPK. Infection of hESC-CM with constitutively active upstream MAP2K3b resulted in an increased cell size, sarcomere and cytoskeletal assembly, elongation of the cells, and induction of ANF mRNA levels. siRNA knockdown of p38-MAPK inhibited PE-induced effects on cell size. These results reveal an important role for active protein kinase signaling in hESC-CM growth and hypertrophy, with potential implications for hESC-CM as a novel in vitro test system. This article is part of a special issue entitled, "Cardiovascular Stem Cells Revisited".
Collapse
Key Words
- anf, atrial natriuretic factor
- bfgf, basic human fibroblast growth factor
- camk ii, ca2+/calmodulin-dependent kinase ii
- eb, embryoid body
- erk, extracellular signal-regulated kinases
- gsk3, glycogen synthase kinase 3
- hdacii, histone deacetylase
- fkbp, fk506 binding protein
- hesc, human embryonic stem cells
- hesc-cm, human embryonic stem cell-derived cardiomyocytes
- jnk, c-jun n-terminal kinases
- map2k4 and map2k3, mapk kinase 4 and 3, respectively
- mef, mouse embryonic fibroblast
- mhc, myosin heavy chains
- moi, multiplicity of infection
- mtor, mammalian target of rapamycin
- p38–mapk, p38 mitogen-activated protein kinase
- pkg, protein kinase g
- ryr2, cardiac ryanodine receptor 2
- and serca2, sarco/endoplasmic reticulum ca2±-atpase.
- embryonic stem cells
- cardiomyocytes
- human
- protein kinases
- hypertrophy
Collapse
Affiliation(s)
- Gábor Földes
- National Heart and Lung Institute, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Cheng H, Woodgett J, Maamari M, Force T. Targeting GSK-3 family members in the heart: a very sharp double-edged sword. J Mol Cell Cardiol 2010; 51:607-13. [PMID: 21163265 DOI: 10.1016/j.yjmcc.2010.11.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/26/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
The GSK-3 family of serine/threonine kinases, which is comprised of two isoforms (α and β), was initially identified as a negative regulator of glycogen synthase, the rate limiting enzyme of glycogen synthesis [1,2]. In the 30 years since its initial discovery, the family has been reported to regulate a host of additional cellular processes and, consequently, disease states such as bipolar disorders, diabetes, inflammatory diseases, cancer, and neurodegenerative diseases including Alzheimer's Disease and Parkinson's Disease [3,4]. As a result, there has been intense interest on the part of the pharmaceutical industry in developing small molecule antagonists of GSK-3. Herein, we will review the roles played by GSK-3s in the heart, focusing primarily on recent studies that have employed global and tissue-specific gene deletion. We will highlight roles in various pathologic processes, including pressure overload and ischemic injury, focusing on some striking isoform-specific effects of the family. Due to space limitations and/or the relatively limited data in gene-targeted mice, we will not be addressing the family's roles in ischemic pre-conditioning or its many interactions with various pro- and anti-apoptotic factors. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."
Collapse
Affiliation(s)
- Hui Cheng
- Center for Translational Medicine and Cardiology Division, Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
128
|
Abstract
The mitochondrion is a powerhouse of the cell, a platform of cell signaling and decision-maker of cell death, including death by ischemia/reperfusion. Ischemia shuts off ATP production by mitochondria, and cell viability is compromised by energy deficiency and build-up of cytotoxic metabolites during ischemia. Furthermore, the mitochondrial permeability transition pore (mPTP) is primed by ischemia to open upon reperfusion, leading to reperfusion-induced cell necrosis. mPTP opening can be suppressed by ischemic preconditioning (IPC) and other interventions that induce phosphorylation of GSK-3beta. Activation of the mitochondrial ATP-sensitive K(+) channel (mK(ATP) channel) is an important signaling step in a trigger phase of IPC, which ultimately enhances GSK-3beta phosphorylation upon reperfusion, and this channel functions as a mediator of cytoprotection as well. The mitochondrial Ca(2+)-activated K(+) channel appears to play roles similar to those of the mK(ATP) channel, though regulatory mechanisms of the channels are different. Phosphorylated GSK-3beta inhibits mPTP opening presumably by multiple mechanisms, including preservation of hexokinase II in mPTP complex, prevention of interaction of cyclophilin-D with adenine nucleotide translocase, inhibition of p53 activation and attenuation of ATP hydrolysis during ischemia. However, cytoprotective signaling pathways to GSK-3beta phosphorylation and other mPTP regulatory factors are modified by co-morbidities, including type 2 diabetes, and such modification makes the myocardium refractory to IPC and other cardioprotective agents. Regulatory mechanisms of mPTP, and their alterations by morbidities frequently associated with ischemic heart disease need to be further characterized for translation of mitochondrial and mPTP biology to the clinical arena.
Collapse
|
129
|
Ghosh SS, Salloum FN, Abbate A, Krieg R, Sica DA, Gehr TW, Kukreja RC. Curcumin prevents cardiac remodeling secondary to chronic renal failure through deactivation of hypertrophic signaling in rats. Am J Physiol Heart Circ Physiol 2010; 299:H975-84. [PMID: 20601462 PMCID: PMC2957354 DOI: 10.1152/ajpheart.00154.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/29/2010] [Indexed: 11/22/2022]
Abstract
The prevalence of left ventricular hypertrophy (LVH) is frequent in patients with end-stage renal disease following chronic renal failure (CRF). We investigated the therapeutic efficacy of curcumin, the principal curcuminoid of the Indian curry spice turmeric, in attenuation of LVH and sought to delineate the associated signaling pathways in blunting the hypertrophic response in nephrectomized rats. Adult Sprague-Dawley rats underwent nephrectomy (Nx) by removal of 5/6 of the kidneys. Four groups were studied for 7 wk: 1) control (sham), 2) Nx, 3) Nx + curcumin (150 mg/kg bid), and 4) Nx + enalapril (15 mg/kg bid) as positive control. Subtotal nephrectomy caused renal dysfunction, as evidenced by a gradual increase in proteinuria and elevation in blood urea nitrogen and plasma creatinine. Nx rats showed a significant hypertrophic response and increased diameter of inferior vena cava at inspiration, which was inhibited by treatment with curcumin or enalapril. Moreover, the Nx rats demonstrated changes in the signaling molecules critically involved in the hypertrophic response. These include increased glycogen synthase kinase-3β phosphorylation, β-catenin expression, calcineurin, phosphorylated (p) nuclear factor of activated T cells, pERK, and p-cAMP-dependent kinase. Both curcumin and enalapril variably but effectively deactivated these pathways. Curcumin attenuates cardiac hypertrophy and remodeling in nephrectomized rats through deactivation of multiple hypertrophic signaling pathways. Considering the safety of curcumin, these studies should facilitate future clinical trials in suppressing hypertrophy in patients with CRF.
Collapse
Affiliation(s)
- Siddhartha S Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
130
|
Jonsson M, Henriksson HB, Hagman M, Kajic K, Lindahl A, Jeppsson A, Berggren H, Asp J. Novel 3D culture system with similarities to the human heart for studies of the cardiac stem cell niche. Regen Med 2010; 5:725-36. [DOI: 10.2217/rme.10.63] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims: The aim of this study was to develop a 3D culture system with similarities to the human heart, which was suitable for studies of adult cardiac stem or progenitor cells. Materials & methods: Dissociated cells from human cardiac biopsies were placed in high-density pellet cultures and cultured for up to 6 weeks. Gene and protein expressions, analyzed by quantitative real-time PCR and immunohistochemistry, and morphology were studied in early and late pellets. Results: Cells cultured in the 3D model showed similarities to human cardiac tissue. Moreover, markers for cardiac stem and progenitor cells were also detected after 6 weeks of culture, in addition to markers for signaling pathways active in stem cell niche regulation. Conclusions: The described 3D culture model could be a valuable tool when studying the influence of different compounds on proliferation and differentiation processes in cardiac stem or progenitor cells in cardiac regenerative research.
Collapse
Affiliation(s)
- Marianne Jonsson
- Department of Clinical Chemistry & Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Helena B Henriksson
- Department of Clinical Chemistry & Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Margret Hagman
- Department of Clinical Chemistry & Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Kristina Kajic
- Department of Clinical Chemistry & Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry & Transfusion Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Molecular & Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg & Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Håkan Berggren
- Department of Molecular & Clinical Medicine, the Sahlgrenska Academy, University of Gothenburg & Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | |
Collapse
|
131
|
Fox ER, Klos KL, Penman AD, Blair GJ, Blossom BD, Arnett D, Devereux RB, Samdarshi T, Boerwinkle E, Mosley TH. Heritability and genetic linkage of left ventricular mass, systolic and diastolic function in hypertensive African Americans (From the GENOA Study). Am J Hypertens 2010; 23:870-5. [PMID: 20448532 DOI: 10.1038/ajh.2010.67] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Much of the interindividual variation in left ventricular (LV) structure and function is unexplained by established risk factors and may be due to novel or genetic factors. We used pedigree information from 454 tandem markers across the genome to estimate the heritability and linkage of various echocardiographic measures of LV structure and function in a cohort of African-American hypertensive siblings. METHODS LV mass was calculated according to the American Society of Echocardiography (ASE) simplified cubed equation and indexed to height(2.7). Fractional shortening (FS) was calculated as the percent change in the internal diameter between diastole and systole. Ejection fraction (EF) was calculated from ventricular diameters. Peak mitral early and late diastolic filling velocities were measured from the transmitral pulsed Doppler profile. The maximum-likelihood heritability estimate for each phenotype was obtained using a variance components method. Linkage analyses were performed using the multipoint variance components-based approach. RESULTS There was moderate heritability for LV mass index (34%), interventricular septal thickness (29%), diastolic diameter (42%), EF (40%), FS (39%), and mitral early and late diastolic filling velocities (37 and 45%, respectively). The greatest evidence of genetic linkage was observed for LV mass index on chromosome 3 (logarithm of odds (LOD) score = 2.38), LV EF on chromosome 12 (LOD score = 2.39), and mitral E-wave velocity (MVE) on chromosome 19 (LOD score = 2.69). CONCLUSIONS In this African-American cohort of hypertensive siblings, the greatest evidence for linkage of LV structure and function was on chromosomes 3, 12, and 19.
Collapse
|
132
|
Zhou J, Lal H, Chen X, Shang X, Song J, Li Y, Kerkela R, Doble BW, MacAulay K, DeCaul M, Koch WJ, Farber J, Woodgett J, Gao E, Force T. GSK-3alpha directly regulates beta-adrenergic signaling and the response of the heart to hemodynamic stress in mice. J Clin Invest 2010; 120:2280-91. [PMID: 20516643 DOI: 10.1172/jci41407] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 04/07/2010] [Indexed: 12/31/2022] Open
Abstract
The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases consists of 2 highly related isoforms, alpha and beta. Although GSK-3beta has an important role in cardiac development, much remains unknown about the function of either GSK-3 isoform in the postnatal heart. Herein, we present what we believe to be the first studies defining the role of GSK-3alpha in the mouse heart using gene targeting. Gsk3a(-/-) mice over 2 months of age developed progressive cardiomyocyte and cardiac hypertrophy and contractile dysfunction. Following thoracic aortic constriction in young mice, we observed enhanced hypertrophy that rapidly transitioned to ventricular dilatation and contractile dysfunction. Surprisingly, markedly impaired beta-adrenergic responsiveness was found at both the organ and cellular level. This phenotype was reproduced by acute treatment of WT cardiomyocytes with a small molecule GSK-3 inhibitor, confirming that the response was not due to a chronic adaptation to LV dysfunction. Thus, GSK-3alpha appears to be the central regulator of a striking range of essential processes, including acute and direct positive regulation of beta-adrenergic responsiveness. In the absence of GSK-3alpha, the heart cannot respond effectively to hemodynamic stress and rapidly fails. Our findings identify what we believe to be a new paradigm of regulation of beta-adrenergic signaling and raise concerns given the rapid expansion of drug development targeting GSK-3.
Collapse
Affiliation(s)
- Jibin Zhou
- Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Stuenaes JT, Bolling A, Ingvaldsen A, Rommundstad C, Sudar E, Lin FC, Lai YC, Jensen J. Beta-adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. Br J Pharmacol 2010; 160:116-29. [PMID: 20412069 DOI: 10.1111/j.1476-5381.2010.00677.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Genetic approaches have documented protein kinase B (PKB) as a pivotal regulator of heart function. Insulin strongly activates PKB, whereas adrenaline is not considered a major physiological regulator of PKB in heart. In skeletal muscles, however, adrenaline potentiates insulin-stimulated PKB activation without having effect in the absence of insulin. The purpose of the present study was to investigate the interaction between insulin and beta-adrenergic stimulation in regulation of PKB phosphorylation. EXPERIMENTAL APPROACH Cardiomyocytes were isolated from adult rats by collagenase, and incubated with insulin, isoprenaline, and other compounds. Protein phosphorylation was evaluated by Western blot and phospho-specific antibodies. KEY RESULTS Isoprenaline increased insulin-stimulated PKB Ser(473) and Thr(308) phosphorylation more than threefold in cardiomyocytes. Isoprenaline alone did not increase PKB phosphorylation. Isoprenaline also increased insulin-stimulated GSK-3beta Ser(9) phosphorylation approximately twofold, supporting that PKB phosphorylation increased kinase activity. Dobutamine (beta(1)-agonist) increased insulin-stimulated PKB phosphorylation as effectively as isoprenaline (more than threefold), whereas salbutamol (beta(2)-agonist) only potentiated insulin-stimulated PKB phosphorylation by approximately 80%. Dobutamine, but not salbutamol, increased phospholamban Ser(16) phosphorylation and glycogen phosphorylase activation (PKA-mediated effects). Furthermore, the cAMP analogue that activates PKA (dibutyryl-cAMP and N(6)-benzoyl-cAMP) increased insulin-stimulated PKB phosphorylation by more than threefold without effect alone. The Epac-specific activator 8-(4-chlorophenylthio)-2'-O-methyl-cAMP (007) increased insulin-stimulated PKB phosphorylation by approximately 50%. Db-cAMP and N(6)-benzoyl-cAMP, but not 007, increased phospholamban Ser(16) phosphorylation. CONCLUSIONS AND IMPLICATIONS beta-adrenoceptors are strong regulators of PKB phosphorylation via cAMP and PKA when insulin is present. We hypothesize that PKB mediates important signalling in the heart during beta-adrenergic receptors stimulation.
Collapse
Affiliation(s)
- Jorid T Stuenaes
- Department of Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Walsh T, Pierce SB, Lenz DR, Brownstein Z, Dagan-Rosenfeld O, Shahin H, Roeb W, McCarthy S, Nord AS, Gordon CR, Ben-Neriah Z, Sebat J, Kanaan M, Lee MK, Frydman M, King MC, Avraham KB. Genomic duplication and overexpression of TJP2/ZO-2 leads to altered expression of apoptosis genes in progressive nonsyndromic hearing loss DFNA51. Am J Hum Genet 2010; 87:101-9. [PMID: 20602916 DOI: 10.1016/j.ajhg.2010.05.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 05/11/2010] [Accepted: 05/14/2010] [Indexed: 12/12/2022] Open
Abstract
Age-related hearing loss is due to death over time, primarily by apoptosis, of hair cells in the inner ear. Studies of mutant genes responsible for inherited progressive hearing loss have suggested possible mechanisms for hair cell death, but critical connections between these mutations and the causes of progressive hearing loss have been elusive. In an Israeli kindred, dominant, adult-onset, progressive nonsyndromic hearing loss DFNA51 is due to a tandem inverted genomic duplication of 270 kb that includes the entire wild-type gene encoding the tight junction protein TJP2 (ZO-2). In the mammalian inner ear, TJP2 is expressed mainly in tight junctions, and also in the cytoplasm and nuclei. TJP2 expression normally decreases with age from embryonic development to adulthood. In cells of affected family members, TJP2 transcript and protein are overexpressed, leading to decreased phosphorylation of GSK-3beta and to altered expression of genes that regulate apoptosis. These results suggest that TJP2- and GSK-3beta-mediated increased susceptibility to apoptosis of cells of the inner ear is the mechanism for adult-onset hearing loss in this kindred and may serve as one model for age-related hearing loss in the general population.
Collapse
Affiliation(s)
- Tom Walsh
- Department of Medicine (Medical Genetics), University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Gruson D, Ginion A, Decroly N, Lause P, Vanoverschelde JL, Ketelslegers JM, Bertrand L, Thissen JP. Urotensin II induction of adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathway. Peptides 2010; 31:1326-33. [PMID: 20416349 DOI: 10.1016/j.peptides.2010.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/14/2010] [Accepted: 04/14/2010] [Indexed: 11/22/2022]
Abstract
Urotensin II (UII) a potent vasoactive peptide is upregulated in the failing heart and promotes cardiomyocytes hypertrophy, in particular through mitogen-activated protein kinases. However, the regulation by UII of GSK-3beta, a recognized pivotal signaling element of cardiac hypertrophy has not yet been documented. We therefore investigated in adult cardiomyocytes, if UII phosphorylates GSK-3beta and Akt, one of its upstream regulators and stabilizes beta-catenin, a GSK-3beta dependent nuclear transcriptional co-activator. Primary cultures of adult rat cardiomyocytes were stimulated for 48h with UII. Cell size and protein/DNA contents were determined. Phosphorylated and total forms of Akt, GSK-3beta and the total amount of beta-catenin were quantified by western blot. The responses of cardiomyocytes to UII were also evaluated after pretreatment with the chemical phosphatidyl-inositol-3-kinase inhibitor, LY294002, and urantide, a competitive UII receptor antagonist. UII increased cell size and the protein/DNA ratio, consistent with a hypertrophic response. UII also increased phosphorylation of Akt and its downstream target GSK-3beta. beta-Catenin protein levels were increased. All of these effects of UII were prevented by LY294002, and urantide. The UII-induced adult cardiomyocytes hypertrophy involves the Akt/GSK-3beta signaling pathways and is accompanied by the stabilization of the beta-catenin. All these effects are abolished by competitive inhibition of the UII receptor, consistent with new therapeutic perspectives for heart failure treatment.
Collapse
Affiliation(s)
- D Gruson
- Université catholique de Louvain, Unit of Diabetes and Nutrition, B-1200 Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
136
|
Hou X, Arvisais EW, Davis JS. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase. Endocrinology 2010; 151:2846-57. [PMID: 20351317 PMCID: PMC2875818 DOI: 10.1210/en.2009-1032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.
Collapse
Affiliation(s)
- Xiaoying Hou
- Professor and Director of Research and Development, 983255 Nebraska Medical Center, Omaha, Nebraska 68198-3255, USA
| | | | | |
Collapse
|
137
|
Caruso L, Yuen S, Smith J, Husain M, Opavsky MA. Cardiomyocyte-targeted overexpression of the coxsackie–adenovirus receptor causes a cardiomyopathy in association with β-catenin signaling. J Mol Cell Cardiol 2010; 48:1194-205. [DOI: 10.1016/j.yjmcc.2010.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/29/2009] [Accepted: 01/30/2010] [Indexed: 01/09/2023]
|
138
|
Woulfe KC, Gao E, Lal H, Harris D, Fan Q, Vagnozzi R, DeCaul M, Shang X, Patel S, Woodgett JR, Force T, Zhou J. Glycogen synthase kinase-3beta regulates post-myocardial infarction remodeling and stress-induced cardiomyocyte proliferation in vivo. Circ Res 2010; 106:1635-45. [PMID: 20360256 DOI: 10.1161/circresaha.109.211482] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Numerous studies have proposed that glycogen synthase kinase (GSK)-3beta is a central regulator of the hypertrophic response of cardiomyocytes. However, all of this work has relied on overexpression of GSK-3beta, expression of constitutively active mutants, or small molecule inhibitors with documented off-target effects. Genetic loss of function approaches have not been used in the adult mouse because germ-line deletion of GSK-3beta is embryonic-lethal. OBJECTIVE This study was designed to define the role played by GSK-3beta in pressure overload (PO)-induced hypertrophy and remodeling following myocardial infarction (MI). METHODS AND RESULTS We used a mouse model that allows inducible, cardiomyocyte-specific deletion of GSK-3beta in the adult knockout. Surprisingly, we find that knockout mice exposed to PO induced by thoracic aortic constriction exhibit a normal hypertrophic response. Thus, in contrast to virtually all prior published studies, GSK-3beta appears to play at most a minor role in the hypertrophic response to PO stress. However, GSK-3beta does regulate post-MI remodeling because the GSK-3beta knockouts had less left ventricular dilatation and better-preserved left ventricular function at up to 8 weeks post-MI despite demonstrating significantly more hypertrophy in the remote myocardium. Deletion of GSK-3beta also led to increased cardiomyocyte proliferation following PO and MI. CONCLUSIONS Deletion of GSK-3beta protects against post-MI remodeling and promotes stress-induced cardiomyocyte proliferation in the adult heart. These studies suggest that inhibition of GSK-3beta could be a strategy to both prevent remodeling and to promote cardiac regeneration in pathological states.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Center for Translational Medicine and Cardiology Division, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN. GSK3beta: role in therapeutic landscape and development of modulators. Br J Pharmacol 2010; 160:1-19. [PMID: 20331603 DOI: 10.1111/j.1476-5381.2010.00661.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Glycogen synthase kinase-3 beta (GSK3beta) is a multifunctional serine/threonine kinase which was originally identified as a regulator of glycogen metabolism. It plays a key role in the regulation of numerous signalling pathways including cellular process such as cell cycle, inflammation and cell proliferation. Over the last few years there is a considerable rise in the number of journals and patents publication by different workers worldwide. Many pharmaceutical companies are focusing on GSK3beta as a therapeutic target for the treatment of disease conditions. The present review is focused on signalling pathways of different disease conditions where GSK3beta is implicated. In this review, we present a comprehensive map of GSK3beta signalling pathways in disease physiologies. Structural analysis of GSK3beta along with molecular modelling reports from numerous workers are reviewed in context of design and development of GSK3beta inhibitors. Patent landscape of the small molecule modulators is profiled. The chemo space for small molecule modulators extracted from public and proprietary Kinase Chembiobase for GSK3beta are discussed. Compounds in different clinical phases of discovery are analysed. The review ends with the overall status of this important therapeutic target and challenges in development of its modulators.
Collapse
Affiliation(s)
- S Phukan
- Structure Directed Molecular Design, Jubilant Biosys Ltd, Yeshwanthpur, Bangalore, India
| | | | | | | | | |
Collapse
|
140
|
Webb IG, Nishino Y, Clark JE, Murdoch C, Walker SJ, Makowski MR, Botnar RM, Redwood SR, Shah AM, Marber MS. Constitutive glycogen synthase kinase-3alpha/beta activity protects against chronic beta-adrenergic remodelling of the heart. Cardiovasc Res 2010; 87:494-503. [PMID: 20299330 PMCID: PMC2904659 DOI: 10.1093/cvr/cvq061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aims Glycogen synthase kinase 3 (GSK-3) signalling is implicated in the growth of the heart during development and in response to stress. However, its precise role remains unclear. We set out to characterize developmental growth and response to chronic isoproterenol (ISO) stress in knockin (KI) mice lacking the critical N-terminal serines, 21 of GSK-3α and 9 of GSK-3β respectively, required for inactivation by upstream kinases. Methods and results Between 5 and 15 weeks, KI mice grew more rapidly, but normalized heart weight and contractile performance were similar to wild-type (WT) mice. Isolated hearts of both genotypes responded comparably to acute ISO infusion with increases in heart rate and contractility. In WT mice, chronic subcutaneous ISO infusion over 14 days resulted in cardiac hypertrophy, interstitial fibrosis, and impaired contractility, accompanied by foetal gene reactivation. These effects were all significantly attenuated in KI mice. Indeed, ISO-treated KI hearts demonstrated reversible physiological remodelling traits with increased stroke volume and a preserved contractile response to acute adrenergic stimulation. Furthermore, simultaneous pharmacological inhibition of GSK-3 in KI mice treated with chronic subcutaneous ISO recapitulated the adverse remodelling phenotype seen in WT hearts. Conclusion Expression of inactivation-resistant GSK-3α/β does not affect eutrophic myocardial growth but protects against pathological hypertrophy induced by chronic adrenergic stimulation, maintaining cardiac function and attenuating interstitial fibrosis. Accordingly, strategies to prevent phosphorylation of Ser-21/9, and consequent inactivation of GSK-3α/β, may enable a sustained cardiac response to chronic β-agonist stimulation while preventing pathological remodelling.
Collapse
Affiliation(s)
- Ian G Webb
- Division of Cardiology, King's College London BHF Centre, The Rayne Institute, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Wang F, He Q, Sun Y, Dai X, Yang XP. Female adult mouse cardiomyocytes are protected against oxidative stress. Hypertension 2010; 55:1172-8. [PMID: 20212261 DOI: 10.1161/hypertensionaha.110.150839] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Premenopausal women have less cardiovascular disease and lower cardiovascular morbidity and mortality than men the same age. Our previous studies showed that female mice have lower mortality and better preserved cardiac function after myocardial infarction. However, the precise cellular and molecular mechanisms responsible for such a sex difference are not well established. Using cultured adult mouse cardiomyocytes, we tested the hypothesis that the survival advantage of females stems from activated estrogen receptors and Akt survival signaling pathways. Adult mouse cardiomyocytes were isolated from male and female C57BL/6J mice and treated with hydrogen peroxide (100 micromol/L) for 30 minutes. Cell survival was indicated by rod ratio (rod shaped cells:total cells), cell death by lactate dehydrogenase release, and positive staining of annexin-V (a marker for apoptosis) and propidium iodide (a marker for necrosis). In response to hydrogen peroxide(,) female adult mouse cardiomyocytes exhibited a higher rod ratio, lower lactate dehydrogenase release, and fewer Annexin-V-positive and propidium iodide-positive cells compared with males. Phospho-Akt was greater in females both at baseline and after hydrogen peroxide stimulation. The downstream molecule of Akt, phosphor-GSK-3beta (inactivation), was also higher, whereas caspase 3 activity was lower in females in response to hydrogen peroxide. Bcl-2 did not differ between sexes. Estrogen receptor-alpha was the dominant isoform in females, whereas estrogen receptor-beta was low but similar in both sexes. Our findings demonstrate that female adult mouse cardiomyocytes have a greater survival advantage when challenged with oxidative stress-induced cell death. This may be attributable to activation of Akt and inhibition of GSK-3beta and caspase 3 through an estrogen receptor-alpha-mediated mechanism.
Collapse
Affiliation(s)
- Fangfei Wang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | | | | | | | | |
Collapse
|
142
|
Arnost M, Pierce A, Haar ET, Lauffer D, Madden J, Tanner K, Green J. 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3β. Bioorg Med Chem Lett 2010; 20:1661-4. [PMID: 20138514 DOI: 10.1016/j.bmcl.2010.01.072] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 01/12/2023]
|
143
|
Tsika RW, Ma L, Kehat I, Schramm C, Simmer G, Morgan B, Fine DM, Hanft LM, McDonald KS, Molkentin JD, Krenz M, Yang S, Ji J. TEAD-1 overexpression in the mouse heart promotes an age-dependent heart dysfunction. J Biol Chem 2010; 285:13721-35. [PMID: 20194497 DOI: 10.1074/jbc.m109.063057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
TEA domain transcription factor-1 (TEAD-1) is essential for proper heart development and is implicated in cardiac specific gene expression and the hypertrophic response of primary cardiomyocytes to hormonal and mechanical stimuli, and its activity increases in the pressure-overloaded hypertrophied rat heart. To investigate whether TEAD-1 is an in vivo modulator of cardiac specific gene expression and hypertrophy, we developed transgenic mice expressing hemagglutinin-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that a sustained increase in TEAD-1 protein leads to an age-dependent dysfunction. Magnetic resonance imaging revealed decreases in cardiac output, stroke volume, ejection fraction, and fractional shortening. Isolated TEAD-1 hearts revealed decreased left ventricular power output that correlated with increased betaMyHC protein. Histological analysis showed altered alignment of cardiomyocytes, septal wall thickening, and fibrosis, although electrocardiography displayed a left axis shift of mean electrical axis. Transcripts representing most members of the fetal heart gene program remained elevated from fetal to adult life. Western blot analyses revealed decreases in p-phospholamban, SERCA2a, p-CX43, p-GSK-3alpha/beta, nuclear beta-catenin, GATA4, NFATc3/c4, and increased NCX1, nuclear DYKR1A, and Pur alpha/beta protein. TEAD-1 mice did not display cardiac hypertrophy. TEAD-1 mice do not tolerate stress as they die over a 4-day period after surgical induction of pressure overload. These data provide the first in vivo evidence that increased TEAD-1 can induce characteristics of cardiac remodeling associated with cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Richard W Tsika
- Department of Biochemistry, School of Medicine, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
McCalmon SA, Desjardins DM, Ahmad S, Davidoff KS, Snyder CM, Sato K, Ohashi K, Kielbasa OM, Mathew M, Ewen EP, Walsh K, Gavras H, Naya FJ. Modulation of angiotensin II-mediated cardiac remodeling by the MEF2A target gene Xirp2. Circ Res 2010; 106:952-60. [PMID: 20093629 DOI: 10.1161/circresaha.109.209007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE The vasoactive peptide angiotensin II (Ang II) is a potent cardiotoxic hormone whose actions have been well studied, yet questions remain pertaining to the downstream factors that mediate its effects in cardiomyocytes. OBJECTIVE The in vivo role of the myocyte enhancer factor (MEF)2A target gene Xirp2 in Ang II-mediated cardiac remodeling was investigated. METHODS AND RESULTS Here we demonstrate that the MEF2A target gene Xirp2 (also known as cardiomyopathy associated gene 3 [CMYA3]) is an important effector of the Ang II signaling pathway in the heart. Xirp2 belongs to the evolutionarily conserved, muscle-specific, actin-binding Xin gene family and is significantly induced in the heart in response to systemic administration of Ang II. Initially, we characterized the Xirp2 promoter and demonstrate that Ang II activates Xirp2 expression by stimulating MEF2A transcriptional activity. To further characterize the role of Xirp2 downstream of Ang II signaling we generated mice harboring a hypomorphic allele of the Xirp2 gene that resulted in a marked reduction in its expression in the heart. In the absence of Ang II, adult Xirp2 hypomorphic mice displayed cardiac hypertrophy and increased beta myosin heavy chain expression. Strikingly, Xirp2 hypomorphic mice chronically infused with Ang II exhibited altered pathological cardiac remodeling including an attenuated hypertrophic response, as well as diminished fibrosis and apoptosis. CONCLUSIONS These findings reveal a novel MEF2A-Xirp2 pathway that functions downstream of Ang II signaling to modulate its pathological effects in the heart.
Collapse
Affiliation(s)
- Sarah A McCalmon
- Department of Biology, Boston University, 24 Cummington St, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Hundsrucker C, Skroblin P, Christian F, Zenn HM, Popara V, Joshi M, Eichhorst J, Wiesner B, Herberg FW, Reif B, Rosenthal W, Klussmann E. Glycogen synthase kinase 3beta interaction protein functions as an A-kinase anchoring protein. J Biol Chem 2009; 285:5507-21. [PMID: 20007971 DOI: 10.1074/jbc.m109.047944] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A-kinase anchoring proteins (AKAPs) include a family of scaffolding proteins that target protein kinase A (PKA) and other signaling proteins to cellular compartments and thereby confine the activities of the associated proteins to distinct regions within cells. AKAPs bind PKA directly. The interaction is mediated by the dimerization and docking domain of regulatory subunits of PKA and the PKA-binding domain of AKAPs. Analysis of the interactions between the dimerization and docking domain and various PKA-binding domains yielded a generalized motif allowing the identification of AKAPs. Our bioinformatics and peptide array screening approaches based on this signature motif identified GSKIP (glycogen synthase kinase 3beta interaction protein) as an AKAP. GSKIP directly interacts with PKA and GSK3beta (glycogen synthase kinase 3beta). It is widely expressed and facilitates phosphorylation and thus inactivation of GSK3beta by PKA. GSKIP contains the evolutionarily conserved domain of unknown function 727. We show here that this domain of GSKIP and its vertebrate orthologues binds both PKA and GSK3beta and thereby provides a mechanism for the integration of PKA and GSK3beta signaling pathways.
Collapse
Affiliation(s)
- Christian Hundsrucker
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Gomes ERM, Lara AA, Almeida PWM, Guimarães D, Resende RR, Campagnole-Santos MJ, Bader M, Santos RAS, Guatimosim S. Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3',5'-cyclic monophosphate-dependent pathway. Hypertension 2009; 55:153-60. [PMID: 19996065 DOI: 10.1161/hypertensionaha.109.143255] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The renin-angiotensin (Ang) system plays a pivotal role in the pathogenesis of cardiovascular disease, with Ang II being the major effector of this system. Multiple lines of evidence have shown that Ang-(1-7) exerts cardioprotective effects in the heart by counterregulating Ang II actions. The questions that remain are how and where Ang-(1-7) exerts its effects. By using a combination of molecular biology, confocal microscopy, and a transgenic rat model with increased levels of circulating Ang-(1-7) (TGR[A1-7]3292), we evaluated the signaling pathways involved in Ang-(1-7) cardioprotection against Ang II-induced pathological remodeling in ventricular cardiomyocytes. Rats were infused with Ang II for 2 weeks. We found that ventricular myocytes from TGR(A1-7)3292 rats are protected from Ang II pathological remodeling characterized by Ca(2+) signaling dysfunction, hypertrophic fetal gene expression, glycogen synthase kinase 3beta inactivation, and nuclear factor of activated T-cells nuclear accumulation. Moreover, cardiomyocytes from TGR(A1-7)3292 rats infused with Ang II presented increased expression levels of neuronal NO synthase. To provide a signaling pathway involved in the beneficial effects of Ang-(1-7), we treated neonatal cardiomyocytes with Ang-(1-7) and Ang II for 36 hours. Treatment of cardiomyocytes with Ang-(1-7) prevented Ang II-induced hypertrophy by modulating calcineurin/nuclear factor of activated T-cell signaling cascade. Importantly, antihypertrophic effects of Ang-(1-7) on Ang II-treated cardiomyocytes were prevented by N(G)-nitro-l-arginine methyl ester and 1H-1,2,4oxadiazolo4,2-aquinoxalin-1-one, suggesting that these effects are mediated by NO/cGMP. Taken together, these data reveal a key role for NO/cGMP as a mediator of Ang-(1-7) beneficial effects in cardiac cells.
Collapse
Affiliation(s)
- Enéas R M Gomes
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte MG-CEP: 31270-901, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Wöhrle FU, Daly RJ, Brummer T. Function, regulation and pathological roles of the Gab/DOS docking proteins. Cell Commun Signal 2009; 7:22. [PMID: 19737390 PMCID: PMC2747914 DOI: 10.1186/1478-811x-7-22] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 09/08/2009] [Indexed: 01/13/2023] Open
Abstract
Since their discovery a little more than a decade ago, the docking proteins of the Gab/DOS family have emerged as important signalling elements in metazoans. Gab/DOS proteins integrate and amplify signals from a wide variety of sources including growth factor, cytokine and antigen receptors as well as cell adhesion molecules. They also contribute to signal diversification by channelling the information from activated receptors into signalling pathways with distinct biological functions. Recent approaches in protein biochemistry and systems biology have revealed that Gab proteins are subject to complex regulation by feed-forward and feedback phosphorylation events as well as protein-protein interactions. Thus, Gab/DOS docking proteins are at the centre of entire signalling subsystems and fulfil an important if not essential role in many physiological processes. Furthermore, aberrant signalling by Gab proteins has been increasingly linked to human diseases from various forms of neoplasia to Alzheimer's disease. In this review, we provide a detailed overview of the structure, effector functions, regulation and evolution of the Gab/DOS family. We also summarize recent findings implicating Gab proteins, in particular the Gab2 isoform, in leukaemia, solid tumours and other human diseases.
Collapse
Affiliation(s)
- Franziska U Wöhrle
- Centre for Biological Systems Analysis (ZBSA), Albert-Ludwigs-University of Freiburg, Germany.
| | | | | |
Collapse
|
148
|
Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 2009; 119:2758-71. [PMID: 19652361 DOI: 10.1172/jci39162] [Citation(s) in RCA: 506] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 06/03/2009] [Indexed: 01/11/2023] Open
Abstract
Sirtuin 3 (SIRT3) is a member of the sirtuin family of proteins that promote longevity in many organisms. Increased expression of SIRT3 has been linked to an extended life span in humans. Here, we have shown that Sirt3 protects the mouse heart by blocking the cardiac hypertrophic response. Although Sirt3-deficient mice appeared to have normal activity, they showed signs of cardiac hypertrophy and interstitial fibrosis at 8 weeks of age. Application of hypertrophic stimuli to these mice produced a severe cardiac hypertrophic response, whereas Sirt3-expressing Tg mice were protected from similar stimuli. In primary cultures of cardiomyocytes, Sirt3 blocked cardiac hypertrophy by activating the forkhead box O3a-dependent (Foxo3a-dependent), antioxidant-encoding genes manganese superoxide dismutase (MnSOD) and catalase (Cat), thereby decreasing cellular levels of ROS. Reduced ROS levels suppressed Ras activation and downstream signaling through the MAPK/ERK and PI3K/Akt pathways. This resulted in repressed activity of transcription factors, specifically GATA4 and NFAT, and translation factors, specifically eukaryotic initiation factor 4E (elf4E) and S6 ribosomal protein (S6P), which are involved in the development of cardiac hypertrophy. These results demonstrate that SIRT3 is an endogenous negative regulator of cardiac hypertrophy, which protects hearts by suppressing cellular levels of ROS.
Collapse
|
149
|
Diniz GP, Carneiro-Ramos MS, Barreto-Chaves MLM. Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 2009; 104:653-67. [PMID: 19588183 DOI: 10.1007/s00395-009-0043-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/17/2009] [Accepted: 06/19/2009] [Indexed: 01/13/2023]
Abstract
Several studies have implicated the renin angiotensin system in the cardiac hypertrophy induced by thyroid hormone. However, whether Angiotensin type 1 receptor (AT1R) is critically required to the development of T3-induced cardiomyocyte hypertrophy as well as whether the intracellular mechanisms that are triggered by AT1R are able to contribute to this hypertrophy model is unknown. To address these questions, we employed a selective small interfering RNA (siRNA, 50 nM) or an AT1R blocker (Losartan, 1 microM) to evaluate the specific role of this receptor in primary cultures of neonatal cardiomyocytes submitted to T3 (10 nM) treatment. The cardiomyocytes transfected with the AT1R siRNA presented reduced mRNA (90%, P < 0.001) and protein (70%, P < 0.001) expression of AT1R. The AT1R silencing and the AT1R blockade totally prevented the T3-induced cardiomyocyte hypertrophy, as evidenced by lower mRNA expression of atrial natriuretic factor (66%, P < 0.01) and skeletal alpha-actin (170%, P < 0.01) as well as by reduction in protein synthesis (85%, P < 0.001). The cardiomyocytes treated with T3 demonstrated a rapid activation of Akt/GSK-3beta/mTOR signaling pathway, which was completely inhibited by the use of PI3K inhibitors (LY294002, 10 microM and Wortmannin, 200 nM). In addition, we demonstrated that the AT1R mediated the T3-induced activation of Akt/GSK-3beta/mTOR signaling pathway, since the AT1R silencing and the AT1R blockade attenuated or totally prevented the activation of this signaling pathway. We also reported that local Angiotensin I/II (Ang I/II) levels (120%, P < 0.05) and the AT1R expression (180%, P < 0.05) were rapidly increased by T3 treatment. These data demonstrate for the first time that the AT1R is a critical mediator to the T3-induced cardiomyocyte hypertrophy as well as to the activation of Akt/GSK-3beta/mTOR signaling pathway. These results represent a new insight into the mechanism of T3-induced cardiomyocyte hypertrophy, indicating that the Ang I/II-AT1R-Akt/GSK-3beta/mTOR pathway corresponds to a potential mediator of the trophic effect exerted by T3 in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 2415, São Paulo, SP 05508-900, Brazil
| | | | | |
Collapse
|
150
|
Kuhn C, Frank D, Will R, Jaschinski C, Frauen R, Katus HA, Frey N. DYRK1A is a novel negative regulator of cardiomyocyte hypertrophy. J Biol Chem 2009; 284:17320-17327. [PMID: 19372220 PMCID: PMC2719367 DOI: 10.1074/jbc.m109.006759] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 04/09/2009] [Indexed: 01/09/2023] Open
Abstract
Activation of the phosphatase calcineurin and its downstream targets, transcription factors of the NFAT family, results in cardiomyocyte hypertrophy. Recently, it has been shown that the dual specificity tyrosine (Y) phosphorylation-regulated kinase 1A (DYRK1A) is able to antagonize calcineurin signaling by directly phosphorylating NFATs. We thus hypothesized that DYRK1A might modulate the hypertrophic response of cardiomyocytes. In a model of phenylephrine-induced hypertrophy, adenovirus-mediated overexpression of DYKR1A completely abrogated the hypertrophic response and significantly reduced the expression of the natriuretic peptides ANF and BNP. Furthermore, DYRK1A blunted cardiomyocyte hypertrophy induced by overexpression of constitutively active calcineurin and attenuated the induction of the hypertrophic gene program. Conversely, knockdown of DYRK1A, utilizing adenoviruses encoding for a specific synthetic miRNA, resulted in an increase in cell surface area accompanied by up-regulation of ANF- mRNA. Similarly, treatment of cardiomyocytes with harmine, a specific inhibitor of DYRK1A, revealed cardiomyocyte hypertrophy on morphological and molecular level. Moreover, constitutively active calcineurin led to robust induction of an NFAT-dependent luciferase reporter, whereas DYRK1A attenuated calcineurin-induced reporter activation in cardiomyocytes. Conversely, both knockdown and pharmacological inhibition of DYRK1A significantly augmented the effect of calcineurin in this assay. In summary, we identified DYRK1A as a novel negative regulator of cardiomyocyte hypertrophy. Mechanistically, this effect appears to be mediated via inhibition of NFAT transcription factors.
Collapse
Affiliation(s)
- Christian Kuhn
- From the Department of Internal Medicine III, Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg 69120; Department of Cardiology and Angiology, University of Kiel, Kiel 24105, Germany
| | - Derk Frank
- From the Department of Internal Medicine III, Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg 69120
| | - Rainer Will
- From the Department of Internal Medicine III, Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg 69120
| | - Christoph Jaschinski
- From the Department of Internal Medicine III, Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg 69120
| | - Robert Frauen
- From the Department of Internal Medicine III, Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg 69120
| | - Hugo A Katus
- From the Department of Internal Medicine III, Cardiology, Angiology, and Pneumology, University Hospital of Heidelberg, Heidelberg 69120
| | - Norbert Frey
- Department of Cardiology and Angiology, University of Kiel, Kiel 24105, Germany.
| |
Collapse
|