101
|
A sensitive and quantitative prognosis of C-reactive protein at picogram level using mesoporous silica encapsulated core-shell up-conversion nanoparticle based lateral flow strip assay. Talanta 2021; 230:122335. [PMID: 33934788 DOI: 10.1016/j.talanta.2021.122335] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
C- reactive protein (CRP) is a sensitive indicator for infectious or inflammatory diseases in human which can reflect the body's inflammation latency and early pathophysiological changes. The most common detection method of serum CRP is ELISA that has been proved to be expensive and time-consuming, restricting its use in point-of-care application. In this paper, we demonstrated a lateral flow system for CRP quantification by using mesoporous silica (mSiO2) coated up-converting nanoparticles (UCNPs) (denoted as UCNPs@mSiO2) as fluorescent labels. The up-converting core can emit strong green fluorescence signals under NIR excitation light (980 nm) with excellent photostability, high signal-to-noise ratio and low background fluorescence. By wrapping ultrathin mSiO2 outside, the core-shell structured UCNPs@mSiO2 exhibits good dispersity and stability meanwhile maintains strong fluorescence emission. Besides, the mSiO2 shell provides further functionalities for antibody linkage. By using a portable fluorescence sensor, we reached a CRP detection limit of 0.05 ng/mL and a linear range from 0.1 ng/mL-50 ng/mL, and the detection time was no more than 8 min. The lateral flow test strips exhibit great stability in CRP quantification (CV%<5) and have a life time of more than 1 week at ambient temperature. Furthermore, the proposed system can work with a cloud-enabled smartphone through Bluetooth for Internet of Medical Things application. This CRP detection method proves to be rapid and easy-operated, which has great potential in early inflammatory disease perception in the point-of-care tests and future's 5G-enabled remote healthcare management.
Collapse
|
102
|
Tortella GR, Rubilar O, Diez MC, Padrão J, Zille A, Pieretti JC, Seabra AB. Advanced Material Against Human (Including Covid-19) and Plant Viruses: Nanoparticles As a Feasible Strategy. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000049. [PMID: 33614127 PMCID: PMC7883180 DOI: 10.1002/gch2.202000049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/06/2020] [Indexed: 05/03/2023]
Abstract
The SARS-CoV-2 virus outbreak revealed that these nano-pathogens have the ability to rapidly change lives. Undoubtedly, SARS-CoV-2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture. The current treatments are often ineffective, are prone to develop resistance, or cause considerable adverse side effects. The use of nanotechnology has played an important role to combat viral diseases. In this review three main aspects are in focus: first, the potential use of nanoparticles as carriers for drug delivery. Second, its use for treatments of some human viral diseases, and third, its application as antivirals in plants. With these three themes, the aim is to give to readers an overview of the progress in this promising area of biotechnology during the 2017-2020 period, and to provide a glance at how tangible is the effectiveness of nanotechnology against viruses. Future prospects are also discussed. It is hoped that this review can be a contribution to general knowledge for both specialized and non-specialized readers, allowing a better knowledge of this interesting topic.
Collapse
Affiliation(s)
- Gonzalo R. Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio AmbienteCIBAMA‐BIORENUniversidad de La FronteraTemuco4811230Chile
- Chemical Engineering DepartmentUniversidad de La FronteraTemuco4811230Chile
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T)University of MinhoGuimarães4800‐058Portugal
| | - Joana C. Pieretti
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| | - Amedea B. Seabra
- Center for Natural and Human SciencesUniversidade Federal d ABC (UFABC)Santo André09210‐580Brazil
| |
Collapse
|
103
|
Shirshahi V, Liu G. Enhancing the analytical performance of paper lateral flow assays: From chemistry to engineering. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116200] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
104
|
Nicol CJ. A Grand Challenge for Animal Science: Multiple Goals – Convergent and Divergent. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.640503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
105
|
Kim K, Kashefi-Kheyrabadi L, Joung Y, Kim K, Dang H, Chavan SG, Lee MH, Choo J. Recent advances in sensitive surface-enhanced Raman scattering-based lateral flow assay platforms for point-of-care diagnostics of infectious diseases. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 329:129214. [PMID: 36568647 PMCID: PMC9759493 DOI: 10.1016/j.snb.2020.129214] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 05/03/2023]
Abstract
This review reports the recent advances in surface-enhanced Raman scattering (SERS)-based lateral flow assay (LFA) platforms for the diagnosis of infectious diseases. As observed through the recent infection outbreaks of COVID-19 worldwide, a timely diagnosis of the disease is critical for preventing the spread of a disease and to ensure epidemic preparedness. In this regard, an innovative point-of-care diagnostic method is essential. Recently, SERS-based assay platforms have received increasing attention in medical communities owing to their high sensitivity and multiplex detection capability. In contrast, LFAs provide a user-friendly and easily accessible sensing platform. Thus, the combination of LFAs with a SERS detection system provides a new diagnostic modality for accurate and rapid diagnoses of infectious diseases. In this context, we briefly discuss the recent application of LFA platforms for the POC diagnosis of SARS-CoV-2. Thereafter, we focus on the recent advances in SERS-based LFA platforms for the early diagnosis of infectious diseases and their applicability for the rapid diagnosis of SARS-CoV-2. Finally, the key issues that need to be addressed to accelerate the clinical translation of SERS-based LFA platforms from the research laboratory to the bedside are discussed.
Collapse
Key Words
- AuNPs, gold nanoparticles
- BA, bacillary angiomatosis
- CRISPR, Clustered Regularly Interspaced Short Palindromic Repeat
- HIV, human immunodeficiency virus
- IFA, indirect immunofluorescence assay
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- In vitro diagnostics (IVD)
- Infectious disease
- KSHV, Kaposi’s sarcoma herpes virus
- LFA, lateral flow assay
- Lateral flow assay (LFA)
- NC, nitrocellulose
- NS1, nonstructural protein 1
- POC, point-of-care
- PRV, pseudorabies virus
- Point-of-care (POC)
- RT-PCR, real-time polymerase chain reaction
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- SEB, staphylococcal enterotoxin
- SERS, surface-enhanced Raman scattering
- Si-AuNPs, silica-encapsulated AuNPs
- Surface-enhanced Raman scattering (SERS)
- crRNAs, CRISPR RNAs
Collapse
Affiliation(s)
- Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | | | - Younju Joung
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Kyeongnyeon Kim
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Hajun Dang
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, South Korea
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| |
Collapse
|
106
|
Srivastava M, Srivastava N, Mishra PK, Malhotra BD. Prospects of nanomaterials-enabled biosensors for COVID-19 detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142363. [PMID: 33254928 PMCID: PMC7492839 DOI: 10.1016/j.scitotenv.2020.142363] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 05/03/2023]
Abstract
We are currently facing the COVID-19 pandemic which is the consequence of severe acute respiratory syndrome coronavirus (SARS-CoV-2). Since no specific vaccines or drugs have been developed till date for the treatment of SARS-CoV-2 infection, early diagnosis is essential to further combat this pandemic. In this context, the reliable, rapid, and low-cost technique for SARS-CoV-2 diagnosis is the foremost priority. At present reverse transcription polymerase chain reaction (RT-PCR) is the reference technique presently being used for the detection of SARS-CoV-2 infection. However, in a number of cases, false results have been noticed in COVID-19 diagnosis. To develop advanced techniques, researchers are continuously working and in the series of constant efforts, nanomaterials-enabled biosensing approaches can be a hope to offer novel techniques that may perhaps meet the current demand of fast and early diagnosis of COVID-19 cases. This paper provides an overview of the COVID-19 pandemic and nanomaterials-enabled biosensing approaches that have been recently reported for the diagnosis of SARS-CoV-2. Though limited studies on the development of nanomaterials enabled biosensing techniques for the diagnosis of SARS-CoV-2 have been reported, this review summarizes nanomaterials mediated improved biosensing strategies and the possible mechanisms that may be responsible for the diagnosis of the COVID-19 disease. It is reviewed that nanomaterials e.g. gold nanostructures, lanthanide-doped polysterene nanoparticles (NPs), graphene and iron oxide NPs can be potentially used to develop advanced techniques offered by colorimetric, amperometric, impedimetric, fluorescence, and optomagnetic based biosensing of SARS-CoV-2. Finally, critical issues that are likely to accelerate the development of nanomaterials-enabled biosensing for SARS-CoV-2 infection have been discussed in detail. This review may serve as a guide for the development of advanced techniques for nanomaterials enabled biosensing to fulfill the present demand of low-cost, rapid and early diagnosis of COVID-19 infection.
Collapse
Affiliation(s)
- Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - P K Mishra
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bansi D Malhotra
- Nano-Bioelectronics Laboratory, Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
107
|
Andryukov BG, Lyapun IN, Bynina MP, Matosova EV. Simplified formats of modern biosensors: 60 years of using immunochromatographic test systems in laboratory diagnostics. Klin Lab Diagn 2021; 65:611-618. [PMID: 33245650 DOI: 10.18821/0869-2084-2020-65-10-611-618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunochromatographic test systems known to foreign laboratory diagnostic experts as lateral flow immunoassay (LFIA) are simplified tape formats of modern biosensors. For 60 years, they have been widely used for the rapid detection of target molecules (ligands) in biosubstrates and the diagnosis of many diseases and conditions. The growing popularity of these test systems for providing medical care or diagnostics in developing countries, medical facilities, in emergency situations, as well as for individual home use by patients while monitoring their health are the main factors contributing to the continuous development and improvement of these methods, the emergence of a new generation of formats. The attractiveness and popularity of these fast, easy-to-use, inexpensive and portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as the ease of interpretation of the results. These qualities have passed the test of time, and today LFIA test systems are fully consistent with the modern world concept of «point-of-care testing», finding wide application not only in medicine, but also in ecology, veterinary medicine, and agriculture. This review will highlight the modern principles of designing the most widely used formats of immunochromatographic test systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as current achievements and prospects of LFIA technology. Modern innovations aimed at improving the analytical characteristics of LFIA technology are interesting, promising and can bring additional benefits to immunochromatographic platforms that have gained popularity and attractiveness for six decades.
Collapse
Affiliation(s)
- Boris Georgievich Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science.,Far Eastern Federal University of the Ministry of Education and Science of Russia
| | - I N Lyapun
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - M P Bynina
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| | - E V Matosova
- Somov Research Institute of Epidemiology and Microbiology, Russian Ministry of Education and Science
| |
Collapse
|
108
|
Li S, Meng HM, Zong H, Chen J, Li J, Zhang L, Li Z. Entropy-driven amplification strategy-assisted lateral flow assay biosensor for ultrasensitive and convenient detection of nucleic acids. Analyst 2021; 146:1668-1674. [PMID: 33475625 DOI: 10.1039/d0an02273j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Accurate, sensitive and rapid nucleic acid tests are important to implement timely treatment measures and control the spread of disease. Herein, we developed a novel portable platform for highly sensitive and specific detection of nucleic acids by integrating an entropy-driven amplification strategy into lateral flow assay (LFA) biosensor. We find that introducing an entropy-driven amplification strategy yields bright intensities on the test line of LFA stirp, which results in improved sensitivity for targeted nucleic acid detection. The developed LFA biosensor showed good reproducibility, specificity and sensitivity for target DNA and H1N1-RNA detection with a low detection limit of 1.43 pM and 2.02 pM, respectively. Its practical potential was also verified by detecting the target nucleic acid in human serum. More importantly, the design of an entropy-driven amplification strategy in this portable platform retained the convenient, rapid and low-cost characterizations of LFA biosensor due to the compact amplification principle and the elimination of enzyme use. Thus, we believe that this assay biosensor will certainly report its own position in the timely detection of nucleic acid, especially when the medical environment and resources are fewer.
Collapse
Affiliation(s)
- Shasha Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | | | | | | | | | | | | |
Collapse
|
109
|
Kumar S, Nehra M, Khurana S, Dilbaghi N, Kumar V, Kaushik A, Kim KH. Aspects of Point-of-Care Diagnostics for Personalized Health Wellness. Int J Nanomedicine 2021; 16:383-402. [PMID: 33488077 PMCID: PMC7814661 DOI: 10.2147/ijn.s267212] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Advancements in analytical diagnostic systems for point-of-care (POC) application have gained considerable attention because of their rapid operation at the site required to manage severe diseases, even in a personalized manner. The POC diagnostic devices offer easy operation, fast analytical outcome, and affordable cost, which promote their advanced research and versatile adoptability. Keeping advantages in view, considerable efforts are being made to design and develop smart sensing components such as miniaturized transduction, interdigitated electrodes-based sensing chips, selective detection at low level, portable packaging, and sustainable durability to promote POC diagnostics according to the needs of patient care. Such effective diagnostics systems are in demand, which creates the challenge to make them more efficient in every aspect to generate a desired bio-informatic needed for better health access and management. Keeping advantages and scope in view, this mini review focuses on practical scenarios associated with miniaturized analytical diagnostic devices at POC application for targeted disease diagnostics smartly and efficiently. Moreover, advancements in technologies, such as smartphone-based operation, paper-based sensing assays, and lab-on-a-chip (LOC) which made POC more sensitive, informative, and suitable for major infectious disease diagnosis, are the main focus here. Besides, POC diagnostics based on automated patient sample integration with a sensing platform is continuously improving therapeutics interventions against specific infectious disease. This review also discussed challenges associated with state-of-the-art technology along with future research opportunities to design and develop next generation POC diagnostic systems needed to manage infectious diseases in a personalized manner.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Sakina Khurana
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
110
|
Proximity ligation assay: an ultrasensitive method for protein quantification and its applications in pathogen detection. Appl Microbiol Biotechnol 2021; 105:923-935. [PMID: 33427935 DOI: 10.1007/s00253-020-11049-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023]
Abstract
It is of great significance to establish sensitive and accurate pathogen detection methods, considering the continuous emergence or re-emergence of infectious diseases seriously influences the safety of human and animals. Proximity ligation assay (PLA) is developed for the sensitive protein detection and also can be used for the detection of pathogens. PLA employs aptamer or monoclonal/polyclonal antibody-nucleic acid complexes as proximity probes. When the paired proximity probes bind to the same target protein or protein complex, they will be adjacent to each other and form an amplifiable DNA sequence through ligation. Combining the specificity of enzyme-linked immunosorbent assay (ELISA) and sensitivity of polymerase chain reaction (PCR), PLA transforms the detection of protein into the detection of DNA nucleic acid sequence. Therefore, as an ultrasensitive protein assay, PLA has great potential for quantification, localization of protein, and clinical diagnostics. In this review, we summarize the basic principles of PLA and its applications in pathogen detection. KEY POINTS: • Different forms of proximity ligation assay are introduced. • Applications of proximity ligation assay in pathogen detection are summarized. • Proximity ligation assay is an ultrasensitive method to quantify protein and pathogen.
Collapse
|
111
|
Azeem I, El yaagoubi M, Sousa AML, Li TD, Yameen B, Lau KHA. Binding enhancements of antibody functionalized natural and synthetic fibers. RSC Adv 2021; 11:30353-30360. [PMID: 35480255 PMCID: PMC9041155 DOI: 10.1039/d1ra04645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/02/2021] [Indexed: 12/05/2022] Open
Abstract
Development of low cost biosensing using convenient and environmentally benign materials is important for wide adoption and ultimately improved healthcare and sustainable development. Immobilized antibodies are often incorporated as an essential biorecognition element in point-of-care biosensors but these proteins are costly. We present a strategy of combining convenient and low-cost surface functionalization approaches for increasing the overall binding activity of antibody functionalized natural and synthetic fibers. We demonstrate a simple one-step in situ silica NP growth protocol for increasing the surface area available for functionalization on cotton and polyester fabrics as well as on nanoporous cellulose substrates. Comparing this effect with the widely adopted and low cost plant-based polyphenol coating to enhance antibody immobilization, we find that both approaches can similarly increase overall surface activity, and we illustrate conditions under which the two approaches can produce an additive effect. Furthermore, we introduce co-immobilization of antibodies with a sacrificial “steric helper” protein for further enhancing surface activities. In combination, several hundred percent higher activities compared to physical adsorption can be achieved while maintaining a low amount of antibodies used, thus paving a practical path towards low cost biosensing. Cotton, nanoporous cellulose and polyester fabric surfaces are functionalized with combinations of in situ grown silica NPs, polyphenol coating, and protein co-immobilization to enhance surface area, antibody binding efficiency, and biosensing.![]()
Collapse
Affiliation(s)
- Iqra Azeem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Marwa El yaagoubi
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Ana M. L. Sousa
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Tai-De Li
- Advanced Science Research Center (ASRC) of Graduate Center, Department of Physics in City University of New York, CUNY, New York, NY 10031, USA
| | - Basit Yameen
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering (SBASSE), Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
112
|
Paper-Based Biosensors with Lateral/Vertical Flow Assay. Bioanalysis 2021. [DOI: 10.1007/978-981-15-8723-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
113
|
Jiang X, Lillehoj PB. Lateral flow immunochromatographic assay on a single piece of paper. Analyst 2020; 146:1084-1090. [PMID: 33347520 DOI: 10.1039/d0an02073g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lateral flow immunochromatographic assays (LFIAs) are analytical devices used to detect the presence of one or more target analytes in a liquid sample. While LFIAs are one of the simplest and inexpensive types of immunoassays, they consist of multiple components (sample pad, conjugate pad, membrane, absorbent pad, backing card) and materials, requiring time-consuming device assembly. Here, we report a unique lateral flow immunochromatographic assay constructed from a single piece of cellulose paper, which is fabricated via laser cutting. Compared with conventional lateral flow immunochromatographic devices, this single-layer immunoassay enables simpler and faster fabrication, while minimizing material consumption and overall device costs. For proof-of-concept, this device was used to detect Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a biomarker for malaria infection, which could be detected at concentrations as low as 4 ng mL-1 by the naked eye with no cross reactivity with other common Plasmodium protein biomarkers. While offering similar speed and ease-of-use as conventional LFIAs with a higher detection sensitivity than existing LFIAs for PfHRP2 detection, this single-layer lateral flow immunoassay has the potential to improve malaria testing, as well as the detection of other important protein biomarkers for point-of-care testing.
Collapse
Affiliation(s)
- Xue Jiang
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA.
| | | |
Collapse
|
114
|
Richards SJ, Keenan T, Vendeville JB, Wheatley DE, Chidwick H, Budhadev D, Council CE, Webster CS, Ledru H, Baker AN, Walker M, Galan MC, Linclau B, Fascione MA, Gibson MI. Introducing affinity and selectivity into galectin-targeting nanoparticles with fluorinated glycan ligands. Chem Sci 2020; 12:905-910. [PMID: 34163856 PMCID: PMC8179109 DOI: 10.1039/d0sc05360k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/14/2020] [Indexed: 12/20/2022] Open
Abstract
Galectins are potential biomarkers and therapeutic targets. However, galectins display broad affinity towards β-galactosides meaning glycan-based (nano)biosensors lack the required selectivity and affinity. Using a polymer-stabilized nanoparticle biosensing platform, we herein demonstrate that the specificity of immobilised lacto-N-biose towards galectins can be 'turned on/off' by using site-specific glycan fluorination and in some cases reversal of specificity can be achieved. The panel of fluoro-glycans were obtained by a chemoenzymatic approach, exploiting BiGalK and BiGalHexNAcP enzymes from Bifidobacterium infantis which are shown to tolerate fluorinated glycans, introducing structural diversity which would be very laborious by chemical methods alone. These results demonstrate that integrating non-natural, fluorinated glycans into nanomaterials can encode unprecedented selectivity with potential applications in biosensing.
Collapse
Affiliation(s)
| | - Tessa Keenan
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | | | - David E Wheatley
- School of Chemistry, University of Southampton Highfield Southampton SO171BJ UK
| | - Harriet Chidwick
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Darshita Budhadev
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Claire E Council
- School of Chemistry, University of Southampton Highfield Southampton SO171BJ UK
| | - Claire S Webster
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Helene Ledru
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Marc Walker
- Department of Physics, University of Warwick CV4 7AL UK
| | - M Carmen Galan
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Bruno Linclau
- School of Chemistry, University of Southampton Highfield Southampton SO171BJ UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Warwick Medical School, University of Warwick CV4 7AL UK
| |
Collapse
|
115
|
Islam KU, Iqbal J. An Update on Molecular Diagnostics for COVID-19. Front Cell Infect Microbiol 2020; 10:560616. [PMID: 33244462 PMCID: PMC7683783 DOI: 10.3389/fcimb.2020.560616] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
A novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been recently identified as an infectious disease affecting the respiratory system of humans. This disease is caused by SARS-CoV-2 that was identified in Chinese patients having severe pneumonia and flu-like symptoms. COVID-19 is a contagious disease that spreads rapidly via droplet particles arising through sneezing and coughing action of an infected person. The reports of asymptomatic carriers changed the scenario of symptom based-diagnosis in COVID-19 and intensified the need for proper diagnosis of the majority of the population to combat the rapid transmission of virus. The diagnosis of positive cases is necessary to ensure prompt care to affected people and also to curb further spread of infection in the population. Collecting samples at the right time and from the exact anatomical site is crucial for proper molecular diagnosis. After the complete genome sequence was available, China formulated RT-PCR as a primary diagnostic procedure for detecting SARS-CoV-2. Many in-house and commercial diagnostic kits have been developed or are under development that have a potential to lower the burden of diagnosis on the primary diagnostic techniques like RT-PCR. Serological based diagnosis is another broad category of testing that can detect different serum antibodies like IgG, IgM, and IgA in an infected patient. PCR-based diagnostic procedures that are commonly used for pathogen detection need sophisticated machines and assistance of a technical expert. Despite their reliable accuracy, they are not cost-effective tests, which a common man can afford, so it becomes imperative to look for other diagnostic approaches, which could be cost effective, rapid, and sensitive with consistent accuracy. To make such diagnostics available to the common man, many techniques can be exploited among, which are Point of Care (POC), also known as bed side testing, which is developing as a portable and promising tool in pathogen diagnosis. Other lateral flow assay (LFA)-based techniques like SHERLOCK, CRISPR-Cas12a (AIOD-CRISPR), and FNCAS9 editor-limited uniform detection assay (FELUDA), etc. have shown promising results in rapid detection of pathogens. Diagnosis holds a critical importance in the pandemic situation when there is no potential drug for the pathogen available in the market. This review sums up the different diagnostic approaches designed or proposed to combat the crisis of widespread diagnosis due to the sudden outbreak of a novel pathogen, SARS-CoV-2 in 2019.
Collapse
Affiliation(s)
| | - Jawed Iqbal
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
116
|
Cardoso VMDO, Moreira BJ, Comparetti EJ, Sampaio I, Ferreira LMB, Lins PMP, Zucolotto V. Is Nanotechnology Helping in the Fight Against COVID-19? FRONTIERS IN NANOTECHNOLOGY 2020. [DOI: 10.3389/fnano.2020.588915] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
117
|
Uptake of silver, gold, and hybrids silver-iron, gold-iron and silver-gold aminolevulinic acid nanoparticles by MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2020; 32:102080. [PMID: 33157326 DOI: 10.1016/j.pdpdt.2020.102080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nanoparticles show promise for theranostic applications in cancer. The metal-based nanoparticles can be used both as photosensitizers and delivery vehicles. In bimetallic particles based on gold or silver and iron, a combination of the plasmonic features of the gold or silver components with the magnetic properties of the iron makes these hybrid nanomaterials suitable for both imaging and therapeutic applications. Herein, we discuss toxicity and cell internalization of metallic (silver and gold) and bimetallic (silver-iron, gold-iron, and silver-gold) aminolevulinic acid (ALA) nanoparticles. ALA can control the production of an intracellular photosensitizer, protoporphyrin IX (PpIX), commonly used in photodynamic therapy. METHODS Nanoparticles were synthesized by photoreduction method and characterized by UV/Vis spectra, Zeta potential, FTIR, XRD, and transmission electron microscopy. The amount of singlet oxygen generation by a yellow LED, and ultrasound was studied for gold, gold-iron, and silver-gold nanoparticles. Cytotoxicity assays of MCF-7 in the presence of nanoparticles were performed, and PpIX fluorescence was quantified by high content screening (HCS). RESULTS Red fluorescence observed after 24 h of nanoparticles incubation on MCF-7 cells, indicated that the ALA in surface of nanoparticles was efficiently converted to PpIX. The best results for singlet oxygen generation with LED or ultrasound irradiation were obtained with ALA:AgAuNPs. CONCLUSIONS The studied nanoparticles present the potential to deliver aminolevulinic acid to breast cancer cells efficiently, generate singlet oxygen, and convert ALA into PpIX inside the cells allowing photodiagnosis and therapies such as photodynamic and sonodynamic therapies.
Collapse
|
118
|
Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. Quantum dot nanobead-based fluorescent immunochromatographic assay for simultaneous quantitative detection of fumonisin B1, dexyonivalenol, and zearalenone in grains. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107331] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
119
|
Santiago I. Trends and Innovations in Biosensors for COVID-19 Mass Testing. Chembiochem 2020; 21:2880-2889. [PMID: 32367615 PMCID: PMC7687022 DOI: 10.1002/cbic.202000250] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/04/2020] [Indexed: 12/19/2022]
Abstract
Fast and widespread diagnosis is crucial to fighting against the outbreak of COVID-19. This work surveys the landscape of available and emerging biosensor technologies for COVID-19 testing. Molecular diagnostic assays based on quantitative reverse transcription polymerase chain reaction are used in most clinical laboratories. However, the COVID-19 pandemic has overwhelmed testing capacity and motivated the development of fast point-of-care tests and the adoption of isothermal DNA amplification. Antigenic and serological rapid tests based on lateral-flow immunoassays suffer from low sensitivity. Advanced digital systems enhance performance at the expense of speed and the need for large equipment. Emerging technologies, including CRISPR gene-editing tools, benefit from high sensitivity and specificity of molecular diagnostics and the easy use of lateral-flow assays. DNA sequencing and sample pooling strategies are highlighted to bring out the full capacity of the available biosensor technologies and accelerate mass testing.
Collapse
Affiliation(s)
- Ibon Santiago
- Physics DepartmentTechnical University of MunichAm Coulombwall 4a/II85748Garching b. MünchenGermany
| |
Collapse
|
120
|
Feuerstein GZ, Mansfield MA, Lelkes PI, Alesci S, Marcinkiewicz C, Butlin N, Sternberg M. The Use of Near-Infrared Light-Emitting Fluorescent Nanodiamond Particles to Detect Ebola Virus Glycoprotein: Technology Development and Proof of Principle. Int J Nanomedicine 2020; 15:7583-7599. [PMID: 33116489 PMCID: PMC7548262 DOI: 10.2147/ijn.s261952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background There is a dire need for rapid diagnostic tests of high sensitivity, efficiency, and point-of-test reporting capability to mitigate lethal viral epidemic outbreaks. Purpose To develop a new operating system within the lateral flow assay (LFA) format for Ebola virus (EBOV), based on fluorescent nanodiamond particles (FNDP) nitrogen vacancy (NV) emitting near-infrared (NIR) light. Specifically, we aimed to detail technical issues and the feasibility of mobilizing FNDP-NV on nitrocellulose membranes (NCM) and capturing them at test and control lines. Methods FNDP-NV-200nm, 400nm or 800nm were linked to anti-EBOV glycoprotein (GP) monoclonal antibodies (mAb) and tested for LFA performance by monitoring NIR emissions using an in vivo imaging system or optoelectronic device (OED). Anti-EBOV recombinant glycoprotein (GP) humanized mAb c13C6 was linked to FNDP-NV-200nm for the mobile phase; and a second anti-GP mouse mAb, 6D8, was printed on NCM at the test line. Goat anti-human IgG (GAH-IgG) served as a nonspecific antibody for conjugated FNDP-NV-200nm at the control line. Results FNDP-NV-200nm-c13C6 specifically and dose-dependently bound to recombinant EBOV GP in vitro and was effectively captured in a sandwich configuration at the test line by mAb 6D8. FNDP-NV-200nm-c13C6 was captured on the control line by GAH-IgG. The OED quantitative analysis of NIR (obtained in less than 1 minute) was further validated by an in vivo imaging system. Conclusion FNDP-NV-200nm performance as a reporter for EBOV GP rapid diagnostic tests suggests an opportunity to replace contemporary visual tests for EBOV GP and other highly lethal viral pathogens. Mobile, battery-operated OED adds portability, quantitative data, rapid data collection, and point-of-test reporting capability. Further development of FNDP-NV-200nm within a LFA format is justified.
Collapse
Affiliation(s)
| | | | - Peter I Lelkes
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | - Cezary Marcinkiewicz
- Debina Diagnostics Inc., Newtown Square, PA, USA.,Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|
121
|
Li W, Feng Y, Xiao L. Diagnosis and molecular typing of Enterocytozoon bieneusi: the significant role of domestic animals in transmission of human microsporidiosis. Res Vet Sci 2020; 133:251-261. [PMID: 33035931 DOI: 10.1016/j.rvsc.2020.09.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/30/2022]
Abstract
Enterocytozoon bieneusi is an obligate intracellular fungus-like parasite with high genetic diversity among mammalian and avian hosts. Based on polymorphism analysis of the ribosomal internal transcribed spacer (ITS), nearly 500 genotypes were identified within E. bieneusi. Those genotypes form several genetic groups that exhibit phenotypic differences in host specificity and zoonotic potential and probably have varying public health implications. Some of the genotypes in Group 1 (e.g., D, EbpC, and Type IV) and Group 2 (e.g., BEB4, BEB6, I, and J) are the most common ones that infect a variety of hosts including humans and thus are of public health importance. By contrast, those genotypes in other genetic groups (Groups 3-11) are mostly restricted to the hosts from which they were originally isolated, which would have unknown or limited impacts on public health. Advances on diagnosis and molecular typing of E. bieneusi are introduced in this review. Genotype distribution pattern of E. bieneusi in major domestic animal groups (pigs, cattle, sheep, goats, cats, and dogs), the role of those animals in zoonotic transmission of microsporidiosis, and food and water as potential vehicles for transmission are interpreted here as well. This review highlights the importance of including more genetic or epidemiological data obtained in the same geographical areas and using more reliable genetic markers to analyze the actual extent of host specificity in E. bieneusi, for the purpose of fully appreciating zoonotic risks of those domestic animals in close contacts with men and enhancing our understanding of the modes of transmission.
Collapse
Affiliation(s)
- Wei Li
- Heilongjiang Key Laboratory for Zoonosis, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
122
|
Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6:280-304. [PMID: 33134745 PMCID: PMC7595842 DOI: 10.3934/microbiol.2020018] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of ‘point-of-care testing’, finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.
Collapse
Affiliation(s)
- Boris G Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation.,Far Eastern Federal University (FEFU), Vladivostok, Russian Federation
| |
Collapse
|
123
|
Misawa K, Yamamoto T, Hiruta Y, Yamazaki H, Citterio D. Text-Displaying Semiquantitative Competitive Lateral Flow Immunoassay Relying on Inkjet-Printed Patterns. ACS Sens 2020; 5:2076-2085. [PMID: 32575982 DOI: 10.1021/acssensors.0c00637] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work describes a colorimetric signaling approach for competitive lateral flow immunoassays (LFIAs) enabling sensitive and semiquantitative direct visual result readout in the form of "text", demonstrated on the example of 8-hydroxy-2'-deoxyguanosine (8-OHdG) detection. The distinctive feature of the developed text-displaying LFIA (TD-LFIA) is the test zone system consisting of a combination of two types of inkjet-deposited capture molecules referred to as "mask antigen" and "text antibody", allowing for sensitive turn-on signaling as opposed to the inverse response of conventional competitive LFIAs. The user operation is limited to sample application, followed by direct reading of assay results written in text after approximately 10 min. TD-LFIAs enabled the visual detection of 8-OHdG at concentrations down to 3 ng/mL, which is a 2-3 orders of magnitude lower visual detection limit than that achieved with the corresponding conventional design and is comparable to the existing LFIAs relying on external signal readout equipment. Highly reproducible observer-independent assay performance was confirmed, and the result interpretation is not influenced by sample color and readout timing. Making use of customizable threshold settings for text appearance, a device for semiquantitative assays was developed and successfully applied to the detection of 8-OHdG at four concentration levels (trace, low, medium, and high) in 54 human urine samples within the clinically relevant concentration range. The sensitive and intuitive signaling method of the developed system offers great potential for an alternative competitive LFIA platform suitable for real-world point-of-care testing applications.
Collapse
Affiliation(s)
- Kazushi Misawa
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Tomohiro Yamamoto
- Techno Medica Company, Ltd., 5-5-1 Nakamachidai, Tsuzuki-ku, Yokohama 224-0041, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroki Yamazaki
- Techno Medica Company, Ltd., 5-5-1 Nakamachidai, Tsuzuki-ku, Yokohama 224-0041, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
124
|
Tomimuro K, Tenda K, Ni Y, Hiruta Y, Merkx M, Citterio D. Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood. ACS Sens 2020; 5:1786-1794. [PMID: 32441095 DOI: 10.1021/acssensors.0c00564] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibodies are important biomarkers in clinical diagnostics in addition to being increasingly used for therapeutic purposes. Although numerous methods for their detection and quantification exist, they predominantly require benchtop instruments operated by specialists. To enable the detection of antibodies at point-of-care (POC), the development of simple and rapid assay methods independent of laboratory equipment is of high relevance. In this study, we demonstrate microfluidic thread-based analytical devices (μTADs) as a new platform for antibody detection by means of bioluminescence resonance energy-transfer (BRET) switching sensor proteins. The devices consist of vertically assembled layers including a blood separation membrane and a plastic film with a sewn-in cotton thread, onto which the BRET sensor proteins together with the substrate furimazine have been predeposited. In contrast to intensity-based signaling, the BRET mechanism enables time-independent, ratiometric readout of bioluminescence signals with a digital camera in a darkroom or a smartphone camera with a 3D-printed lens adapter. The device design allows spatially separated deposition of multiple bioluminescent proteins on a single sewn thread, enabling quantification of multiple antibodies in 5 μL of whole blood within 5 min. The bioluminescence response is independent of the applied sample volume within the range of 5-15 μL. Therefore, μTADs in combination with BRET-based sensor proteins represent user-friendly analytical tools for POC quantification of antibodies without any laboratory equipment in a finger prick (5 μL) of whole blood.
Collapse
Affiliation(s)
- Kosuke Tomimuro
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| | - Keisuke Tenda
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| | - Yan Ni
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| | - Maarten Merkx
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| |
Collapse
|
125
|
Ivanov AV, Safenkova IV, Drenova NV, Zherdev AV, Dzantiev BB. Development of lateral flow assay combined with recombinase polymerase amplification for highly sensitive detection of Dickeya solani. Mol Cell Probes 2020; 53:101622. [PMID: 32569728 DOI: 10.1016/j.mcp.2020.101622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Dickeya solani, one of the most significant bacterial pathogens, infects potato plants, resulting in severe economic damage. In this study, a lateral flow assay (LFA) combined with isothermal DNA amplification was developed for rapid, specific, and sensitive diagnosis of the potato blackleg disease caused by D. solani. Recombinase polymerase amplification (RPA) was chosen for this purpose. Five primer pairs specific to different regions of the D. solani genome were designed and screened. A primer pair providing correct recognition of the target sequence was aligned with the SOL-C region specific to D. solani and flanked by fluorescein (forward primer) and biotin (reverse primer). Lateral flow test strips were constructed to detect DNA amplicons. The RPA-LFA demonstrated a detection limit equal to 14,000 D. solani colony-forming units per gram of potato tuber. This assay provided sensitivity corresponding to the polymerase chain reaction (PCR) but was implemented at a fixed temperature (39 °C) over 30 min. No unspecific reactions with Pectobacterium, Clavibacter, and other Dickeya species were observed. Detection of latent infection of D. solani in the potato tubers by the developed RPA-LFA was verified by PCR. The obtained results confirmed that RPA-LFA has great potential for highly sensitive detection of latent infection.
Collapse
Affiliation(s)
- Aleksandr V Ivanov
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Irina V Safenkova
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Natalia V Drenova
- All-Russian Plant Quarantine Centre, Pogranichnaya Street, 32, Bykovo-2, Moscow Region, 140150, Russia
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, 119071, Russia.
| |
Collapse
|
126
|
de Puig H, Bosch I, Collins JJ, Gehrke L. Point-of-Care Devices to Detect Zika and Other Emerging Viruses. Annu Rev Biomed Eng 2020; 22:371-386. [DOI: 10.1146/annurev-bioeng-060418-052240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rapid diagnostic tests (point-of-care devices) are critical components of informed patient care and public health monitoring (surveillance applications). We propose that among the many rapid diagnostics platforms that have been tested or are in development, lateral flow immunoassays and synthetic biology–based diagnostics (including CRISPR-based diagnostics) represent the best overall options given their ease of use, scalability for manufacturing, sensitivity, and specificity. This review describes the identification of lateral flow immunoassay monoclonal antibody pairs that detect and distinguish between closely related pathogens and that are used in combination with functionalized multicolored nanoparticles and computational methods to deconvolute data. We also highlight the promise of synthetic biology–based diagnostic tests, which use synthetic genetic circuits that activate upon recognition of a pathogen-associated nucleic acid sequence, and discuss how the combined or parallel use of lateral flow immunoassays and synthetic biology tools may represent the future of scalable rapid diagnostics.
Collapse
Affiliation(s)
- Helena de Puig
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Irene Bosch
- E25Bio Inc., Cambridge, Massachusetts 02139, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Lee Gehrke
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA;, ,
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
127
|
Tang J, Jiang Y, Ge Z, Wu H, Chen H, Dai J, Gu Y, Mao X, Lu J. Quantum Dots-Based Point-of-Care Measurement of Procalcitonin in Finger-Prick Blood and Venous Whole Blood Specimens. Lab Med 2020; 51:34-40. [PMID: 31245815 DOI: 10.1093/labmed/lmz025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To determine whether the performance of a new quantum dots-based point-of-care test (POCT) devices is qualified for procalcitonin testing. METHODS Finger-prick and venous blood specimens from 153 patients were measured with a quantum dots-based POCT device; the results were compared with those from the reference method. RESULTS The quantum dots-based POCT device correlated well with the reference method in measuring plasma, venous whole blood, and finger-prick blood. No significant bias was observed (-0.08 ng/mL). At 0.5 ng per mL cutoff value, the concordances were 96.6%, 94.6%, and 90.5% for plasma, venous whole blood, and finger-prick blood, respectively. And at 2 ng per mL cutoff value, the concordances were 98.0%, 96.6%, and 95.3%, respectively. CONCLUSIONS The quantum dots-based POCT device measured procalcitonin with multiple specimen types, high sensitivity, wide detection range, and short turnaround time. It would allow a more widespread use of procalcitonin and help lessen the burden of overcrowding in healthcare facilities in China.
Collapse
Affiliation(s)
- Junming Tang
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Yan Jiang
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Zhijun Ge
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Haifeng Wu
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Huajun Chen
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Ji Dai
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Yinjie Gu
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People's Hospital, Affiliated Jiangsu University, China
| | - Junjie Lu
- Department of Critical Care Medicine, Yixing People's Hospital, Affiliated Jiangsu University, China
| |
Collapse
|
128
|
Time-resolved fluorescence resonance energy transfer-based lateral flow immunoassay using a raspberry-type europium particle and a single membrane for the detection of cardiac troponin I. Biosens Bioelectron 2020; 163:112284. [PMID: 32421632 DOI: 10.1016/j.bios.2020.112284] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Herein, we report a novel lateral flow immunoassay (LFIA) system for detecting cardiac troponin I (cTnI) in serum using the time-resolved fluorescence resonance energy transfer (TR-FRET) technique and the fusion 5 membrane. The fusion 5 membrane is used as a strip for LFIA, and it is constructed without additional matrices (such as a sample or conjugation pad). Although this strategy for constructing the LFIA strip is quite simple and cost-effective, LFIA is still not suitable for the analysis of biomarkers that require high sensitivity, such as cTnI. Therefore, the highly sensitive TR-FRET technique is integrated with a fusion 5 membrane-based LFIA strip. To accomplish this, a microparticle covered with europium chelate-contained silica nanoparticles is synthesized as a raspberry-type particle and used as a fluorescence donor. A gold nanorod (GNR) is used as a fluorescence acceptor particle. In the TR-FRET-based LFIA system, the competitive immunoassay should be performed to satisfy the condition required for the FRET phenomenon to occur. Therefore, the fluorescence signal is proportional to the cTnI concentration, ensuring a quantitative analysis of cTnI can be accomplished by measuring the fluorescence signal between the raspberry-type europium particles and GNR. Using the developed TR-FRET-based LFIA system, sensitive detection of cTnI is successfully achieved with a limit of detection of 97 pg/mL in human serum. Moreover, because the result can be obtained using one matrix (the fusion 5 membrane), the developed LFIA system can be employed in cTnI diagnosis with a simple manufacturing process.
Collapse
|
129
|
Nucleic acid lateral flow assay with recombinase polymerase amplification: Solutions for highly sensitive detection of RNA virus. Talanta 2020; 210:120616. [DOI: 10.1016/j.talanta.2019.120616] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
|
130
|
Mahmoudi T, de la Guardia M, Baradaran B. Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115842] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
131
|
Key significance of DNA-target size in lateral flow assay coupled with recombinase polymerase amplification. Anal Chim Acta 2020; 1102:109-118. [DOI: 10.1016/j.aca.2019.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
|
132
|
Yoo HJ, Baek C, Lee MH, Min J. Integrated microsystems for the in situ genetic detection of dengue virus in whole blood using direct sample preparation and isothermal amplification. Analyst 2020; 145:2405-2411. [PMID: 32053125 DOI: 10.1039/c9an02435b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Owing to the frequent outbreak of dengue fever worldwide, a highly sensitive but in situ simple process diagnostic device is required to detect the dengue virus. However, the current immune affinity-based methods have sensitivity issues and nucleic acid-based diagnostic devices have not been suitable for field diagnosis due to the complexity in sample preparation. Here, a simple and fast nucleic acid-based diagnostic tool to directly detect dengue viruses in whole blood is demonstrated using a microbead-assisted direct sample preparation buffer (MB-buffer) and isothermal amplification (loop-mediated isothermal amplification, LAMP). To maximize the performance of the sample preparation process in the microfluidic chip platform, the chemical composition of the sample preparation buffer is simplified and combined with physical tools (heating and bead beating). The entire serial processes consisted of only (1) sample (whole blood) loading, (2) stirring for 90 s, (3) heating at 70 °C for 10 min, and (4) LAMP amplification in the simply designed microfluidic chip cartridge. A single syringe was utilized for sample loading and microfluidic solution transfer. Consequently, dengue viruses were qualitatively detected and discriminated with high sensitivity (LOD: 102 PFU per 200 μL of whole blood) in less than 1 hour without the use of any sophisticated system.
Collapse
Affiliation(s)
- Hyun Jin Yoo
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06974, South Korea.
| | | | | | | |
Collapse
|
133
|
Zhao W, Tian S, Huang L, Liu K, Dong L. The review of Lab-on-PCB for biomedical application. Electrophoresis 2020; 41:1433-1445. [PMID: 31945803 DOI: 10.1002/elps.201900444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022]
Abstract
Prevention of infectious diseases, diagnosis of diseases, and determination of treatment options all rely on biosensors to detect and analyze biomarkers, which are usually divided into four parts: cell analysis, biochemical analysis, immunoassay, and molecular diagnosis. However, traditional biosensing devices are expensive, bulky, and require a lot of time to detect, which also limited its application in resource-limited areas. In recent years, Lab-on-PCB, which combines biosensing technology and PCB technology, has been widely used in biomedical applications due to its high integration, personalized design, and easy mass production. Among these Lab-on-PCB sensing devices, the PCB circuit plays an important role. It can be directly used as a resistance sensor to count cells, and also used as a control device to automatically control the detection device. Flexible PCBs can be used to make wearable medical biosensors. In addition, due to the high degree of integration of the PCB circuit, Lab-on-PCB can perform multiple inspections on the same platform, which reduces the inspection time equivalently. Therefore, in this review paper, we discuss the application of Lab-on-PCB in four analysis methods of cell analysis, biochemical analysis, immunoassay, and molecular diagnosis, and give some suggestions for improvement and future development trends at the end.
Collapse
Affiliation(s)
- Wenhao Zhao
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Shulin Tian
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Ke Liu
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Lijuan Dong
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, P.R. China
| |
Collapse
|
134
|
Ratajczak K, Stobiecka M. High-performance modified cellulose paper-based biosensors for medical diagnostics and early cancer screening: A concise review. Carbohydr Polym 2020; 229:115463. [DOI: 10.1016/j.carbpol.2019.115463] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 12/21/2022]
|
135
|
Immunochromatographic System for Serodiagnostics of Cattle Brucellosis Using Gold Nanoparticles and Signal Amplification with Quantum Dots. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this article, we describe an immunochromatographic test system developed for rapid serodiagnostics of cattle brucellosis using two markers: Gold nanoparticles (GNPs) and quantum dots (QDs). The test system was compared with immunochromatographic serodiagnostics systems that use only one marker. The approbation of the test system was conducted on samples of cattle sera with low, but diagnostically significant titers of specific antibodies. We show that when two conjugates are used, the intensity of the detectable signal increases by 2–3 times compared with the test system using the QD conjugate and by more than nine times compared with the system using the GNP conjugate.
Collapse
|
136
|
Qu Z, Wang K, Alfranca G, de la Fuente JM, Cui D. A plasmonic thermal sensing based portable device for lateral flow assay detection and quantification. NANOSCALE RESEARCH LETTERS 2020; 15:10. [PMID: 31933217 PMCID: PMC6957652 DOI: 10.1186/s11671-019-3240-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Point-of-care testing (POCT) is widely used for early diagnosis and monitoring of diseases. Lateral flow assay (LFA) is a successfully commercial tool for POCT. However, LFA often suffers from a lack of quantification and analytical sensitivity. To solve these drawbacks, we have previously developed a thermal LFA using plasmonic gold nanoparticles for thermal contrast into a portable device. Although this methodology significantly improves the analytical sensitivity compared with conventional visual detection, quantification problems are still remaining. In this study, we optimized the operating conditions for the device using conduction and radiation thermal sensing modes allowing the quantification of LFA. The limit of detection of the strips merely containing nanoparticles was decreased by 5-fold (conduction mode) and 12-fold (radiation mode) compared to traditional visual detection. The effect of the ambient temperature was studied for both methods of detection showing that the radiation mode was more affected by the ambient temperature than the conduction mode. To validate the thermal sensing method, human chorionic gonadotropin (HCG) biomarker was quantified using our LFA strips, obtaining a detection limit of 2.8 mIU/mL when using the radiation method of detection.
Collapse
Affiliation(s)
- Zhuo Qu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China
| | - Gabriel Alfranca
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Nanomedicina (CIBER-BBN), 50018, Madrid, Spain.
| | - Jesús M de la Fuente
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009, Zaragoza, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales Nanomedicina (CIBER-BBN), 50018, Madrid, Spain.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, China.
| |
Collapse
|
137
|
Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens Bioelectron 2020; 152:112015. [PMID: 32056735 DOI: 10.1016/j.bios.2020.112015] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/19/2022]
Abstract
Paper-based lateral-flow assays (LFAs) have achieved considerable commercial success and continue to have a significant impact on medical diagnostics and environmental monitoring. Conventional LFAs are typically performed by examining the color changes in the test bands by naked eye. However, for critical biochemical markers that are present in extremely small amounts in the clinical specimens, this readout method is not quantitative, and does not provide sufficient sensitivity or suitable detection limit for a reliable assay. Diverse technologies for high-sensitivity LFA detection have been developed and commercialization efforts are underway. In this review, we aim to provide a critical and objective overview of the recent progress in high-sensitivity LFA detection technologies, which involve the exploitation of the physical and chemical responses of transducing particles. The features and biomedical applications of the technologies, along with future prospects and challenges, are also discussed.
Collapse
|
138
|
Gubala V, Giovannini G, Kunc F, Monopoli MP, Moore CJ. Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-019-0056-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Background
Fluorescent silica nanoparticles have been extensively utilised in a broad range of biological applications and are facilitated by their predictable, well-understood, flexible chemistry and apparent biocompatibility. The ability to couple various siloxane precursors with fluorescent dyes and to be subsequently incorporated into silica nanoparticles has made it possible to engineer these fluorophores-doped nanomaterials to specific optical requirements in biological experimentation. Consequently, this class of nanomaterial has been used in applications across immunodiagnostics, drug delivery and human-trial bioimaging in cancer research.
Main body
This review summarises the state-of-the-art of the use of dye-doped silica nanoparticles in bioapplications and firstly accounts for the common nanoparticle synthesis methods, surface modification approaches and different bioconjugation strategies employed to generate biomolecule-coated nanoparticles. The use of dye-doped silica nanoparticles in immunoassays/biosensing, bioimaging and drug delivery is then provided and possible future directions in the field are highlighted. Other non-cancer-related applications involving silica nanoparticles are also briefly discussed. Importantly, the impact of how the protein corona has changed our understanding of NP interactions with biological systems is described, as well as demonstrations of its capacity to be favourably manipulated.
Conclusions
Dye-doped silica nanoparticles have found success in the immunodiagnostics domain and have also shown promise as bioimaging agents in human clinical trials. Their use in cancer delivery has been restricted to murine models, as has been the case for the vast majority of nanomaterials intended for cancer therapy. This is hampered by the need for more human-like disease models and the lack of standardisation towards assessing nanoparticle toxicity. However, developments in the manipulation of the protein corona have improved the understanding of fundamental bio–nano interactions, and will undoubtedly assist in the translation of silica nanoparticles for disease treatment to the clinic.
Collapse
|
139
|
Nanomaterials and Their Negative Effects on Human Health. APPLICATIONS OF NANOMATERIALS IN HUMAN HEALTH 2020. [PMCID: PMC7305518 DOI: 10.1007/978-981-15-4802-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mesostructured silica, dendrimers, and allotropes of carbon were exhaustively used in biomedical, cosmetics, semiconductors, and food industry applications. Considering the huge prospect of nanomaterials, their potential hazards on exposure to humans and their related ecotoxicological effects needs to be summarized. Nanoparticles with size below 100 nm could pass into the lung and then to blood through inhalation, ingestion, and skin contact. As nanotechnology innovation is expected to achieve $ 2231 million by 2025, humans will be exposed ever increasingly in day-to-day life and in industries. In this review, the latest synthetic methodology of silica, dendrimers, and CNTs, their biological applications (in vitro and in vivo) related to toxicity were discussed. In terms of structured silica, the toxic and non-toxic effect induced by specific templates (cetylpyridinium bromide, cetyltrimethylammonium bromide, dipalmitoylphosphatidylcholine, C16L-tryptophan, C16-L-histidine, and C16-L-poline) that are used to generate mesoporous silica, silica nanoparticle sizes (25, 50, 60, 115, and 500 nm), and silane functionalization (NH2 and COOH) were discussed. The recent applications of different generations (G3, G4, G5, and G6) of amphiphilic Janus dendrimers were discussed along with toxicity effect of different charged dendrimers (cationic and anionic) and effect of PEGylation. Recent synthesis, advantages, and disadvantages of carbon nanotubes (CNTs) were presented for structures like single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The influence of diameter of SWCNTs (linear and short), thickness (thin and thick), effect of oxidation, metal oxide species (TiO2, Fe, and Au), and biocompatible polymers (polyethylene glycol, bisphosphonate, and alendronate) were shown in relation to molecular pathways in animal cells.
Collapse
|
140
|
Bramhachari PV. Advanced Immunotechnological Methods for Detection and Diagnosis of Viral Infections: Current Applications and Future Challenges. DYNAMICS OF IMMUNE ACTIVATION IN VIRAL DISEASES 2020. [PMCID: PMC7121190 DOI: 10.1007/978-981-15-1045-8_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Diagnosis and identification of viruses is an important component of diagnostic virology laboratory. Although various modes of diagnostic methods are now available at disposal, a vast majority of the diseases across the globe remain undiagnosed. This is largely due to the overlapping undifferentiated set of symptoms across myriad set of RNA and DNA viral diseases. As such, it becomes critical to take into consideration several factors for viral diagnosis ranging from the type and quality of specimen collected, time of specimen collection, mode of transport, accuracy, specificity, sensitivity, and the type of diagnostic method used. This chapter broadly emphasizes various methods on diagnostic virology ranging from the classical methods of diagnosis to the most recently developed molecular methods of detection of virus.
Collapse
|
141
|
Huang L, Tian S, Zhao W, Liu K, Ma X, Guo J. Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst 2020; 145:2828-2840. [DOI: 10.1039/c9an02485a] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiplexed detection of biomarkers, i.e., simultaneous detection of multiple biomarkers in a single assay, can enhance diagnostic precision, improve diagnostic efficiency, reduce diagnostic cost, and alleviate pain of patients.
Collapse
Affiliation(s)
- Lei Huang
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Shulin Tian
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Wenhao Zhao
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Ke Liu
- School of Automation Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| | - Xing Ma
- State Key Lab of Advanced Welding and Joining
- Harbin Institute of Technology (Shenzhen)
- Shenzhen 518055
- China
- Ministry of Education Key Lab of Micro-systems and Micro-structures Manufacturing
| | - Jinhong Guo
- School of Communication and Information Engineering
- University of Electronic Science and Technology of China
- Chengdu 611731
- P. R. China
| |
Collapse
|
142
|
Piazza RM, Caetano BA, Henrique CP, Luz D, Munhoz DD, Polatto JM, Rocha LB, Silva MA, Mitsunari T. Immunological tests for diarrhoea caused by diarrhoeagenic Escherichia coli targeting their main virulence factors. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
143
|
Amini M, Pourmand MR, Faridi-Majidi R, Heiat M, Mohammad Nezhady MA, Safari M, Noorbakhsh F, Baharifar H. Optimising effective parameters to improve performance quality in lateral flow immunoassay for detection of PBP2a in methicillin-resistant Staphylococcus aureus (MRSA). JOURNAL OF EXPERIMENTAL NANOSCIENCE 2020; 15:266-279. [DOI: 10.1080/17458080.2020.1775197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/18/2020] [Indexed: 07/12/2024]
Affiliation(s)
- M. Amini
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M. R. Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - R. Faridi-Majidi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - M. Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Disease, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - M. Safari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - F. Noorbakhsh
- Department of Immunology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - H. Baharifar
- Department of Medical Nanotechnology, Applied biophotonics research center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
144
|
Bakare OO, Fadaka AO, Klein A, Keyster M, Pretorius A. Diagnostic approaches of pneumonia for commercial-scale biomedical applications: an overview. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1826363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Adewale Oluwaseun Fadaka
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Department of Science and Technology/Mintek Nanotechnology Innovation Centre, Bio-labels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashley Pretorius
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
145
|
Wang S, Gao Y, Jin Q, Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater Sci 2020; 8:6825-6839. [DOI: 10.1039/d0bm00974a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review highlights the different mechanisms of current nano-antibiotic systems for combatting serious antibiotic resistance of bacteria.
Collapse
Affiliation(s)
- Shuting Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yifan Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Jian Ji
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
146
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
147
|
Cheng N, Yang Z, Wang W, Wang X, Xu W, Luo Y. A Variety of Bio-nanogold in the Fabrication of Lateral Flow Biosensors for the Detection of Pathogenic Bacteria. Curr Top Med Chem 2019; 19:2476-2493. [DOI: 10.2174/1568026619666191023125020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Pathogenic bacteria constitute one of the most serious threats to human health. This has led
to the development of technologies for the rapid detection of bacteria. Bio-nanogold-based lateral flow
biosensors (LFBs) are a promising assay due to their low limit of detection, high sensitivity, good selectivity,
robustness, low cost, and quick assay performance ability. The aim of this review is to provide
a critical overview of the current variety of bio-nanogold LFBs and their targets, with a special focus on
whole-cell and DNA detection of pathogenic bacteria. The challenges of bio-nanogold-based LFBs in
improving their performance and accessibility are also comprehensively discussed.
Collapse
Affiliation(s)
- Nan Cheng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhansen Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weiran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xinxian Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
148
|
Kumar S, Nehra M, Mehta J, Dilbaghi N, Marrazza G, Kaushik A. Point-of-Care Strategies for Detection of Waterborne Pathogens. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4476. [PMID: 31623064 PMCID: PMC6833035 DOI: 10.3390/s19204476] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/31/2022]
Abstract
Waterborne diseases that originated due to pathogen microorganisms are emerging as a serious global health concern. Therefore, rapid, accurate, and specific detection of these microorganisms (i.e., bacteria, viruses, protozoa, and parasitic pathogens) in water resources has become a requirement of water quality assessment. Significant research has been conducted to develop rapid, efficient, scalable, and affordable sensing techniques to detect biological contaminants. State-of-the-art technology-assisted smart sensors have improved features (high sensitivity and very low detection limit) and can perform in a real-time manner. However, there is still a need to promote this area of research, keeping global aspects and demand in mind. Keeping this view, this article was designed carefully and critically to explore sensing technologies developed for the detection of biological contaminants. Advancements using paper-based assays, microfluidic platforms, and lateral flow devices are discussed in this report. The emerging recent trends, mainly point-of-care (POC) technologies, of water safety analysis are also discussed here, along with challenges and future prospective applications of these smart sensing technologies for water health diagnostics.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Jyotsana Mehta
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana 125001, India.
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Ajeet Kaushik
- Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805-8531, USA.
| |
Collapse
|
149
|
Aoyama S, Monden K, Akiyama Y, Yamada M, Seki M. Enhanced Immunoadsorption on Imprinted Polymeric Microstructures with Nanoengineered Surface Topography for Lateral Flow Immunoassay Systems. Anal Chem 2019; 91:13377-13382. [DOI: 10.1021/acs.analchem.9b03454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shuhei Aoyama
- Denka Innovation Center, Denka Co., Ltd., 3-5-1 Asahi-machi, Machida, Tokyo 194-8560, Japan
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenji Monden
- Denka Innovation Center, Denka Co., Ltd., 3-5-1 Asahi-machi, Machida, Tokyo 194-8560, Japan
| | - Yuto Akiyama
- Denka Innovation Center, Denka Co., Ltd., 3-5-1 Asahi-machi, Machida, Tokyo 194-8560, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
150
|
Wang C, Xiao R, Wang S, Yang X, Bai Z, Li X, Rong Z, Shen B, Wang S. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens Bioelectron 2019; 146:111754. [PMID: 31605985 DOI: 10.1016/j.bios.2019.111754] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Abstract
Protein toxins, such as botulinum neurotoxin type A (BoNT/A) and staphylococcal enterotoxin B (SEB), easily pollute food and water and are ultra-toxic to humans and animals, thus requiring a sensitive on-site detection method. In this study, we reported a novel lateral flow assay (LFA) strip on the basis of magnetic quantum dot nanoparticles (MagQD NPs) for sensitive and multiplex protein toxin detection in food samples. A new type of MagQD NP was prepared by fixing the dense carboxylated QDs on the surface of polyethyleneimine-modified Fe3O4 magnetic NPs (MNPs) and applied in LFA with the following functions: capture and enrich target toxins from sample solutions and serve as advanced fluorescent labels for the quantitative determination of targets on the strip. Through this strategy, the assay realized quantified BoNT/A and SEB detection in 30 min with the limits of detection of 2.52 and 2.86 pg/mL, respectively. The selectivity and the ability of quantitative analysis of the method were validated in real food samples, including milk and juice. This MagQD-LFA biosensor showed considerable potential as a point-of-care testing tool for the sensitive detection of trace toxins.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Shu Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Xingsheng Yang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zikun Bai
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xinying Li
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| | - Beifen Shen
- Institute of Basic Medical Sciences, Beijing, 100850, PR China.
| | - Shengqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| |
Collapse
|