101
|
Souid M, Bday J, Souissi S, Ghedira R, Gabbouj S, Shini-Hadhri S, Toumi D, Bergaoui H, Zouari I, Faleh R, Zakhama A, Hassen E. Arginase is upregulated in healthy women infected by oncogenic HPV types. Biomarkers 2023; 28:628-636. [PMID: 37860844 DOI: 10.1080/1354750x.2023.2273226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023]
Abstract
INTRODUCTION The implication of arginase enzyme in Human Papillomavirus (HPV) infections has not been clearly elucidated. The present study investigates whether HPV infection is correlated with changes in plasmatic arginase activity and cervical ARG1 and ARG2 mRNA expression among infected women negative for intraepithelial lesions (NIL). MATERIEL AND METHODS The present study included 300 women. The plasmatic arginase activity was evaluated by a colorimetric assay. Cervical HPV was detected by real-time PCR. The circulating viral load and ARG1 and ARG2 mRNA expression quantification were performed by quantitative real-time PCR. RESULTS A significant increase in plasma arginase activity and ARG1 and ARG2 mRNA expression levels in cervical cells was observed among HPV-positive women compared to the HPV-negative group. The highest levels were significantly associated with oncogenic HPV, and increased arginase activity was associated with a high HPV circulating viral load. Moreover, the highest levels of arginase activity were observed in oncogenic HPV-positive inflammatory smears. DISCUSSION These data suggest that HPV could modulate arginase activity and expression, which may restrict arginine bioavailability and inhibit this amino acid's antiviral properties. CONCLUSION Our findings revealed that arginase activity and isoform gene expression were upregulated in women with HPV infection, particularly the oncogenic HPV types.
Collapse
Affiliation(s)
- Moufida Souid
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Jaweher Bday
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Sameh Souissi
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| | - Randa Ghedira
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | - Sallouha Gabbouj
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | | | - Dhekra Toumi
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Haifa Bergaoui
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Ines Zouari
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Raja Faleh
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Department of Gynecology and Obstetrics, University Hospital of Monastir, Monastir, Tunisia
| | - Abdelfatteh Zakhama
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
| | - Elham Hassen
- Molecular Immuno-Oncology Laboratory, Monastir University, Monastir, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
102
|
Furlong MA, Liu T, Snider JM, Tfaily MM, Itson C, Beitel S, Parsawar K, Keck K, Galligan J, Walker DI, Gulotta JJ, Burgess JL. Evaluating changes in firefighter urinary metabolomes after structural fires: an untargeted, high resolution approach. Sci Rep 2023; 13:20872. [PMID: 38012297 PMCID: PMC10682406 DOI: 10.1038/s41598-023-47799-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
Firefighters have elevated rates of urinary tract cancers and other adverse health outcomes, which may be attributable to environmental occupational exposures. Untargeted metabolomics was applied to characterize this suite of environmental exposures and biological changes in response to occupational firefighting. 200 urine samples from 100 firefighters collected at baseline and two to four hours post-fire were analyzed using untargeted liquid-chromatography and high-resolution mass spectrometry. Changes in metabolite abundance after a fire were estimated with fixed effects linear regression, with false discovery rate (FDR) adjustment. Partial least squares discriminant analysis (PLS-DA) was also used, and variable important projection (VIP) scores were extracted. Systemic changes were evaluated using pathway enrichment for highly discriminating metabolites. Metabolome-wide-association-study (MWAS) identified 268 metabolites associated with firefighting activity at FDR q < 0.05. Of these, 20 were annotated with high confidence, including the amino acids taurine, proline, and betaine; the indoles kynurenic acid and indole-3-acetic acid; the known uremic toxins trimethylamine n-oxide and hippuric acid; and the hormone 7a-hydroxytestosterone. Partial least squares discriminant analysis (PLS-DA) additionally implicated choline, cortisol, and other hormones. Significant pathways included metabolism of urea cycle/amino group, alanine and aspartate, aspartate and asparagine, vitamin b3 (nicotinate and nicotinamide), and arginine and proline. Firefighters show a broad metabolic response to fires, including altered excretion of indole compounds and uremic toxins. Implicated pathways and features, particularly uremic toxins, may be important regulators of firefighter's increased risk for urinary tract cancers.
Collapse
Affiliation(s)
- Melissa A Furlong
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA.
| | - Tuo Liu
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- University of Arizona Cancer Center, Tucson, USA
| | - Malak M Tfaily
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Christian Itson
- Department of Environmental Science, University of Arizona, Tucson, USA
| | - Shawn Beitel
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | - Kristen Keck
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, USA
| | | | - Douglas I Walker
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | | - Jefferey L Burgess
- Environmental Health Sciences, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1295 N Martin Ave, Tucson, AZ, 85724, USA
| |
Collapse
|
103
|
Awonuga AO, Camp OG, Abu-Soud HM. A review of nitric oxide and oxidative stress in typical ovulatory women and in the pathogenesis of ovulatory dysfunction in PCOS. Reprod Biol Endocrinol 2023; 21:111. [PMID: 37996893 PMCID: PMC10666387 DOI: 10.1186/s12958-023-01159-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a heterogeneous functional endocrine disorder associated with a low-grade, chronic inflammatory state. Patients with PCOS present an increased risk of metabolic comorbidities and often menstrual dysregulation and infertility due to anovulation and/or poor oocyte quality. Multiple mechanisms including oxidative stress and low-grade inflammation are believed to be responsible for oocyte deterioration; however, the influence of nitric oxide (NO) insufficiency in oocyte quality and ovulatory dysfunction in PCOS is still a matter for debate. Higher production of superoxide (O2•-) mediated DNA damage and impaired antioxidant defense have been implicated as contributory factors for the development of PCOS, with reported alteration in superoxide dismutase (SOD) function, an imbalanced zinc/copper ratio, and increased catalase activity. These events may result in decreased hydrogen peroxide (H2O2) accumulation with increased lipid peroxidation events. A decrease in NO, potentially due to increased activity of NO synthase (NOS) inhibitors such as asymmetric dimethylarginine (ADMA), and imbalance in the distribution of reactive oxygen species (ROS), such as decreased H2O2 and increased O2•-, may offset the physiological processes surrounding follicular development, oocyte maturation, and ovulation contributing to the reproductive dysfunction in patients with PCOS. Thus, this proposal aims to evaluate the specific roles of NO, oxidative stress, ROS, and enzymatic and nonenzymatic elements in the pathogenesis of PCOS ovarian dysfunction, including oligo- anovulation and oocyte quality, with the intent to inspire better application of therapeutic options. The authors believe more consideration into the specific roles of oxidative stress, ROS, and enzymatic and nonenzymatic elements may allow for a more thorough understanding of PCOS. Future efforts elaborating on the role of NO in the preoptic nucleus to determine its influence on GnRH firing and follicle-stimulating hormone/Luteinizing hormone (FSH/LH) production with ovulation would be of benefit in PCOS. Consequently, treatment with an ADMA inhibitor or NO donor may prove beneficial to PCOS patients experiencing reproductive dysfunction and infertility.
Collapse
Affiliation(s)
- Awoniyi O Awonuga
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA.
| | - Olivia G Camp
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
| | - Husam M Abu-Soud
- Departments of Obstetrics and Gynecology and Biochemistry and Molecular Biology, The C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 E. Hancock Detroit, Detroit, MI, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
104
|
Latifi-Navid H, Barzegar Behrooz A, Jamehdor S, Davari M, Latifinavid M, Zolfaghari N, Piroozmand S, Taghizadeh S, Bourbour M, Shemshaki G, Latifi-Navid S, Arab SS, Soheili ZS, Ahmadieh H, Sheibani N. Construction of an Exudative Age-Related Macular Degeneration Diagnostic and Therapeutic Molecular Network Using Multi-Layer Network Analysis, a Fuzzy Logic Model, and Deep Learning Techniques: Are Retinal and Brain Neurodegenerative Disorders Related? Pharmaceuticals (Basel) 2023; 16:1555. [PMID: 38004422 PMCID: PMC10674956 DOI: 10.3390/ph16111555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible visual impairment in the elderly. The current management of nAMD is limited and involves regular intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the effectiveness of these treatments is limited by overlapping and compensatory pathways leading to unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a system view of pathways involved in pathophysiology of nAMD will have significant clinical value. The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30 key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common with AMD, Alzheimer's disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and Parkinson's disease (PD). Thus, our findings suggest that there exists a connection between nAMD and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and genetic algorithms, to identify important metabolites in complex metabolic pathways to open new avenues for the design and/or repurposing of drugs for nAMD treatment.
Collapse
Affiliation(s)
- Hamid Latifi-Navid
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3T 2N2, Canada;
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Saleh Jamehdor
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Maliheh Davari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Masoud Latifinavid
- Department of Mechatronic Engineering, University of Turkish Aeronautical Association, 06790 Ankara, Turkey;
| | - Narges Zolfaghari
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Somayeh Piroozmand
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Golnaz Shemshaki
- Department of Studies in Zoology, University of Mysore, Manasagangothri, Mysore 570005, India;
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Seyed Shahriar Arab
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran;
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran; (H.L.-N.); (M.D.); (N.Z.); (S.P.); (S.T.); (Z.-S.S.)
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 1666673111, Iran;
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
105
|
Li XY, Zeng ZX, Cheng ZX, Wang YL, Yuan LJ, Zhai ZY, Gong W. Common pathogenic bacteria-induced reprogramming of the host proteinogenic amino acids metabolism. Amino Acids 2023; 55:1487-1499. [PMID: 37814028 PMCID: PMC10689525 DOI: 10.1007/s00726-023-03334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Apart from cancer, metabolic reprogramming is also prevalent in other diseases, such as bacterial infections. Bacterial infections can affect a variety of cells, tissues, organs, and bodies, leading to a series of clinical diseases. Common Pathogenic bacteria include Helicobacter pylori, Salmonella enterica, Mycobacterium tuberculosis, Staphylococcus aureus, and so on. Amino acids are important and essential nutrients in bacterial physiology and support not only their proliferation but also their evasion of host immune defenses. Many pathogenic bacteria or opportunistic pathogens infect the host and lead to significant changes in metabolites, especially the proteinogenic amino acids, to inhibit the host's immune mechanism to achieve its immune evasion and pathogenicity. Here, we review the regulation of host metabolism, while host cells are infected by some common pathogenic bacteria, and discuss how amino acids of metabolic reprogramming affect bacterial infections, revealing the potential adjunctive application of amino acids alongside antibiotics.
Collapse
Affiliation(s)
- Xiao-Yue Li
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zi-Xin Zeng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Xing Cheng
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Yi-Lin Wang
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Liang-Jun Yuan
- The First School of Clinical Medicine, Southern Medical University, Guangdong, 510515, China
| | - Zhi-Yong Zhai
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| | - Wei Gong
- Shenzhen Hospital, Southern Medical University, Shenzhen Clinical Medical College, Southern Medical University, Guangdong, 518101, China.
| |
Collapse
|
106
|
Zhou LY, Liu K, Yin WJ, Xie YL, Wang JL, Zuo SR, Tang ZY, Wu YF, Zuo XC. Arginase2 mediates contrast-induced acute kidney injury via facilitating nitrosative stress in tubular cells. Redox Biol 2023; 67:102929. [PMID: 37856999 PMCID: PMC10587771 DOI: 10.1016/j.redox.2023.102929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Contrast-induced acute kidney injury(CI-AKI) is the third cause of AKI. Although tubular injury has been regarded as an important pathophysiology of CI-AKI, the underlying mechanism remains elusive. Here, we found arginase2(ARG2) accumulated in the tubules of CI-AKI mice, and was upregulated in iohexol treated kidney tubular cells and in blood samples of CI-AKI mice and patients, accompanied by increased nitrosative stress and apoptosis. However, all of the above were reversed in ARG2 knockout mice, as evidenced by the ameliorated kidney dysfunction and the tubular injury, and decreased nitrosative stress and apoptosis. Mechanistically, HO-1 upregulation could alleviate iohexol or ARG2 overexpression mediated nitrosative stress. Silencing and overexpressing ARG2 was able to upregulate and downregulate HO-1 expression, respectively, while HO-1 siRNA had no effect on ARG2 expression, indicating that ARG2 might inhibit HO-1 expression at the transcriptional level, which facilitated nitrosative stress during CI-AKI. Additionally, CREB1, a transcription factor, bound to the promoter region of ARG2 and stimulated its transcription. Similar findings were yielded in cisplatin- or vancomycin-induced AKI models. Taken together, ARG2 is a crucial target of CI-AKI, and activating CREB1/ARG2/HO-1 axis can mediate tubular injury by promoting nitrosative stress, highlighting potential therapeutic strategy for treating CI-AKI.
Collapse
Affiliation(s)
- Ling-Yun Zhou
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kun Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Jun Yin
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiang-Lin Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Ru Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Yao Tang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yi-Feng Wu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Cong Zuo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China; Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
107
|
de Espindola JS, Ferreira Taccóla M, da Silva VSN, Dos Santos LD, Rossini BC, Mendonça BC, Pacheco MTB, Galland F. Digestion-resistant whey peptides promote antioxidant effect on Caco-2 cells. Food Res Int 2023; 173:113291. [PMID: 37803604 DOI: 10.1016/j.foodres.2023.113291] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 10/08/2023]
Abstract
Enteric endothelial cells are the first structure to come in contact with digested food and may suffer oxidative damage by innumerous exogenous factors. Although peptides derived from whey digestion have presented antioxidant potential, little is known regarding antioxidant pathways activation in Caco-2 cell line model. Hence, we evaluated the ability to form whey peptides resistant to simulated gastrointestinal digestive processes, with potential antioxidant activity on gastrointestinal cells and associated with sequence structure and activity. Using the INFOGEST method of simulated static digestion, we achieved 35.2% proteolysis, with formation of peptides of low molecular mass (<600 Da) evaluated by FPLC. The digestion-resistant peptides showed a high proportion of hydrophobic and acidic amino acids, but with average surface hydrophobicity. We identified 24 peptide sequences, mainly originated from β-lactoglobulin, that exhibit various bioactivities. Structurally, the sequenced peptides predominantly contained the amino acids lysine and valine in the N-terminal region, and tyrosine in the C-terminal region, which are known to exhibit antioxidant properties. The antioxidant activity of the peptide digests was on average twice as potent as that of the protein isolates for the same concentration, as evaluated by ABTS, DPPH and ORAC. Evaluation of biological activity in Caco-2 intestinal cells, stimulated with hydrogen peroxide, showed that they attenuated the production of reactive oxygen species and prevented GSH reduction and SOD activity increase. Caco-2 cells were not responsive to nitric oxide secretion. This study suggests that whey peptides formed during gastric digestion exhibit biological antioxidant activity, without the need for previously hydrolysis with exogenous enzymes for supplement application. The study's primary contribution was demonstrating the antioxidant activity of whey peptides in maintaining the gastrointestinal epithelial cells, potentially preventing oxidative stress that affects the digestive system.
Collapse
Affiliation(s)
- Juliana Santos de Espindola
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Milena Ferreira Taccóla
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Vera Sônia Nunes da Silva
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | | | - Bruno Cesar Rossini
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Bruna Cavecci Mendonça
- Institute of Biotechnology, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil.
| | - Maria Teresa Bertoldo Pacheco
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| | - Fabiana Galland
- Quality and Science Center of Food, Institute of Food Technology (ITAL), Brasil Ave. 2880, P.O. Box 139, Campinas, SP 13070-178, Brazil.
| |
Collapse
|
108
|
Volpe M, Ferrera A, Piccinocchi R, Morisco C. The Emerging Role of Prediabetes and Its Management: Focus on L-Arginine and a Survey in Clinical Practice. High Blood Press Cardiovasc Prev 2023; 30:489-496. [PMID: 38060094 PMCID: PMC10721705 DOI: 10.1007/s40292-023-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide impressive growth of metabolic disorders observed in the last decades, especially type 2 diabetes mellitus and obesity, has generated great interest in the potential benefits of early identification and management of patients at risk. In this view, prediabetes represents a high-risk condition for the development of type 2 diabetes mellitus and cardiovascular diseases, and an ideal target to intercept patients before they develop type 2 diabetes gaining a prominent role even in international guidelines. For prediabetic individuals, lifestyle modification is the cornerstone of diabetes prevention, with evidence of about 50% relative risk reduction. Accumulating data also show potential benefits from pharmacotherapy. In this context, the only available data pertain to metformin as a pharmaceutical drug and vitamin D and L-arginine as nutraceuticals. L-arginine appears to be a very interesting tool in the clinical management of patients with pre-diabetes. In this review we summarize the current knowledge on the role of L-arginine in prediabetes as a potentially useful preventive strategy against the progression to type 2 diabetes, with a particular focus on the underlying molecular mechanisms and the past and ongoing trials. In this article we also report the interesting data about the perception of the prediabetic condition and its therapeutic management in the clinical practice in Italy. An early identification and a prompt management of people with prediabetes appears to be of paramount importance to prevent the progression to diabetes and avoid its cardiovascular consequences.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy.
- IRCCS San Raffaele, Rome, Italy.
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy
| | | | | |
Collapse
|
109
|
Kim DY, Park JY, Gee HY. Lactobacillus plantarum ameliorates NASH-related inflammation by upregulating L-arginine production. Exp Mol Med 2023; 55:2332-2345. [PMID: 37907736 PMCID: PMC10689779 DOI: 10.1038/s12276-023-01102-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/16/2023] [Accepted: 08/02/2023] [Indexed: 11/02/2023] Open
Abstract
Lactobacillus is a probiotic with therapeutic potential for several diseases, including liver disease. However, the therapeutic effect of L. plantarum against nonalcoholic steatohepatitis (NASH) and its underlying mechanisms remain unelucidated. Therefore, we delineated the L. plantarum-mediated NASH regulation in a mouse model to understand its therapeutic effect. We used a choline-deficient high-fat diet (CD-HFD)-induced murine model that recapitulated the critical features of human metabolic syndrome and investigated the effect of L. plantarum on NASH pathogenesis using transcriptomic, metagenomic, and immunohistochemistry analyses. Validation experiments were performed using liver organoids and a murine model fed a methionine-choline-deficient (MCD) diet. L. plantarum treatment in mice significantly decreased liver inflammation and improved metabolic phenotypes, such as insulin tolerance and the hepatic lipid content, compared with those in the vehicle group. RNA-sequencing analysis revealed that L. plantarum treatment significantly downregulated inflammation-related pathways. Shotgun metagenomic analysis revealed that L-arginine biosynthesis-related microbial genes were significantly upregulated in the L. plantarum group. We also confirmed the elevated arginine levels in the serum of the L. plantarum group. We further used liver organoids and mice fed an MCD diet to demonstrate that L-arginine alone was sufficient to alleviate liver inflammation. Our data revealed a novel and counterintuitive therapeutic effect of L. plantarum on alleviating NASH-related liver inflammation by increasing circulating L-arginine.
Collapse
Affiliation(s)
- Dong Yun Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of South Korea
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of South Korea
| | - Jun Yong Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of South Korea.
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of South Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of South Korea.
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of South Korea.
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of South Korea.
| |
Collapse
|
110
|
Peng B, Liu Y, Lin Y, Kraithong S, Mo L, Gao Z, Huang R, Zhang X. A New Exopolysaccharide of Marine Coral-Associated Aspergillus pseudoglaucus SCAU265: Structural Characterization and Immunomodulatory Activity. J Fungi (Basel) 2023; 9:1057. [PMID: 37998863 PMCID: PMC10672155 DOI: 10.3390/jof9111057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Recent studies have found that many marine microbial polysaccharides exhibit distinct immune activity. However, there is a relative scarcity of research on the immunomodulatory activity of marine fungal exopolysaccharides. A novel water-soluble fungal exopolysaccharide ASP-1 was isolated from the fermentation broths of marine coral-associated fungus Aspergillus pseudoglaucus SCAU265, and purified by Diethylaminoethyl-Sepharose-52 (DEAE-52) Fast Flow and Sephadex G-75. Structural analysis revealed that ASP-1 had an average molecular weight of 36.07 kDa and was mainly composed of (1→4)-linked α-D-glucopyranosyl residues, along with highly branched heteropolysaccharide regions containing 1,4,6-glucopyranosyl, 1,3,4-glucopyranosyl, 1,4,6-galactopyranosyl, T(terminal)-glucopyranosyl, T-mannopyranosyl, and T-galactopyranosyl residues. ASP-1 demonstrated significant effects on the proliferation, nitric oxide levels, and the secretion of cytokines TNF-α and IL-6 in macrophage RAW264.7 cells. Metabolomic analysis provided insights into the potential mechanisms of the immune regulation of ASP-1, suggesting its involvement in regulating immune function by modulating amino acid anabolism, particularly arginine synthesis and metabolism. These findings provide fundamental scientific data for further research on its accurate molecular mechanism of immunomodulatory activity.
Collapse
Affiliation(s)
- Bo Peng
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Yongchun Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.M.); (Z.G.)
| | - Yuqi Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.K.)
| | - Supaluck Kraithong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.K.)
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.M.); (Z.G.)
| | - Ziqing Gao
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.M.); (Z.G.)
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (S.K.)
| | - Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (L.M.); (Z.G.)
| |
Collapse
|
111
|
Wang Y, Jun Yun H, Ding Y, Du H, Geng X. Montelukast sodium protects against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization. Brain Res 2023; 1817:148498. [PMID: 37499731 DOI: 10.1016/j.brainres.2023.148498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Neuroinflammation plays an important role in brain injury and repair. Regulation of post-stroke inflammation may be a reasonable strategy to treat ischemic stroke. The present study demonstrates that montelukast sodium protected brain tissue by regulating the post-stroke inflammatory reaction. METHODS Adult male mice underwent distal occlusion of the middle cerebral artery (d-MCAO) surgery, followed by intraperitoneal injection of montelukast sodium or equivalent saline, from day 0-7 after the operation. On the 7th day, Rotarod and adhesive-removal test were performed. M AP2 staining, and Iba1, CD206, and CD16/32 co staining were performed. BV2 microglial cell lines were co-cultured with different concentrations of montelukast sodium with or without lipopolysaccharide (LPS). Real-time polymerase chain reaction (rt-PCR) and enzyme linked immunosorbent assay (ELISA) were used to detect the mRNA expression of M1 and M2 phenotypic microglia markers and the release of cytokines representing from different phenotypes of microglia cells. RESULTS Montelukast sodium prolonged the time that d-MCAO mice remained on the rotating bar, shortened the time to remove the sticker on the opposite claw, and reduced the infarct volume, promoting the transformation of microglial cells/macrophages around the infarct to the M2 phenotype. Montelukast sodium increased the mRNA expression of Arg-1, CD206, TGF-β, and IL-10 in BV2 microglial cell lines stimulated by LPS, while decreased the expression of iNOS, TNF-α, and CD16/32. CONCLUSION Montelukast sodium can protect against focal cerebral ischemic injury by regulating inflammatory reaction via promoting microglia polarization.
Collapse
Affiliation(s)
- Yanling Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ho Jun Yun
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Yuchuan Ding
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Huishan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China; China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
| |
Collapse
|
112
|
Husnain A, Arshad U, Zimpel R, Schmitt E, Dickson MJ, Perdomo MC, Marinho MN, Ashrafi N, Graham SF, Bishop JV, Hansen TR, Jeong KC, Gonella-Diaza AM, Chebel RC, Sheldon IM, Bromfield JJ, Santos JEP. Induced endometrial inflammation compromises conceptus development in dairy cattle†. Biol Reprod 2023; 109:415-431. [PMID: 37540198 PMCID: PMC10577276 DOI: 10.1093/biolre/ioad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
Endometrial inflammation is associated with reduced pregnancy per artificial insemination (AI) and increased pregnancy loss in cows. It was hypothesized that induced endometritis alters histotroph composition and induces inflammatory signatures on conceptus that compromise development. In Experiment 1, lactating cows were assigned to control (CON; n = 23) or to an intrauterine infusion of Escherichia coli and Trueperella pyogenes (ENDO; n = 34) to induce endometritis. Cows received AI 26 days after treatment, and the uterine fluid and conceptuses were collected on day 16 after AI. In Experiment 2, Holstein heifers were assigned to CON (n = 14) or ENDO (n = 14). An embryo was transferred on day 7 of the estrous cycle, and uterine fluid and conceptuses were recovered on day 16. Composition of histotroph and trophoblast and embryonic disc gene expression were assessed. Bacterial-induced endometritis in lactating cows altered histotroph composition and pathways linked to phospholipid synthesis, cellular energy production, and the Warburg effect. Also, ENDO reduced conceptus length in cows and altered expression of genes involved in pathogen recognition, nutrient uptake, cell growth, choline metabolism, and conceptus signaling needed for maternal recognition of pregnancy. The impact of ENDO was lesser on conceptuses from heifers receiving embryo transfer; however, the affected genes and associated pathways involved restricted growth and increased immune response similar to the observed responses to ENDO in conceptuses from lactating cows. Bacterial-induced endometrial inflammation altered histotroph composition, reduced conceptus growth, and caused embryonic cells to activate survival rather than anabolic pathways that could compromise development.
Collapse
Affiliation(s)
- Ali Husnain
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Usman Arshad
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Roney Zimpel
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Eduardo Schmitt
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Mackenzie J Dickson
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Milerky C Perdomo
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Mariana N Marinho
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - Nadia Ashrafi
- Metabolomics Department, Beaumont Health, Royal Oak, MI, USA
| | - Stewart F Graham
- Metabolomics Department, Beaumont Health, Royal Oak, MI, USA
- Oakland University-William Beaumont School of Medicine, Rochester, MI, USA
| | - Jeanette V Bishop
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kwang C Jeong
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | | | - Ricardo C Chebel
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - I Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, UK
| | - John J Bromfield
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| | - José E P Santos
- Department of Animal Sciences, DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
113
|
Starkutė V, Mockus E, Klupšaitė D, Zokaitytė E, Tušas S, Mišeikienė R, Stankevičius R, Rocha JM, Bartkienė E. Ascertaining the Influence of Lacto-Fermentation on Changes in Bovine Colostrum Amino and Fatty Acid Profiles. Animals (Basel) 2023; 13:3154. [PMID: 37835761 PMCID: PMC10571792 DOI: 10.3390/ani13193154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
The aim of this study was to collect samples of bovine colostrum (BCOL) from different sources (agricultural companies A, B, C, D and E) in Lithuania and to ascertain the influence of lacto-fermentation with Lactiplantibacillus plantarum strain 135 and Lacticaseibacillus paracasei strain 244 on the changes in bovine colostrum amino (AA), biogenic amine (BA), and fatty acid (FA) profiles. It was established that the source of the bovine colostrum, the used LAB, and their interaction had significant effects (p < 0.05) on AA contents; lactic acid bacteria (LAB) used for fermentation was a significant factor for aspartic acid, threonine, glycine, alanine, methionine, phenylalanine, lysine, histidine, and tyrosine; and these factor's interaction is significant on most of the detected AA concentrations. Total BA content showed significant correlations with glutamic acid, serine, aspartic acid, valine, methionine, phenylalanine, histidine, and gamma amino-butyric acid content in bovine colostrum. Despite the differences in individual FA contents in bovine colostrum, significant differences were not found in total saturated (SFA), monounsaturated (MUFA), and polyunsaturated (PUFA) fatty acids. Finally, the utilization of bovine colostrum proved to be challenging because of the variability on its composition. These results suggest that processing bovine colostrum into value-added formulations for human consumption requires the adjustment of its composition since the primary production stage. Consequently, animal rearing should be considered in the employed bovine colostrum processing technologies.
Collapse
Affiliation(s)
- Vytautė Starkutė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Dovilė Klupšaitė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Eglė Zokaitytė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Saulius Tušas
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Ramutė Mišeikienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
| | - Rolandas Stankevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto (FEUP), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Elena Bartkienė
- Institute of Animal Rearing Technologies, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania; (V.S.); (S.T.); (R.M.)
- Department of Food Safety and Quality, Lithuanian University of Health Sciences, Tilzes St. 18, LT-47181 Kaunas, Lithuania
| |
Collapse
|
114
|
Ishinoda Y, Masaki N, Hitomi Y, Taruoka A, Kawai A, Iwashita M, Yumita Y, Kagami K, Yasuda R, Ido Y, Toya T, Ikegami Y, Namba T, Nagatomo Y, Miyazaki K, Takase B, Adachi T. A Low Arginine/Ornithine Ratio is Associated with Long-Term Cardiovascular Mortality. J Atheroscler Thromb 2023; 30:1364-1375. [PMID: 36775332 PMCID: PMC10564648 DOI: 10.5551/jat.63779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/25/2022] [Indexed: 02/13/2023] Open
Abstract
AIMS The long-term prognostic value of the bioavailability of L-arginine, an important source of nitric oxide for the maintenance of vascular endothelial function, has not been investigated fully. We therefore investigated the relationship between amino acid profile and long-term prognosis in patients with a history of standby coronary angiography. METHODS We measured the serum concentrations of L-arginine, L-citrulline, and L-ornithine by high-speed liquid chromatography. We examined the relationship between the L-arginine/L-ornithine ratio and the incidence of all-cause death, cardiovascular death, and major adverse cardiovascular events (MACEs) in 262 patients (202 men and 60 women, age 65±13 years) who underwent coronary angiography over a period of ≤ 10 years. RESULTS During the observation period of 5.5±3.2 years, 31 (12%) patients died, including 20 (8%) of cardiovascular death, while 32 (12%) had MACEs. Cox regression analysis revealed that L-arginine/L-ornithine ratio was associated with an increased risk for all-cause death (unadjusted hazard ratio, 95% confidence interval) (0.940, 0.888-0.995) and cardiovascular death (0.895, 0.821-0.965) (p<0.05 for all). In a model adjusted for age, sex, hypertension, hyperlipidemia, diabetes, current smoking, renal function, and log10-transformed brain natriuretic peptide level, cardiovascular death (0.911, 0.839-0.990, p=0.028) retained an association with a low L-arginine/ L-ornithine ratio. When the patients were grouped according to an L-arginine/L-ornithine ratio of 1.16, the lower L-arginine/L-ornithine ratio group had significantly higher incidence of all-cause death, cardiovascular death, and MACEs. CONCLUSION A low L-arginine/L-ornithine ratio may be associated with increased 10-year cardiac mortality.
Collapse
Affiliation(s)
- Yuki Ishinoda
- Department of Endocrinology, National Defense Medical College, Saitama, Japan
| | - Nobuyuki Masaki
- Department o f Intensive Care Medicine, National Defense Medical College, Saitama, Japan
| | - Yasuhiro Hitomi
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Akira Taruoka
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Akane Kawai
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Midori Iwashita
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yusuke Yumita
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Kazuki Kagami
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Risako Yasuda
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yasuo Ido
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Takumi Toya
- Department o f Intensive Care Medicine, National Defense Medical College, Saitama, Japan
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yukinori Ikegami
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Takayuki Namba
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Yuji Nagatomo
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| | - Koji Miyazaki
- Department of Comprehensive Internal Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Bonpei Takase
- Department o f Intensive Care Medicine, National Defense Medical College, Saitama, Japan
| | - Takeshi Adachi
- Department of Cardiology, National Defense Medical College, Saitama, Japan
| |
Collapse
|
115
|
Xu F, Jiang HL, Feng WW, Fu C, Zhou JC. Characteristics of amino acid metabolism in colorectal cancer. World J Clin Cases 2023; 11:6318-6326. [PMID: 37900242 PMCID: PMC10601002 DOI: 10.12998/wjcc.v11.i27.6318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
In recent years, metabolomics research has become a hot spot in the screening and treatment of cancer. It is a popular technique for the quantitative characterization of small molecular compounds in biological cells, tissues, organs or organisms. Further study of the tumor revealed that amino acid changes may occur early in the tumor. The rapid growth and metabolism required for survival result in tumors exhibiting an increased demand for amino acids. An abundant supply of amino acids is important for cancer to maintain its proliferative driving force. Changes in amino acid metabolism can be used to screen malignant tumors and improve therapeutic outcomes. Therefore, it is particularly important to study the characteristics of amino acid metabolism in colorectal cancer. This article reviews several specific amino acid metabolism characteristics in colorectal cancer.
Collapse
Affiliation(s)
- Fen Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Hong-Liang Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Wei-Wei Feng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Chen Fu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Jiang-Chang Zhou
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| |
Collapse
|
116
|
Gulbins A, Horstmann M, Keitsch S, Soddemann M, Wilker B, Wilson GC, Zeidan R, Hammer GD, Daser A, Bechrakis NE, Görtz GE, Eckstein A. Potential involvement of the bone marrow in experimental Graves' disease and thyroid eye disease. Front Endocrinol (Lausanne) 2023; 14:1252727. [PMID: 37810891 PMCID: PMC10558005 DOI: 10.3389/fendo.2023.1252727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Graves' disease is an autoimmune disorder caused by auto-antibodies against the thyroid stimulating hormone receptor (TSHR). Overstimulation of the TSHR induces hyperthyroidism and thyroid eye disease (TED) as the most common extra thyroidal manifestation of Graves' disease. In TED, the TSHR cross talks with the insulin-like growth factor 1 receptor (IGF-1R) in orbital fibroblasts leading to inflammation, deposition of hyaluronan and adipogenesis. The bone marrow may play an important role in autoimmune diseases, but its role in Graves' disease and TED is unknown. Here, we investigated whether induction of experimental Graves' disease and accompanying TED involves bone marrow activation and whether interference with IGF-1R signaling prevents this activation. Results Immunization of mice with TSHR resulted in an increase the numbers of CD4-positive T-lymphocytes (p ≤0.0001), which was normalized by linsitinib (p = 0.0029), an increase of CD19-positive B-lymphocytes (p= 0.0018), which was unaffected by linsitinib and a decrease of GR1-positive cells (p= 0.0038), which was prevented by linsitinib (p= 0.0027). In addition, we observed an increase of Sca-1 positive hematopietic stem cells (p= 0.0007) and of stromal cell-derived factor 1 (SDF-1) (p ≤0.0001) after immunization with TSHR which was prevented by linsitinib (Sca-1: p= 0.0008, SDF-1: p ≤0.0001). TSHR-immunization also resulted in upregulation of CCL-5, IL-6 and osteopontin (all p ≤0.0001) and a concomitant decrease of the immune-inhibitory cytokines IL-10 (p= 0.0064) and PGE2 (p ≤0.0001) in the bone marrow (all p≤ 0.0001). Treatment with the IGF-1R antagonist linsitinib blocked these events (all p ≤0.0001). We further demonstrate a down-regulation of arginase-1 expression (p= 0.0005) in the bone marrow in TSHR immunized mice, with a concomitant increase of local arginine (p ≤0.0001). Linsitinib induces an upregulation of arginase-1 resulting in low arginase levels in the bone marrow. Reconstitution of arginine in bone marrow cells in vitro prevented immune-inhibition by linsitinib. Conclusion Collectively, these data indicate that the bone marrow is activated in experimental Graves' disease and TED, which is prevented by linsitinib. Linsitinib-mediated immune-inhibition is mediated, at least in part, by arginase-1 up-regulation, consumption of arginine and thereby immune inhibition.
Collapse
Affiliation(s)
- Anne Gulbins
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mareike Horstmann
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Simone Keitsch
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthias Soddemann
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Barbara Wilker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Gregory C. Wilson
- Department of Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ryan Zeidan
- Sling Therapeutics Inc., Ann Arbor, MI, United States
| | - Gary D. Hammer
- Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, United States
| | - Anke Daser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Gina-Eva Görtz
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Eckstein
- Molecular Ophthalmology, Department of Ophthalmology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
117
|
Liu G, Kim WK. The Functional Roles of Methionine and Arginine in Intestinal and Bone Health of Poultry: Review. Animals (Basel) 2023; 13:2949. [PMID: 37760349 PMCID: PMC10525669 DOI: 10.3390/ani13182949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
This review explores the roles of methionine and arginine in promoting the well-being of poultry, with a specific focus on their impacts on intestinal and bone health. The metabolic pathways of methionine and arginine are elucidated, highlighting their distinct routes within the avian system. Beyond their fundamental importance in protein synthesis, methionine and arginine also exert their functional roles through their antioxidant capacities, immunomodulating effects, and involvement in the synthesis of metabolically important molecules such as S-adenosylmethionine, nitric oxide, and polyamines. These multifaceted actions enable methionine and arginine to influence various aspects of intestinal health such as maintaining the integrity of the intestinal barrier, regulating immune responses, and even influencing the composition of the gut microbiota. Additionally, they could play a pivotal role in promoting bone development and regulating bone remodeling, ultimately fostering optimal bone health. In conclusion, this review provides a comprehensive understanding of the potential roles of methionine and arginine in intestinal and bone health in poultry, thereby contributing to advancing the nutrition, overall health, and productivity of poultry in a sustainable manner.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
118
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
119
|
Liu Y, Li Y, Yu M, Tian Z, Deng J, Ma X, Yin Y. Magnolol Supplementation Alters Serum Parameters, Immune Homeostasis, Amino Acid Profiles, and Gene Expression of Amino Acid Transporters in Growing Pigs. Int J Mol Sci 2023; 24:13952. [PMID: 37762256 PMCID: PMC10530316 DOI: 10.3390/ijms241813952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated whether dietary supplementation with magnolol affects growth performance, anti-inflammatory abilities, serum and muscle amino acid profiles, and metabolisms in growing pigs. A total of 42 seventy-days-old growing barrows (Duroc × Landrace × Yorkshire) were randomly allocated into two dietary groups: Con, control group (basal diet); and Mag, magnolol group (basal diet supplemented with 400 mg/kg of magnolol). The results revealed that dietary supplementation with magnolol had no effect (p > 0.05) on growth performance. However, magnolol supplementation remarkably increased (p < 0.05) the serum content of albumin, total protein, immunoglobulin G, immunoglobulin M, and interleukin-22. In addition, dietary magnolol supplementation altered the amino acid (AA) profiles in serum and dorsal muscle and particularly increased (p < 0.05) the serum content of arginine and muscle glutamate. Simultaneously, the mRNA expression of genes associated with AA transport in jejunum (SLC38A2, SLC1A5, and SLC7A1) and ileum (SLC1A5 and SLC7A1) was higher (p < 0.05) in the Mag group than in the Con group. Additionally, the serum metabolomics analysis showed that the addition of magnolol significantly enhanced (p < 0.05) arginine biosynthesis, as well as D-glutamine and D-glutamate metabolism. Overall, these results suggested that dietary supplementation with magnolol has the potential to improve the accumulation of AAs, protein synthesis, immunity, and body health in growing pigs by increasing intestinal absorption and the transport of AAs.
Collapse
Affiliation(s)
- Yanchen Liu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.D.)
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yuanfei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Institute of Biological Technology, Nanchang Normal University, Nanchang 330032, China
| | - Miao Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zhimei Tian
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.D.)
| | - Xianyong Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (M.Y.); (Z.T.)
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (J.D.)
| |
Collapse
|
120
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
121
|
Hoang NN, Kodama T, Nakashima Y, Do KM, Hnin SYY, Lee YE, Prema, Ikumi N, Morita H. Arginase inhibitory activities of guaiane sesquiterpenoids from Curcuma comosa rhizomes. J Nat Med 2023; 77:891-897. [PMID: 37462864 DOI: 10.1007/s11418-023-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/09/2023] [Indexed: 08/31/2023]
Abstract
Arginases are bimanganese enzymes involved in many human illnesses, and thus are targets for disease treatments. The screening of traditional medicinal plants demonstrated that an ethanol extract of Curcuma comosa rhizomes showed significant human arginase I and II inhibitory activity, and further fractionation led to the isolation of three known guaiane sesquiterpenoids, alismoxide (1), 7α,10α-epoxyguaiane-4α,11-diol (2) and guaidiol (3). Tests of their inhibitory activities on human arginases I and II revealed that 1 exhibited selective and potent competitive inhibition for human arginase I (IC50 = 30.2 μM), whereas the other compounds lacked inhibitory activities against human arginases. To the best of our knowledge, this is the first demonstration of human arginase I inhibitory activity by a sesquiterpenoid. Thus, 1 is a primary and specific inhibitory molecule against human arginase I.
Collapse
Affiliation(s)
- Nhat Nam Hoang
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Takeshi Kodama
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Kiep Minh Do
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Saw Yu Yu Hnin
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Yuan-E Lee
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan
| | - Prema
- Department of Chemistry, University of Yangon, Yangon, 11041, Myanmar
| | - Naotaka Ikumi
- Japan Preventive Medical Laboratory Company, Ltd., 3-6-36 Toyoda, Suruga-ku, Shizuoka, 422-8027, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
122
|
Mikuteit M, Baskal S, Klawitter S, Dopfer-Jablonka A, Behrens GMN, Müller F, Schröder D, Klawonn F, Steffens S, Tsikas D. Amino acids, post-translational modifications, nitric oxide, and oxidative stress in serum and urine of long COVID and ex COVID human subjects. Amino Acids 2023; 55:1173-1188. [PMID: 37516715 PMCID: PMC10564820 DOI: 10.1007/s00726-023-03305-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
In this study, we investigated the status of amino acids, their post-translational modifications (PTM), major nitric oxide (NO) metabolites and of malondialdehyde (MDA) as a biomarker of oxidative stress in serum and urine samples of long COVID (LoCo, n = 124) and ex COVID (ExCo, n = 24) human subjects collected in 2022. Amino acids and metabolites were measured by gas chromatography-mass spectrometry (GC-MS) methods using stable-isotope labelled analogs as internal standards. There were no differences with respect to circulating and excretory arginine and asymmetric dimethylarginine (ADMA). LoCo participants excreted higher amounts of guanidino acetate than ExCo participants (17.8 ± 10.4 µM/mM vs. 12.6 ± 8.86 µM/mM, P = 0.005). By contrast, LoCo participants excreted lower amounts of the advanced glycation end-product (AGE) NG-carboxyethylarginine (CEA) than ExCo participants did (0.675 ± 0.781 µM/mM vs. 1.16 ± 2.04 µM/mM, P = 0.0326). The serum concentrations of MDA did not differ between the groups, indicating no elevated oxidative stress in LoCo or ExCo. The serum concentration of nitrite was lower in LoCo compared to ExCo (1.96 ± 0.92 µM vs. 2.56 ± 1.08 µM; AUC, 0.718), suggesting altered NO synthesis in the endothelium. The serum concentration of nitrite correlated inversely with the symptom anxiety (r = - 0.293, P = 0.0003). The creatinine-corrected urinary excretion of Lys and its metabolite L-5-hydroxy-Lys correlated positively with COVID toes (r = 0.306, P = 0.00027) and sore throat (r = 0.302, P = 0.0003). Our results suggest that amino acid metabolism, PTM and oxidative stress are not severely affected in long COVID. LoCo participants may have a lower circulating NO reservoir than ExCo.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Hannover Medical School, Dean’s Office–Curriculum Development, Hannover, Germany
| | - Svetlana Baskal
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Sandra Klawitter
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | | | - Georg M. N. Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Centre for Individualized Infection Medicine (CiiM), Hannover Medical School, Hannover, Germany
| | - Frank Müller
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
- Department of Family Medicine, Michigan State University, Grand Rapids, MI USA
| | - Dominik Schröder
- Department of General Practice, University Medical Center Göttingen, Göttingen, Germany
| | - Frank Klawonn
- Institute for Information Engineering, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
- Biostatistics Research Group, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Hannover Medical School, Dean’s Office–Curriculum Development, Hannover, Germany
| | - Dimitrios Tsikas
- Hannover Medical School, Institute of Toxicology, Core Unit Proteomics, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| |
Collapse
|
123
|
Nasef M, Ben Turkia H, Haider Ali AM, Mahdawi E, Nair A. To What Extent Does Arginine Reduce the Risk of Developing Necrotizing Enterocolitis? Cureus 2023; 15:e45813. [PMID: 37876383 PMCID: PMC10591459 DOI: 10.7759/cureus.45813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Necrotizing enterocolitis (NEC) and neonatal sepsis are polar opposite diseases that are commonly encountered in the NICU. Concerning the frequency of these pathologies, NEC is regarded as being a much rarer condition, whereas neonatal sepsis is slightly more commonly encountered. However, neonatal sepsis can present with varying clinical presentations and, if caught late, can be detrimental to the patient. Many different modes of therapies have been studied for both conditions at different levels of pathologies, from a microscopic to a macroscopic level, leading to an assessment of treatment approaches. With the different ongoing treatment protocols being studied, one such therapy under investigation that does stand out is the use of L-arginine in both conditions. The L-arginine, being an essential amino acid, has many basic biological roles in developing neonates. It mainly involves the production of nitric oxide (NO), a potent vasodilator, which is particularly important in the development of vasculature in almost every organ. In premature infants, poorly developed vasculature makes them more susceptible to injury, therefore increasing the risk of diseases such as NEC and the severity of diseases such as neonatal sepsis. By assessing the uses of L-arginine and its application towards treating conditions like NEC and neonatal sepsis, we aim to identify its potential benefits as a treatment and its potential applications in clinical practice by understanding its basic functions and role in the pathophysiology of NEC and neonatal sepsis.
Collapse
Affiliation(s)
- Minoosh Nasef
- Neonatology, King Hamad University Hospital, Muharraq, BHR
| | | | | | - Esam Mahdawi
- Obstetrics and Gynaecology, King Hamad University Hospital, Muharraq, BHR
| | - Arun Nair
- Pediatrics, Saint Peter's University Hospital, Somerset, USA
| |
Collapse
|
124
|
Tain YL, Hsu CN. The NOS/NO System in Renal Programming and Reprogramming. Antioxidants (Basel) 2023; 12:1629. [PMID: 37627624 PMCID: PMC10451971 DOI: 10.3390/antiox12081629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with renoprotective properties. NO can be produced in NO synthase (NOS)-dependent or -independent manners. NO deficiency plays a decisive role in chronic kidney disease (CKD). Kidney development can be affected in response to adverse intrauterine conditions that induce renal programming, thereby raising the risk of developing CKD in adulthood. Conversely, detrimental programming processes could be postponed or halted prior to the onset of CKD by early treatments, namely reprogramming. The current review provides an overview of the NOS/NO research performed in the context of renal programming and reprogramming. NO deficiency has been increasingly found to interact with the different mechanisms behind renal programming, such as oxidative stress, aberrant function of the renin-angiotensin system, disturbed nutrient-sensing mechanisms, dysregulated hydrogen sulfide signaling, and gut microbiota dysbiosis. The supplementation of NOS substrates, the inhibition of asymmetric dimethylarginine (ADMA), the administration of NO donors, and the enhancement of NOS during gestation and lactation have shown beneficial effects against renal programming in preclinical studies. Although human data on maternal NO deficiency and offspring kidney disease are scarce, experimental data indicate that targeting NO could be a promising reprogramming strategy in the setting of renal programming.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
125
|
Hannemann J, Thorarinnsdottir EH, Amaral AFS, Schwedhelm E, Schmidt-Hutten L, Stang H, Benediktsdottir B, Gunnarsdóttir I, Gislason T, Böger R. Biomarkers of the L-Arginine/Dimethylarginine/Nitric Oxide Pathway in People with Chronic Airflow Obstruction and Obstructive Sleep Apnoea. J Clin Med 2023; 12:5230. [PMID: 37629272 PMCID: PMC10455103 DOI: 10.3390/jcm12165230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea (OSA) are common chronic diseases that are associated with chronic and intermittent hypoxemia, respectively. Patients affected by the overlap of COPD and OSA have a particularly unfavourable prognosis. The L-arginine/nitric oxide (NO) pathway plays an important role in regulating pulmonary vascular function. Asymmetric (ADMA) and symmetric dimethylarginine (SDMA) interfere with NO production. METHODS We analysed the serum concentrations of ADMA, SDMA, L-arginine, L-citrulline, and L-ornithine in a large sample of the Icelandic general population together with chronic airflow obstruction (CAO), a key physiological marker of COPD that was assessed by post-bronchodilator spirometry (FEV1/FVC < LLN). OSA risk was determined by the multivariable apnoea prediction (MAP) index. RESULTS 713 individuals were analysed, of whom 78 (10.9%) showed CAO and 215 (30%) had MAP > 0.5. SDMA was significantly higher in individuals with CAO (0.518 [0.461-0.616] vs. 0.494 [0.441-0.565] µmol/L; p = 0.005), but ADMA was not. However, ADMA was significantly associated with decreasing FEV1 percent predicted among those with CAO (p = 0.002). ADMA was 0.50 (0.44-0.56) µmol/L in MAP ≤ 0.5 versus 0.52 (0.46-0.58) µmol/L in MAP > 0.5 (p = 0.008). SDMA was 0.49 (0.44-0.56) µmol/L versus 0.51 (0.46-0.60) µmol/L, respectively (p = 0.004). The highest values for ADMA and SDMA were observed in individuals with overlap of CAO and MAP > 0.5, which was accompanied by lower L-citrulline levels. CONCLUSIONS The plasma concentrations of ADMA and SDMA are elevated in COPD patients with concomitant intermittent hypoxaemia. This may account for impaired pulmonary NO production, enhanced pulmonary vasoconstriction, and disease progression.
Collapse
Affiliation(s)
- Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany
| | - Elin H. Thorarinnsdottir
- Primary Health Care of the Capital Area, 103 Reykjavik, Iceland;
- Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland; (B.B.); (T.G.)
| | - André F. S. Amaral
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, UK;
- NIHR Imperial Biomedical Research Centre, London W2 1NY, UK
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
| | - Lena Schmidt-Hutten
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
| | - Heike Stang
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
| | - Bryndis Benediktsdottir
- Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland; (B.B.); (T.G.)
- Sleep Department, Landspitali University Hospital of Iceland, 105 Reykjavik, Iceland
| | - Ingibjörg Gunnarsdóttir
- Unit for Nutrition Research, Landspitali University Hospital & Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavik, Iceland;
| | - Thórarinn Gislason
- Faculty of Medicine, University of Iceland, 102 Reykjavik, Iceland; (B.B.); (T.G.)
- Sleep Department, Landspitali University Hospital of Iceland, 105 Reykjavik, Iceland
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (J.H.); (E.S.); (L.S.-H.); (H.S.)
- Institute DECIPHER, German-Chilean Institute for Research on Pulmonary Hypoxia and Its Health Sequelae, 20246 Hamburg, Germany
| |
Collapse
|
126
|
Yu Y, Liu Y, Sui X, Sui Y, Wang Z, Mendelson CR, Gao L. Arginase 1 and L-arginine coordinate fetal lung development and the initiation of labor in mice. EMBO Rep 2023; 24:e56352. [PMID: 37291976 PMCID: PMC10398669 DOI: 10.15252/embr.202256352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Fetal development and parturition are precisely regulated processes that involve continuous crosstalk between the mother and the fetus. Our previous discovery that wild-type mice carrying steroid receptor coactivator (Src)-1 and Src-2 double-deficient fetuses exhibit impaired lung development and delayed labor, which indicates that the signals for parturition emanate from the fetus. In this study, we perform RNA sequencing and targeted metabolomics analyses of the lungs from fetal Src-1/-2 double-knockout mice and find that expression of arginase 1 (Arg1) is significantly decreased, accompanied by increased levels of the Arg1 substrate L-arginine. Knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. Moreover, treatment of human myometrial smooth muscle cells with L-arginine significantly inhibits spontaneous contractions by attenuating activation of NF-κB and downregulating expression of contraction-associated protein genes. Transcription factors GR and C/EBPβ increase transcription of Arg1 in an Src-1/Src-2-dependent manner. These findings provide new evidence that fetus-derived factors may play dual roles in coordinating fetal lung development and the initiation of labor.
Collapse
Affiliation(s)
- Yaqin Yu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yuanyuan Liu
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Xuesong Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Yanyu Sui
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Zhe Wang
- Department of PhysiologyNaval Medical UniversityShanghaiChina
| | - Carole R Mendelson
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA
- Department of Obstetrics and GynecologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Lu Gao
- Department of PhysiologyNaval Medical UniversityShanghaiChina
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive GeneticsShanghaiChina
| |
Collapse
|
127
|
Kim DR, Martin S, Desai K. The effects of a comparatively higher dose of 1000 mg/kg/d of oral L- or D-arginine on the L-arginine metabolic pathways in male Sprague-Dawley rats. PLoS One 2023; 18:e0289476. [PMID: 37527267 PMCID: PMC10393177 DOI: 10.1371/journal.pone.0289476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Oral L-arginine supplements are popular mainly for their nitric oxide mediated vasodilation, but their physiological impact is not fully known. L-arginine is a substrate of several enzymes including arginase, nitric oxide synthase, arginine decarboxylase, and arginine: glycine amidinotransferase (AGAT). We have published a study on the physiological impact of oral L- and D-arginine at 500 mg/kg/day for 4 wks in male Sprague-Dawley rats. We investigated the effects of oral L-arginine and D-arginine at a higher dose of 1000 mg/kg/d for a longer treatment duration of 16 wks in 9-week-old male Sprague-Dawley rats. We measured the expression and activity of L-arginine metabolizing enzymes, and levels of their metabolites in the plasma and various organs. L-arginine did not affect the levels of L-arginine and L-lysine in the plasma and various organs. L-arginine decreased arginase protein expression in the upper small intestine, and arginase activity in the plasma. It also decreased AGAT protein expression in the liver, and creatinine levels in the urine. L-arginine altered arginine decarboxylase protein expression in the upper small intestine and liver, with increased total polyamines plasma levels. Endothelial nitric oxide synthase protein was increased with D-arginine, the presumed metabolically inert isomer, but not L-arginine. In conclusion, oral L-arginine and D-arginine at a higher dose and longer treatment duration significantly altered various enzymes and metabolites in the arginine metabolic pathways, which differed from alterations produced by a lower dose shorter duration treatment published earlier. Further studies with differing doses and duration would allow for a better understanding of oral L-arginine uses, and evidence based safe and effective dose range and duration.
Collapse
Affiliation(s)
- Dain Raina Kim
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Sarah Martin
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kaushik Desai
- Department of Anatomy, Physiology & Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
128
|
Hodkovicova N, Halas S, Tosnerova K, Stastny K, Svoboda M. The use of functional amino acids in different categories of pigs - A review. VET MED-CZECH 2023; 68:299-312. [PMID: 37982122 PMCID: PMC10646542 DOI: 10.17221/72/2023-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 11/21/2023] Open
Abstract
The present review deals with a particularly important topic: the use of functional amino acids in different categories of pigs. It is especially relevant in the context of the current efforts to reduce the use of antibiotics in pig farming and the search for possible alternatives to replace them. The review is based on the definition that functional amino acids (FAAs) are classified as dispensable amino acids, but with additional biological functions, i.e., not only are they used for protein formation, but they are also involved in regulating essential metabolic pathways to improve health, survival, growth, and development. We describe the mechanism of action of individual FAAs and their potential use in pigs, including glutamate, glutamine, arginine, branched-chain amino acids (i.e., leucine, isoleucine, and valine), tryptophan and glycine. The work is divided into three parts. The first part deals with the FAAs and their role in the overall health of sows and their offspring. The second part describes the use of functional amino acids in piglets after weaning. Part three examines the use of functional amino acids in growing and fattening pigs and their impact on meat quality.
Collapse
Affiliation(s)
- Nikola Hodkovicova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Simon Halas
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovak Republic
| | - Kristina Tosnerova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Kamil Stastny
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Martin Svoboda
- Ruminant and Swine Clinic, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
129
|
Torres N, Tobón-Cornejo S, Velazquez-Villegas LA, Noriega LG, Alemán-Escondrillas G, Tovar AR. Amino Acid Catabolism: An Overlooked Area of Metabolism. Nutrients 2023; 15:3378. [PMID: 37571315 PMCID: PMC10421169 DOI: 10.3390/nu15153378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Amino acids have been extensively studied in nutrition, mainly as key elements for maintaining optimal protein synthesis in the body as well as precursors of various nitrogen-containing compounds. However, it is now known that amino acid catabolism is an important element for the metabolic control of different biological processes, although it is still a developing field to have a deeper understanding of its biological implications. The mechanisms involved in the regulation of amino acid catabolism now include the contribution of the gut microbiota to amino acid oxidation and metabolite generation in the intestine, the molecular mechanisms of transcriptional control, and the participation of specific miRNAs involved in the regulation of amino acid degrading enzymes. In addition, molecules derived from amino acid catabolism play a role in metabolism as they are used in the epigenetic regulation of many genes. Thus, this review aims to examine the mechanisms of amino acid catabolism and to support the idea that this process is associated with the immune response, abnormalities during obesity, in particular insulin resistance, and the regulation of thermogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Armando R. Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No 15. Col Belisario Domínguez-Sección XVI, Tlalpan, Mexico City 14080, Mexico; (N.T.); (S.T.-C.); (L.A.V.-V.); (L.G.N.); (G.A.-E.)
| |
Collapse
|
130
|
Bester A, O'Brien M, Cotter PD, Dam S, Civai C. Shotgun Metagenomic Sequencing Revealed the Prebiotic Potential of a Fruit Juice Drink with Fermentable Fibres in Healthy Humans. Foods 2023; 12:2480. [PMID: 37444219 DOI: 10.3390/foods12132480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Fibre-based dietary interventions are at the forefront of gut microbiome modulation research, with a wealth of 16S rRNA information to demonstrate the prebiotic effects of isolated fibres. However, there is a distinct lack of data relating to the effect of a combination of soluble and insoluble fibres in a convenient-to-consume fruit juice food matrix on gut microbiota structure, diversity, and function. Here, we aimed to determine the impact of the MOJU Prebiotic Shot, an apple, lemon, ginger, and raspberry fruit juice drink blend containing chicory inulin, baobab, golden kiwi, and green banana powders, on gut microbiota structure and function. Healthy adults (n = 20) were included in a randomised, double-blind, placebo-controlled, cross-over study, receiving 60 mL MOJU Prebiotic Shot or placebo (without the fibre mix) for 3 weeks with a 3-week washout period between interventions. Shotgun metagenomics revealed significant between-group differences in alpha and beta diversity. In addition, the relative abundance of the phyla Actinobacteria and Desulfobacteria was significantly increased as a result of the prebiotic intervention. Nine species were observed to be differentially abundant (uncorrected p-value of <0.05) as a result of the prebiotic treatment. Of these, Bifidobacterium adolescentis and CAG-81 sp900066785 (Lachnospiraceae) were present at increased abundance relative to baseline. Additionally, KEGG analysis showed an increased abundance in pathways associated with arginine biosynthesis and phenylacetate degradation during the prebiotic treatment. Our results show the effects of the daily consumption of 60 mL MOJU Prebiotic Shot for 3 weeks and provide insight into the functional potential of B. adolescentis.
Collapse
Affiliation(s)
- Adri Bester
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | | | | | | | - Claudia Civai
- London Agri Food Innovation Clinic (LAFIC), School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
131
|
Guo T, Hu S, Xu W, Zhou J, Chen F, Gao T, Qu W, Chen F, Lv Z, Lu L. Elevated expression of histone deacetylase HDAC8 suppresses arginine-proline metabolism in necrotizing enterocolitis. iScience 2023; 26:106882. [PMID: 37260741 PMCID: PMC10227426 DOI: 10.1016/j.isci.2023.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/07/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Epigenetic alterations are especially important in necrotizing enterocolitis (NEC). Here, we reported that histone deacetylase 8 (HDAC8) plays a previously unknown role in modulating arginine metabolism via acetylation of histone 3 lysine 9 (acetyl-H3K9) regulation during the pathogenesis of NEC. We found that HDAC8 was upregulated in humans and mice intestinal samples with NEC, while selective inhibition of HDAC8 expression ameliorated NEC. HDAC8 regulates enzymes involved in the metabolic conversion of proline to arginine (PRODH, PRODH2, OAT, and OTC) and arginine to ornithine (ARG1). The results showed that H3K9ac signal in the PRODH/PRODH2 promoter region was mediated by HDAC8. Additionally, the decreased concentration of butyric acid was strongly correlated with elevated HDAC8 levels and circulating arginine, which may result from an unbalanced Firmicutes/Bacteroidetes ratio. These results reveal previously underappreciated roles of microbial metabolites and HDAC8 to coordinate the arginine metabolism during NEC development.
Collapse
Affiliation(s)
- Ting Guo
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Shaohua Hu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Weijue Xu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Jin Zhou
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Feng Chen
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Tingting Gao
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Wenqian Qu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Faling Chen
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| | - Li Lu
- Department of General Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200040, China
| |
Collapse
|
132
|
Zhu H, Wang X, Lu S, Ou K. Metabolic reprogramming of clear cell renal cell carcinoma. Front Endocrinol (Lausanne) 2023; 14:1195500. [PMID: 37347113 PMCID: PMC10280292 DOI: 10.3389/fendo.2023.1195500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignancy that exhibits metabolic reprogramming as a result of genetic mutations. This reprogramming accommodates the energy and anabolic needs of the cancer cells, leading to changes in glucose, lipid, and bio-oxidative metabolism, and in some cases, the amino acid metabolism. Recent evidence suggests that ccRCC may be classified as a metabolic disease. The metabolic alterations provide potential targets for novel therapeutic interventions or biomarkers for monitoring tumor growth and prognosis. This literature review summarized recent discoveries of metabolic alterations in ccRCC, including changes in glucose, lipid, and amino acid metabolism. The development of metabolic drugs targeting these metabolic pathways was also discussed, such as HIF-2α inhibitors, fatty acid synthase (FAS) inhibitors, glutaminase (GLS) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, and arginine depletion. Future trends in drug development are proposed, including the use of combination therapies and personalized medicine approaches. In conclusion, this review provides a comprehensive overview of the metabolic alterations in ccRCC and highlights the potential for developing new treatments for this disease.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shihao Lu
- Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Kongbo Ou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
133
|
Yang L, Chu Z, Liu M, Zou Q, Li J, Liu Q, Wang Y, Wang T, Xiang J, Wang B. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J Hematol Oncol 2023; 16:59. [PMID: 37277776 DOI: 10.1186/s13045-023-01453-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
Amino acids are basic nutrients for immune cells during organ development, tissue homeostasis, and the immune response. Regarding metabolic reprogramming in the tumor microenvironment, dysregulation of amino acid consumption in immune cells is an important underlying mechanism leading to impaired anti-tumor immunity. Emerging studies have revealed that altered amino acid metabolism is tightly linked to tumor outgrowth, metastasis, and therapeutic resistance through governing the fate of various immune cells. During these processes, the concentration of free amino acids, their membrane bound transporters, key metabolic enzymes, and sensors such as mTOR and GCN2 play critical roles in controlling immune cell differentiation and function. As such, anti-cancer immune responses could be enhanced by supplement of specific essential amino acids, or targeting the metabolic enzymes or their sensors, thereby developing novel adjuvant immune therapeutic modalities. To further dissect metabolic regulation of anti-tumor immunity, this review summarizes the regulatory mechanisms governing reprogramming of amino acid metabolism and their effects on the phenotypes and functions of tumor-infiltrating immune cells to propose novel approaches that could be exploited to rewire amino acid metabolism and enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Luming Yang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Zhaole Chu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Meng Liu
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qiang Zou
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Jinyang Li
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Qin Liu
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China
| | - Yazhou Wang
- Chongqing University Medical School, Chongqing, 400044, People's Republic of China.
| | - Tao Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Junyu Xiang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
| | - Bin Wang
- Department of Gastroenterology and Chongqing Key Laboratory of Digestive Malignancies, Daping Hospital, Army Medical University (Third Military Medical University), 10# Changjiang Branch Road, Yuzhong District, Chongqing, 400042, People's Republic of China.
- Institute of Pathology and Southwest Cancer Center, Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
- Jinfeng Laboratory, Chongqing, 401329, People's Republic of China.
| |
Collapse
|
134
|
Assi G, Faour WH. Arginine deprivation as a treatment approach targeting cancer cell metabolism and survival: A review of the literature. Eur J Pharmacol 2023:175830. [PMID: 37277030 DOI: 10.1016/j.ejphar.2023.175830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
Amino acid requirement of metabolically active cells is a key element in cellular survival. Of note, cancer cells were shown to have an abnormal metabolism and high-energy requirements including the high amino acid requirement needed for growth factor synthesis. Thus, amino acid deprivation is considered a novel approach to inhibit cancer cell proliferation and offer potential treatment prospects. Accordingly, arginine was proven to play a significant role in cancer cell metabolism and therapy. Arginine depletion induced cell death in various types of cancer cells. Also, the various mechanisms of arginine deprivation, e.g., apoptosis and autophagy were summarized. Finally, the adaptive mechanisms of arginine were also investigated. Several malignant tumors had high amino acid metabolic requirements to accommodate their rapid growth. Antimetabolites that prevent the production of amino acids were also developed as anticancer therapies and are currently under clinical investigation. The aim of this review is to provide a concise literature on arginine metabolism and deprivation, its effects in different tumors, its different modes of action, as well as the related cancerous escape mechanisms.
Collapse
Affiliation(s)
- Ghaith Assi
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36
| | - Wissam H Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon, P.O. Box 36.
| |
Collapse
|
135
|
Anakha J, Prasad YR, Sharma N, Pande AH. Human arginase I: a potential broad-spectrum anti-cancer agent. 3 Biotech 2023; 13:159. [PMID: 37152001 PMCID: PMC10156892 DOI: 10.1007/s13205-023-03590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/23/2023] [Indexed: 05/09/2023] Open
Abstract
With high rates of morbidity and mortality, cancer continues to pose a serious threat to public health on a global scale. Considering the discrepancies in metabolism between cancer and normal cells, metabolism-based anti-cancer biopharmaceuticals are gaining importance. Normal cells can synthesize arginine, but they can also take up extracellular arginine, making it a semi-essential amino acid. Arginine auxotrophy occurs when a cancer cell has abnormalities in the enzymes involved in arginine metabolism and relies primarily on extracellular arginine to support its biological functions. Taking advantage of arginine auxotrophy in cancer cells, arginine deprivation, which can be induced by introducing recombinant human arginase I (rhArg I), is being developed as a broad-spectrum anti-cancer therapy. This has led to the development of various rhArg I variants, which have shown remarkable anti-cancer activity. This article discusses the importance of arginine auxotrophy in cancer and different arginine-hydrolyzing enzymes that are in various stages of clinical development and reviews the need for a novel rhArg I that mitigates the limitations of the existing therapies. Further, we have also analyzed the necessity as well as the significance of using rhArg I to treat various arginine-auxotrophic cancers while considering the importance of their genetic profiles, particularly urea cycle enzymes.
Collapse
Affiliation(s)
- J. Anakha
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Yenisetti Rajendra Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Nisha Sharma
- Laboratory of Epigenetics and Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| | - Abhay H. Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali, 160062 Punjab India
| |
Collapse
|
136
|
Wang S, Zou X, Wang L, Zhou H, Wu L, Zhang Y, Yao TX, Chen L, Li Y, Zeng Y, Zhang L. Potential preventive markers in the intracerebral hemorrhage process are revealed by serum untargeted metabolomics in mice using hypertensive cerebral microbleeds. Front Endocrinol (Lausanne) 2023; 14:1084858. [PMID: 37152968 PMCID: PMC10159181 DOI: 10.3389/fendo.2023.1084858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Hypertensive cerebral microbleeds (HCMB) may be the early stage of hypertensive intracerebral hemorrhage (HICH), which is a serious threat to health due to its high mortality and disability rates. The early clinical symptoms of HCMB may not be significant. Moreover, it is difficult to achieve early diagnosis and intervention for targeted prevention of HICH. Although hypertension (HTN) is a predisposition for HCMB, it remains unclear whether there is any difference between hypertensive patients with or without HCMB. Therefore, we carried out liquid chromatography-mass spectrometry (LC-MS) to analyze early biomarkers for HCMB in mice with hypertension and to lay the foundation for early prevention of HICH in hypertensive patients. In total, 18 C57 male mice were randomly divided into the HCMB (n = 6), HTN (n = 6), and control groups (CON, n = 6). Hematoxylin-eosin and diaminobenzidine staining were used to assess the reliability of the model. The metabolite expression level and sample category stability were tested using the displacement test of orthogonal partial least squares discriminant analysis (OPLS-DA). Significant differences in metabolites were screened out using variable importance in the projection (VIP > 1), which were determined using the OPLS-DA model and the P-value of the t-test (P < 0.05) combined with the nonparametric rank-sum test. With an area under the curve (AUC) > 0.85 and a P-value of 0.05, the receiver operating characteristic curve (ROC) was used to further screen the distinct metabolites of HCMB. Compared with the HTN and CON groups, the HCMB group had significantly higher blood pressure and lower average body weight (P < 0.05). Through untargeted LC-MS analysis, 93 distinct metabolites were identified in the HCMB (P < 0.05, VIP > 1) group. Among these potential biomarkers, six significantly decreased and eight significantly increased differential metabolites were found. Meanwhile, we found that the HCMB group had statistically distinct arginine and purine metabolism pathways (P < 0.05), and citrulline may be the most significant possible biomarker of HCMB (AUC > 0.85, P < 0.05). All of these potential biomarkers may serve as early biomarkers for HICH in hypertension.
Collapse
Affiliation(s)
- Sai Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuelun Zou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Leiyun Wang
- Department of Pharmacy, Wuhan First Hospital, Wuhan, Hubei, China
| | - Huifang Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianxu Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yupeng Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tian-Xing Yao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ye Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi- Zeng
- Department of Geriatrics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Le Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Multi-Modal Monitoring Technology for Severe Cerebrovascular Disease of Human Engineering Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
137
|
Forzano I, Avvisato R, Varzideh F, Jankauskas SS, Cioppa A, Mone P, Salemme L, Kansakar U, Tesorio T, Trimarco V, Santulli G. L-Arginine in diabetes: clinical and preclinical evidence. Cardiovasc Diabetol 2023; 22:89. [PMID: 37072850 PMCID: PMC10114382 DOI: 10.1186/s12933-023-01827-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/06/2023] [Indexed: 04/20/2023] Open
Abstract
L-Arginine (L-Arg), is a semi-essential amino acid involved in the formation of nitric oxide. The functional relevance of L-Arg in diabetes mellitus has been evaluated both in animal models and in human subjects. In the literature there are several lines of evidence indicating that L-Arg has beneficial effects in diabetes and numerous studies advocate its administration to attenuate glucose intolerance in diabetic patients. Here we present a comprehensive overview of the main studies exploring the effects of L-Arg in diabetes, including preclinical and clinical reports on this topic.
Collapse
Affiliation(s)
- Imma Forzano
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Stanislovas S Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | - Angelo Cioppa
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
- Montevergine Clinic, Mercogliano (AV), Italy
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | | | - Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
| | | | - Valentina Trimarco
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA
- Department of Neuroscience, Reproductive Sciences and Dentistry, "Federico II" University, Naples, Italy
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Fleischer Institute for Diabetes Research (FIDAM), Einstein - Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein University College of Medicine, New York, NY, USA.
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
138
|
Starikova EA, Rubinstein AA, Mammedova JT, Isakov DV, Kudryavtsev IV. Regulated Arginine Metabolism in Immunopathogenesis of a Wide Range of Diseases: Is There a Way to Pass between Scylla and Charybdis? Curr Issues Mol Biol 2023; 45:3525-3551. [PMID: 37185755 PMCID: PMC10137093 DOI: 10.3390/cimb45040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
More than a century has passed since arginine was discovered, but the metabolism of the amino acid never ceases to amaze researchers. Being a conditionally essential amino acid, arginine performs many important homeostatic functions in the body; it is involved in the regulation of the cardiovascular system and regeneration processes. In recent years, more and more facts have been accumulating that demonstrate a close relationship between arginine metabolic pathways and immune responses. This opens new opportunities for the development of original ways to treat diseases associated with suppressed or increased activity of the immune system. In this review, we analyze the literature describing the role of arginine metabolism in the immunopathogenesis of a wide range of diseases, and discuss arginine-dependent processes as a possible target for therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora A Starikova
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Artem A Rubinstein
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Jennet T Mammedova
- Laboratory of General Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
| | - Dmitry V Isakov
- Medical Faculty, First Saint Petersburg State I. Pavlov Medical University, L'va Tolstogo St. 6-8, 197022 Saint Petersburg, Russia
| | - Igor V Kudryavtsev
- Laboratory of Cellular Immunology, Department of Immunology, Institute of Experimental Medicine, Akademika Pavlova 12, 197376 Saint Petersburg, Russia
- School of Biomedicine, Far Eastern Federal University, FEFU Campus, 10 Ajax Bay, Russky Island, 690922 Vladivostok, Russia
| |
Collapse
|
139
|
McCoard SA, Pacheco D. The significance of N-carbamoylglutamate in ruminant production. J Anim Sci Biotechnol 2023; 14:48. [PMID: 37046347 PMCID: PMC10100185 DOI: 10.1186/s40104-023-00854-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/12/2023] [Indexed: 04/14/2023] Open
Abstract
Improving the efficiency and production of grazing ruminants to support food and fiber production, while reducing the environmental footprint and meeting the welfare needs of the animals, is important for sustainable livestock production systems. Development of new technologies that can improve the efficiency of nitrogen (N) utilization in ruminants, and that are effective and safe, has important implications for ruminant livestock production. N-carbomoylglutamate (NCG) is a functional micronutrient that stimulates endogenous synthesis of arginine, which can improve survival, growth, lactation, reproductive performance, and feed efficiency in mammals. There is a growing body of evidence to support the potential of dietary NCG supplementation to improve the productive capacity and N utilization efficiency of ruminants. This review summarizes the current literature on the effects of dietary supplementation with NCG in ruminants and impacts on production and potential to reduce the environmental footprint of farmed ruminant livestock. The current literature highlights the potential for commercial application in ruminant livestock to improve productivity and N utilization efficiency.
Collapse
Affiliation(s)
- Susan A McCoard
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand.
| | - David Pacheco
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
140
|
Calvani R, Picca A, Rodriguez-Mañas L, Tosato M, Coelho-Júnior HJ, Biancolillo A, Laosa O, Gervasoni J, Primiano A, Santucci L, Giampaoli O, Bourdel-Marchasson I, Regueme SC, Sinclair AJ, Urbani A, Landi F, Gambassi G, Marini F, Marzetti E. Amino Acid Profiles in Older Adults with Frailty: Secondary Analysis from MetaboFrail and BIOSPHERE Studies. Metabolites 2023; 13:metabo13040542. [PMID: 37110200 PMCID: PMC10147014 DOI: 10.3390/metabo13040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
An altered amino acid metabolism has been described in frail older adults which may contribute to muscle loss and functional decline associated with frailty. In the present investigation, we compared circulating amino acid profiles of older adults with physical frailty and sarcopenia (PF&S, n = 94), frail/pre-frail older adults with type 2 diabetes mellitus (F-T2DM, n = 66), and robust non-diabetic controls (n = 40). Partial least squares discriminant analysis (PLS-DA) models were built to define the amino acid signatures associated with the different frailty phenotypes. PLS-DA allowed correct classification of participants with 78.2 ± 1.9% accuracy. Older adults with F-T2DM showed an amino acid profile characterized by higher levels of 3-methylhistidine, alanine, arginine, ethanolamine, and glutamic acid. PF&S and control participants were discriminated based on serum concentrations of aminoadipic acid, aspartate, citrulline, cystine, taurine, and tryptophan. These findings suggest that different types of frailty may be characterized by distinct metabolic perturbations. Amino acid profiling may therefore serve as a valuable tool for frailty biomarker discovery.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, 28905 Getafe, Spain
- Centro de Investigación Biomédica en Red "Fragilidad y Envejecimiento Saludable" (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandra Biancolillo
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, 67100 L'Aquila, Italy
| | - Olga Laosa
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
- Geriatric Research Group, Biomedical Research Foundation at Getafe University Hospital, 28905 Getafe, Spain
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Lavinia Santucci
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
| | - Ottavia Giampaoli
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Isabelle Bourdel-Marchasson
- Clinical Gerontology Department, Bordeaux University Hospital, 33000 Bordeaux, France
- CRMSB, CNRS UMR 5536, Université de Bordeaux, 33000 Bordeaux, France
| | - Sophie C Regueme
- CHU Bordeaux, Pole Gérontologie Clinique, 33000 Bordeaux, France
| | - Alan J Sinclair
- Foundation for Diabetes Research in Older People (fDROP), King's College, London WC2R 2LS, UK
| | - Andrea Urbani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giovanni Gambassi
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza Università di Roma, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
141
|
Li X, Bazer FW, Johnson GA, Burghardt RC, Wu G. Dietary supplementation with L-citrulline improves placental angiogenesis and embryonic survival in gilts. Exp Biol Med (Maywood) 2023; 248:702-711. [PMID: 37012677 PMCID: PMC10408550 DOI: 10.1177/15353702231157943] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/17/2023] [Indexed: 04/05/2023] Open
Abstract
This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.
Collapse
Affiliation(s)
- Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| |
Collapse
|
142
|
Huang L, Wang Q, Huang C, Zhou Z, Peng A, Zhang Z. Untargeted Metabolomic Analysis in Endolymphatic Sac Luminal Fluid from Patients with Meniere's Disease. J Assoc Res Otolaryngol 2023; 24:239-251. [PMID: 36715893 PMCID: PMC10121990 DOI: 10.1007/s10162-023-00887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/23/2022] [Indexed: 01/31/2023] Open
Abstract
Dysfunction of the endolymphatic sac (ES) is one of the etiologies of Meniere's disease (MD), the mechanism of which remains unclear. The aim of the present study was to explore the molecular pathological characteristics of ES during the development of MD. Metabolomic profiling of ES luminal fluid from patients with MD and patients with acoustic neuroma (AN) was performed. Diluted ES luminal fluid (ELF) samples were obtained from 10 patients who underwent endolymphatic duct blockage for the treatment of intractable MD and from 6 patients who underwent translabyrinthine surgery for AN. ELF analysis was performed using liquid chromatography-mass spectrometry before the raw data were normalized and subjected to subsequent statistical analysis by MetaboAnalyst. Using thresholds of P ≤ 0.05 and variable important in projection > 1, a total of 111 differential metabolites were screened in the ELF, including 52 metabolites in negative mode and 59 in positive mode. Furthermore, 15 differentially altered metabolites corresponding to 15 compound names were identified using a Student's t-test, including 7 significant increased metabolites and 8 significant decreased metabolites. Moreover, two differentially altered metabolites, hyaluronic acid (HA) and 4-hydroxynonenal (4-HNE), were validated to be upregulated in the epithelial lining of the ES, as well as in the subepithelial connective-tissue in patients with MD comparing with that in patients with AN. Among these differentially altered metabolites, an upregulated expression of HA detected in the ES lumen of the patients with MD was supposed to be associated with the increased endolymph in ES, while an increased level of 4-HNE found in the ELF of the patients with MD provided direct evidence to support that oxidative damage and inflammatory lesions underlie the mechanism of MD. Furthermore, citrate and ethylenediaminetetraacetic acid were detected to be decreased substantially in the ELF of the patients with MD, suggesting the elevated endolymphatic Ca2+ in the ears with chronic endolymphatic hydrops is likely to be associated with the reduction of these two chelators of Ca2+ in ES. The results in the present study indicate metabolomic analysis in the ELF of the patients with MD can potentially improve our understanding on the molecular pathophysiological mechanism in the ES during the development of MD.
Collapse
Affiliation(s)
- Li Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Chao Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhou Zhou
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Anquan Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| | - Zhiwen Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan China
| |
Collapse
|
143
|
Azargoonjahromi A. Dual role of nitric oxide in Alzheimer's Disease. Nitric Oxide 2023; 134-135:23-37. [PMID: 37019299 DOI: 10.1016/j.niox.2023.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/02/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Nitric oxide (NO), an enzymatic product of nitric oxide synthase (NOS), has been associated with a variety of neurological diseases such as Alzheimer's disease (AD). NO has long been thought to contribute to neurotoxic insults caused by neuroinflammation in AD. This perception shifts as more attention is paid to the early stages before cognitive problems manifest. However, it has revealed a compensatory neuroprotective role for NO that protects synapses by increasing neuronal excitability. NO can positively affect neurons by inducing neuroplasticity, neuroprotection, and myelination, as well as having cytolytic activity to reduce inflammation. NO can also induce long-term potentiation (LTP), a process by which synaptic connections among neurons become more potent. Not to mention that such functions give rise to AD protection. Notably, it is unquestionably necessary to conduct more research to clarify NO pathways in neurodegenerative dementias because doing so could help us better understand their pathophysiology and develop more effective treatment options. All these findings bring us to the prevailing notion that NO can be used either as a therapeutic agent in patients afflicted with AD and other memory impairment disorders or as a contributor to the neurotoxic and aggressive factor in AD. In this review, after presenting a general background on AD and NO, various factors that have a pivotal role in both protecting and exacerbating AD and their correlation with NO will be elucidated. Following this, both the neuroprotective and neurotoxic effects of NO on neurons and glial cells among AD cases will be discussed in detail.
Collapse
|
144
|
Prada D, Rexrode K, Kalia V, Kooperberg C, Reiner A, Balasubramanian R, Wu HC, Miller G, Lonita-Laza I, Crandall C, Cantu-de-Leon D, Liao D, Yanosky J, Stewart J, Whitsel E, Baccarelli A. Metabolomic Evaluation of Air Pollution-related Bone Damage and Potential Mediation. RESEARCH SQUARE 2023:rs.3.rs-2652887. [PMID: 37034583 PMCID: PMC10081369 DOI: 10.21203/rs.3.rs-2652887/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Ambient air pollution has been associated with bone damage. However, no studies have evaluated the metabolomic response to air pollutants and its potential influence on bone health in postmenopausal women. We analyzed data from WHI participants with plasma samples. Whole-body, total hip, femoral neck, and spine BMD at enrollment and follow-up (Y1, Y3, Y6). Daily particulate matter NO, NO2, PM10 and SO2 were averaged over 1-, 3-, and 5-year periods before metabolomic assessments. Statistical analyses included multivariable-adjusted linear mixed models, pathways analyses, and mediation modeling. NO, NO2, and SO2, but not PM10, were associated with taurine, inosine, and C38:4 phosphatidylethanolamine (PE), at all averaging periods. We found a partial mediation of C38:4 PE in the association between 1-year average NO and lumbar spine BMD (p-value: 0.032). This is the first study suggesting that a PE may partially mediate air pollution-related bone damage in postmenopausal women.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Jeff Yanosky
- Pennsylvania State University College of Medicine
| | | | | | | |
Collapse
|
145
|
Mu A, Klare WP, Baines SL, Ignatius Pang CN, Guérillot R, Harbison-Price N, Keller N, Wilksch J, Nhu NTK, Phan MD, Keller B, Nijagal B, Tull D, Dayalan S, Chua HHC, Skoneczny D, Koval J, Hachani A, Shah AD, Neha N, Jadhav S, Partridge SR, Cork AJ, Peters K, Bertolla O, Brouwer S, Hancock SJ, Álvarez-Fraga L, De Oliveira DMP, Forde B, Dale A, Mujchariyakul W, Walsh CJ, Monk I, Fitzgerald A, Lum M, Correa-Ospina C, Roy Chowdhury P, Parton RG, De Voss J, Beckett J, Monty F, McKinnon J, Song X, Stephen JR, Everest M, Bellgard MI, Tinning M, Leeming M, Hocking D, Jebeli L, Wang N, Ben Zakour N, Yasar SA, Vecchiarelli S, Russell T, Zaw T, Chen T, Teng D, Kassir Z, Lithgow T, Jenney A, Cole JN, Nizet V, Sorrell TC, Peleg AY, Paterson DL, Beatson SA, Wu J, Molloy MP, Syme AE, Goode RJA, Hunter AA, Bowland G, West NP, Wilkins MR, Djordjevic SP, Davies MR, Seemann T, Howden BP, Pascovici D, Tyagi S, Schittenhelm RB, De Souza DP, McConville MJ, Iredell JR, Cordwell SJ, Strugnell RA, Stinear TP, Schembri MA, Walker MJ. Integrative omics identifies conserved and pathogen-specific responses of sepsis-causing bacteria. Nat Commun 2023; 14:1530. [PMID: 36934086 PMCID: PMC10024524 DOI: 10.1038/s41467-023-37200-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/20/2023] Open
Abstract
Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.
Collapse
Affiliation(s)
- Andre Mu
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Wellcome Sanger Institute, Hinxton, UK
| | - William P Klare
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sarah L Baines
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - C N Ignatius Pang
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- Bioinformatics Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Romain Guérillot
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nichaela Harbison-Price
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Nadia Keller
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jonathan Wilksch
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nguyen Thi Khanh Nhu
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Minh-Duy Phan
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Bernhard Keller
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Hwa Huat Charlie Chua
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dominik Skoneczny
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Jason Koval
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Anup D Shah
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Nitika Neha
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Snehal Jadhav
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Hospital/ Westmead Institute, and Sydney ID, University of Sydney, Sydney, NSW, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Kate Peters
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Olivia Bertolla
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Steven J Hancock
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laura Álvarez-Fraga
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Brian Forde
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ashleigh Dale
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Warasinee Mujchariyakul
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Calum J Walsh
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ian Monk
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Mabel Lum
- Bioplatforms Australia Ltd., Sydney, NSW, Australia
| | - Carolina Correa-Ospina
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Piklu Roy Chowdhury
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - James De Voss
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - James Beckett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Francois Monty
- Australian Genome Research Facility Ltd., Melbourne, VIC, Australia
| | - Jessica McKinnon
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Xiaomin Song
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - John R Stephen
- Australian Genome Research Facility Ltd., Melbourne, VIC, Australia
| | - Marie Everest
- Australian Genome Research Facility Ltd., Melbourne, VIC, Australia
| | - Matt I Bellgard
- Office of eResearch, Queensland University of Technology, Brisbane, QLD, Australia
- Center for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Matthew Tinning
- Australian Genome Research Facility Ltd., Melbourne, VIC, Australia
| | - Michael Leeming
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Dianna Hocking
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Leila Jebeli
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nancy Wang
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Nouri Ben Zakour
- Centre for Infectious Diseases and Microbiology, Westmead Hospital/ Westmead Institute, and Sydney ID, University of Sydney, Sydney, NSW, Australia
| | - Serhat A Yasar
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stefano Vecchiarelli
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tonia Russell
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Thiri Zaw
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Tyrone Chen
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Don Teng
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Zena Kassir
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Trevor Lithgow
- Centre to Impact AMR and Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Adam Jenney
- Centre to Impact AMR and Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Jason N Cole
- Department of Pediatrics, School of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Victor Nizet
- Department of Pediatrics, School of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Tania C Sorrell
- Centre for Infectious Diseases and Microbiology, Westmead Hospital/ Westmead Institute, and Sydney ID, University of Sydney, Sydney, NSW, Australia
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
- Centre to Impact AMR and Infection Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - David L Paterson
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Scott A Beatson
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jemma Wu
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Mark P Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Anna E Syme
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia
| | - Robert J A Goode
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, Australia
| | - Adam A Hunter
- Center for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Grahame Bowland
- Center for Comparative Genomics, Murdoch University, Perth, WA, Australia
| | - Nicholas P West
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marc R Wilkins
- Ramaciotti Centre for Genomics, School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Benjamin P Howden
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Sonika Tyagi
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Hospital/ Westmead Institute, and Sydney ID, University of Sydney, Sydney, NSW, Australia
| | - Stuart J Cordwell
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Mark A Schembri
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
146
|
Replacing Fish Meal with Hydrolyzed Collagen Derived from Fish By-Products Improved Muscle Quality and Glycolipid Metabolism of Triploid Crucian Carp. Foods 2023; 12:foods12061235. [PMID: 36981161 PMCID: PMC10048121 DOI: 10.3390/foods12061235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Fish by-products are rich in collagen. Hydrolyzed collagen derived from fish by-products was used to replace fish meal to evaluate the effects on muscle quality and glycolipid metabolism of juvenile triploid crucian carp. A total of 240 juvenile fish with body weight of 10.01 ± 0.02 g were divided into four groups and fed four diets for 66 days: fish meal (FM) replaced with hydrolyzed collagen (HC) in 0% (Control), 2% (2% HC), 4% (4% HC), and 6% (6% HC), respectively. The results were as follows: The increased proportion of fish meal replaced with hydrolyzed collagen linearly and quadratically decreased the specific growth rate (SGR) of triploid crucian carp (p < 0.05). Compared with the control group, the SGR and intestinal α-amylase, trypsin and lipase activities in the 4% and 6% HC groups significantly decreased (p < 0.05), while there was no significant difference between the control and 2% HC groups (p > 0.05). Total umami amino acids content, chewiness and myofiber density of muscle in the 4% and 6% HC groups, as well as the essential fatty acids content in all HC groups increased significantly (p < 0.05). All HC groups significantly increased the serum glutathione peroxidase (GSH-Px) activity and decreased the serum malondialdehyde (MDA) content (p < 0.05). When the replacement amount reached 4%, the serum glucose and liver glycogen content, the liver and serum triglyceride (TG) content, and serum total cholesterol (T-CHO) content were significantly reduced (p < 0.05). In addition, the expression levels of insulin-like growth factor-1 (IGF-1) of the liver in all HC groups and lipolysis-related genes (lipoprotein lipase (LPL), carnitine O-palmitoyltransferase 1 (CPT 1) and hydroxyacyl-coenzyme A dehydrogenase (HADH)) of the liver in the 6% of HC group increased significantly (p < 0.05), and the expression levels of lipogenesis-related genes (fatty acid synthase (FAS) and sterol regulatory element-binding protein 1 (SREBP 1)) of the liver in the 4% HC and 6% HC groups decreased significantly (p < 0.05). In conclusion, the replacement of 2% fish meal with hydrolyzed collagen had no negative effects on the growth of triploid crucian carp, while the replacement of 4% fish meal with hydrolyzed collagen decreased SGR, but improved the muscle quality and decreased glycolipid levels. The maximum proportion of hydrolyzed collagen replacing fish meal should not exceed 4%.
Collapse
|
147
|
Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett 2023; 28:21. [PMID: 36890458 PMCID: PMC9996905 DOI: 10.1186/s11658-023-00423-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/19/2023] [Indexed: 03/10/2023] Open
Abstract
Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH4) as an essential cofactor. Cardiovascular risk factors such as diabetes, dyslipidemia, hypertension, aging, or smoking increase vascular oxidative stress that strongly affects eNOS activity and leads to eNOS uncoupling. Uncoupled eNOS produces superoxide anion (O2-) instead of NO, thus becoming a source of harmful free radicals exacerbating the oxidative stress further. eNOS uncoupling is thought to be one of the major underlying causes of endothelial dysfunction observed in the pathogenesis of vascular diseases. Here, we discuss the main mechanisms of eNOS uncoupling, including oxidative depletion of the critical eNOS cofactor BH4, deficiency of eNOS substrate L-Arg, or accumulation of its analog asymmetrical dimethylarginine (ADMA), and eNOS S-glutathionylation. Moreover, potential therapeutic approaches that prevent eNOS uncoupling by improving cofactor availability, restoration of L-Arg/ADMA ratio, or modulation of eNOS S-glutathionylation are briefly outlined.
Collapse
Affiliation(s)
- Anna Janaszak-Jasiecka
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland
| | - Joanna M Wierońska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Smętna Street, 31-343, Kraków, Poland
| | - Lawrence W Dobrucki
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, 405 N Mathews Ave, MC-251, Urbana, IL, 61801, USA.,Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, Urbana, IL, USA
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.Pl, Medical University of Gdansk, 7 Debinki Street, 80-211, Gdansk, Poland. .,BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdansk, Poland.
| |
Collapse
|
148
|
Luise D, Correa F, Stefanelli C, Simongiovanni A, Chalvon-Demersay T, Zini M, Fusco L, Bosi P, Trevisi P. Productive and physiological implications of top-dress addition of branched-chain amino acids and arginine on lactating sows and offspring. J Anim Sci Biotechnol 2023; 14:40. [PMID: 36879289 PMCID: PMC9990366 DOI: 10.1186/s40104-022-00819-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/04/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs), including L-leucine (L-Leu), L-isoleucine (L-Ile), L-valine (L-Val), and L-arginine (L-Arg), play a crucial role in mammary gland development, secretion of milk and regulation of the catabolic state and immune response of lactating sows. Furthermore, it has recently been suggested that free amino acids (AAs) can also act as microbial modulators. This study aimed at evaluating whether the supplementation of lactating sows with BCAAs (9, 4.5 and 9 g/d/sow of L-Val, L-Ile and L-Leu, respectively) and/or L-Arg (22.5 g/d/sow), above the estimated nutritional requirement, could influence the physiological and immunological parameters, microbial profile, colostrum and milk composition and performance of sows and their offspring. RESULTS At d 41, piglets born from the sows supplemented with the AAs were heavier (P = 0.03). The BCAAs increased glucose and prolactin (P < 0.05) in the sows' serum at d 27, tended to increase immunoglobulin A (IgA) and IgM in the colostrum (P = 0.06), increased the IgA (P = 0.004) in the milk at d 20 and tended to increase lymphocyte% in the sows' blood at d 27 (P = 0.07). Furthermore, the BCAAs tended to reduce the Chao1 and Shannon microbial indices (P < 0.10) in the sows' faeces. The BCAA group was discriminated by Prevotellaceae_UCG-004, Erysipelatoclostridiaceae UCG-004, the Rikenellaceae_RC9_gut_group and Treponema berlinense. Arginine reduced piglet mortality pre- (d 7, d 14) and post-weaning (d 41) (P < 0.05). Furthermore, Arg increased the IgM in the sow serum at d 10 (P = 0.05), glucose and prolactin (P < 0.05) in the sow serum at d 27 and the monocyte percentage in the piglet blood at d 27 (P = 0.025) and their jejunal expression of NFKB2 (P = 0.035) while it reduced the expression of GPX-2 (P = 0.024). The faecal microbiota of the sows in Arg group was discriminated by Bacteroidales. The combination of BCAAs and Arg tended to increase spermine at d 27 (P = 0.099), tended to increase the Igs (IgA and IgG, P < 0.10) at d 20 in the milk, favoured the faecal colonisation of Oscillospiraceae UCG-005 and improved piglet growth. CONCLUSION Feeding Arg and BCAAs above the estimated requirements for milk production may be a strategy to improve sow productive performance in terms of piglet average daily gain (ADG), immune competence and survivability via modulation of the metabolism, colostrum and milk compositions and intestinal microbiota of the sows. The synergistic effect between these AAs, noticeable by the increase of Igs and spermine in the milk and in the improvement of the performance of the piglets, deserves additional investigation.
Collapse
Affiliation(s)
- Diana Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Federico Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Claudio Stefanelli
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 47921, Rimini, Italy
| | | | | | - Maddalena Zini
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126, Bologna, Italy
| | - Luciano Fusco
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.,Freelancer, Reggio nell'Emilia, Italy
| | - Paolo Bosi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy
| | - Paolo Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127, Bologna, Italy.
| |
Collapse
|
149
|
Calvani R, Gervasoni J, Picca A, Ciciarello F, Galluzzo V, Coelho-Júnior HJ, Di Mario C, Gremese E, Lomuscio S, Paglionico AM, Santucci L, Tolusso B, Urbani A, Marini F, Marzetti E, Landi F, Tosato M. Effects of l-Arginine Plus Vitamin C Supplementation on l-Arginine Metabolism in Adults with Long COVID: Secondary Analysis of a Randomized Clinical Trial. Int J Mol Sci 2023; 24:ijms24065078. [PMID: 36982151 PMCID: PMC10049539 DOI: 10.3390/ijms24065078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Altered l-arginine metabolism has been described in patients with COVID-19 and has been associated with immune and vascular dysfunction. In the present investigation, we determined the serum concentrations of l-arginine, citrulline, ornithine, monomethyl-l-arginine (MMA), and symmetric and asymmetric dimethylarginine (SDMA, ADMA) in adults with long COVID at baseline and after 28-days of l-arginine plus vitamin C or placebo supplementation enrolled in a randomized clinical trial, compared with a group of adults without previous history of SARS-CoV-2-infection. l-arginine-derived markers of nitric oxide (NO) bioavailability (i.e., l-arginine/ADMA, l-arginine/citrulline+ornithine, and l-arginine/ornithine) were also assayed. Partial least squares discriminant analysis (PLS–DA) models were built to characterize systemic l-arginine metabolism and assess the effects of the supplementation. PLS–DA allowed discrimination of participants with long COVID from healthy controls with 80.2 ± 3.0% accuracy. Lower markers of NO bioavailability were found in participants with long COVID. After 28 days of l-arginine plus vitamin C supplementation, serum l-arginine concentrations and l-arginine/ADMA increased significantly compared with placebo. This supplement may therefore be proposed as a remedy to increase NO bioavailability in people with long COVID.
Collapse
Affiliation(s)
- Riccardo Calvani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Correspondence: ; Tel.: +39-(06)-3015-5559
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70010 Casamassima, Italy
| | | | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Hélio José Coelho-Júnior
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Clara Di Mario
- Immunology Core Facility, Gemelli Science Technological Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Elisa Gremese
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Immunology Core Facility, Gemelli Science Technological Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Lomuscio
- Metabolomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Lavinia Santucci
- Metabolomics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Tolusso
- Immunology Core Facility, Gemelli Science Technological Park (GSTeP), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Andrea Urbani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federico Marini
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesco Landi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
150
|
Kodam P, Sai Swaroop R, Pradhan SS, Sivaramakrishnan V, Vadrevu R. Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets. Sci Rep 2023; 13:3695. [PMID: 36879094 PMCID: PMC9986671 DOI: 10.1038/s41598-023-30892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid plaques implicated in neuronal death. Genetics, age, and sex are the risk factors attributed to AD. Though omics studies have helped to identify pathways associated with AD, an integrated systems analysis with the available data could help to understand mechanisms, potential biomarkers, and therapeutic targets. Analysis of transcriptomic data sets from the GEO database, and proteomic and metabolomic data sets from literature was performed to identify deregulated pathways and commonality analysis identified overlapping pathways among the data sets. The deregulated pathways included those of neurotransmitter synapses, oxidative stress, inflammation, vitamins, complement, and coagulation pathways. Cell type analysis of GEO data sets showed microglia, endothelial, myeloid, and lymphoid cells are affected. Microglia are associated with inflammation and pruning of synapses with implications for memory and cognition. Analysis of the protein-cofactor network of B2, B6, and pantothenate shows metabolic pathways modulated by these vitamins which overlap with the deregulated pathways from the multi-omics analysis. Overall, the integrated analysis identified the molecular signature associated with AD. Treatment with anti-oxidants, B2, B6, and pantothenate in genetically susceptible individuals in the pre-symptomatic stage might help in better management of the disease.
Collapse
Affiliation(s)
- Pradeep Kodam
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - R Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India.
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India.
| |
Collapse
|