101
|
Albrecht DS, Mainero C, Ichijo E, Ward N, Granziera C, Zürcher NR, Akeju O, Bonnier G, Price J, Hooker JM, Napadow V, Loggia ML, Hadjikhani N. Imaging of neuroinflammation in migraine with aura: A [ 11C]PBR28 PET/MRI study. Neurology 2019; 92:e2038-e2050. [PMID: 30918090 DOI: 10.1212/wnl.0000000000007371] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To determine if migraine with aura is associated with neuroinflammation, which has been suggested by preclinical models of cortical spreading depression (CSD) as well as imaging of human pain conditions. METHODS Thirteen migraineurs with aura and 16 healthy controls received integrated PET/MRI brain scans with [11C]PBR28, a radioligand that binds to the 18 kDa translocator protein, a marker of glial activation. Standardized uptake value ratio (SUVR) was compared between groups, and regressed against clinical variables, using region of interest and whole-brain voxelwise analyses. RESULTS Compared to healthy controls, migraineurs demonstrated SUVR elevations in nociceptive processing areas (e.g., thalamus and primary/secondary somatosensory and insular cortices) as well as in areas previously shown to be involved in CSD generation (visual cortex). SUVR levels in frontoinsular cortex, primary/secondary somatosensory cortices, and basal ganglia were correlated with frequency of migraine attacks. CONCLUSIONS These findings demonstrate that migraine with aura is associated with neuroimmune activation/neuroinflammation, and support a possible link between CSD and glial activation, previously observed in animals.
Collapse
Affiliation(s)
- Daniel S Albrecht
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Caterina Mainero
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Eri Ichijo
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Noreen Ward
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Cristina Granziera
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Nicole R Zürcher
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Oluwaseun Akeju
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Guillaume Bonnier
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Julie Price
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Jacob M Hooker
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Vitaly Napadow
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Marco L Loggia
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown
| | - Nouchine Hadjikhani
- From the A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown.
| |
Collapse
|
102
|
Wang Q, Wang Y, Liu J, Sutphen CL, Cruchaga C, Blazey T, Gordon BA, Su Y, Chen C, Shimony JS, Ances BM, Cairns NJ, Fagan AM, Morris JC, Benzinger TLS. Quantification of white matter cellularity and damage in preclinical and early symptomatic Alzheimer's disease. Neuroimage Clin 2019; 22:101767. [PMID: 30901713 PMCID: PMC6428957 DOI: 10.1016/j.nicl.2019.101767] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 02/12/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Interest in understanding the roles of white matter (WM) inflammation and damage in the pathophysiology of Alzheimer disease (AD) has been growing significantly in recent years. However, in vivo magnetic resonance imaging (MRI) techniques for imaging inflammation are still lacking. An advanced diffusion-based MRI method, neuro-inflammation imaging (NII), has been developed to clinically image and quantify WM inflammation and damage in AD. Here, we employed NII measures in conjunction with cerebrospinal fluid (CSF) biomarker classification (for β-amyloid (Aβ) and neurodegeneration) to evaluate 200 participants in an ongoing study of memory and aging. Elevated NII-derived cellular diffusivity was observed in both preclinical and early symptomatic phases of AD, while disruption of WM integrity, as detected by decreased fractional anisotropy (FA) and increased radial diffusivity (RD), was only observed in the symptomatic phase of AD. This may suggest that WM inflammation occurs earlier than WM damage following abnormal Aβ accumulation in AD. The negative correlation between NII-derived cellular diffusivity and CSF Aβ42 level (a marker of amyloidosis) may indicate that WM inflammation is associated with increasing Aβ burden. NII-derived FA also negatively correlated with CSF t-tau level (a marker of neurodegeneration), suggesting that disruption of WM integrity is associated with increasing neurodegeneration. Our findings demonstrated the capability of NII to simultaneously image and quantify WM cellularity changes and damage in preclinical and early symptomatic AD. NII may serve as a clinically feasible imaging tool to study the individual and composite roles of WM inflammation and damage in AD.
Collapse
Affiliation(s)
- Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA
| | - Yong Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO 63015, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Jingxia Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney L Sutphen
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyler Blazey
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| | - Charlie Chen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beau M Ances
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne M Fagan
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Knight Alzheimer's Disease Research Center, 4488 Forest Park, Suite 101, St. Louis, MO 63108, USA; Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
103
|
Preziosa P, Rocca MA, Filippi M. PET is necessary to make the next step forward in understanding MS pathophysiology - No. Mult Scler 2019; 25:1088-1090. [PMID: 30810073 DOI: 10.1177/1352458518820238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Paolo Preziosa
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy/Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
104
|
Yanez Lopez M, Pardon MC, Baiker K, Prior M, Yuchun D, Agostini A, Bai L, Auer DP, Faas HM. Myoinositol CEST signal in animals with increased Iba-1 levels in response to an inflammatory challenge-Preliminary findings. PLoS One 2019; 14:e0212002. [PMID: 30789943 PMCID: PMC6383890 DOI: 10.1371/journal.pone.0212002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/08/2018] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation plays an important role in the pathogenesis of a range of brain disorders. Non-invasive imaging of neuroinflammation is critical to help improve our understanding of the underlying disease mechanisms, monitor therapies and guide drug development. Generally, MRI lacks specificity to molecular imaging biomarkers, but molecular MR imaging based on chemical exchange saturation transfer (CEST) can potentially detect changes of myoinositol, a putative glial marker that may index neuroinflammation. In this pilot study we aimed to investigate, through validation with immunohistochemistry and in vivo magnetic resonance spectroscopy (MRS), whether CEST imaging can reflect the microglial response to a mild inflammatory challenge with lipopolysaccharide (LPS), in the APPSwe/ PS1 mouse model of Alzheimer’s disease and wild type controls. The response to the immune challenge was variable and did not align with genotype. Animals with a strong response to LPS (Iba1+, n = 6) showed an increase in CEST contrast compared with those who did not (Iba1-, n = 6). Changes of myoinositol levels after LPS were not significant. We discuss the difficulties of this mild inflammatory model, the role of myoinositol as a glial biomarker, and the technical challenges of CEST imaging at 0.6ppm.
Collapse
Affiliation(s)
- Maria Yanez Lopez
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | | | - Kerstin Baiker
- School of Veterinary Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Malcolm Prior
- Medical Imaging Unit, University of Nottingham, Nottingham, United Kingdom
| | - Ding Yuchun
- School of Computer Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alessandra Agostini
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Li Bai
- School of Computer Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Dorothee P. Auer
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
| | - Henryk M. Faas
- Sir Peter Mansfield Imaging Centre, School of Medicine, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
105
|
Yi SY, Barnett BR, Torres-Velázquez M, Zhang Y, Hurley SA, Rowley PA, Hernando D, Yu JPJ. Detecting Microglial Density With Quantitative Multi-Compartment Diffusion MRI. Front Neurosci 2019; 13:81. [PMID: 30837826 PMCID: PMC6389825 DOI: 10.3389/fnins.2019.00081] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/25/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation plays a central role in the neuropathogenesis of a wide-spectrum of neurologic and psychiatric disease, but current neuroimaging methods to detect and characterize neuroinflammation are limited. We explored the sensitivity of quantitative multi-compartment diffusion MRI, and specifically neurite orientation dispersion and density imaging (NODDI), to detect changes in microglial density in the brain. Monte Carlo simulations of water diffusion using a NODDI acquisition scheme were performed to measure changes in a virtual MRI signal following modeled cellular changes within the extra-neurite space. 12-week-old C57BL/6J male mice (n = 48; 24 control, 24 treated with colony stimulating factor 1 receptor (CSF1R) inhibitor, PLX5622) were sacrificed at 0, 1, 3, and 7 days following withdrawal of CSF1R inhibition and were imaged ex-vivo to obtain measures of the orientation dispersion index (ODI). Following imaging, all brains were immunostained with Iba-1, NeuN, and GFAP for quantitative fluorescence microscopy. Cell populations were calculated with the ImageJ particle analyzer tool; correlation between microglial density and mean ODI values were calculated with Kendall's tau. Monte Carlo simulations demonstrate the sensitivity and positive correlation of ODI to increased occupancy in the extra-neurite space. Commensurate with our simulation data, ex-vivo NODDI imaging demonstrates an increase in ODI as microglia repopulate the brain following the withdrawal of CSF1R inhibition. Quantitative immunofluorescence of microglial density reveals that microglial density is positively correlated with ODI and greater hindered diffusion in the extra-neurite space (τ = 0.386, p < 0.05). Our results demonstrate that clinically feasible multi-compartment diffusion weighted imaging techniques such as NODDI are sensitive to microglial density and the cellular changes associated with microglial activation and highlights its potential to improve clinical diagnostic accuracy, patient risk stratification, and therapeutic monitoring of neuroinflammation in neurologic and psychiatric disease.
Collapse
Affiliation(s)
- Sue Y. Yi
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin–Madison, Madison, WI, United States
| | - Brian R. Barnett
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin–Madison, Madison, WI, United States
| | - Maribel Torres-Velázquez
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Yuxin Zhang
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Samuel A. Hurley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Paul A. Rowley
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Diego Hernando
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - John-Paul J. Yu
- Neuroscience Training Program, Wisconsin Institutes for Medical Research, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biomedical Engineering, College of Engineering, University of Wisconsin–Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
106
|
Kübler D, Wächter T, Cabanel N, Su Z, Turkheimer FE, Dodel R, Brooks DJ, Oertel WH, Gerhard A. Widespread microglial activation in multiple system atrophy. Mov Disord 2019; 34:564-568. [PMID: 30726574 PMCID: PMC6659386 DOI: 10.1002/mds.27620] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 11/22/2022] Open
Abstract
Background The pattern and role of microglial activation in multiple system atrophy is largely unclear. The objective of this study was to use [11C](R)‐PK11195 PET to determine the extent and correlation of activated microglia with clinical parameters in MSA patients. Methods Fourteen patients with the parkinsonian phenotype of MSA (MSA‐P) with a mean disease duration of 2.9 years (range 2‐5 years) were examined with [11C](R)‐PK11195 PET and compared with 10 healthy controls. Results Patients with the parkinsonian phenotype of MSA showed a significant (P ≤ 0.01) mean increase in binding potentials compared with healthy controls in the caudate nucleus, putamen, pallidum, precentral gyrus, orbitofrontal cortex, presubgenual anterior cingulate cortex, and the superior parietal gyrus. No correlations between binding potentials and clinical parameters were found. Conclusions In early clinical stages of the parkinsonian phenotype of MSA, there is widespread microglial activation as a marker of neuroinflammatory changes without correlation to clinical parameters in our patient population. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dorothee Kübler
- Movement Disorders Section, Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Tobias Wächter
- Hertie-Institute for Clinical Brain Research, Department of Neurodegenerative Diseases, Tübingen, Germany.,Department of Neurology, Rehabilitation Centre Bad Gögging, Passauer Wolf, Bad Gögging, Germany
| | - Nicole Cabanel
- Vitos Clinical Centre for Psychiatry and Psychotherapy, Giessen-Marburg, Germany
| | - Zhangjie Su
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Richard Dodel
- Chair of Geriatrics, University Hospital Essen, Center for Geriatric Medicine Haus Berge, Essen, Germany
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Institute of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Institute of Neuroscience, Newcastle University, Newcastle Upon Tyne, UK
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.,Institute for Neurogenomics, Helmholtz Center for Health and Environment, München, Germany
| | - Alexander Gerhard
- Departments of Nulcear Medicine and Geriatric Medicine, University Hospital Essen, Germany.,Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| |
Collapse
|
107
|
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and Cytokines in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): A Critical Review of Research Methods. Front Neurol 2019; 9:1033. [PMID: 30687207 PMCID: PMC6335565 DOI: 10.3389/fneur.2018.01033] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 11/16/2018] [Indexed: 01/18/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is the label given to a syndrome that can include long-term flu-like symptoms, profound fatigue, trouble concentrating, and autonomic problems, all of which worsen after exertion. It is unclear how many individuals with this diagnosis are suffering from the same condition or have the same underlying pathophysiology, and the discovery of biomarkers would be clarifying. The name "myalgic encephalomyelitis" essentially means "muscle pain related to central nervous system inflammation" and many efforts to find diagnostic biomarkers have focused on one or more aspects of neuroinflammation, from periphery to brain. As the field uncovers the relationship between the symptoms of this condition and neuroinflammation, attention must be paid to the biological mechanisms of neuroinflammation and issues with its potential measurement. The current review focuses on three methods used to study putative neuroinflammation in ME/CFS: (1) positron emission tomography (PET) neuroimaging using translocator protein (TSPO) binding radioligand (2) magnetic resonance spectroscopy (MRS) neuroimaging and (3) assays of cytokines circulating in blood and cerebrospinal fluid. PET scanning using TSPO-binding radioligand is a promising option for studies of neuroinflammation. However, methodological difficulties that exist both in this particular technique and across the ME/CFS neuroimaging literature must be addressed for any results to be interpretable. We argue that the vast majority of ME/CFS neuroimaging has failed to use optimal techniques for studying brainstem, despite its probable centrality to any neuroinflammatory causes or autonomic effects. MRS is discussed as a less informative but more widely available, less invasive, and less expensive option for imaging neuroinflammation, and existing studies using MRS neuroimaging are reviewed. Studies seeking to find a peripheral circulating cytokine "profile" for ME/CFS are reviewed, with attention paid to the biological and methodological reasons for lack of replication among these studies. We argue that both the biological mechanisms of cytokines and the innumerable sources of potential variance in their measurement make it unlikely that a consistent and replicable diagnostic cytokine profile will ever be discovered.
Collapse
Affiliation(s)
- Michael B. VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | | |
Collapse
|
108
|
Tanzey SS, Shao X, Stauff J, Arteaga J, Sherman P, Scott PJH, Mossine AV. Synthesis and Initial In Vivo Evaluation of [ 11C]AZ683-A Novel PET Radiotracer for Colony Stimulating Factor 1 Receptor (CSF1R). Pharmaceuticals (Basel) 2018; 11:E136. [PMID: 30551596 PMCID: PMC6316681 DOI: 10.3390/ph11040136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022] Open
Abstract
Positron emission tomography (PET) imaging of Colony Stimulating Factor 1 Receptor (CSF1R) is a new strategy for quantifying both neuroinflammation and inflammation in the periphery since CSF1R is expressed on microglia and macrophages. AZ683 has high affinity for CSF1R (Ki = 8 nM; IC50 = 6 nM) and >250-fold selectivity over 95 other kinases. In this paper, we report the radiosynthesis of [11C]AZ683 and initial evaluation of its use in CSF1R PET. [11C]AZ683 was synthesized by 11C-methylation of the desmethyl precursor with [11C]MeOTf in 3.0% non-corrected activity yield (based upon [11C]MeOTf), >99% radiochemical purity and high molar activity. Preliminary PET imaging with [11C]AZ683 revealed low brain uptake in rodents and nonhuman primates, suggesting that imaging neuroinflammation could be challenging but that the radiopharmaceutical could still be useful for peripheral imaging of inflammation.
Collapse
Affiliation(s)
- Sean S Tanzey
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Janna Arteaga
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Phillip Sherman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Peter J H Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Andrew V Mossine
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
109
|
Effect of overnight smoking abstinence on a marker for microglial activation: a [ 11C]DAA1106 positron emission tomography study. Psychopharmacology (Berl) 2018; 235:3525-3534. [PMID: 30343364 PMCID: PMC6497451 DOI: 10.1007/s00213-018-5077-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
RATIONALE Microglia are the main immune cells in the central nervous system and participate in neuroinflammation. When activated, microglia express increased levels of the translocator protein 18 kDa (TSPO), thereby making TSPO availability a marker for neuroinflammation. Using positron emission tomography (PET) scanning, our group recently demonstrated that smokers in the satiated state had 16.8% less binding of the radiotracer [11C]DAA1106 (a radioligand for TSPO) in the brain than nonsmokers. OBJECTIVES We sought to determine the effect of overnight smoking abstinence on [11C]DAA1106 binding in the brain. METHODS Forty participants (22 smokers and 18 nonsmokers) completed the study (at one of two sites) and had usable data, which included images from a dynamic [11C]DAA1106 PET scanning session (with smokers having been abstinent for 17.9 ± 2.3 h) and a blood sample for TSPO genotyping. Whole brain standardized uptake values (SUVs) were determined, and analysis of variance was performed, with group (overnight abstinent smoker vs. nonsmoker), site, and TSPO genotype as factors, thereby controlling for site and genotype. RESULTS Overnight abstinent smokers had lower whole brain SUVs (by 15.5 and 17.0% for the two study sites) than nonsmokers (ANCOVA, P = 0.004). The groups did not significantly differ in injected radiotracer dose or body weight, which were used to calculate SUV. CONCLUSIONS These results in overnight abstinent smokers are similar to those in satiated smokers, indicating that chronic cigarette smoking leads to global impairment of microglial activation which persists into early abstinence. Other explanations for study results, such as smoking leading to reduced numbers of microglia or smokers having more rapid metabolism of the radiotracer than nonsmokers, are also possible.
Collapse
|
110
|
Knezevic D, Verhoeff NPL, Hafizi S, Strafella AP, Graff-Guerrero A, Rajji T, Pollock BG, Houle S, Rusjan PM, Mizrahi R. Imaging microglial activation and amyloid burden in amnestic mild cognitive impairment. J Cereb Blood Flow Metab 2018; 38:1885-1895. [PMID: 29135331 PMCID: PMC6259323 DOI: 10.1177/0271678x17741395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) is defined as a transitional state between normal aging and Alzheimer's disease (AD). Given the replicated finding of increased microglial activation in AD, we sought to investigate whether microglial activation is also elevated in aMCI and whether it is related to amyloid beta (Aβ) burden in-vivo . Eleven aMCI participants and 14 healthy volunteers completed positron emission tomography (PET) scans with [18F]-FEPPA and [11C]-PIB. Given the known sensitivity in affinity of second-generation TSPO radioligands, participants were genotyped for the TSPO polymorphism and only high-affinity binders were included. Dynamic [18F]-FEPPA PET images were analyzed using the 2-tissue compartment model with arterial plasma input function. Additionally, a supplementary method, the standardized uptake value ratio (SUVR), was explored. [11C]-PIB PET images were analyzed using the Logan graphical method. aMCI participants had significantly higher [11C]-PIB binding in the cortical regions. No significant differences in [18F]-FEPPA binding were observed between aMCI participants and healthy volunteers. In the aMCI group, [18F]-FEPPA and [11C]-PIB bindings were correlated in the hippocampus. There were no correlations between our PET measures and cognition. Our findings demonstrate that while Aβ burden is evident in the aMCI stage, microglial activation may not be present.
Collapse
Affiliation(s)
- Dunja Knezevic
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nicolaas Paul Lg Verhoeff
- 1 University of Toronto, Toronto, Ontario, Canada.,3 Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Sina Hafizi
- 1 University of Toronto, Toronto, Ontario, Canada
| | - Antonio P Strafella
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,4 Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ariel Graff-Guerrero
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek Rajji
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bruce G Pollock
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sylvain Houle
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Pablo M Rusjan
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Romina Mizrahi
- 1 University of Toronto, Toronto, Ontario, Canada.,2 Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| |
Collapse
|
111
|
Foss CA, Plyku D, Ordonez AA, Sanchez-Bautista J, Rosenthal HB, Minn I, Lodge MA, Pomper MG, Sgouros G, Jain SK. Biodistribution and Radiation Dosimetry of 124I-DPA-713, a PET Radiotracer for Macrophage-Associated Inflammation. J Nucl Med 2018; 59:1751-1756. [PMID: 29700124 PMCID: PMC6225541 DOI: 10.2967/jnumed.117.207431] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 12/14/2022] Open
Abstract
Whole-body PET/CT was performed using 124I-DPA-713, a radioligand for the 18-kDa translocator protein (TSPO), to determine biodistribution and radiation dosimetry. Methods: Healthy subjects aged 18-65 y underwent whole-body PET/CT either at 4, 24, and 48 h or at 24, 48, and 72 h after intravenous injection of 124I-DPA-713. Time-activity curves were generated and used to calculate organ time-integrated activity coefficients for each subject. The resulting time-integrated activity coefficients provided input data for calculation of organ absorbed doses and effective dose for each subject using OLINDA. Subjects were genotyped for the TSPO polymorphism rs6971, and plasma protein binding of 124I-DPA-713 was measured. Results: Three male and 3 female adults with a mean age of 40 ± 19 y were imaged. The mean administered activity and mass were 70.5 ± 5.1 MBq (range, 62.4-78.1 MBq) and 469 ± 34 ng (range, 416-520 ng), respectively. There were no adverse or clinically detectable pharmacologic effects in any of the 6 subjects. No changes in vital signs, laboratory values, or electrocardiograms were observed. 124I-DPA-713 cleared rapidly (4 h after injection) from the lungs, with hepatic elimination and localization to the gastrointestinal tract. The mean effective dose over the 6 subjects was 0.459 ± 0.127 mSv/MBq, with the liver being the dose-limiting organ (0.924 ± 0.501 mGy/MBq). The percentage of free radiotracer in blood was approximately 30% at 30 and 60 min after injection. Conclusion:124I-DPA-713 clears rapidly from the lungs, with predominantly hepatic elimination, and is safe and well tolerated in healthy adults.
Collapse
Affiliation(s)
- Catherine A Foss
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Donika Plyku
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julian Sanchez-Bautista
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hailey B Rosenthal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Lodge
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sanjay K Jain
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
112
|
Varnäs K, Cselényi Z, Jucaite A, Halldin C, Svenningsson P, Farde L, Varrone A. PET imaging of [ 11C]PBR28 in Parkinson's disease patients does not indicate increased binding to TSPO despite reduced dopamine transporter binding. Eur J Nucl Med Mol Imaging 2018; 46:367-375. [PMID: 30270409 PMCID: PMC6333720 DOI: 10.1007/s00259-018-4161-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/07/2018] [Indexed: 11/29/2022]
Abstract
Purpose To examine the hypothesis that cerebral binding to the 18 kDa translocator protein (TSPO), a marker of microglia activation, is elevated in Parkinson’s disease (PD), and to assess the relationship between brain TSPO binding and dopaminergic pathology in PD. Methods The radioligand [11C]PBR28 was used for quantitative assessment of brain TSPO in 16 control subjects and 16 PD patients. To analyse the relationship between dopaminergic pathology and brain TSPO binding, PET studies of the dopamine transporter (DAT) were undertaken in PD patients using the DAT radioligand [18F]FE-PE2I. The total distribution volume of [11C]PBR28 was quantified in nigrostriatal regions, limbic cortices and thalamus, and the binding potential of [18F]FE-PE2I was quantified in nigrostriatal regions. Results Based on genotype analysis of the TSPO rs6971 polymorphism, 16 subjects (8 control subjects and 8 PD patients) were identified as high-affinity binders, and the remaining subjects were identified as mixed-affinity binders. A two-way ANOVA showed a strong main effect of TSPO genotype on the cerebral binding of [11C]PBR28, whereas no statistically significant main effect of diagnostic group, or a group by genotype interaction was found for any of the regions analysed. [18F]FE-PE2I PET studies in patients indicated a marked reduction in nigrostriatal binding to DAT. However, no correlations between the binding parameters were found for [11C]PBR28 and [18F]FE-PE2I. Conclusion The findings do not support the hypothesis of elevated cerebral TSPO binding or a relationship between TSPO binding and dopaminergic pathology in PD. Electronic supplementary material The online version of this article (10.1007/s00259-018-4161-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.
| | - Zsolt Cselényi
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Translational Neuropharmacology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden.,PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit, AstraZeneca, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, R5:02 Karolinska University Hospital, SE-17176, Stockholm, Sweden
| |
Collapse
|
113
|
TSPO in diverse CNS pathologies and psychiatric disease: A critical review and a way forward. Pharmacol Ther 2018; 194:44-58. [PMID: 30189290 DOI: 10.1016/j.pharmthera.2018.09.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of Translocator Protein 18 kDa (TSPO) as a clinical neuroimaging biomarker of brain injury and neuroinflammation has increased exponentially in the last decade. There has been a furious pace in the development of new radiotracers for TSPO positron emission tomography (PET) imaging and its use has now been extensively described in many neurological and mental disorders. This fast pace of research and the ever-increasing number of new laboratories entering the field often times lack an appreciation of the historical perspective of the field and introduce dogmatic, but unproven facts, related to the underlying neurobiology of the TSPO response to brain injury and neuroinflammation. Paradoxically, while in neurodegenerative disorders and in all types of CNS pathologies brain TSPO levels increase, a new observation in psychiatric disorders such as schizophrenia is decreased brain levels of TSPO measured by PET. The neurobiological bases for this new finding is currently not known, but rigorous experimental design using multiple experimental approaches and careful interpretation of results is critically important to provide the methodological and/or biological underpinnings to this new observation. This review provides a perspective of the early history of validating TSPO as a biomarker of brain injury and neuroinflammation and a critical analysis of controversial topics in the literature related to the cellular sources of the TSPO response. The latter is important in order to provide the correct interpretation of PET studies in neurodegenerative and psychiatric disorders. Furthermore, this review proposes some yet to be explored explanations to new findings in psychiatric disorders and new approaches to quantitatively assess the glial sources of the TSPO response in order to move the field forward.
Collapse
|
114
|
Kang Y, Mozley PD, Verma A, Schlyer D, Henchcliffe C, Gauthier SA, Chiao PC, He B, Nikolopoulou A, Logan J, Sullivan JM, Pryor KO, Hesterman J, Kothari PJ, Vallabhajosula S. Noninvasive PK11195-PET Image Analysis Techniques Can Detect Abnormal Cerebral Microglial Activation in Parkinson's Disease. J Neuroimaging 2018; 28:496-505. [PMID: 29727504 PMCID: PMC6174975 DOI: 10.1111/jon.12519] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/15/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Neuroinflammation has been implicated in the pathophysiology of Parkinson's disease (PD), which might be influenced by successful neuroprotective drugs. The uptake of [11 C](R)-PK11195 (PK) is often considered to be a proxy for neuroinflammation, and can be quantified using the Logan graphical method with an image-derived blood input function, or the Logan reference tissue model using automated reference region extraction. The purposes of this study were (1) to assess whether these noninvasive image analysis methods can discriminate between patients with PD and healthy volunteers (HVs), and (2) to establish the effect size that would be required to distinguish true drug-induced changes from system variance in longitudinal trials. METHODS The sample consisted of 20 participants with PD and 19 HVs. Two independent teams analyzed the data to compare the volume of distribution calculated using image-derived input functions (IDIFs), and binding potentials calculated using the Logan reference region model. RESULTS With all methods, the higher signal-to-background in patients resulted in lower variability and better repeatability than in controls. We were able to use noninvasive techniques showing significantly increased uptake of PK in multiple brain regions of participants with PD compared to HVs. CONCLUSION Although not necessarily reflecting absolute values, these noninvasive image analysis methods can discriminate between PD patients and HVs. We see a difference of 24% in the substantia nigra between PD and HV with a repeatability coefficient of 13%, showing that it will be possible to estimate responses in longitudinal, within subject trials of novel neuroprotective drugs.
Collapse
Affiliation(s)
| | | | | | - David Schlyer
- Weill Cornell MedicineNew YorkNY
- Brookhaven National LaboratoriesNY
| | | | | | | | - Bin He
- Weill Cornell MedicineNew YorkNY
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Stankoff B, Poirion E, Tonietto M, Bodini B. Exploring the heterogeneity of MS lesions using positron emission tomography: a reappraisal of their contribution to disability. Brain Pathol 2018; 28:723-734. [PMID: 30020560 PMCID: PMC8099240 DOI: 10.1111/bpa.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
The biological mechanisms driving disability worsening in multiple sclerosis (MS) are only partly understood. Monitoring changes in lesion load on MRI has a limited predictive value on the progression of clinical disability, and there is an essential need for novel imaging markers specific for the main candidate mechanisms underlying neurodegeneration which include failing myelin repair, innate immune cell activation and gray matter neuronal damage. Positron Emission Tomography (PET) is an imaging technology based on the injection of radiotracers directed against specific molecular targets, which has recently allowed the selective quantification in-vivo of the key biological mechanisms relevant to MS pathophysiology. Pilot PET studies performed in patients with all forms of MS allowed to revisit the contribution of MS lesions to disability worsening and showed that the evolution of lesions toward chronic activation, together with their remyelination profile were relevant predictors of disability worsening. PET offers the opportunity to bridge a critical gap between neuropathology and in-vivo imaging. This technique provides an original approach to disentangle some of the most relevant pathological components driving MS progression, to follow-up their temporal evolution, to investigate their clinical relevance and to evaluate novel therapeutics aimed to prevent disease progression.
Collapse
Affiliation(s)
- Bruno Stankoff
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| | - Emilie Poirion
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Matteo Tonietto
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
| | - Benedetta Bodini
- Sorbonne UniversitésUPMC Paris 06Institut du Cerveau et de la Moelle épinièreICMHôpital de la Pitié SalpêtrièreInserm UMR S 1127CNRS UMR 7225ParisFrance
- AP‐HPHôpital Saint‐AntoineParisFrance
| |
Collapse
|
116
|
Lee BG, Leavitt MJ, Bernick CB, Leger GC, Rabinovici G, Banks SJ. A Systematic Review of Positron Emission Tomography of Tau, Amyloid Beta, and Neuroinflammation in Chronic Traumatic Encephalopathy: The Evidence To Date. J Neurotrauma 2018; 35:2015-2024. [PMID: 29609516 PMCID: PMC6421996 DOI: 10.1089/neu.2017.5558] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is associated with pathological changes, yet detecting these changes during life has proven elusive. Positron emission tomography (PET) offers the potential for identifying such pathology. Few studies have been completed to date and their approaches and results have been diverse. It was the objective of this review to systematically examine relevant research using ligands for PET that bind to identified pathology in CTE. We focused on identification of patterns of binding and addressing gaps in knowledge of PET imaging for CTE. A comprehensive literature search was conducted. Data used were published on or before May 22, 2017. As the extant literature is limited, any peer-reviewed article assessing military, contact sports athletes, or professional fighters was considered for inclusion. The main outcomes were regional binding to brain regions identified through control comparisons or through clinical metrics (e.g., standardized uptake volume ratios). A total of 1207 papers were identified for review, of which six met inclusion criteria. Meta-analyses were planned but were deemed inappropriate given the small number of studies identified. Methodological concerns in these initial papers included small sample sizes, lack of a control comparison, use of nonstandard statistical procedures to quantify data, and interpretation of potentially off-target binding areas. Across studies, the hippocampi, amygdalae, and midbrain had reasonably consistent increased uptake. Evidence for increased uptake in cortical regions was less consistent. The evidence suggests that the field of PET imaging in those at risk for CTE remains nascent. As the field evolves to include more stringent studies, ligands for PET may prove an important tool in identifying CTE in vivo.
Collapse
Affiliation(s)
- Bern G. Lee
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
- University of Nevada, Las Vegas, Las Vegas, Nevada
| | - MacKenzie J. Leavitt
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| | - Charles B. Bernick
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| | - Gabriel C. Leger
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| | - Gil Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco
| | - Sarah J. Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health and Lerner College of Medicine, Las Vegas, Nevada
| |
Collapse
|
117
|
de Lange C, Solberg R, Holtedahl JE, Tulipan A, Barlinn J, Trigg W, Wickstrøm T, Saugstad OD, Malinen E, Revheim ME. Dynamic TSPO-PET for assessing early effects of cerebral hypoxia and resuscitation in new born pigs. Nucl Med Biol 2018; 66:49-57. [PMID: 30257223 DOI: 10.1016/j.nucmedbio.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/27/2018] [Accepted: 08/19/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammation associated with microglial activation may be an early prognostic indicator of perinatal hypoxic ischemic injury, where translocator protein (TSPO) is a known inflammatory biomarker. This piglet study used dynamic TSPO-PET with [18F]GE180 to evaluate if microglial activation after global perinatal hypoxic injury could be detected. METHODS New born anesthetized pigs (n = 14) underwent hypoxia with fraction of inspired oxygen (FiO2)0.08 until base excess -20 mmol/L and/or a mean arterial blood pressure decrease to 20 mm Hg, followed by resuscitation with FiO2 0.21 or 1.0. Three piglets served as controls and one had intracranial injection of lipopolysaccharide (LPS). Whole body [18F]GE180 Positron emission tomography-computed tomography (PET-CT) was performed repeatedly up to 32 h after hypoxia and resuscitation. Volumes of interest were traced in the basal ganglia, cerebellum and liver using MRI as anatomic correlation. Standardized uptake values (SUVs) were measured at baseline and four time-points, quantifying microglial activity over time. Statistical analysis used Mann Whitney- and Wilcoxon rank test with significance value set to p < 0.05. RESULTS At baseline (n = 5), mean SUVs ±1 standard deviation were 0.43 ± 0.10 and 1.71 ± 0.62 in brain and liver respectively without significant increase after hypoxia at the four time-points (n = 5-13/time point). Succeeding LPS injection, SUV increased 80% from baseline values. CONCLUSIONS Cerebral inflammatory response caused by severe asphyxia was not possible to detect with [18F]GE180 PET CT the first 32 h after hypoxia and only sparse hepatic uptake was revealed. ADVANCES IN KNOWLEDGE Early microglial activation as indicator of perinatal hypoxic ischemic injury was not detectable by TSPO-PET with [18F]GE180. IMPLICATIONS FOR PATIENT CARE TSPO-PET with [18F]GE180 might not be suitable for early detection of perinatal hypoxic ischemic brain injury.
Collapse
Affiliation(s)
- Charlotte de Lange
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway.
| | - Rønnaug Solberg
- Dept. of Paediatric Research, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Dept. of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jon Erik Holtedahl
- Dept. of Medical Physics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | - Andreas Tulipan
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | - Jon Barlinn
- Dept. of Pediatrics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | | | | | - Ola Didrik Saugstad
- Dept. of Paediatric Research, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Faculty of Medicine, University of Oslo, PO Box1078, Blindern, N-0316 Oslo, Norway
| | - Eirik Malinen
- Dept. of Medical Physics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Dept. of Physics, University of Oslo, P.O Box 1048, Blindern, N-0316 Oslo, Norway
| | - Mona Elisabeth Revheim
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Faculty of Medicine, University of Oslo, PO Box1078, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
118
|
Abstract
Contrary to the notion that neurology but not psychiatry is the domain of disorders evincing structural brain alterations, it is now clear that there are subtle but consistent neuropathological changes in schizophrenia. These range from increases in ventricular size to dystrophic changes in dendritic spines. A decrease in dendritic spine density in the prefrontal cortex (PFC) is among the most replicated of postmortem structural findings in schizophrenia. Examination of the mechanisms that account for the loss of dendritic spines has in large part focused on genes and molecules that regulate neuronal structure. But the simple question of what is the effector of spine loss, ie, where do the lost spines go, is unanswered. Recent data on glial cells suggest that microglia (MG), and perhaps astrocytes, play an important physiological role in synaptic remodeling of neurons during development. Synapses are added to the dendrites of pyramidal cells during the maturation of these neurons; excess synapses are subsequently phagocytosed by MG. In the PFC, this occurs during adolescence, when certain symptoms of schizophrenia emerge. This brief review discusses recent advances in our understanding of MG function and how these non-neuronal cells lead to structural changes in neurons in schizophrenia.
Collapse
Affiliation(s)
| | - Ariel Y Deutch
- Neuroscience Program, Vanderbilt University, Nashville, TN
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| |
Collapse
|
119
|
Simmons DA, James ML, Belichenko NP, Semaan S, Condon C, Kuan J, Shuhendler AJ, Miao Z, Chin FT, Longo FM. TSPO-PET imaging using [18F]PBR06 is a potential translatable biomarker for treatment response in Huntington's disease: preclinical evidence with the p75NTR ligand LM11A-31. Hum Mol Genet 2018; 27:2893-2912. [PMID: 29860333 PMCID: PMC6077813 DOI: 10.1093/hmg/ddy202] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that has no cure. HD therapeutic development would benefit from a non-invasive translatable biomarker to track disease progression and treatment response. A potential biomarker is using positron emission tomography (PET) imaging with a translocator protein 18 kDa (TSPO) radiotracer to detect microglial activation, a key contributor to HD pathogenesis. The ability of TSPO-PET to identify microglial activation in HD mouse models, essential for a translatable biomarker, or therapeutic efficacy in HD patients or mice is unknown. Thus, this study assessed the feasibility of utilizing PET imaging with the TSPO tracer, [18F]PBR06, to detect activated microglia in two HD mouse models and to monitor response to treatment with LM11A-31, a p75NTR ligand known to reduce neuroinflammation in HD mice. [18F]PBR06-PET detected microglial activation in striatum, cortex and hippocampus of vehicle-treated R6/2 mice at a late disease stage and, notably, also in early and mid-stage symptomatic BACHD mice. After oral administration of LM11A-31 to R6/2 and BACHD mice, [18F]PBR06-PET discerned the reductive effects of LM11A-31 on neuroinflammation in both HD mouse models. [18F]PBR06-PET signal had a spatial distribution similar to ex vivo brain autoradiography and correlated with microglial activation markers: increased IBA-1 and TSPO immunostaining/blotting and striatal levels of cytokines IL-6 and TNFα. These results suggest that [18F]PBR06-PET is a useful surrogate marker of therapeutic efficacy in HD mice with high potential as a translatable biomarker for preclinical and clinical HD trials.
Collapse
Affiliation(s)
- Danielle A Simmons
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle L James
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Nadia P Belichenko
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Sarah Semaan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Condon
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason Kuan
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Adam J Shuhendler
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frederick T Chin
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
120
|
Lillethorup TP, Glud AN, Landeck N, Alstrup AKO, Jakobsen S, Vang K, Doudet DJ, Brooks DJ, Kirik D, Hinz R, Sørensen JC, Landau AM. In vivo quantification of glial activation in minipigs overexpressing human α-synuclein. Synapse 2018; 72:e22060. [PMID: 30009467 DOI: 10.1002/syn.22060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022]
Abstract
Parkinson's disease is characterized by a progressive loss of substantia nigra (SN) dopaminergic neurons and the formation of Lewy bodies containing accumulated alpha-synuclein (α-syn). The pathology of Parkinson's disease is associated with neuroinflammatory microglial activation, which may contribute to the ongoing neurodegeneration. This study investigates the in vivo microglial and dopaminergic response to overexpression of α-syn. We used positron emission tomography (PET) and the 18 kDa translocator protein radioligand, [11 C](R)PK11195, to image brain microglial activation and (+)-α-[11 C]dihydrotetrabenazine ([11 C]DTBZ), to measure vesicular monoamine transporter 2 (VMAT2) availability in Göttingen minipigs following injection with recombinant adeno-associated virus (rAAV) vectors expressing either mutant A53T α-syn or green fluorescent protein (GFP) into the SN (4 rAAV-α-syn, 4 rAAV-GFP, 5 non-injected control minipigs). We performed motor symptom assessment and immunohistochemical examination of tyrosine hydroxylase (TH) and transgene expression. Expression of GFP and α-syn was observed at the SN injection site and in the striatum. We observed no motor symptoms or changes in striatal [11 C]DTBZ binding potential in vivo or striatal or SN TH staining in vitro between the groups. The mean [11 C](R)PK11195 total volume of distribution was significantly higher in the basal ganglia and cortical areas of the α-syn group than the control animals. We conclude that mutant α-syn expression in the SN resulted in microglial activation in multiple sub- and cortical regions, while it did not affect TH stains or VMAT2 availability. Our data suggest that microglial activation constitutes an early response to accumulation of α-syn in the absence of dopamine neuron degeneration.
Collapse
Affiliation(s)
- Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Andreas Nørgaard Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Aage Kristian Olsen Alstrup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Kim Vang
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
| | - Doris J Doudet
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Department of Medicine/Neurology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Division of Neuroscience, Department of Medicine, Imperial College London, London, United Kingdom.,Division of Neuroscience, Newcastle University, Newcastle, United Kingdom
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (BRAINS) Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom
| | - Jens Christian Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Risskov, Denmark
| |
Collapse
|
121
|
Comparison of two different methods of image analysis for the assessment of microglial activation in patients with multiple sclerosis using (R)-[N-methyl-carbon-11]PK11195. PLoS One 2018; 13:e0201289. [PMID: 30091993 PMCID: PMC6084893 DOI: 10.1371/journal.pone.0201289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022] Open
Abstract
Chronic active multiple sclerosis (MS) lesions have a rim of activated microglia/macrophages (m/M) leading to ongoing tissue damage, and thus represent a potential treatment target. Activation of this innate immune response in MS has been visualized and quantified using PET imaging with [11C]-(R)-PK11195 (PK). Accurate identification of m/M activation in chronic MS lesions requires the sensitivity to detect lower levels of activity within a small tissue volume. We assessed the ability of kinetic modeling of PK PET data to detect m/M activity in different central nervous system (CNS) tissue regions of varying sizes and in chronic MS lesions. Ten patients with MS underwent a single brain MRI and two PK PET scans 2 hours apart. Volume of interest (VOI) masks were generated for the white matter (WM), cortical gray matter (CGM), and thalamus (TH). The distribution volume (VT) was calculated with the Logan graphical method (LGM-VT) utilizing an image-derived input function (IDIF). The binding potential (BPND) was calculated with the reference Logan graphical method (RLGM) utilizing a supervised clustering algorithm (SuperPK) to determine the non-specific binding region. Masks of varying volume were created in the CNS to assess the impact of region size on the various metrics among high and low uptake regions. Chronic MS lesions were also evaluated and individual lesion masks were generated. The highest PK uptake occurred the TH and lowest within the WM, as demonstrated by the mean time activity curves. In the TH, both reference and IDIF based methods resulted in estimates that did not significantly depend on VOI size. However, in the WM, the test-retest reliability of BPND was significantly lower in the smallest VOI, compared to the estimates of LGM-VT. These observations were consistent for all chronic MS lesions examined. In this study, we demonstrate that BPND and LGM-VT are both reliable for quantifying m/M activation in regions of high uptake, however with blood input function LGM-VT is preferred to assess longitudinal m/M activation in regions of relatively low uptake, such as chronic MS lesions.
Collapse
|
122
|
Metzger JM, Moore CF, Boettcher CA, Brunner KG, Fleddermann RA, Matsoff HN, Resnikoff HA, Bondarenko V, Kamp TJ, Hacker TA, Barnhart TE, Lao PJ, Christian BT, Nickles RJ, Gallagher CL, Holden JE, Emborg ME. In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration. NPJ PARKINSONS DISEASE 2018; 4:22. [PMID: 30038956 PMCID: PMC6045637 DOI: 10.1038/s41531-018-0057-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/11/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
Loss of cardiac postganglionic sympathetic innervation is a characteristic pathology of Parkinson’s disease (PD). It progresses over time independently of motor symptoms and is not responsive to typical anti-parkinsonian therapies. Cardiac sympathetic neurodegeneration can be mimicked in animals using systemic dosing of the neurotoxin 6-hydroxydopamine (6-OHDA). As in PD, 6-OHDA-induced neuronal loss is associated with increased inflammation and oxidative stress. To assess the feasibility of detecting changes over time in cardiac catecholaminergic innervation, inflammation, and oxidative stress, myocardial positron emission tomography with the radioligands [11C]meta-hydroxyephedrine (MHED), [11C]PBR28 (PBR28), and [61Cu]diacetyl-bis(N(4))-methylthiosemicarbazone (ATSM) was performed in 6-OHDA-intoxicated adult, male rhesus macaques (n = 10; 50 mg/kg i.v.). The peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone, which is known to have anti-inflammatory and anti-oxidative stress properties, was administered to five animals (5 mg/kg, PO); the other five were placebo-treated. One week after 6-OHDA, cardiac MHED uptake was significantly reduced in both groups (placebo, 86% decrease; pioglitazone, 82%); PBR28 and ATSM uptake increased in both groups but were attenuated in pioglitazone-treated animals (PBR28 Treatment × Level ANOVA p < 0.002; ATSM Mann–Whitney p = 0.032). At 12 weeks, partial recovery of MHED uptake was significantly greater in the pioglitazone-treated group, dependent on left ventricle circumferential region and axial level (Treatment × Region × Level ANOVA p = 0.034); 12-week MHED uptake significantly correlated with tyrosine hydroxylase immunoreactivity across cardiac anatomy (p < 0.000002). PBR28 and ATSM uptake returned to baseline levels by 12 weeks. These radioligands thus hold potential as in vivo biomarkers of mechanisms of cardiac neurodegeneration and neuroprotection. Three cardiac nerve loss biomarkers enable the visualization of cardiac neurodegeneration and response to neuroprotective treatment. The loss of sympathetic cardiac innervation in patients with PD causes symptoms such as postural hypotension, arrhythmia, and fatigue that do not respond to anti-parkinsonian medications. Marina Emborg and colleagues at University of Wisconsin–Madison, USA, used positron emission tomography with three radioligands to image changes in cardiac innervation, oxidative stress and inflammation in monkeys during neurotoxin-induced PD-like cardiac neurodegeneration. They were able to visualize the recruitment of inflammatory cells and increased production of reactive oxygen species during neurodegeneration as well as observe improvements in response to pioglitazone, a drug that has previously been shown to have neuroprotective effects in animal models of PD. These radioligands could be useful imaging biomarkers of cardiac nerve loss progression in patients with PD or cardiovascular disease.
Collapse
Affiliation(s)
- Jeanette M Metzger
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA.,2Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI USA
| | - Colleen F Moore
- 3Department of Psychology, University of Wisconsin-Madison, Madison, WI USA
| | - Carissa A Boettcher
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Kevin G Brunner
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Rachel A Fleddermann
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Helen N Matsoff
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Henry A Resnikoff
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Viktoriya Bondarenko
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA
| | - Timothy J Kamp
- 4Department of Medicine, University of Wisconsin-Madison, Madison, WI USA
| | - Timothy A Hacker
- 4Department of Medicine, University of Wisconsin-Madison, Madison, WI USA
| | - Todd E Barnhart
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Patrick J Lao
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Bradley T Christian
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - R Jerry Nickles
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | | | - James E Holden
- 5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| | - Marina E Emborg
- 1Preclinical Parkinson's Research Program, Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI USA.,2Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI USA.,5Department of Medical Physics, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
123
|
Auberson YP, Briard E, Rudolph B, Kaupmann K, Smith P, Oberhauser B. PET Imaging of T Cells: Target Identification and Feasibility Assessment. ChemMedChem 2018; 13:1566-1579. [DOI: 10.1002/cmdc.201800241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Yves P. Auberson
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 141 Klybeckstrasse 4057 Basel Switzerland
| | - Emmanuelle Briard
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 141 Klybeckstrasse 4057 Basel Switzerland
| | - Bettina Rudolph
- Translational Medicine, Pharmacokinetics Sciences Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Klemens Kaupmann
- Autoimmunity, Transplantation & Inflammation Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Paul Smith
- Autoimmunity, Transplantation & Inflammation Novartis Institutes for BioMedical Research Novartis Campus 4056 Basel Switzerland
| | - Berndt Oberhauser
- Global Discovery Chemistry Novartis Institutes for BioMedical Research 141 Klybeckstrasse 4057 Basel Switzerland
| |
Collapse
|
124
|
Veronese M, Reis Marques T, Bloomfield PS, Rizzo G, Singh N, Jones D, Agushi E, Mosses D, Bertoldo A, Howes O, Roncaroli F, Turkheimer FE. Kinetic modelling of [ 11C]PBR28 for 18 kDa translocator protein PET data: A validation study of vascular modelling in the brain using XBD173 and tissue analysis. J Cereb Blood Flow Metab 2018; 38:1227-1242. [PMID: 28580888 PMCID: PMC6434448 DOI: 10.1177/0271678x17712388] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a marker of microglia activation in the central nervous system and represents the main target of radiotracers for the in vivo quantification of neuroinflammation with positron emission tomography (PET). TSPO PET is methodologically challenging given the heterogeneous distribution of TSPO in blood and brain. Our previous studies with the TSPO tracers [11C]PBR28 and [11C]PK11195 demonstrated that a model accounting for TSPO binding to the endothelium improves the quantification of PET data. Here, we performed a validation of the kinetic model with the additional endothelial compartment through a displacement study. Seven subjects with schizophrenia, all high-affinity binders, underwent two [11C]PBR28 PET scans before and after oral administration of 90 mg of the TSPO ligand XBD173. The addition of the endothelial component provided a signal compartmentalization much more consistent with the underlying biology, as only in this model, the blocking study produced the expected reduction in the tracer concentration of the specific tissue compartment, whereas the non-displaceable compartment remained unchanged. In addition, we also studied TSPO expression in vessels using 3D reconstructions of histological data of frontal lobe and cerebellum, demonstrating that TSPO positive vessels account for 30% of the vascular volume in cortical and white matter.
Collapse
Affiliation(s)
- Mattia Veronese
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Tiago Reis Marques
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | | | - Gaia Rizzo
- Department of Information Engineering,
Padova University, Padova, Italy
| | - Nisha Singh
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
| | - Deborah Jones
- Department of Cellular Pathology,
Salford Royal Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Dominic Mosses
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Alessandra Bertoldo
- Department of Information Engineering,
Padova University, Padova, Italy
- Padua Neuroscience Center, University of
Padova, Padova, Italy
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN,
King’s College London, London, UK
- Institute of Clinical Sciences, Imperial
College London, London, UK
| | - Federico Roncaroli
- Division of Neuroscience and
Experimental Psychology, University of Manchester, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, IoPPN,
King’s College London, London, UK
- Federico E Turkheimer, Centre for
Neuroimaging Sciences, IoPPN, King’s College London, P089, De Crespigny Park,
Denmark Hill, London SE5 8AF, UK.
| |
Collapse
|
125
|
Edison P, Brooks DJ. Role of Neuroinflammation in the Trajectory of Alzheimer’s Disease and in vivo Quantification Using PET. J Alzheimers Dis 2018; 64:S339-S351. [DOI: 10.3233/jad-179929] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Paul Edison
- Neurology Imaging Unit, Department of Medicine, Imperial College London, London, UK
| | - David J. Brooks
- Department of Nuclear Medicine, Aarhus University, Denmark
- Institute of Neuroscience, University of Newcastle upon Tyne, UK
| |
Collapse
|
126
|
Albrecht D, Ahmed S, Kettner N, Borra R, Cohen-Adad J, Deng H, Houle T, Opalacz A, Roth S, Melo MV, Chen L, Mao J, Hooker J, Loggia ML, Zhang Y. Neuroinflammation of the spinal cord and nerve roots in chronic radicular pain patients. Pain 2018; 159:968-977. [PMID: 29419657 PMCID: PMC5908728 DOI: 10.1097/j.pain.0000000000001171] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous preclinical studies support the role of spinal neuroimmune activation in the pathogenesis of chronic pain, and targeting glia (eg, microglia/astrocyte)- or macrophage-mediated neuroinflammatory responses effectively prevents or reverses the establishment of persistent nocifensive behaviors in laboratory animals. However, thus far, the translation of those findings into novel treatments for clinical use has been hindered by the scarcity of data supporting the role of neuroinflammation in human pain. Here, we show that patients suffering from a common chronic pain disorder (lumbar radiculopathy), compared with healthy volunteers, exhibit elevated levels of the neuroinflammation marker 18 kDa translocator protein, in both the neuroforamina (containing dorsal root ganglion and nerve roots) and spinal cord. These elevations demonstrated a pattern of spatial specificity correlating with the patients' clinical presentation, as they were observed in the neuroforamen ipsilateral to the symptomatic leg (compared with both contralateral neuroforamen in the same patients as well as to healthy controls) and in the most caudal spinal cord segments, which are known to process sensory information from the lumbosacral nerve roots affected in these patients (compared with more superior segments). Furthermore, the neuroforaminal translocator protein signal was associated with responses to fluoroscopy-guided epidural steroid injections, supporting its role as an imaging marker of neuroinflammation, and highlighting the clinical significance of these observations. These results implicate immunoactivation at multiple levels of the nervous system as a potentially important and clinically relevant mechanism in human radicular pain, and suggest that therapies targeting immune cell activation may be beneficial for chronic pain patients.
Collapse
Affiliation(s)
- Daniel Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114
| | - Shihab Ahmed
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Norman Kettner
- Department of Radiology, Logan University, Chesterfield, MO, 63017
| | - Ronald Borra
- Medical Imaging Centre of Southwest Finland, Turku University Hospital, Turku, Finland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Julien Cohen-Adad
- Department of Electrical Engineering, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada
| | - Hao Deng
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Timothy Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Arissa Opalacz
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Sarah Roth
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Marcos Vidal Melo
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Lucy Chen
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Jianren Mao
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| | - Jacob Hooker
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
| | - Marco L Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129
| | - Yi Zhang
- MGH Translational Pain Research Center, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston MA 02114
| |
Collapse
|
127
|
Selvaraj S, Bloomfield PS, Cao B, Veronese M, Turkheimer F, Howes OD. Brain TSPO imaging and gray matter volume in schizophrenia patients and in people at ultra high risk of psychosis: An [ 11C]PBR28 study. Schizophr Res 2018; 195:206-214. [PMID: 28893493 PMCID: PMC6027955 DOI: 10.1016/j.schres.2017.08.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Abstract
Patients with schizophrenia show whole brain and cortical gray matter (GM) volume reductions which are progressive early in their illness. Microglia, the resident immune cells in the CNS, phagocytose neurons and synapses. Some post mortem and in vivo studies in schizophrenia show evidence for elevated microglial activation compared to matched controls. However, it is currently unclear how these results relate to changes in cortical structure. METHODS Fourteen patients with schizophrenia and 14 ultra high risk for psychosis (UHR) subjects alongside two groups of age and genotype matched healthy controls received [11C]PBR28 PET scans to index TSPO expression, a marker of microglial activation and a 3T MRI scan. We investigated the relationship between the volume changes of cortical regions and microglial activation in cortical GM (as indexed by [11C]PBR28 distribution volume ratio (DVR). RESULTS The total cortical GM volume was significantly lower in SCZ than the controls [mean (SD)/cm3: SCZ=448.83 (39.2) and controls=499.6 (59.2) (p=0.02) but not in UHR (mean (SD)=503.06 (57.9) and controls=524.46 (45.3) p=0.3). Regression model fitted the total cortical GM DVR values with the cortical regional volumes in SCZ (r=0.81; p<0.001) and in UHR (r=0.63; p=0.02). We found a significant negative correlation between the TSPO signal and total cortical GM volume in SCZ with the highest absolute correlation coefficient in the right superior-parietal cortex (r=-0.72; p=0.006). CONCLUSIONS These findings suggest that microglial activity is related to the altered cortical volume seen in schizophrenia. Longitudinal investigations are required to determine whether microglial activation leads to cortical gray matter loss.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Department of Psychiatry and Behavioural Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Psychiatric Imaging Group, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK.
| | - Peter S Bloomfield
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Bo Cao
- Department of Psychiatry and Behavioural Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Mattia Veronese
- Centre for Neuroimaging Sciences, IoPPN, King's College London, Box PO89, De Crespigny Park, London SE5 8AF, UK
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, IoPPN, King's College London, Box PO89, De Crespigny Park, London SE5 8AF, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC Clinical Sciences Centre, Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK; Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| |
Collapse
|
128
|
Milenkovic VM, Bader S, Sudria-Lopez D, Siebert R, Brandl C, Nothdurfter C, Weber BHF, Rupprecht R, Wetzel CH. Effects of genetic variants in the TSPO gene on protein structure and stability. PLoS One 2018; 13:e0195627. [PMID: 29641545 PMCID: PMC5895031 DOI: 10.1371/journal.pone.0195627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/25/2018] [Indexed: 11/18/2022] Open
Abstract
The 18 kDa translocator protein (TSPO) is an evolutionary conserved cholesterol binding protein localized in the outer mitochondrial membrane. Expression of TSPO is upregulated in activated microglia in various neuroinflammatory, neurodegenerative, and neoplastic disorders. Therefore, TSPO radioligands are used as biomarkers in positron emission tomography (PET) studies. In particular, a common A147T polymorphism in the TSPO gene affects binding of several high affinity TSPO radioligands. Given the relevance of TSPO as a diagnostic biomarker in disease processes, we systematically searched for mutations in the human TSPO gene by a wide array of evolution and structure based bioinformatics tools and identified potentially deleterious missense mutations. The two most frequently observed missense mutations A147T and R162H were further analysed in structural models of human wildtype and mutant TSPO proteins. The effects of missense mutations were studied on the atomic level using molecular dynamics simulations. To analyse putative effects of A147T and R162H variants on protein stability we established primary dermal fibroblast cultures from wt and homozygous A147T and R162H donors. Stability of endogenous TSPO protein, which is abundantly expressed in fibroblasts, was studied using cycloheximide protein degradation assay. Our data show that the A147T mutation significantly alters the flexibility and stability of the mutant protein. Furthermore both A147T and R162H mutations decreased the half-life of the mutant proteins by about 25 percent, which could in part explain its effect on reduced pregnenolone production and susceptibility to neuropsychiatric disorders. The present study is the first comprehensive bioinformatic analysis of genetic variants in the TSPO gene, thereby extending the knowledge about the clinical relevance of TSPO nsSNPs.
Collapse
Affiliation(s)
- Vladimir M. Milenkovic
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
- * E-mail:
| | - Stefanie Bader
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Daniel Sudria-Lopez
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Ramona Siebert
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Caroline Brandl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Caroline Nothdurfter
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | | | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
129
|
Notter T, Coughlin JM, Gschwind T, Weber-Stadlbauer U, Wang Y, Kassiou M, Vernon AC, Benke D, Pomper MG, Sawa A, Meyer U. Translational evaluation of translocator protein as a marker of neuroinflammation in schizophrenia. Mol Psychiatry 2018; 23:323-334. [PMID: 28093569 DOI: 10.1038/mp.2016.248] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/14/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) imaging with radiotracers that target translocator protein 18 kDa (TSPO) has become a popular approach to assess putative neuroinflammatory processes and associated microglia activation in psychotic illnesses. It remains unclear, however, whether TSPO imaging can accurately capture low-grade inflammatory processes such as those present in schizophrenia and related disorders. Therefore, we evaluated the validity of TSPO as a disease-relevant marker of inflammation using a translational approach, which combined neurodevelopmental and neurodegenerative mouse models with PET imaging in patients with recent-onset schizophrenia and matched controls. Using an infection-mediated neurodevelopmental mouse model, we show that schizophrenia-relevant behavioral abnormalities and increased inflammatory cytokine expression are associated with reduced prefrontal TSPO levels. On the other hand, TSPO was markedly upregulated in a mouse model of acute neurodegeneration and reactive gliosis, which was induced by intrahippocampal injection of kainic acid. In both models, the changes in TSPO levels were not restricted to microglia but emerged in various cell types, including microglia, astrocytes and vascular endothelial cells. Human PET imaging using the second-generation TSPO radiotracer [11C]DPA-713 revealed a strong trend towards reduced TSPO binding in the middle frontal gyrus of patients with recent-onset schizophrenia, who were previously shown to display increased levels of inflammatory cytokines in peripheral and central tissues. Together, our findings challenge the common assumption that central low-grade inflammation in schizophrenia is mirrored by increased TSPO expression or ligand binding. Our study further underscores the need to interpret altered TSPO binding in schizophrenia with caution, especially when measures of TSPO are not complemented with other markers of inflammation. Unless more selective microglial markers are available for PET imaging, quantification of cytokines and other inflammatory biomarkers, along with their molecular signaling pathways, may be more accurate in attempts to characterize inflammatory profiles in schizophrenia and other mental disorders that lack robust reactive gliosis.
Collapse
Affiliation(s)
- T Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - J M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - T Gschwind
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - U Weber-Stadlbauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Y Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - M Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia
- Discipline of Medical Radiation Sciences, The University of Sydney, Sydney, NSW, Australia
| | - A C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- King's College London, Institute of Psychiatry Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - D Benke
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - M G Pomper
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
130
|
García-Lorenzo D, Lavisse S, Leroy C, Wimberley C, Bodini B, Remy P, Veronese M, Turkheimer F, Stankoff B, Bottlaender M. Validation of an automatic reference region extraction for the quantification of [ 18F]DPA-714 in dynamic brain PET studies. J Cereb Blood Flow Metab 2018; 38:333-346. [PMID: 28178885 PMCID: PMC5951011 DOI: 10.1177/0271678x17692599] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
There is a great need for a non-invasive methodology enabling the quantification of translocator protein overexpression in PET clinical imaging. [18F]DPA-714 has emerged as a promising translocator protein radiotracer as it is fluorinated, highly specific and returned reliable quantification using arterial input function. Cerebellum gray matter was proposed as reference region for simplified quantification; however, this method cannot be used when inflammation involves cerebellum. Here we adapted and validated a supervised clustering (supervised clustering algorithm (SCA)) for [18F]DPA-714 analysis. Fourteen healthy subjects genotyped for translocator protein underwent an [18F]DPA-714 PET, including 10 with metabolite-corrected arterial input function and three for a test-retest assessment. Two-tissue compartmental modelling provided [Formula: see text] estimates that were compared to either [Formula: see text] or [Formula: see text] generated by Logan analysis (using supervised clustering algorithm extracted reference region or cerebellum gray matter). The supervised clustering algorithm successfully extracted a pseudo-reference region with similar reliability using classes that were defined using either all subjects, or separated into HAB and MAB subjects. [Formula: see text], [Formula: see text] and [Formula: see text] were highly correlated (ICC of 0.91 ± 0.05) but [Formula: see text] were ∼26% higher and less variable than [Formula: see text]. Reproducibility was good with 5% variability in the test-retest study. The clustering technique for [18F]DPA-714 provides a simple, robust and reproducible technique that can be used for all neurological diseases.
Collapse
Affiliation(s)
- Daniel García-Lorenzo
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle Epinière, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Sonia Lavisse
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
| | - Claire Leroy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot, Orsay, France
- Imagerie Moléculaire in Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
| | - Catriona Wimberley
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot, Orsay, France
- Imagerie Moléculaire in Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
| | - Benedetta Bodini
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle Epinière, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Philippe Remy
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), MIRCen, Fontenay-aux-Roses, France
- Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, France
- Centre Expert Parkinson, Neurologie, CHU Henri Mondor, Assistance Publique Hôpitaux de Paris and Université Paris-Est, Créteil, France
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bruno Stankoff
- Sorbonne Université, UPMC Paris 06, Institut du Cerveau et de la Moelle Epinière, ICM, Hôpital de la Pitié Salpêtrière, Paris, France
- Hôpital Saint Antoine, AP-HP, Paris, France
| | - Michel Bottlaender
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM), Service Hospitalier Frédéric Joliot, Orsay, France
- Imagerie Moléculaire in Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, Orsay, France
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département de Recherche Fondamentale (DRF), Institut d'Imagerie Biomédicale (I2BM),Neurospin, UNIACT, Gif-sur-Yvette, France
| |
Collapse
|
131
|
Zanotti-Fregonara P, Pascual B, Rizzo G, Yu M, Pal N, Beers D, Carter R, Appel SH, Atassi N, Masdeu JC. Head-to-Head Comparison of 11C-PBR28 and 18F-GE180 for Quantification of the Translocator Protein in the Human Brain. J Nucl Med 2018; 59:1260-1266. [DOI: 10.2967/jnumed.117.203109] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/06/2017] [Indexed: 01/29/2023] Open
|
132
|
Rodriguez-Vieitez E, Nordberg A. Imaging Neuroinflammation: Quantification of Astrocytosis in a Multitracer PET Approach. Methods Mol Biol 2018; 1750:231-251. [PMID: 29512077 DOI: 10.1007/978-1-4939-7704-8_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The recent progress in the development of in vivo biomarkers is rapidly changing how neurodegenerative diseases are conceptualized and diagnosed, and how clinical trials are designed today. Alzheimer's disease (AD)-the most common neurodegenerative disorder-is characterized by a complex neuropathology involving the deposition of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles (NFT) of hyperphosphorylated tau proteins, accompanied by the activation of glial cells-astrocytes and microglia-and neuroinflammatory responses, leading to neurodegeneration and cognitive dysfunction. An increasing diversity of positron emission tomography (PET) imaging radiotracers are available to selectively target the different pathophysiological processes of AD. Along with the success of Aβ PET and the more recent tau PET imaging, there is also a great interest to develop PET tracers to image glial activation and neuroinflammation. While most research to date has focused on imaging microgliosis, recent studies using 11C-deuterium-L-deprenyl (11C-DED) PET imaging suggest that astrocytosis may be present from very early stages of disease development in AD. This chapter provides a detailed description of the practical approach used for the analysis of 11C-DED PET imaging data in a multitracer PET paradigm including 11C-Pittsburgh compound B (11C-PiB) and 18F-fluorodeoxyglucose (18F-FDG). The multitracer PET approach allows investigating the comparative regional and temporal patterns of in vivo brain astrocytosis, fibrillar Aβ deposition, and glucose metabolism in patients at different stages of disease progression. This chapter attempts to stimulate further research in the field, including the development of novel PET tracers that may allow visualizing different aspects of the complex astrocytic and microglial responses in neurodegenerative diseases. Progress in the field will contribute to the incorporation of PET imaging of glial activation and neuroinflammation as biomarkers with clinical application, and motivate further investigation on glial cells as therapeutic targets in AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Elena Rodriguez-Vieitez
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | - Agneta Nordberg
- Division of Translational Alzheimer Neurobiology, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
133
|
Iaccarino L, Presotto L, Bettinardi V, Gianolli L, Roiter I, Capellari S, Parchi P, Cortelli P, Perani D. An in vivo 11C-PK PET study of microglia activation in Fatal Familial Insomnia. Ann Clin Transl Neurol 2018; 5:11-18. [PMID: 29376088 PMCID: PMC5771322 DOI: 10.1002/acn3.498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/14/2017] [Indexed: 11/10/2022] Open
Abstract
Objective Postmortem studies reported significant microglia activation in association with neuronal apoptosis in Fatal Familial Insomnia (FFI), indicating a specific glial response, but negative evidence also exists. An in vivo study of local immune responses over FFI natural course may contribute to the understanding of the underlying pathogenesis. Methods We included eight presymptomatic subjects (mean ± SD age:44.13 ± 3.83 years) carrying the pathogenic D178N-129met FFI mutation, one symptomatic patient (male, 45 yrs. old), and nine healthy controls (HC) (mean ± SD age: 44.00 ± 11.10 years.) for comparisons. 11C-(R)-PK11195 PET allowed the measurement of Translocator Protein (TSPO) overexpression, indexing microglia activation. A clustering algorithm was adopted to define subject-specific reference regions. Voxel-wise statistical analyses were performed on 11C-(R)-PK11195 binding potential (BP) images both at the group and individual level. Results The D178N-129met/val FFI patient showed significant 11C-(R)-PK11195 BP increases in the midbrain, cerebellum, anterior thalamus, anterior cingulate cortex, orbitofrontal cortex, and anterior insula, bilaterally. Similar TSPO increases, but limited to limbic structures, were observed in four out of eight presymptomatic carriers. The only carrier with the codon 129met/val polymorphism was the only one showing an additional TSPO increase in the anterior thalamus. Interpretation In comparison to nonprion neurodegenerative diseases, the observed lack of a diffuse brain TSPO overexpression in preclinical and the clinical FFI cases suggests the presence of a different microglia response. The involvement of limbic structures might indicate a role for microglia activation in these key pathologic regions, known to show the most significant neuronal loss and functional deafferentation in FFI.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita‐Salute San Raffaele UniversityMilanItaly
- In vivo Human Molecular and Structural Neuroimaging UnitDivision of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Luca Presotto
- Nuclear Medicine UnitIRCCS San Raffaele HospitalMilanItaly
| | | | - Luigi Gianolli
- Nuclear Medicine UnitIRCCS San Raffaele HospitalMilanItaly
| | | | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences (DIBINEM)Alma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Institute of Neurological Sciences of BolognaAUSL BolognaBolognaItaly
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences (DIBINEM)Alma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Institute of Neurological Sciences of BolognaAUSL BolognaBolognaItaly
| | - Pietro Cortelli
- Department of Biomedical and Neuromotor Sciences (DIBINEM)Alma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Institute of Neurological Sciences of BolognaAUSL BolognaBolognaItaly
| | - Daniela Perani
- Vita‐Salute San Raffaele UniversityMilanItaly
- In vivo Human Molecular and Structural Neuroimaging UnitDivision of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
- Nuclear Medicine UnitIRCCS San Raffaele HospitalMilanItaly
| |
Collapse
|
134
|
Albrecht DS, Normandin MD, Shcherbinin S, Wooten DW, Schwarz AJ, Zürcher NR, Barth VN, Guehl NJ, Akeju O, Atassi N, Veronese M, Turkheimer F, Hooker JM, Loggia ML. Pseudoreference Regions for Glial Imaging with 11C-PBR28: Investigation in 2 Clinical Cohorts. J Nucl Med 2018; 59:107-114. [PMID: 28818984 PMCID: PMC5750517 DOI: 10.2967/jnumed.116.178335] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 07/17/2017] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO) is a commonly used imaging target to investigate neuroinflammation. Although TSPO imaging demonstrates great promise, its signal exhibits substantial interindividual variability, which needs to be accounted for to uncover group effects that are truly reflective of neuroimmune activation. Recent evidence suggests that relative metrics computed using pseudoreference approaches can minimize within-group variability and increase sensitivity to detect physiologically meaningful group differences. Here, we evaluated various ratio approaches for TSPO imaging and compared them with standard kinetic modeling techniques, analyzing 2 different disease cohorts. Patients with chronic low back pain (cLBP) or amyotrophic lateral sclerosis (ALS) and matching healthy controls received 11C-PBR28 PET scans. The occipital cortex, cerebellum and whole brain were first evaluated as candidate pseudoreference regions by testing for the absence of group differences in SUV and distribution volume (VT) estimated with an arterial input function. The SUV from target regions (cLBP study, thalamus; ALS study, precentral gyrus) was normalized with the SUV from candidate pseudoreference regions (i.e., occipital cortex, cerebellum, and whole brain) to obtain SUVRoccip, SUVRcereb, and SUVRWB The sensitivity to detect group differences in target regions was compared using various SUVR approaches, as well as distribution volume ratio (DVR) estimated with (blDVR) or without arterial input function (refDVR), and VT Additional voxelwise SUVR group analyses were performed. We observed no significant group differences in pseudoreference VT or SUV, excepting whole-brain VT, which was higher in cLBP patients than controls. Target VT elevations in patients (P = 0.028 and 0.051 in cLBP and ALS, respectively) were similarly detected by SUVRoccip and SUVRWB, and by refDVR and blDVR (less reliably by SUVRcereb). In voxelwise analyses, SUVRoccip, but not SUVRcereb, identified regional group differences initially observed with SUVRWB, and in additional areas suspected to be affected in the pathology examined. All ratio metrics were highly cross-correlated, but generally were not associated with VT. Although important caveats need to be considered when using relative metrics, ratio analyses appear to be similarly sensitive to detect pathology-related group differences in 11C-PBR28 signal as classic kinetic modeling techniques. The occipital cortex may be a suitable pseudoreference region, at least for the populations evaluated, pending further validation in larger cohorts.
Collapse
Affiliation(s)
- Daniel S Albrecht
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
- Gordon Center for Medical Imaging, NMMI, Radiology Department, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts
| | - Marc D Normandin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | - Dustin W Wooten
- Gordon Center for Medical Imaging, NMMI, Radiology Department, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts
| | | | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | | | - Nicolas J Guehl
- Gordon Center for Medical Imaging, NMMI, Radiology Department, Massachusetts General Hospital & Harvard Medical School, Boston, Massachusetts
| | - Oluwaseun Akeju
- Department of Anesthesiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Nazem Atassi
- Neurological Clinical Research Institute, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
135
|
Notter T, Coughlin JM, Sawa A, Meyer U. Reconceptualization of translocator protein as a biomarker of neuroinflammation in psychiatry. Mol Psychiatry 2018; 23:36-47. [PMID: 29203847 DOI: 10.1038/mp.2017.232] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/05/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
A great deal of interest in psychiatric research is currently centered upon the pathogenic role of inflammatory processes. Positron emission tomography (PET) using radiolabeled ligands selective for the 18 kDa translocator protein (TSPO) has become the most widely used technique to assess putative neuroimmune abnormalities in vivo. Originally used to detect discrete neurotoxic damages, TSPO has generally turned into a biomarker of 'neuroinflammation' or 'microglial activation'. Psychiatric research has mostly accepted these denotations of TSPO, even if they may be inadequate and misleading under many pathological conditions. A reliable and neurobiologically meaningful diagnosis of 'neuroinflammation' or 'microglial activation' is unlikely to be achieved by the sole use of TSPO PET imaging. It is also very likely that the pathological meanings of altered TSPO binding or expression are disease-specific, and therefore, not easily generalizable across different neuropathologies or inflammatory conditions. This difficulty is intricately linked to the varying (and still ill-defined) physiological functions and cellular expression patterns of TSPO in health and disease. While altered TSPO binding or expression may indeed mirror ongoing neuroinflammatory processes in some cases, it may reflect other pathophysiological processes such as abnormalities in cell metabolism, energy production and oxidative stress in others. Hence, the increasing popularity of TSPO PET imaging has paradoxically introduced substantial uncertainty regarding the nature and meaning of neuroinflammatory processes and microglial activation in psychiatry, and likely in other neuropathological conditions as well. The ambiguity of conceiving TSPO simply as a biomarker of 'neuroinflammation' or 'microglial activation' calls for alternative interpretations and complimentary approaches. Without the latter, the ongoing scientific efforts and excitement surrounding the role of the neuroimmune system in psychiatry may not turn into therapeutic hope for affected individuals.
Collapse
Affiliation(s)
- T Notter
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - J M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA.,Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - U Meyer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
136
|
Coupling between physiological TSPO expression in brain and myocardium allows stabilization of late-phase cerebral [18F]GE180 PET quantification. Neuroimage 2018; 165:83-91. [DOI: 10.1016/j.neuroimage.2017.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 01/31/2023] Open
|
137
|
Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model - are we there yet? Behav Brain Res 2017; 341:79-90. [PMID: 29284108 DOI: 10.1016/j.bbr.2017.12.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
A number of factors (biogenic amine deficiency, genetic, environmental, immunologic, endocrine factors and neurogenesis) have been identified as mechanisms which provide unitary explanations for the pathophysiology of depression. Rather than a unitary construct, the combination and linkage of these factors have been implicated in the pathogenesis of depression. That is, environmental stressors and heritable genetic factors acting through immunologic and endocrine responses initiate structural and functional changes in many brain regions, resulting in dysfunctional neurogenesis and neurotransmission which then manifest as a constellation of symptoms which present as depression.
Collapse
Affiliation(s)
- Emmanuel Jesulola
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia.
| | - Peter Micalos
- Paramedicine Discipline, Charles Sturt University, Bathurst Campus, NSW Australia
| | - Ian J Baguley
- Brain Injury Rehabilitation Service, Westmead Hospital, Hawkesbury Rd, Wentworthville, NSW Australia
| |
Collapse
|
138
|
Salabert AS, Mora-Ramirez E, Beaurain M, Alonso M, Fontan C, Tahar HB, Boizeau ML, Tafani M, Bardiès M, Payoux P. Evaluation of [ 18F]FNM biodistribution and dosimetry based on whole-body PET imaging of rats. Nucl Med Biol 2017; 59:1-8. [PMID: 29413751 DOI: 10.1016/j.nucmedbio.2017.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/05/2017] [Accepted: 12/17/2017] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The aim of this work was to study the biodistribution, metabolism and radiation dosimetry of rats injected with [18F]FNM using PET/CT images. This novel radiotracer targeting NMDA receptor has potential for investigation for neurological and psychiatric diseases. METHODS Free fraction and stability in fresh human plasma were determined in vitro. PET/CT was performed on anesthetized rats. Organs were identified and 3D volumes of interest (VOIs) were manually drawn on the CT in the center of each organ. Time activity curves (TACs) were created with these VOIs, enabling the calculation of residence times. To confirm these values, ex vivo measurements of organs were performed. Plasma and urine were also collected to study in vivo metabolism. Data was extrapolated to humans, effective doses were estimated using ICRP-60 and ICRP-89 dosimetric models and absorbed doses were estimated using OLINDA/EXM V1.0 and OLINDA/EXM V2.0 (which use weighting factors from ICRP-103 to do the calculations). RESULTS The [18F]FNM was stable in human plasma and the diffusible free fraction was 53%. As with memantine, this tracer is poorly metabolized in vivo. Ex vivo distributions validated PET/CT data as well as demonstrating a decrease of radiotracer uptake in the brain due to anesthesia. Total effective dose was around 6.11 μSv/MBq and 4.65 μSv/MBq for female and male human dosimetric models, respectively. CONCLUSIONS This study shows that the presented compound exhibits stability in plasma and plasma protein binding very similar to memantine. Its dosimetry shows that it is suitable for use in humans due to a low total effective dose compared to other PET radiotracers.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Radiopharmacy Unit, Toulouse, France.
| | - Erick Mora-Ramirez
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France; Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France; Universidad de Costa Rica, CICANUM-Escuela de Física, San José, Costa Rica.
| | - Marie Beaurain
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Radiopharmacy Unit, Toulouse, France.
| | - Mathieu Alonso
- University Hospital, Radiopharmacy Unit, Toulouse, France.
| | | | - Hafid Belhadj Tahar
- Research and Expertise Group, French Association for the Promotion of Medical Research (AFPREMED), Toulouse, France.
| | - Marie Laure Boizeau
- Advanced Technology Institute in Life Sciences (ITAV), Centre National de la Recherche Scientifique-Université Paul Sabatier Toulouse III (CNRS-UPS), Université Paul Sabatier Toulouse III (UPS), Université de ToulouseToulouse, France.
| | - Mathieu Tafani
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Radiopharmacy Unit, Toulouse, France.
| | - Manuel Bardiès
- Inserm, UMR1037 CRCT, F-31000 Toulouse, France; Université Toulouse III-Paul Sabatier, UMR1037 CRCT, F-31000 Toulouse, France.
| | - Pierre Payoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France; University Hospital, Nuclear Medicine Unit, Toulouse, France.
| |
Collapse
|
139
|
Vomacka L, Albert NL, Lindner S, Unterrainer M, Mahler C, Brendel M, Ermoschkin L, Gosewisch A, Brunegraf A, Buckley C, Kümpfel T, Rupprecht R, Ziegler S, Kerschensteiner M, Bartenstein P, Böning G. TSPO imaging using the novel PET ligand [ 18F]GE-180: quantification approaches in patients with multiple sclerosis. EJNMMI Res 2017; 7:89. [PMID: 29150726 PMCID: PMC5693838 DOI: 10.1186/s13550-017-0340-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/20/2017] [Indexed: 01/12/2023] Open
Abstract
Background PET ligands targeting the translocator protein (TSPO) represent promising tools to visualise neuroinflammation. Here, we analysed parameters obtained in dynamic and static PET images using the novel TSPO ligand [18F]GE-180 in patients with relapsing remitting multiple sclerosis (RRMS) and an approach for semi-quantitative assessment of this disease in clinical routine. Seventeen dynamic [18F]GE-180 PET scans of RRMS patients were evaluated (90 min). A pseudo-reference region (PRR) was defined after identification of the least disease-affected brain area by voxel-based comparison with six healthy controls (HC) and upon exclusion of voxels suspected of being affected in static 60–90 min p.i. images. Standardised uptake value ratios (SUVR) obtained from static images normalised to PRR were correlated to the distribution volume ratios (DVR) derived from dynamic data with Logan reference tissue model. Results Group comparison with HC revealed white matter and thalamus as most affected regions. Fewest differences were found in grey matter, and normalisation to frontal cortex (FC) yielded the greatest reduction in variability of healthy grey and white matter. Hence, FC corrected for affected voxels was chosen as PRR, leading to time-activity curves of FC which were congruent to HC data (SUV60–90 0.37, U test P = 0.42). SUVR showed a very strong correlation with DVR (Pearson ρ > 0.9). Focal MS lesions exhibited a high SUVR (range, 1.3–3.2). Conclusions This comparison with parameters from dynamic data suggests that SUVR normalised to corrected frontal cortex as PRR is suitable for the quantification of [18F]GE-180 uptake in lesions and different brain regions of RRMS patients. This efficient diagnostic protocol based on static [18F]GE-180 PET scans acquired 60–90 min p.i. allows the semi-quantitative assessment of neuroinflammation in RRMS patients in clinical routine.
Collapse
Affiliation(s)
- Lena Vomacka
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christoph Mahler
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Larissa Ermoschkin
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Anika Brunegraf
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | | | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|
140
|
Abstract
A compelling need in the field of neurodegenerative diseases is the development and validation of biomarkers for early identification and differential diagnosis. The availability of positron emission tomography (PET) neuroimaging tools for the assessment of molecular biology and neuropathology has opened new venues in the diagnostic design and the conduction of new clinical trials. PET techniques, allowing the in vivo assessment of brain function and pathology changes, are increasingly showing great potential in supporting clinical diagnosis also in the early and even preclinical phases of dementia. This review will summarize the most recent evidence on fluorine-18 fluorodeoxyglucose-, amyloid -, tau -, and neuroinflammation - PET tools, highlighting strengths and limitations and possible new perspectives in research and clinical applications. Appropriate use of PET tools is crucial for a prompt diagnosis and target evaluation of new developed drugs aimed at slowing or preventing dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Arianna Sala
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Paola Caminiti
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Perani
- Vita-Salute San Raffaele University, Milan, Italy.,In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Nuclear Medicine Unit, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
141
|
Rojas C, Stathis M, Coughlin JM, Pomper M, Slusher BS. The Low-Affinity Binding of Second Generation Radiotracers Targeting TSPO is Associated with a Unique Allosteric Binding Site. J Neuroimmune Pharmacol 2017; 13:1-5. [PMID: 28875261 DOI: 10.1007/s11481-017-9765-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/21/2017] [Indexed: 11/26/2022]
Abstract
[11C]-PK11195 (PK11195) has been widely used with positron emission tomography (PET) to assess levels of the translocator protein 18 kDa (TSPO) as a marker of neuroinflammation. Recent ligands, such as [11C]-PBR28 and [11C]-DPA713, have improved signal-to-noise ratio and specificity for TSPO over PK11195. However, these second generation radiotracers exhibit binding differences due to a single polymorphism (rs6971) that leads to three genotypes: C/C, C/T and T/T associated with high, mixed and low binding affinities, respectively. Here we report that [3H]-DPA-713 in the presence of cholesterol or PK11195 has an accelerated dissociation rate from TSPO in platelets isolated from individuals with the T/T genotype. This allosteric interaction was not observed in platelets isolated from individuals with the C/C or C/T genotype. The results provide a molecular rationale for low binding affinity of T/T TSPO and further support the exclusion of these subjects from PET imaging studies using second generation TSPO ligands.
Collapse
Affiliation(s)
- Camilo Rojas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Office 230, Baltimore, MD, 21205, USA.
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marigo Stathis
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Office 230, Baltimore, MD, 21205, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin Pomper
- Russell H. Morgan, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Office 230, Baltimore, MD, 21205, USA.
- Neurology, Psychiatry, Neuroscience, Medicine & Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
142
|
Di Biase MA, Zalesky A, O'keefe G, Laskaris L, Baune BT, Weickert CS, Olver J, McGorry PD, Amminger GP, Nelson B, Scott AM, Hickie I, Banati R, Turkheimer F, Yaqub M, Everall IP, Pantelis C, Cropley V. PET imaging of putative microglial activation in individuals at ultra-high risk for psychosis, recently diagnosed and chronically ill with schizophrenia. Transl Psychiatry 2017; 7:e1225. [PMID: 28850113 PMCID: PMC5611755 DOI: 10.1038/tp.2017.193] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 06/23/2017] [Indexed: 01/22/2023] Open
Abstract
We examined putative microglial activation as a function of illness course in schizophrenia. Microglial activity was quantified using [11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide (11C-(R)-PK11195) positron emission tomography (PET) in: (i) 10 individuals at ultra-high risk (UHR) of psychosis; (ii) 18 patients recently diagnosed with schizophrenia; (iii) 15 patients chronically ill with schizophrenia; and, (iv) 27 age-matched healthy controls. Regional-binding potential (BPND) was calculated using the simplified reference-tissue model with four alternative reference inputs. The UHR, recent-onset and chronic patient groups were compared to age-matched healthy control groups to examine between-group BPND differences in 6 regions: dorsal frontal, orbital frontal, anterior cingulate, medial temporal, thalamus and insula. Correlation analysis tested for BPND associations with gray matter volume, peripheral cytokines and clinical variables. The null hypothesis of equality in BPND between patients (UHR, recent-onset and chronic) and respective healthy control groups (younger and older) was not rejected for any group comparison or region. Across all subjects, BPND was positively correlated to age in the thalamus (r=0.43, P=0.008, false discovery rate). No correlations with regional gray matter, peripheral cytokine levels or clinical symptoms were detected. We therefore found no evidence of microglial activation in groups of individuals at high risk, recently diagnosed or chronically ill with schizophrenia. While the possibility of 11C-(R)-PK11195-binding differences in certain patient subgroups remains, the patient cohorts in our study, who also displayed normal peripheral cytokine profiles, do not substantiate the assumption of microglial activation in schizophrenia as a regular and defining feature, as measured by 11C-(R)-PK11195 BPND.
Collapse
Affiliation(s)
- M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - A Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Melbourne School of Engineering, The University of Melbourne, Parkville, VIC Australia
| | - G O'keefe
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - L Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| | - B T Baune
- Discipline of Psychiatry, The University of Adelaide, Adelaide, SA, Australia
| | - C S Weickert
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Neuroscience Research Australia, Randwick, NSW, Australia
- Schizophrenia Research Institute, Randwick, NSW, Australia
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - J Olver
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - P D McGorry
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - G P Amminger
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - B Nelson
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, VIC, Australia
| | - A M Scott
- Department of Molecular Imaging and Therapy, The University of Melbourne, Heidelberg, VIC Australia
- Department of Medicine, The University of Melbourne, and La Trobe University, Austin Hospital, Heidelberg, VIC, Australia
| | - I Hickie
- Brain & Mind Centre, The University of Sydney, Camperdown, NSW, Australia
| | - R Banati
- Medical Radiation Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - F Turkheimer
- Department of Neuroimaging, King’s College London, London, UK
| | - M Yaqub
- VU University Medical Center, Amsterdam, The Netherlands
| | - I P Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
- Centre for Neural Engineering, Department of Electrical and Electronic Engineering, The University of Melbourne, Carlton South, VIC, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - V Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
143
|
Wimberley C, Lavisse S, Brulon V, Peyronneau MA, Leroy C, Bodini B, Remy P, Stankoff B, Buvat I, Bottlaender M. Impact of Endothelial 18-kDa Translocator Protein on the Quantification of 18F-DPA-714. J Nucl Med 2017; 59:307-314. [DOI: 10.2967/jnumed.117.195396] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 01/24/2023] Open
|
144
|
Mondelli V, Vernon AC, Turkheimer F, Dazzan P, Pariante CM. Brain microglia in psychiatric disorders. Lancet Psychiatry 2017; 4:563-572. [PMID: 28454915 DOI: 10.1016/s2215-0366(17)30101-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/30/2022]
Abstract
The role of immune activation in psychiatric disorders has attracted considerable attention over the past two decades, contributing to the rise of a new era for psychiatry. Microglia, the macrophages of the brain, are progressively becoming the main focus of the research in this field. In this Review, we assess the literature on microglia activation across different psychiatric disorders, including post-mortem and in-vivo studies in humans and experimental studies in animals. Although microglia activation has been noted in all types of psychiatric disorder, no association was seen with specific diagnostic categories. Furthermore, the findings from these studies highlight that not all psychiatric patients have microglial activation. Therefore, the cause of the neuroinflammation in these cohorts and its implications are unclear. We discuss psychosocial stress as one of the main factors determining microglial activation in patients with psychiatric disorders, and explore the relevance of these findings for future treatment strategies.
Collapse
Affiliation(s)
- Valeria Mondelli
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Paola Dazzan
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Carmine M Pariante
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; National Institute for Health Research Mental Health Biomedical Research Centre, South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| |
Collapse
|
145
|
Effect of Cigarette Smoking on a Marker for Neuroinflammation: A [ 11C]DAA1106 Positron Emission Tomography Study. Neuropsychopharmacology 2017; 42:1630-1639. [PMID: 28262740 PMCID: PMC5518907 DOI: 10.1038/npp.2017.48] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/01/2017] [Accepted: 02/23/2017] [Indexed: 01/21/2023]
Abstract
In the brain, microglia continuously scan the surrounding extracellular space in order to respond to damage or infection by becoming activated and participating in neuroinflammation. When activated, microglia increase the expression of translocator protein (TSPO) 18 kDa, thereby making the TSPO expression a marker for neuroinflammation. We used the radiotracer [11C]DAA1106 (a ligand for TSPO) and positron emission tomography (PET) to determine the effect of smoking on availability of this marker for neuroinflammation. Forty-five participants (30 smokers and 15 non-smokers) completed the study and had usable data. Participants underwent a dynamic PET scanning session with bolus injection of [11C]DAA1106 (with smokers in the satiated state) and blood draws during PET scanning to determine TSPO affinity genotype and plasma nicotine levels. Whole-brain standardized uptake values (SUVs) were determined, and analysis of variance was performed, with group (smoker vs non-smoker) and genotype as factors, thereby controlling for genotype. Smokers and non-smokers differed in whole-brain SUVs (P=0.006) owing to smokers having 16.8% lower values than non-smokers. The groups did not differ in injected radiotracer dose or body weight, which were used to calculate SUV. An inverse association was found between whole-brain SUV and reported cigarettes per day (P<0.05), but no significant relationship was found for plasma nicotine. Thus, smokers have less [11C]DAA1106 binding globally than non-smokers, indicating less microglial activation. Study findings are consistent with much prior research demonstrating that smokers have impaired inflammatory functioning compared with non-smokers and that constituents of tobacco smoke other than nicotine affect inflammatory processes.
Collapse
|
146
|
Raj D, Yin Z, Breur M, Doorduin J, Holtman IR, Olah M, Mantingh-Otter IJ, Van Dam D, De Deyn PP, den Dunnen W, Eggen BJL, Amor S, Boddeke E. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain. Front Mol Neurosci 2017; 10:206. [PMID: 28713239 PMCID: PMC5492660 DOI: 10.3389/fnmol.2017.00206] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Chronic neuroinflammation, which is primarily mediated by microglia, plays an essential role in aging and neurodegeneration. It is still unclear whether this microglia-induced neuroinflammation occurs globally or is confined to distinct brain regions. In this study, we investigated microglia activity in various brain regions upon healthy aging and Alzheimer's disease (AD)-related pathology in both human and mouse samples. In purified microglia isolated from aging mouse brains, we found a profound gene expression pattern related to pro-inflammatory processes, phagocytosis, and lipid homeostasis. Particularly in white matter microglia of 24-month-old mice, abundant expression of phagocytic markers including Mac-2, Axl, CD16/32, Dectin1, CD11c, and CD36 was detected. Interestingly, in white matter of human brain tissue the first signs of inflammatory activity were already detected during middle age. Thus quantification of microglial proteins, such as CD68 (commonly associated with phagocytosis) and HLA-DR (associated with antigen presentation), in postmortem human white matter brain tissue showed an age-dependent increase in immunoreactivity already in middle-aged people (53.2 ± 2.0 years). This early inflammation was also detectable by non-invasive positron emission tomography imaging using [11C]-(R)-PK11195, a ligand that binds to activated microglia. Increased microglia activity was also prominently present in the white matter of human postmortem early-onset AD (EOAD) brain tissue. Interestingly, microglia activity in the white matter of late-onset AD (LOAD) CNS was similar to that of the aged clinically silent AD cases. These data indicate that microglia-induced neuroinflammation is predominant in the white matter of aging mice and humans as well as in EOAD brains. This white matter inflammation may contribute to the progression of neurodegeneration, and have prognostic value for detecting the onset and progression of aging and neurodegeneration.
Collapse
Affiliation(s)
- Divya Raj
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Zhuoran Yin
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands.,Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Marjolein Breur
- Department of Pathology, VU University Medical CenterAmsterdam, Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Inge R Holtman
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Marta Olah
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Ietje J Mantingh-Otter
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of AntwerpWilrijk, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Peter P De Deyn
- Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of AntwerpWilrijk, Belgium.,Department of Neurology and Alzheimer Research Center, University Medical Center Groningen, University of GroningenGroningen, Netherlands.,Biobank, Institute Born-BungeWilrijk, Belgium
| | - Wilfred den Dunnen
- Department of Pathology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| | - Sandra Amor
- Department of Pathology, VU University Medical CenterAmsterdam, Netherlands.,Neuroimmunology Unit, Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and DentistryLondon, United Kingdom
| | - Erik Boddeke
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of GroningenGroningen, Netherlands
| |
Collapse
|
147
|
Salabert AS, Fontan C, Fonta C, Alonso M, Loukh N, Delisle MB, Tafani M, Payoux P. Radiosynthesis of [ 18F]AV1451 in pharmaceutical conditions and its biological characteristics. Appl Radiat Isot 2017; 128:101-107. [PMID: 28689157 DOI: 10.1016/j.apradiso.2017.06.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/30/2022]
Abstract
In this study, we describe the radiosynthesis of [18F]AV1451 in terms of its pharmaceutical quality and characterise its physical and biological properties. We performed an in vitro serum stability study in fresh human plasma and a plasma protein binding study. The radiochemical yield was 24% (decay corrected), and the product met all regulatory quality requirements. We found that this compound is stable in fresh human plasma and binds tightly to plasma proteins, especially lipoproteins.
Collapse
Affiliation(s)
- Anne-Sophie Salabert
- "Toulouse Neuro-imaging Centre" Research Unit (UMR 1214) INSERM, Toulouse, France; Radiopharmacy Department, Toulouse University Hospital, Toulouse, France.
| | - Charlotte Fontan
- Radiopharmacy Department, Toulouse University Hospital, Toulouse, France.
| | - Caroline Fonta
- Brain & Cognition Research Centre (CERCO UMR 5549), Toulouse, France.
| | - Mathieu Alonso
- Radiopharmacy Department, Toulouse University Hospital, Toulouse, France.
| | - Najat Loukh
- "Toulouse Neuro-imaging Centre" Research Unit (UMR 1214) INSERM, Toulouse, France; Neuropathology, Toulouse University Hospital, Toulouse, France.
| | - Marie Bernadette Delisle
- "Toulouse Neuro-imaging Centre" Research Unit (UMR 1214) INSERM, Toulouse, France; Neuropathology, Toulouse University Hospital, Toulouse, France.
| | - Mathieu Tafani
- "Toulouse Neuro-imaging Centre" Research Unit (UMR 1214) INSERM, Toulouse, France; Radiopharmacy Department, Toulouse University Hospital, Toulouse, France.
| | - Pierre Payoux
- "Toulouse Neuro-imaging Centre" Research Unit (UMR 1214) INSERM, Toulouse, France; Department of Nuclear Medicine, Toulouse University Hospital, Toulouse, France.
| |
Collapse
|
148
|
Heurling K, Leuzy A, Jonasson M, Frick A, Zimmer ER, Nordberg A, Lubberink M. Quantitative positron emission tomography in brain research. Brain Res 2017; 1670:220-234. [PMID: 28652218 DOI: 10.1016/j.brainres.2017.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
The application of positron emission tomography (PET) in brain research has increased substantially during the past 20years, and is still growing. PET provides a unique insight into physiological and pathological processes in vivo. In this article we introduce the fundamentals of PET, and the methods available for acquiring quantitative estimates of the parameters of interest. A short introduction to different areas of application is also given, including basic research of brain function and in neurology, psychiatry, drug receptor occupancy studies, and its application in diagnostics of neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease. Our aim is to inform the unfamiliar reader of the underlying basics and potential applications of PET, hoping to inspire the reader into considering how the technique could be of benefit for his or her own research.
Collapse
Affiliation(s)
- Kerstin Heurling
- Wallenberg Centre for Molecular and Translational Medicine and the Department of Psychiatry and Neurochemistry, University of Gothenburg, Sweden; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Antoine Leuzy
- Department Neurobiology, Care Sciences and Society, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - My Jonasson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Andreas Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Eduardo R Zimmer
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Agneta Nordberg
- Department Neurobiology, Care Sciences and Society, Division of Translational Alzheimer Neurobiology, Karolinska Institutet, Stockholm, Sweden; Department of Geriatric Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mark Lubberink
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
149
|
Wang L, Cheng R, Fujinaga M, Yang J, Zhang Y, Hatori A, Kumata K, Yang J, Vasdev N, Du Y, Ran C, Zhang MR, Liang SH. A Facile Radiolabeling of [ 18F]FDPA via Spirocyclic Iodonium Ylides: Preliminary PET Imaging Studies in Preclinical Models of Neuroinflammation. J Med Chem 2017; 60:5222-5227. [PMID: 28530834 DOI: 10.1021/acs.jmedchem.7b00432] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A suitable TSPO PET ligand may visualize and quantify neuroinflammation in a living brain. Herein we report a 18F-ligand, [18F]2 ([18F]FDPA), is radiolabeled in high yield and high specific activity based on our spirocyclic iodonium ylide (SCIDY) strategy. [18F]2 demonstrated saturable specific binding to TSPO, substantially elevated brain uptake, and slow washout of bound PET signal in the preclinical models of brain neuroinflammation (cerebral ischemia and Alzheimer's disease).
Collapse
Affiliation(s)
- Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Ran Cheng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States.,School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, China
| | - Masayuki Fujinaga
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Jian Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02129, United States
| | - Yiding Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Akiko Hatori
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Katsushi Kumata
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02129, United States
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University , 92 Weijin Road, Nankai District, Tianjin, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02129, United States
| | - Ming-Rong Zhang
- Department of Radiopharmaceutics Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology , Chiba 263-8555, Japan
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Harvard Medical School , Boston, Massachusetts 02114, United States
| |
Collapse
|
150
|
|