101
|
Modeling infectious diseases and host-microbe interactions in gastrointestinal organoids. Dev Biol 2016; 420:262-270. [PMID: 27640087 DOI: 10.1016/j.ydbio.2016.09.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/18/2022]
Abstract
Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions. Researchers have started to use organoids for modeling infection with pathogens, such as Helicobacter pylori or Salmonella enteritica, gut-microbiota interactions and inflammatory bowel disease. Future studies will broaden the spectrum of microbes used and continue to establish organoids as a standard model for human host-microbial interactions. Moreover, they will increasingly exploit the unique advantages of organoids, for example to address patient-specific responses to microbes.
Collapse
|
102
|
Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, Hardiman KM, Wang TD, Dame MK, Varani J, Brenner D, Fearon ER, Shah YM. Iron Uptake via DMT1 Integrates Cell Cycle with JAK-STAT3 Signaling to Promote Colorectal Tumorigenesis. Cell Metab 2016; 24:447-461. [PMID: 27546461 PMCID: PMC5023486 DOI: 10.1016/j.cmet.2016.07.015] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/07/2016] [Accepted: 07/20/2016] [Indexed: 12/31/2022]
Abstract
Dietary iron intake and systemic iron balance are implicated in colorectal cancer (CRC) development, but the means by which iron contributes to CRC are unclear. Gene expression and functional studies demonstrated that the cellular iron importer, divalent metal transporter 1 (DMT1), is highly expressed in CRC through hypoxia-inducible factor 2α-dependent transcription. Colon-specific Dmt1 disruption resulted in a tumor-selective inhibitory effect of proliferation in mouse colon tumor models. Proteomic and genomic analyses identified an iron-regulated signaling axis mediated by cyclin-dependent kinase 1 (CDK1), JAK1, and STAT3 in CRC progression. A pharmacological inhibitor of DMT1 antagonized the ability of iron to promote tumor growth in a CRC mouse model and a patient-derived CRC enteroid orthotopic model. Our studies implicate a growth-promoting signaling network instigated by elevated intracellular iron levels in tumorigenesis, offering molecular insights into how a key dietary component may contribute to CRC.
Collapse
Affiliation(s)
- Xiang Xue
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin Weisz
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Triner
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liwei Xie
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Durga Attili
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Asha Pant
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest 1117, Hungary; 2nd Department of Pediatrics, Semmelweis University, Budapest 1085, Hungary
| | - Mingkun Zhan
- Department of Plastic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, China
| | - Christin Carter-Su
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karin M Hardiman
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Thomas D Wang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael K Dame
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James Varani
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dean Brenner
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric R Fearon
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
103
|
Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia. mBio 2016; 7:mBio.01397-16. [PMID: 27624128 PMCID: PMC5021805 DOI: 10.1128/mbio.01397-16] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae. Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood.
Collapse
|
104
|
Abstract
HIF1α is a common component of pathways involved in the control of cellular metabolism and has a role in regulating immune cell effector functions. Additionally, HIF1α is critical for the maturation of dendritic cells and for the activation of T cells. HIF1α is induced in LPS-activated macrophages, where it is critically involved in glycolysis and the induction of proinflammatory genes, notably Il1b. The mechanism of LPS-stimulated HIF1α induction involves succinate, which inhibits prolyl hydroxylases (PHDs). Pyruvate kinase M2 (PKM2) is also induced and interacts with and promotes the function of HIF1α. In another critical inflammatory cell type, Th17 cells, HIF1α acts via the retinoic acid-related orphan receptor-γt (RORγt) to drive Th17 differentiation. HIF1α is therefore a key reprogrammer of metabolism in inflammatory cells that promotes inflammatory gene expression.
Collapse
|
105
|
Triner D, Shah YM. Hypoxia-inducible factors: a central link between inflammation and cancer. J Clin Invest 2016; 126:3689-3698. [PMID: 27525434 DOI: 10.1172/jci84430] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tumor immune response is in a dynamic balance between antitumor mechanisms, which serve to decrease cancer growth, and the protumor inflammatory response, which increases immune tolerance, cell survival, and proliferation. Hypoxia and expression of HIF-1α and HIF-2α are characteristic features of all solid tumors. HIF signaling serves as a major adaptive mechanism in tumor growth in a hypoxic microenvironment. HIFs represent a critical signaling node in the switch to protumorigenic inflammatory responses through recruitment of protumor immune cells and altered immune cell effector functions to suppress antitumor immune responses and promote tumor growth through direct growth-promoting cytokine production, angiogenesis, and ROS production. Modulating HIF function will be an important mechanism to dampen the tumor-promoting inflammatory response and inhibit cancer growth.
Collapse
|
106
|
Tsai YH, Hill DR, Kumar N, Huang S, Chin AM, Dye BR, Nagy MS, Verzi MP, Spence JR. LGR4 and LGR5 Function Redundantly During Human Endoderm Differentiation. Cell Mol Gastroenterol Hepatol 2016; 2:648-662.e8. [PMID: 28078320 PMCID: PMC5042889 DOI: 10.1016/j.jcmgh.2016.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 06/11/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS The Lgr family of transmembrane proteins (Lgr4, 5, 6) act as functional receptors for R-spondin proteins (Rspo 1, 2, 3, 4), and potentiate Wnt signaling in different contexts. Lgr5 is arguably the best characterized of the Lgr family members in a number of adult and embryonic contexts in mice. However, the function of LGR family members in early embryonic development is unclear, and has not been explored during human development or tissue differentiation in detail. METHODS We interrogated the function and expression of LGR family members using human pluripotent stem cell-derived tissues including definitive endoderm, mid/hindgut, and intestinal organoids. We performed embryonic lineage tracing in Lgr5-GFP-IRES-CreERT2 mice. RESULTS We show that LGR5 is part of the human definitive endoderm (DE) gene signature, and LGR5 transcripts are induced robustly when human pluripotent stem cells are differentiated into DE. Our results show that LGR4 and 5 are functionally required for efficient human endoderm induction. Consistent with data in human DE, we observe Lgr5 reporter (eGFP) activity in the embryonic day 8.5 mouse endoderm, and show the ability to lineage trace these cells into the adult intestine. However, gene expression data also suggest that there are human-mouse species-specific differences at later time points of embryonic development. CONCLUSIONS Our results show that LGR5 is induced during DE differentiation, LGR receptors are functionally required for DE induction, and that they function to potentiate WNT signaling during this process.
Collapse
Key Words
- CDX2, caudal type homeobox2
- ChIPseq, chromatin immunoprecipitation sequencing
- Ct, cycle threshold
- DE, definitive endoderm
- E, embryonic day
- Endoderm
- GFP, green fluorescent protein
- Intestine
- LGR5
- Organoid
- Pluripotent Stem Cells
- Rspo, R-spondin protein
- WNT
- creER, cre recombinase protein fused to estrogen receptor
- hESC, human embryonic stem cell
- mRNA, messenger RNA
- qRT-PCR, quantitative reverse-transcription polymerase chain reaction
- shRNA, short hairpin RNA
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - David R. Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Namit Kumar
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Sha Huang
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Alana M. Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Briana R. Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Melinda S. Nagy
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael P. Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, Michigan,Correspondence Address correspondence to: Jason R. Spence, PhD, Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109. fax: (734) 763-4686.Division of GastroenterologyDepartment of Internal MedicineUniversity of Michigan Medical SchoolAnn ArborMichigan 48109
| |
Collapse
|
107
|
Dedhia PH, Bertaux-Skeirik N, Zavros Y, Spence JR. Organoid Models of Human Gastrointestinal Development and Disease. Gastroenterology 2016; 150:1098-1112. [PMID: 26774180 PMCID: PMC4842135 DOI: 10.1053/j.gastro.2015.12.042] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
We have greatly advanced our ability to grow a diverse range of tissue-derived and pluripotent stem cell-derived gastrointestinal (GI) tissues in vitro. These systems, broadly referred to as organoids, have allowed the field to move away from the often nonphysiological, transformed cell lines that have been used for decades in GI research. Organoids are derived from primary tissues and have the capacity for long-term growth. They contain varying levels of cellular complexity and physiological similarity to native organ systems. We review the latest discoveries from studies of tissue-derived and pluripotent stem cell-derived intestinal, gastric, esophageal, liver, and pancreatic organoids. These studies have provided important insights into GI development, tissue homeostasis, and disease and might be used to develop personalized medicines.
Collapse
Affiliation(s)
- Priya H. Dedhia
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nina Bertaux-Skeirik
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio.
| | - Jason R. Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA,Authors for Correspondence: Jason R. Spence – , Twitter: @TheSpenceLab, Yana Zavros –
| |
Collapse
|
108
|
Bakirtzi K, Law IKM, Xue X, Iliopoulos D, Shah YM, Pothoulakis C. Neurotensin Promotes the Development of Colitis and Intestinal Angiogenesis via Hif-1α-miR-210 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 196:4311-21. [PMID: 27076683 DOI: 10.4049/jimmunol.1501443] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Neurotensin (NT) via its receptor 1 (NTR1) modulates the development of colitis, decreases HIF-1α/PHD2 interaction, stabilizes and increases HIF-1α transcriptional activity, and promotes intestinal angiogenesis. HIF-1α induces miR-210 expression, whereas miR-210 is strongly upregulated in response to NT in NCM460 human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1). In this study, we examined whether NT activates a NTR1-HIF-1α-miR-210 cascade using in vitro (NCM460-NTR1 cells) and in vivo (transgenic mice overexpressing [HIF-1α-OE] or lacking HIF-1α [HIF-1α-knockout (KO)] in intestinal epithelial cells and mice lacking NTR1 [NTR1-KO]) models. Pretreatment of NCM460-NTR1 cells with the HIF-1α inhibitor PX-478 or silencing of HIF-1α (small interfering HIF-1α) attenuated miR-210 expression in response to NT. Intracolonic 2,4,6-trinitrobenzenesulfonic acid (TNBS) administration (2-d model) increased colonic miR-210 expression that was significantly reduced in NTR1-KO, HIF-1α-KO mice, and wild-type mice pretreated intracolonically with locked nucleic acid anti-miR-210. In contrast, HIF-1α-OE mice showed increased miR-210 expression at baseline that was further increased following TNBS administration. HIF-1α-OE mice had also exacerbated TNBS-induced neovascularization compared with TNBS-exposed wild-type mice. TNBS-induced neovascularization was attenuated in HIF-1α-KO mice, or mice pretreated intracolonically with anti-miR-210. Intracolonic anti-miR-210 also reduced colitis in response to TNBS (2 d). Importantly, miR-210 expression was increased in tissue samples from ulcerative colitis patients. We conclude that NT exerts its proinflammatory and proangiogenic effects during acute colitis via a NTR1-prolyl hydroxylase 2/HIF-1α-miR-210 signaling pathway. Our results also demonstrate that miR-210 plays a proinflammatory role in the development of colitis.
Collapse
Affiliation(s)
- Kyriaki Bakirtzi
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Ivy Ka Man Law
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095
| | - Xiang Xue
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Dimitrios Iliopoulos
- Division of Digestive Diseases, Center for Systems Biomedicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095; and
| | - Yatrik M Shah
- Division of Gastroenterology, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109; Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095;
| |
Collapse
|
109
|
Wang X, Sun Y, Zhao Y, Ding Y, Zhang X, Kong L, Li Z, Guo Q, Zhao L. Oroxyloside prevents dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB pathway through PPARγ activation. Biochem Pharmacol 2016; 106:70-81. [PMID: 26947454 DOI: 10.1016/j.bcp.2016.02.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/26/2016] [Indexed: 01/12/2023]
Abstract
Oroxyloside, as a metabolite of oroxylin A, may harbor various beneficial bioactivities which have rarely been reported in the previous studies. Here we established the dextran sulfate sodium (DSS)-induced experimental colitis and evaluated the anti-inflammatory effect of oroxyloside in vivo. As a result, oroxyloside attenuated DSS-induced body weight loss, colon length shortening and colonic pathological damage. Furthermore, oroxyloside inhibited inflammatory cell infiltration and decreased myeloperoxidase (MPO) and inducible nitric oxide synthase (iNOS) activities as well. The production of pro-inflammatory cytokines in serum and colon was also significantly reduced by oroxyloside. We unraveled the underlying mechanisms that oroxyloside inhibited NF-κB pathway by activating Peroxisome Proliferator-Activated Receptor γ (PPARγ) to attenuate DSS-induced colitis. Moreover, we investigated the anti-inflammatory effect and mechanisms of oroxyloside in the mouse macrophage cell line RAW264.7 and bone marrow derived macrophages (BMDM). Oroxyloside decreased several LPS-induced inflammatory cytokines, including IL-1β, IL-6 and TNF-α in RAW264.7 and BMDM. We also found that oroxyloside inhibited LPS-induced activation of NF-κB signaling pathway via activating PPARγ in RAW 264.7 and BMDM. Docking study showed that oroxyloside could bind with PPARγ. GW9662, the inhibitor of PPARγ, and PPARγ siRNA transfection blocked the effect of oroxyloside on PPARγ activation. Our study suggested that oroxyloside prevented DSS-induced colitis by inhibiting NF-κB pathway through PPARγ activation. Therefore, oroxyloside may be a promising and effective agent for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Xiaoping Wang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yang Sun
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Yue Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Youxiang Ding
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Xiaobo Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Zhiyu Li
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China
| | - Qinglong Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| | - Li Zhao
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
110
|
Zhao J, Bai Z, Feng F, Song E, Du F, Zhao J, Shen G, Ji F, Li G, Ma X, Hang X, Xu B. Cross-talk between EPAS-1/HIF-2α and PXR signaling pathway regulates multi-drug resistance of stomach cancer cell. Int J Biochem Cell Biol 2016; 72:73-88. [DOI: 10.1016/j.biocel.2016.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 12/27/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
|
111
|
Ro SH, Xue X, Ramakrishnan SK, Cho CS, Namkoong S, Jang I, Semple IA, Ho A, Park HW, Shah YM, Lee JH. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. eLife 2016; 5:e12204. [PMID: 26913956 PMCID: PMC4805551 DOI: 10.7554/elife.12204] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/24/2016] [Indexed: 12/13/2022] Open
Abstract
The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53's control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis.
Collapse
Affiliation(s)
- Seung-Hyun Ro
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States.,Department of Biochemistry, University of Nebraska, Lincoln, United States
| | - Xiang Xue
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Chun-Seok Cho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Insook Jang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Ian A Semple
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Allison Ho
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Hwan-Woo Park
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States.,Department of Cell Biology, College of Medicine, Konyang University, Daejeon, Republic of Korea.,Myung-Gok Eye Research Institute, Konyang University, Seoul, Republic of Korea
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
112
|
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disease of the intestine. IBD is a multifactorial disorder, and IBD-associated genes are critical in innate immune response, inflammatory response, autophagy, and epithelial barrier integrity. Moreover, epithelial oxygen tension plays a critical role in intestinal inflammation and resolution in IBD. The intestines have a dynamic and rapid fluctuation in cellular oxygen tension, which is dysregulated in IBD. Intestinal epithelial cells have a steep oxygen gradient where the tips of the villi are hypoxic and the oxygenation increases at the base of the villi. IBD results in heightened hypoxia throughout the mucosa. Hypoxia signals through a well-conserved family of transcription factors, where hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. In inflamed mucosa, HIF-1α increases barrier protective genes, elicits protective innate immune responses, and activates an antimicrobial response through the increase in β-defensins. HIF-2α is essential in maintaining an epithelial-elicited inflammatory response and the regenerative and proliferative capacity of the intestine following an acute injury. HIF-1α activation in colitis leads to a protective response, whereas chronic activation of HIF-2α increases the pro-inflammatory response, intestinal injury, and cancer. In this mini-review, we detail the role of HIF-1α and HIF-2α in intestinal inflammation and injury and therapeutic implications of targeting HIF signaling in IBD.
Collapse
Affiliation(s)
- Yatrik M Shah
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Internal medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
113
|
Abstract
In this review, I summarize some of the recent insight into pharmacological targeting of hypoxia in disease models. Studies from cultured cell systems, animal models, and translation to human patients have revealed that posttranslational modifications of individual proteins within NF-κB and hypoxia-inducible factor pathways serve as ideal targets for analysis in disease models. Studies defining differences and similarities between these responses have taught us a number of important lessons about the complexity of the inflammatory response. A clearer definition of these pathways has provided new insight into disease pathogenesis and, importantly, the potential for new therapeutic targets.
Collapse
|
114
|
D'Ignazio L, Bandarra D, Rocha S. NF-κB and HIF crosstalk in immune responses. FEBS J 2015; 283:413-24. [PMID: 26513405 PMCID: PMC4864946 DOI: 10.1111/febs.13578] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022]
Abstract
Hypoxia and inflammation have been associated with a number of pathological conditions, in particular inflammatory diseases. While hypoxia is mainly associated with the activation of hypoxia‐inducible factors (HIFs), inflammation activates the family of transcription factor called nuclear factor‐kappa B (NF‐κB). An extensive crosstalk between these two main molecular players involved in hypoxia and inflammation has been demonstrated. This crosstalk includes common activating stimuli, shared regulators and targets. In this review, we discuss the current understanding of the role of NF‐κB and HIF in the context of the immune response. We review the crosstalk between HIF and NF‐κB in the control of the immune response in different immune cell types including macrophages, neutrophils and B and T cells. Furthermore the importance of the molecular crosstalk between HIFs and NF‐κB for a variety of medical conditions will be discussed.
Collapse
Affiliation(s)
- Laura D'Ignazio
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, UK
| |
Collapse
|
115
|
Abstract
The intestine is supported by a complex vascular system that undergoes dynamic and transient daily shifts in blood perfusion, depending on the metabolic state. Moreover, the intestinal villi have a steep oxygen gradient from the hypoxic epithelium adjacent to the anoxic lumen to the relative higher tissue oxygenation at the base of villi. Due to the daily changes in tissue oxygen levels in the intestine, the hypoxic transcription factors hypoxia-inducible factor (HIF)-1α and HIF-2α are essential in maintaining intestinal homeostasis. HIF-2α is essential in maintaining proper micronutrient balance, the inflammatory response, and the regenerative and proliferative capacity of the intestine following an acute injury. However, chronic activation of HIF-2α leads to enhanced proinflammatory response, intestinal injury, and colorectal cancer. In this review, we detail the major mechanisms by which HIF-2α contributes to health and disease of the intestine and the therapeutic implications of targeting HIF-2α in intestinal diseases.
Collapse
Affiliation(s)
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology and.,Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109;
| |
Collapse
|
116
|
Abstract
A disintegrin and metalloproteinases (ADAMs) are a family of cell surface proteases that regulate diverse cellular functions, including cell adhesion, migration, cellular signaling, and proteolysis. Proteolytically active ADAMs are responsible for ectodomain shedding of membrane-associated proteins. ADAMs rapidly modulate key cell signaling pathways in response to changes in the extracellular environment (e.g., inflammation) and play a central role in coordinating intercellular communication within the local microenvironment. ADAM10 and ADAM17 are the most studied members of the ADAM family in the gastrointestinal tract. ADAMs regulate many cellular processes associated with intestinal development, cell fate specification, and the maintenance of intestinal stem cell/progenitor populations. Several signaling pathway molecules that undergo ectodomain shedding by ADAMs [e.g., ligands and receptors from epidermal growth factor receptor (EGFR)/ErbB and tumor necrosis factor α (TNFα) receptor (TNFR) families] help drive and control intestinal inflammation and injury/repair responses. Dysregulation of these processes through aberrant ADAM expression or sustained ADAM activity is linked to chronic inflammation, inflammation-associated cancer, and tumorigenesis.
Collapse
Affiliation(s)
- Jennifer C Jones
- Cell Biology, Stem Cells, and Development Program and.,Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| | - Shelly Rustagi
- Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| | - Peter J Dempsey
- Cell Biology, Stem Cells, and Development Program and.,Division of Gastroenterology, Hepatology, and Nutrition and Department of Pediatrics, University of Colorado Medical School, Aurora, Colorado 80045; , ,
| |
Collapse
|
117
|
Finkbeiner SR, Freeman JJ, Wieck MM, El-Nachef W, Altheim CH, Tsai YH, Huang S, Dyal R, White ES, Grikscheit TC, Teitelbaum DH, Spence JR. Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol Open 2015; 4:1462-72. [PMID: 26459240 PMCID: PMC4728347 DOI: 10.1242/bio.013235] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short bowel syndrome (SBS) is characterized by poor nutrient absorption due to a deficit of healthy intestine. Current treatment practices rely on providing supportive medical therapy with parenteral nutrition; while life saving, such interventions are not curative and are still associated with significant co-morbidities. As approaches to lengthen remaining intestinal tissue have been met with only limited success and intestinal transplants have poor survival outcomes, new approaches to treating SBS are necessary. Human intestine derived from embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs), called human intestinal organoids (HIOs), have the potential to offer a personalized and scalable source of intestine for regenerative therapies. However, given that HIOs are small three-dimensional structures grown in vitro, methods to generate usable HIO-derived constructs are needed. We investigated the ability of hESCs or HIOs to populate acellular porcine intestinal matrices and artificial polyglycolic/poly L lactic acid (PGA/PLLA) scaffolds, and examined the ability of matrix/scaffolds to thrive when transplanted in vivo. Our results demonstrate that the acellular matrix alone is not sufficient to instruct hESC differentiation towards an endodermal or intestinal fate. We observed that while HIOs reseed acellular porcine matrices in vitro, the HIO-reseeded matrices do not thrive when transplanted in vivo. In contrast, HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. Our results suggest that HIO-seeded PGA/PLLA scaffolds are a promising avenue for developing the mucosal component of tissue engineered human small intestine, which need to be explored further to develop them into fully functional tissue. Summary: HIO-seeded PGA/PLLA scaffolds thrive in vivo and develop into tissue that looks nearly identical to adult human intestinal tissue. These scaffolds appear to be suitable for further tissue engineering approaches to develop functional intestine.
Collapse
Affiliation(s)
- Stacy R Finkbeiner
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jennifer J Freeman
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Minna M Wieck
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital, Los Angeles, CA, USA
| | - Wael El-Nachef
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital, Los Angeles, CA, USA
| | - Christopher H Altheim
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Rachel Dyal
- Department of Internal Medicine, Section of Pulmonary and Critical Care, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric S White
- Department of Internal Medicine, Section of Pulmonary and Critical Care, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tracy C Grikscheit
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Children's Hospital, Los Angeles, CA, USA
| | - Daniel H Teitelbaum
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA Department of Surgery, Section of Pediatric Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jason R Spence
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI 48109, USA Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
118
|
Zhang H, Ramakrishnan SK, Triner D, Centofanti B, Maitra D, Győrffy B, Sebolt-Leopold JS, Dame MK, Varani J, Brenner DE, Fearon ER, Omary MB, Shah YM. Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Sci Signal 2015; 8:ra98. [PMID: 26443705 DOI: 10.1126/scisignal.aac5418] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Yes-associated protein 1 (YAP1) is a transcriptional coactivator in the Hippo signaling pathway. Increased YAP1 activity promotes the growth of tumors, including that of colorectal cancer (CRC). Verteporfin, a drug that enhances phototherapy to treat neovascular macular degeneration, is an inhibitor of YAP1. We found that verteporfin inhibited tumor growth independently of its effects on YAP1 or the related protein TAZ in genetically or chemically induced mouse models of CRC, in patient-derived xenografts, and in enteroid models of CRC. Instead, verteporfin exhibited in vivo selectivity for killing tumor cells in part by impairing the global clearance of high-molecular weight oligomerized proteins, particularly p62 (a sequestrome involved in autophagy) and STAT3 (signal transducer and activator of transcription 3; a transcription factor). Verteporfin inhibited cytokine-induced STAT3 activity and cell proliferation and reduced the viability of cultured CRC cells. Although verteporfin accumulated to a greater extent in normal cells than in tumor cells in vivo, experiments with cultured cells indicated that the normal cells efficiently cleared verteporfin-induced protein oligomers through autophagic and proteasomal pathways. Culturing CRC cells under hypoxic or nutrient-deprived conditions (modeling a typical CRC microenvironment) impaired the clearance of protein oligomers and resulted in cell death, whereas culturing cells under normoxic or glucose-replete conditions protected cell viability and proliferation in the presence of verteporfin. Furthermore, verteporfin suppressed the proliferation of other cancer cell lines even in the absence of YAP1, suggesting that verteporfin may be effective against multiple types of solid cancers.
Collapse
Affiliation(s)
- Huabing Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Daniel Triner
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brook Centofanti
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dhiman Maitra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, MTA-SE Pediatrics and Nephrology Research Group, Semmelweis University 2nd Department of Pediatrics, Budapest H-1117, Hungary
| | | | - Michael K Dame
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - James Varani
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Dean E Brenner
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Eric R Fearon
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - M Bishr Omary
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Veterans Affairs Ann Arbor Health Care System, Ann Arbor, MI 48105, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
119
|
Hu B, Guo Y, Garbacz WG, Jiang M, Xu M, Huang H, Tsung A, Billiar TR, Ramakrishnan SK, Shah YM, Lam KSL, Huang M, Xie W. Fatty acid binding protein-4 (FABP4) is a hypoxia inducible gene that sensitizes mice to liver ischemia/reperfusion injury. J Hepatol 2015; 63:855-62. [PMID: 26070408 PMCID: PMC4867094 DOI: 10.1016/j.jhep.2015.05.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/28/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Fatty acid binding protein 4 (FABP4) has been known as a mediator of inflammatory response in the macrophages and adipose tissue, but its hepatic function is poorly understood. The goal of this study is to investigate the role of FABP4 in liver ischemia/reperfusion (I/R), a clinical condition that involves both hypoxia and inflammation. METHODS To examine the I/R regulation of FABP4, mice were subjected to I/R surgery before being measured for FABP4 gene expression. Both loss-of-function (by using a pharmacological FABP4 inhibitor) and gain-of-function (by adenoviral overexpression of FABP4) were used to determine the functional relevance of FABP4 expression and its regulation during I/R. To determine the hypoxia responsive regulation of FABP4, primary mouse hepatocytes were exposed to hypoxia. The FABP4 gene promoter was cloned and its regulation by hypoxia inducible factor 1α (HIF-1α) was characterized by luciferase reporter gene, electrophoretic mobility shift, and chromatin immunoprecipitation assays. RESULTS We found that the hepatic expression of FABP4 was markedly induced by I/R. At the functional level, pharmacological inhibition of FABP4 alleviated the I/R injury, whereas adenoviral overexpression of FABP4 sensitized mice to I/R injury. We also showed that exposure of primary hepatocytes to hypoxia or transgenic overexpression of HIF-1α in the mouse liver was sufficient to induce the expression of FABP4. Our promoter analysis established FABP4 as a novel transcriptional target of HIF-1α. CONCLUSIONS FABP4 is a hypoxia inducible gene that sensitizes mice to liver I/R injury. FABP4 may represent a novel therapeutic target, and FABP4 inhibitors may be used as therapeutic agents to manage hepatic I/R injury.
Collapse
Affiliation(s)
- Bingfang Hu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China; Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yan Guo
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wojciech G Garbacz
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mengxi Jiang
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hai Huang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sadeesh K Ramakrishnan
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular & Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Karen S L Lam
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
120
|
Affiliation(s)
- Yatrik M Shah
- Department of Molecular & Integrative Physiology, and Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan.
| | - Gijs R van den Brink
- Tytgat Institute for Liver and Intestinal Research, Department of Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
121
|
Das N, Xie L, Ramakrishnan SK, Campbell A, Rivella S, Shah YM. Intestine-specific Disruption of Hypoxia-inducible Factor (HIF)-2α Improves Anemia in Sickle Cell Disease. J Biol Chem 2015; 290:23523-7. [PMID: 26296885 DOI: 10.1074/jbc.c115.681643] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Indexed: 11/06/2022] Open
Abstract
Sickle cell disease (SCD) is caused by genetic defects in the β-globin chain. SCD is a frequently inherited blood disorder, and sickle cell anemia is a common type of hemoglobinopathy. During anemia, the hypoxic response via the transcription factor hypoxia-inducible factor (HIF)-2α is highly activated in the intestine and is essential in iron absorption. Intestinal disruption of HIF-2α protects against tissue iron accumulation in iron overload anemias. However, the role of intestinal HIF-2α in regulating anemia in SCD is currently not known. Here we show that in mouse models of SCD, disruption of intestinal HIF-2α significantly decreased tissue iron accumulation. This was attributed to a decrease in intestinal iron absorptive genes, which were highly induced in a mouse model of SCD. Interestingly, disruption of intestinal HIF-2α led to a robust improvement in anemia with an increase in RBC, hemoglobin, and hematocrit. This was attributed to improvement in RBC survival, hemolysis, and insufficient erythropoiesis, which is evident from a significant decrease in serum bilirubin, reticulocyte counts, and serum erythropoietin following intestinal HIF-2α disruption. These data suggest that targeting intestinal HIF-2α has a significant therapeutic potential in SCD pathophysiology.
Collapse
Affiliation(s)
- Nupur Das
- From the Department of Molecular and Integrative Physiology
| | - Liwei Xie
- From the Department of Molecular and Integrative Physiology
| | | | | | - Stefano Rivella
- the Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Yatrik M Shah
- From the Department of Molecular and Integrative Physiology, Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| |
Collapse
|
122
|
Loss of ADAM17-Mediated Tumor Necrosis Factor Alpha Signaling in Intestinal Cells Attenuates Mucosal Atrophy in a Mouse Model of Parenteral Nutrition. Mol Cell Biol 2015; 35:3604-21. [PMID: 26283731 DOI: 10.1128/mcb.00143-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022] Open
Abstract
Total parenteral nutrition (TPN) is commonly used clinically to sustain patients; however, TPN is associated with profound mucosal atrophy, which may adversely affect clinical outcomes. Using a mouse TPN model, removing enteral nutrition leads to decreased crypt proliferation, increased intestinal epithelial cell (IEC) apoptosis and increased mucosal tumor necrosis factor alpha (TNF-α) expression that ultimately produces mucosal atrophy. Upregulation of TNF-α signaling plays a central role in mediating TPN-induced mucosal atrophy without intact epidermal growth factor receptor (EGFR) signaling. Currently, the mechanism and the tissue-specific contributions of TNF-α signaling to TPN-induced mucosal atrophy remain unclear. ADAM17 is an ectodomain sheddase that can modulate the signaling activity of several cytokine/growth factor receptor families, including the TNF-α/TNF receptor and ErbB ligand/EGFR pathways. Using TPN-treated IEC-specific ADAM17-deficient mice, the present study demonstrates that a loss of soluble TNF-α signaling from IECs attenuates TPN-induced mucosal atrophy. Importantly, this response remains dependent on the maintenance of functional EGFR signaling in IECs. TNF-α blockade in wild-type mice receiving TPN confirmed that soluble TNF-α signaling is responsible for downregulation of EGFR signaling in IECs. These results demonstrate that ADAM17-mediated TNF-α signaling from IECs has a significant role in the development of the proinflammatory state and mucosal atrophy observed in TPN-treated mice.
Collapse
|
123
|
Chen Y, Zhang HS, Fong GH, Xi QL, Wu GH, Bai CG, Ling ZQ, Fan L, Xu YM, Qin YQ, Yuan TL, Sun H, Fang J. PHD3 Stabilizes the Tight Junction Protein Occludin and Protects Intestinal Epithelial Barrier Function. J Biol Chem 2015; 290:20580-9. [PMID: 26124271 PMCID: PMC4536461 DOI: 10.1074/jbc.m115.653584] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/25/2015] [Indexed: 12/13/2022] Open
Abstract
Prolyl hydroxylase domain proteins (PHDs) control cellular adaptation to hypoxia. PHDs are found involved in inflammatory bowel disease (IBD); however, the exact role of PHD3, a member of the PHD family, in IBD remains unknown. We show here that PHD3 plays a critical role in maintaining intestinal epithelial barrier function. We found that genetic ablation of Phd3 in intestinal epithelial cells led to spontaneous colitis in mice. Deletion of PHD3 decreases the level of tight junction protein occludin, leading to a failure of intestinal epithelial barrier function. Further studies indicate that PHD3 stabilizes occludin by preventing the interaction between the E3 ligase Itch and occludin, in a hydroxylase-independent manner. Examination of biopsy of human ulcerative colitis patients indicates that PHD3 is decreased with disease severity, indicating that PHD3 down-regulation is associated with progression of this disease. We show that PHD3 protects intestinal epithelial barrier function and reveal a hydroxylase-independent function of PHD3 in stabilizing occludin. These findings may help open avenues for developing a therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Ying Chen
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hai-Sheng Zhang
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Hua Fong
- the Center for Vascular Biology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Qiu-Lei Xi
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, China
| | - Guo-Hao Wu
- the Department of Surgery, Zhongshan Hospital, Fudan University School of Medicine, Shanghai 200030, China
| | - Chen-Guang Bai
- the Department of Pathology, Changhai Hospital, the Second Military Medical University, Shanghai 200433, China
| | - Zhi-Qiang Ling
- the Department of Pathology, Zhejiang Cancer Research Institute, Zhejiang Cancer Hospital and Zhejiang Cancer Center, Hangzhou 310022, China, and
| | - Li Fan
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Ming Xu
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Qing Qin
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tang-Long Yuan
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Sun
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing Fang
- From the Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China, the Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021 China
| |
Collapse
|
124
|
Abstract
Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.
Collapse
Affiliation(s)
- Katharina Flück
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany
| | - Joachim Fandrey
- Institut für Physiologie, Universität Duisburg-Essen, Essen, Germany.
| |
Collapse
|
125
|
Finkbeiner SR, Hill DR, Altheim CH, Dedhia PH, Taylor MJ, Tsai YH, Chin AM, Mahe MM, Watson CL, Freeman JJ, Nattiv R, Thomson M, Klein OD, Shroyer NF, Helmrath MA, Teitelbaum DH, Dempsey PJ, Spence JR. Transcriptome-wide Analysis Reveals Hallmarks of Human Intestine Development and Maturation In Vitro and In Vivo. Stem Cell Reports 2015; 4:S2213-6711(15)00122-8. [PMID: 26050928 PMCID: PMC4471827 DOI: 10.1016/j.stemcr.2015.04.010] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 01/04/2023] Open
Abstract
Human intestinal organoids (HIOs) are a tissue culture model in which small intestine-like tissue is generated from pluripotent stem cells. By carrying out unsupervised hierarchical clustering of RNA-sequencing data, we demonstrate that HIOs most closely resemble human fetal intestine. We observed that genes involved in digestive tract development are enriched in both fetal intestine and HIOs compared to adult tissue, whereas genes related to digestive function and Paneth cell host defense are expressed at higher levels in adult intestine. Our study also revealed that the intestinal stem cell marker OLFM4 is expressed at very low levels in fetal intestine and in HIOs, but is robust in adult crypts. We validated our findings using in vivo transplantation to show that HIOs become more adult-like after transplantation. Our study emphasizes important maturation events that occur in the intestine during human development and demonstrates that HIOs can be used to model fetal-to-adult maturation.
Collapse
Affiliation(s)
- Stacy R Finkbeiner
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David R Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christopher H Altheim
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Priya H Dedhia
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Matthew J Taylor
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yu-Hwai Tsai
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alana M Chin
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maxime M Mahe
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carey L Watson
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of General Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Jennifer J Freeman
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Roy Nattiv
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Franciso, CA 94143, USA
| | - Matthew Thomson
- Center for Systems and Synthetic Biology, University of California, San Francisco, San Franciso, CA 94143, USA
| | - Ophir D Klein
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Franciso, CA 94143, USA; Program in Craniofacial and Mesenchymal Biology, University of California, San Francisco, San Franciso, CA 94143, USA; Center for Craniofacial Anomalies, University of California, San Francisco, San Franciso, CA 94143, USA
| | - Noah F Shroyer
- Department of Medicine Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Helmrath
- Department of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of General Surgery, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Daniel H Teitelbaum
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter J Dempsey
- Department of Pediatrics, University of Colorado, Denver, CO 80204, USA
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
126
|
Dye BR, Hill DR, Ferguson MAH, Tsai YH, Nagy MS, Dyal R, Wells JM, Mayhew CN, Nattiv R, Klein OD, White ES, Deutsch GH, Spence JR. In vitro generation of human pluripotent stem cell derived lung organoids. eLife 2015; 4. [PMID: 25803487 PMCID: PMC4370217 DOI: 10.7554/elife.05098] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/24/2015] [Indexed: 12/22/2022] Open
Abstract
Recent breakthroughs in 3-dimensional (3D) organoid cultures for many organ systems have led to new physiologically complex in vitro models to study human development and disease. Here, we report the step-wise differentiation of human pluripotent stem cells (hPSCs) (embryonic and induced) into lung organoids. By manipulating developmental signaling pathways hPSCs generate ventral-anterior foregut spheroids, which are then expanded into human lung organoids (HLOs). HLOs consist of epithelial and mesenchymal compartments of the lung, organized with structural features similar to the native lung. HLOs possess upper airway-like epithelium with basal cells and immature ciliated cells surrounded by smooth muscle and myofibroblasts as well as an alveolar-like domain with appropriate cell types. Using RNA-sequencing, we show that HLOs are remarkably similar to human fetal lung based on global transcriptional profiles, suggesting that HLOs are an excellent model to study human lung development, maturation and disease.
Collapse
Affiliation(s)
- Briana R Dye
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - David R Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Michael A H Ferguson
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Melinda S Nagy
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Rachel Dyal
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Christopher N Mayhew
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Roy Nattiv
- Institute for Human Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Ophir D Klein
- Institute for Human Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, United States
| | - Eric S White
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, United States
| | - Gail H Deutsch
- Department of Laboratories, Seattle Children's Hospital and University of Washington, Seattle, United States
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
127
|
Ren T, Tian T, Feng X, Ye S, Wang H, Wu W, Qiu Y, Yu C, He Y, Zeng J, Cen J, Zhou Y. An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway. Sci Rep 2015; 5:9047. [PMID: 25762375 PMCID: PMC4357005 DOI: 10.1038/srep09047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/13/2015] [Indexed: 12/13/2022] Open
Abstract
The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tianhua Ren
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Ting Tian
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Xiao Feng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Shicai Ye
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Hao Wang
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Weiyun Wu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yumei Qiu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Caiyuan Yu
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yanting He
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Juncheng Zeng
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Junwei Cen
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| | - Yu Zhou
- Department of Gastroenterology, The Affiliated Hospital of Guangdong Medical College, No. 57 South Renmin Avenue, Zhanjiang 524001, China
| |
Collapse
|
128
|
Campbell EL, Colgan SP. Neutrophils and inflammatory metabolism in antimicrobial functions of the mucosa. J Leukoc Biol 2015; 98:517-22. [PMID: 25714801 DOI: 10.1189/jlb.3mr1114-556r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/22/2015] [Indexed: 01/29/2023] Open
Abstract
In this mini-review, we will discuss recent findings that implicate neutrophil infiltration and function in establishing a metabolic environment to facilitate efficient pathogen clearance. For decades, neutrophils have been regarded as short lived, nonspecific granulocytes, equipped with toxic antimicrobial factors and a respiratory burst generating ROS. Recent findings demonstrate the importance of HIF signaling in leukocytes and surrounding tissues during inflammation. Here, we will review the potential mechanisms and outcomes of HIF stabilization within the intestinal mucosa.
Collapse
Affiliation(s)
- Eric L Campbell
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology and Departments of Medicine and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Division of Gastroenterology and Hepatology and Departments of Medicine and Immunology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
129
|
Oral delivery of prolyl hydroxylase inhibitor: AKB-4924 promotes localized mucosal healing in a mouse model of colitis. Inflamm Bowel Dis 2015; 21:267-75. [PMID: 25545377 DOI: 10.1097/mib.0000000000000277] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pharmacological induction of hypoxia-inducible factor (HIF), a global transcriptional regulator of the hypoxic response, by prolyl hydroxylase inhibitors (PHDi) is protective in murine models of colitis, and epithelial cells are critical for the observed therapeutic efficacy. Because systemic HIF activation may lead to potentially negative off-target effects, we hypothesized that targeting epithelial HIF through oral delivery of PHDi would be sufficient to protect against colitis in a mouse model. METHODS Using a chemically induced trinitrobenzene sulfonic acid murine model of colitis, we compared the efficacy of oral and intraperitoneal (i.p.) delivery of the PHDi; AKB-4924 in preventing colitis, as measured by endoscopy, histology, barrier integrity, and immune profiling. Furthermore, we measured potential off-target effects, examining HIF and HIF target genes in the heart and kidney, as well as erythropoietin and hematocrit levels. RESULTS Oral administration of AKB-4924 exhibited mucosal protection comparable i.p. dosing. Oral delivery of PHDi led to reduced colonic epithelial HIF stabilization compared with i.p. delivery, but this was still sufficient to induce transcription of downstream HIF targets. Furthermore, oral delivery of PHDi led to reduced stabilization of HIF and activation of HIF targets in extraintestinal organs. CONCLUSIONS Oral delivery of PHDi therapies to this intestinal mucosa protects against colitis in animal models and represents a potential therapeutic strategy for inflammatory bowel disease, which also precludes unwanted extraintestinal effects.
Collapse
|
130
|
Biddlestone J, Bandarra D, Rocha S. The role of hypoxia in inflammatory disease (review). Int J Mol Med 2015; 35:859-69. [PMID: 25625467 PMCID: PMC4356629 DOI: 10.3892/ijmm.2015.2079] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023] Open
Abstract
Mammals have developed evolutionarily conserved programs of transcriptional response to hypoxia and inflammation. These stimuli commonly occur together in vivo and there is significant crosstalk between the transcription factors that are classically understood to respond to either hypoxia or inflammation. This crosstalk can be used to modulate the overall response to environmental stress. Several common disease processes are characterised by aberrant transcriptional programs in response to environmental stress. In this review, we discuss the current understanding of the role of the hypoxia-responsive (hypoxia-inducible factor) and inflammatory (nuclear factor-κB) transcription factor families and their crosstalk in rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, with relevance for future therapies for the management of these conditions.
Collapse
Affiliation(s)
- John Biddlestone
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Daniel Bandarra
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Sonia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
131
|
Eltzschig HK, Bratton DL, Colgan SP. Targeting hypoxia signalling for the treatment of ischaemic and inflammatory diseases. Nat Rev Drug Discov 2014; 13:852-69. [PMID: 25359381 PMCID: PMC4259899 DOI: 10.1038/nrd4422] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factors (HIFs) are stabilized during adverse inflammatory processes associated with disorders such as inflammatory bowel disease, pathogen infection and acute lung injury, as well as during ischaemia-reperfusion injury. HIF stabilization and hypoxia-induced changes in gene expression have a profound impact on the inflamed tissue microenvironment and on disease outcomes. Although the mechanism that initiates HIF stabilization may vary, the final molecular steps that control HIF stabilization converge on a set of oxygen-sensing prolyl hydroxylases (PHDs) that mark HIFs for proteasomal degradation. PHDs are therefore promising therapeutic targets. In this Review, we discuss the emerging potential and associated challenges of targeting the PHD-HIF pathway for the treatment of inflammatory and ischaemic diseases.
Collapse
Affiliation(s)
- Holger K Eltzschig
- Organ Protection Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Donna L Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA
| | - Sean P Colgan
- Mucosal Inflammation Program, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
132
|
Distinctive colonic mucosal cytokine signature in new-onset, untreated pediatric Crohn disease. J Pediatr Gastroenterol Nutr 2014; 59:553-61. [PMID: 25000355 DOI: 10.1097/mpg.0000000000000480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The aim of the study was to compare the colonic mucosal immune response in children with new, untreated Crohn disease (CD-New), CD in remission (CD-Remission), and unaffected children (CTRL [controls]). METHODS We performed flow cytometry of mitogen-stimulated colonic lamina propria mononuclear cells isolated from colonic biopsies and 72-hour biopsy explant cultures, and analyzed the supernatant by an unbiased multiplex cytokine array of 45 analytes. RESULTS Thirty-six children were studied (mean age 14 ± 3 years, 14 girls): 12 CD-New, 11 CD-Remission, and 13 CTRL. We found that stimulation of lamina propria mononuclear cells isolated from colonic biopsies induced comparable intracellular cytokine levels of interferon (IFN-γ), interleukin (IL)-17, and tumor necrosis factor (TNF)-α in T cells from CD-New, CD-Remission, and CTRL, suggesting that mucosal innate inflammation plays a larger role than activated T cells in CD-New. To measure factors released during the ongoing inflammatory response in CD-New, we cultured colonic biopsy explants and uncovered 13/45 factors that were significantly higher in CD-New versus CD-Remission, whereas 10 were increased in CD-New over CTRL. Ingenuity Pathway Analysis software revealed the anticipated interconnectivity of TNF-α, IL-6, and CSF-2 in CD-New of the colon. A novel subnetwork of chemokines was, however, evident, whereas IL-17a appeared as a peripheral factor. Principal component analysis and hierarchal clustering showed that CD-New and CD-Remission separated into distinct subgroups based on the 13 factors. CONCLUSIONS At diagnosis of inflammatory bowel disease, the colonic cytokine response contains a predominance of innate immune factors, with chemoattractants and vascular adhesion molecules playing a central role.
Collapse
|
133
|
Persistence and toxin production by Clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 2014; 83:138-45. [PMID: 25312952 DOI: 10.1128/iai.02561-14] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is the leading cause of infectious nosocomial diarrhea. The pathogenesis of C. difficile infection (CDI) results from the interactions between the pathogen, intestinal epithelium, host immune system, and gastrointestinal microbiota. Previous studies of the host-pathogen interaction in CDI have utilized either simple cell monolayers or in vivo models. While much has been learned by utilizing these approaches, little is known about the direct interaction of the bacterium with a complex host epithelium. Here, we asked if human intestinal organoids (HIOs), which are derived from pluripotent stem cells and demonstrate small intestinal morphology and physiology, could be used to study the pathogenesis of the obligate anaerobe C. difficile. Vegetative C. difficile, microinjected into the lumen of HIOs, persisted in a viable state for up to 12 h. Upon colonization with C. difficile VPI 10463, the HIO epithelium is markedly disrupted, resulting in the loss of paracellular barrier function. Since similar effects were not observed when HIOs were colonized with the nontoxigenic C. difficile strain F200, we directly tested the role of toxin using TcdA and TcdB purified from VPI 10463. We show that the injection of TcdA replicates the disruption of the epithelial barrier function and structure observed in HIOs colonized with viable C. difficile.
Collapse
|
134
|
Tsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, Samuelson LC, Dempsey PJ. ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 2014; 147:822-834.e13. [PMID: 25038433 PMCID: PMC4176890 DOI: 10.1053/j.gastro.2014.07.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/08/2014] [Accepted: 07/10/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a cell surface sheddase that regulates physiologic processes, including Notch signaling. ADAM10 is expressed in all intestinal epithelial cell types, but the requirement for ADAM10 signaling in crypt homeostasis is not well defined. METHODS We analyzed intestinal tissues from mice with constitutive (Vil-Cre;Adam10(f/f) mice) and conditional (Vil-CreER;Adam10(f/f) and Leucine-rich repeat-containing GPCR5 [Lgr5]-CreER;Adam10(f/f) mice) deletion of ADAM10. We performed cell lineage-tracing experiments in mice that expressed a gain-of-function allele of Notch in the intestine (Rosa26(NICD)), or mice with intestine-specific disruption of Notch (Rosa26(DN-MAML)), to examine the effects of ADAM10 deletion on cell fate specification and intestinal stem cell maintenance. RESULTS Loss of ADAM10 from developing and adult intestine caused lethality associated with altered intestinal morphology, reduced progenitor cell proliferation, and increased secretory cell differentiation. ADAM10 deletion led to the replacement of intestinal cell progenitors with 2 distinct, post-mitotic, secretory cell lineages: intermediate-like (Paneth/goblet) and enteroendocrine cells. Based on analysis of Rosa26(NICD) and Rosa26(DN-MAML) mice, we determined that ADAM10 controls these cell fate decisions by regulating Notch signaling. Cell lineage-tracing experiments showed that ADAM10 is required for survival of Lgr5(+) crypt-based columnar cells. Our findings indicate that Notch-activated stem cells have a competitive advantage for occupation of the stem cell niche. CONCLUSIONS ADAM10 acts in a cell autonomous manner within the intestinal crypt compartment to regulate Notch signaling. This process is required for progenitor cell lineage specification and crypt-based columnar cell maintenance.
Collapse
Affiliation(s)
- Yu-Hwai Tsai
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Kelli L VanDussen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Eric T Sawey
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Alex W Wade
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Chelsea Kasper
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Sabita Rakshit
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Riha G Bhatt
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Alex Stoeck
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Ivan Maillard
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | | | - Linda C Samuelson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Peter J Dempsey
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
135
|
PPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis. Nat Commun 2014; 5:4573. [PMID: 25183423 PMCID: PMC4164778 DOI: 10.1038/ncomms5573] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
Bile acids play a pivotal role in the pathological development of inflammatory bowel disease (IBD). However, the mechanism of bile acid dysregulation in IBD remains unanswered. Here we show that intestinal peroxisome proliferator-activated receptor α (PPARα)-UDP-glucuronosyltransferases (UGTs) signalling is an important determinant of bile acid homeostasis. Dextran sulphate sodium (DSS)-induced colitis leads to accumulation of bile acids in inflamed colon tissues via activation of the intestinal peroxisome PPARα-UGTs pathway. UGTs accelerate the metabolic elimination of bile acids, and thereby decrease their intracellular levels in the small intestine. Reduced intracellular bile acids results in repressed farnesoid X receptor (FXR)-FGF15 signalling, leading to upregulation of hepatic CYP7A1, thus promoting the de novo bile acid synthesis. Both knockout of PPARα and treatment with recombinant FGF19 markedly attenuate DSS-induced colitis. Thus, we propose that intestinal PPARα-UGTs and downstream FXR-FGF15 signalling play vital roles in control of bile acid homeostasis and the pathological development of colitis. Bile acids have been linked to the development of inflammatory bowel diseases, such as colitis. Here the authors show that bile acid levels in mice are controlled by a circular feedback system involving the nuclear receptors PPARα and FXR, and that this system is dysregulated in colitis.
Collapse
|
136
|
Xue X, Ramakrishnan SK, Shah YM. Activation of HIF-1α does not increase intestinal tumorigenesis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G187-95. [PMID: 24875099 PMCID: PMC4101679 DOI: 10.1152/ajpgi.00112.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hypoxic response is mediated by two transcription factors, hypoxia-inducible factor (HIF)-1α and HIF-2α. These highly homologous transcription factors are induced in hypoxic foci and regulate cell metabolism, angiogenesis, cell proliferation, and cell survival. HIF-1α and HIF-2α are activated early in cancer progression and are important in several aspects of tumor biology. HIF-1α and HIF-2α have overlapping and distinct functions. In the intestine, activation of HIF-2α increases inflammation and colon carcinogenesis in mouse models. Interestingly, in ischemic and inflammatory diseases of the intestine, activation of HIF-1α is beneficial and can reduce intestinal inflammation. HIF-1α is a critical transcription factor regulating epithelial barrier function following inflammation. The beneficial value of pharmacological agents that chronically activate HIF-1α is decreased due to the tumorigenic potential of HIFs. The present study tested the hypothesis that chronic activation of HIF-1α may enhance colon tumorigenesis. Two models of colon cancer were assessed, a sporadic and a colitis-associated colon cancer model. Activation of HIF-1α in intestinal epithelial cells does not increase carcinogenesis or progression of colon cancer. Together, the data provide proof of principle that pharmacological activation of HIF-1α could be a safe therapeutic strategy for inflammatory bowel disease.
Collapse
Affiliation(s)
- Xiang Xue
- Departments of 1Molecular and Integrative Physiology and
| | | | - Yatrik M. Shah
- Departments of 1Molecular and Integrative Physiology and ,2Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
137
|
Hypoxia-inducible factor/MAZ-dependent induction of caveolin-1 regulates colon permeability through suppression of occludin, leading to hypoxia-induced inflammation. Mol Cell Biol 2014; 34:3013-23. [PMID: 24891620 DOI: 10.1128/mcb.00324-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Caveolae are specialized microdomains on membranes that are critical for signal transduction, cholesterol transport, and endocytosis. Caveolin-1 (CAV1) is a multifunctional protein and a major component of caveolae. Cav1 is directly activated by hypoxia-inducible factor (HIF). HIFs are heterodimers of an oxygen-sensitive α subunit, HIF1α or HIF2α, and a constitutively expressed β subunit, aryl hydrocarbon receptor nuclear translocator (ARNT). Whole-genome expression analysis demonstrated that Cav1 is highly induced in mouse models of constitutively activated HIF signaling in the intestine. Interestingly, Cav1 was increased only in the colon and not in the small intestine. Currently, the mechanism and role of HIF induction of CAV1 in the colon are unclear. In mouse models, mice that overexpressed HIF1α or HIF2α specifically in intestinal epithelial cells demonstrated an increase in Cav1 gene expression in the colon but not in the duodenum, jejunum, or ileum. HIF2α activated the Cav1 promoter in a HIF response element-independent manner. myc-associated zinc finger (MAZ) protein was essential for HIF2α activation of the Cav1 promoter. Hypoxic induction of CAV1 in the colon was essential for intestinal barrier integrity by regulating occludin expression. This may provide an additional mechanism by which chronic hypoxia can activate intestinal inflammation.
Collapse
|
138
|
Loss of von Hippel-Lindau protein (VHL) increases systemic cholesterol levels through targeting hypoxia-inducible factor 2α and regulation of bile acid homeostasis. Mol Cell Biol 2014; 34:1208-20. [PMID: 24421394 DOI: 10.1128/mcb.01441-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cholesterol synthesis is a highly oxygen-dependent process. Paradoxically, hypoxia is correlated with an increase in cellular and systemic cholesterol levels and risk of cardiovascular diseases. The mechanism for the increase in cholesterol during hypoxia is unclear. Hypoxia signaling is mediated through hypoxia-inducible factor 1α (HIF-1α) and HIF-2α. The present study demonstrates that activation of HIF signaling in the liver increases hepatic and systemic cholesterol levels due to a decrease in the expression of cholesterol hydroxylase CYP7A1 and other enzymes involved in bile acid synthesis. Specifically, activation of hepatic HIF-2α (but not HIF-1α) led to hypercholesterolemia. HIF-2α repressed the circadian expression of Rev-erbα, resulting in increased expression of E4BP4, a negative regulator of Cyp7a1. To understand if HIF-mediated decrease in bile acid synthesis is a physiologically relevant pathway by which hypoxia maintains or increases systemic cholesterol levels, two hypoxic mouse models were assessed, an acute lung injury model and mice exposed to 10% O2 for 3 weeks. In both models, cholesterol levels increased with a concomitant decrease in expression of genes involved in bile acid synthesis. The present study demonstrates that hypoxic activation of hepatic HIF-2α leads to an adaptive increase in cholesterol levels through inhibition of bile acid synthesis.
Collapse
|
139
|
Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. Proc Natl Acad Sci U S A 2013; 110:19820-5. [PMID: 24248342 DOI: 10.1073/pnas.1302840110] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.
Collapse
|