101
|
Son A, Ahuja M, Schwartz DM, Varga A, Swaim W, Kang N, Maleth J, Shin DM, Muallem S. Ca 2+ Influx Channel Inhibitor SARAF Protects Mice From Acute Pancreatitis. Gastroenterology 2019; 157:1660-1672.e2. [PMID: 31493399 DOI: 10.1053/j.gastro.2019.08.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Pancreatitis is characterized by increased influx of Ca2+ into acinar cells, by unknown mechanisms. Inhibitors of Ca2+ influx channels could be effective in treating acute pancreatitis, but these have deleterious side effects that can result in death. We investigated the expression patterns and functions of acinar cell Ca2+ channels and factors that regulate them during development of acute pancreatitis, along with changes in the channel inactivator store-operated calcium entry-associated regulatory factor (SARAF). We investigated whether SARAF is a target for treatment of acute pancreatitis and its status in human with pancreatitis. METHODS We generated mice that expressed SARAF tagged with hemagglutinin, using CRISPR/Cas9 gene editing, and isolated acinar cells. We also performed studies with Saraf-/- mice, Sarafzf/zf mice, mice without disruption of Saraf (control mice), and mice that overexpress fluorescently labeled SARAF in acinar cells. We analyzed interactions between stromal interaction molecule 1 (STIM1) and SARAF in HEK cells stimulated with carbachol using fluorescence resonance energy transfer microscopy and immunoprecipitation. Mice were given injections of caerulein or L-arginine to induce pancreatitis. Pancreatic tissues and blood samples were collected and levels of serum amylase, trypsin, tissue damage, inflammatory mediators, and inflammatory cells were measured. We performed quantitative polymerase chain reaction analyses of pancreatic tissues from 6 organ donors without pancreatic disease (controls) and 8 patients with alcohol-associated pancreatitis. RESULTS Pancreatic levels of Ca2+ influx channels or STIM1 did not differ significantly between acinar cells from mice with vs. without pancreatitis. By contrast, pancreatic levels of Saraf messenger RNA and SARAF protein initially markedly increased but then decreased during cell stimulation or injection of mice with caerulein, resulting in excessive Ca2+ influx. STIM1 interacted stably with SARAF following stimulation of HEK or mouse acinar cells with physiologic levels of carbachol, but only transiently following stimulation with pathologic levels of carbachol, leading to excessive Ca2+ influx. We observed reduced levels of SARAF messenger RNA in pancreatic tissues from patients with pancreatitis, compared with controls. SARAF knockout mice developed more severe pancreatitis than control mice after administration of caerulein or L-arginine, and pancreatic acinar cells from these mice had significant increases in Ca2+ influx. Conversely, overexpression of SARAF in acini reduced Ca2+ influx, eliminated inflammation, and reduced severity of acute pancreatitis. CONCLUSIONS In mice with pancreatitis, SARAF initially increases but is then degraded, resulting in excessive, pathological Ca2+ influx by acinar cells. SARAF knockout mice develop more severe pancreatitis than control mice, whereas mice that express SARAF from a transgene in acinar cells develop less-severe pancreatitis. SARAF therefore appears to prevent pancreatic damage during development of acute pancreatitis. Strategies to stabilize or restore SARAF to acinar cells might be developed for treatment of pancreatitis.
Collapse
Affiliation(s)
- Aran Son
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Daniella M Schwartz
- Genetics and Pathogenesis of Allergy Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Arpad Varga
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, First Department of Medicine, University of Szeged, Szeged, Hungary
| | - William Swaim
- NIDCR imaging core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Namju Kang
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jozsef Maleth
- HAS-USZ Momentum Epithelial Cell Signaling and Secretion Research Group, First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Dong Min Shin
- Department of Oral Biology, BK 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
102
|
Waldron RT, Lugea A, Pandol SJ. Brake adjustment: Ca 2+ entry pathway provides a novel target for acute pancreatitis therapy. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S284. [PMID: 32016003 PMCID: PMC6976478 DOI: 10.21037/atm.2019.11.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Richard T Waldron
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center and Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Aurelia Lugea
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center and Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Stephen J Pandol
- Departments of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center and Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
103
|
The pancreas-specific form of secretory pathway calcium ATPase 2 regulates multiple pathways involved in calcium homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118567. [PMID: 31676354 DOI: 10.1016/j.bbamcr.2019.118567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022]
Abstract
Acinar cell exocytosis requires spatiotemporal Ca2+ signals regulated through endoplasmic reticulum (ER) stores, Ca2+ATPases, and store-operated Ca2+ entry (SOCE). The secretory pathway Ca2+ATPase 2 (SPCA2) interacts with Orai1, which is involved in SOCE and store independent Ca2+ entry (SICE). However, in the pancreas, only a C-terminally truncated form of SPCA2 (termed SPAC2C) exists. The goal of this study was to determine if SPCA2C effects Ca2+ homeostasis in a similar fashion to the full-length SPCA2. Using epitope-tagged SPCA2C (SPCA2CFLAG) expressed in HEK293A cells and Fura2 imaging, cytosolic [Ca2+] was examined during SICE, SOCE and secretagogue-stimulated signaling. Exogenous SPCA2C expression increased resting cytosolic [Ca2+], Ca2+ release in response to carbachol, ER Ca2+ stores, and store-mediated and independent Ca2+ influx. Co-IP detected Orai1-SPCA2C interaction, which was altered by co-expression of STIM1. Importantly, SPCA2C's effects on store-mediated Ca2+ entry were independent of Orai1. These findings indicate SPCA2C influences Ca2+ homeostasis through multiple mechanisms, some of which are independent of Orai1, suggesting novel and possibly cell-specific Ca2+ regulation.
Collapse
|
104
|
Abstract
The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.
Collapse
|
105
|
Store-Operated Ca 2+ Entry in Tumor Progression: From Molecular Mechanisms to Clinical Implications. Cancers (Basel) 2019; 11:cancers11070899. [PMID: 31252656 PMCID: PMC6678533 DOI: 10.3390/cancers11070899] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
The remodeling of Ca2+ homeostasis has been implicated as a critical event in driving malignant phenotypes, such as tumor cell proliferation, motility, and metastasis. Store-operated Ca2+ entry (SOCE) that is elicited by the depletion of the endoplasmic reticulum (ER) Ca2+ stores constitutes the major Ca2+ influx pathways in most nonexcitable cells. Functional coupling between the plasma membrane Orai channels and ER Ca2+-sensing STIM proteins regulates SOCE activation. Previous studies in the human breast, cervical, and other cancer types have shown the functional significance of STIM/Orai-dependent Ca2+ signals in cancer development and progression. This article reviews the information on the regulatory mechanisms of STIM- and Orai-dependent SOCE pathways in the malignant characteristics of cancer, such as proliferation, resistance, migration, invasion, and metastasis. The recent investigations focusing on the emerging importance of SOCE in the cells of the tumor microenvironment, such as tumor angiogenesis and antitumor immunity, are also reviewed. The clinical implications as cancer therapeutics are discussed.
Collapse
|
106
|
Mukherjee R, Nunes Q, Huang W, Sutton R. Precision medicine for acute pancreatitis: current status and future opportunities. PRECISION CLINICAL MEDICINE 2019; 2:81-86. [PMID: 35692449 PMCID: PMC8985768 DOI: 10.1093/pcmedi/pbz010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/14/2019] [Accepted: 06/14/2019] [Indexed: 12/26/2022] Open
Abstract
Abstract
Acute pancreatitis is a common inflammatory condition affecting the pancreas, predominantly caused by gallstones, alcohol excess, and hypertriglyceridaemia, with severe disease carrying up to 50% mortality. Despite significant research and preclinical promise, no targeted drug treatments exist for the disease and precision medicine approaches are lacking significantly, when compared to other health conditions. Advances in omics applications will facilitate improved preclinical models and target identification as well as biomarker discovery for refined trial design, focusing on risk stratification, subject selection, and outcome determination. Randomised treatment of Acute Pancreatitis with Infliximab: Double-blind, placebo-controlled, multi-centre trial (RAPID-I) is a pioneering trial, currently under way in acute pancreatitis, which may serve as an innovative model for the implementation of precision medicine strategies for acute pancreatitis in the future.
Collapse
Affiliation(s)
- Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Quentin Nunes
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
- Correspondence: Robert Sutton,
| |
Collapse
|
107
|
Waldron RT, Chen Y, Pham H, Go A, Su HY, Hu C, Wen L, Husain SZ, Sugar CA, Roos J, Ramos S, Lugea A, Dunn M, Stauderman K, Pandol SJ. The Orai Ca 2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis. J Physiol 2019; 597:3085-3105. [PMID: 31050811 PMCID: PMC6582954 DOI: 10.1113/jp277856] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 02/05/2023] Open
Abstract
KEY POINTS This work confirms previous reports that CM4620, a small molecule inhibitor of Ca2+ entry via store operated Ca2+ entry (SOCE) channels formed by stromal interaction molecule 1 (STIM1)/Orai complexes, attenuates acinar cell pathology and acute pancreatitis in mouse experimental models. Here we report that intravenous administration of CM4620 reduces the severity of acute pancreatitis in the rat, a hitherto untested species. Using CM4620, we probe further the mechanisms whereby SOCE via STIM1/Orai complexes contributes to the disease in pancreatic acinar cells, supporting a role for endoplasmic reticulum stress/cell death pathways in these cells. Using CM4620, we show that SOCE via STIM1/Orai complexes promotes neutrophil oxidative burst and inflammatory gene expression during acute pancreatitis, including in immune cells which may be either circulating or invading the pancreas. Using CM4620, we show that SOCE via STIM1/Orai complexes promotes activation and fibroinflammatory gene expression within pancreatic stellate cells. ABSTRACT Key features of acute pancreatitis include excess cellular Ca2+ entry driven by Ca2+ depletion from the endoplasmic reticulum (ER) and subsequent activation of store-operated Ca2+ entry (SOCE) channels in the plasma membrane. In several cell types, including pancreatic acinar, stellate cells (PaSCs) and immune cells, SOCE is mediated via channels composed primarily of Orai1 and stromal interaction molecule 1 (STIM1). CM4620, a selective Orai1 inhibitor, prevents Ca2+ entry in acinar cells. This study investigates the effects of CM4620 in preventing or reducing acute pancreatitis features and severity. We tested the effects of CM4620 on SOCE, trypsinogen activation, acinar cell death, activation of NFAT and NF-κB, and inflammatory responses in ex vivo and in vivo rodent models of acute pancreatitis and human pancreatic acini. We also examined whether CM4620 inhibited cytokine release in immune cells, fibro-inflammatory responses in PaSCs, and oxidative burst in neutrophils, all cell types participating in pancreatitis. CM4620 administration to rats by i.v. infusion starting 30 min after induction of pancreatitis significantly diminished pancreatitis features including pancreatic oedema, acinar cell vacuolization, intrapancreatic trypsin activity, cell death signalling and acinar cell death. CM4620 also decreased myeloperoxidase activity and inflammatory cytokine expression in pancreas and lung tissues, fMLF peptide-induced oxidative burst in human neutrophils, and cytokine production in human peripheral blood mononuclear cells (PBMCs) and rodent PaSCs, indicating that Orai1/STIM1 channels participate in the inflammatory responses of these cell types during acute pancreatitis. These findings support pathological Ca2+ entry-mediated cell death and proinflammatory signalling as central mechanisms in acute pancreatitis pathobiology.
Collapse
Affiliation(s)
- Richard T. Waldron
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System,University of California, Los Angeles, CA
- University of California, Los Angeles, CA
| | - Yafeng Chen
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hung Pham
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
| | - Ariel Go
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
| | - Hsin-Yuan Su
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
| | - Cheng Hu
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan, China
| | - Li Wen
- University of Pittsburgh
- the Children’s Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Sohail Z. Husain
- University of Pittsburgh
- the Children’s Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | | | | | | | - Aurelia Lugea
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System,University of California, Los Angeles, CA
- University of California, Los Angeles, CA
| | | | | | - Stephen J. Pandol
- Cedars-Sinai Medical Center, University of California, Los Angeles, CA
- Veterans Affairs Greater Los Angeles Healthcare System,University of California, Los Angeles, CA
- University of California, Los Angeles, CA
| |
Collapse
|
108
|
Yeung PSW, Yamashita M, Prakriya M. Molecular basis of allosteric Orai1 channel activation by STIM1. J Physiol 2019; 598:1707-1723. [PMID: 30950063 DOI: 10.1113/jp276550] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Store-operated Ca2+ entry through Orai1 channels is a primary mechanism for Ca2+ entry in many cells and mediates numerous cellular effector functions ranging from gene transcription to exocytosis. Orai1 channels are amongst the most Ca2+ -selective channels known and are activated by direct physical interactions with the endoplasmic reticulum Ca2+ sensor stromal interaction molecule 1 (STIM1) in response to store depletion triggered by stimulation of a variety of cell surface G-protein coupled and tyrosine kinase receptors. Work in the last decade has revealed that the Orai1 gating process is highly cooperative and strongly allosteric, likely driven by a wave of interdependent conformational changes throughout the protein originating in the peripheral C-terminal ligand binding site and culminating in pore opening. In this review, we survey the structural and molecular features in Orai1 that contribute to channel gating and consider how they give rise to the unique biophysical fingerprint of Orai1 currents.
Collapse
Affiliation(s)
- Priscilla See-Wai Yeung
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA
| |
Collapse
|
109
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
110
|
Garg PK, Singh VP. Organ Failure Due to Systemic Injury in Acute Pancreatitis. Gastroenterology 2019; 156:2008-2023. [PMID: 30768987 PMCID: PMC6486861 DOI: 10.1053/j.gastro.2018.12.041] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/07/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis may be associated with both local and systemic complications. Systemic injury manifests in the form of organ failure, which is seen in approximately 20% of all cases of acute pancreatitis and defines "severe acute pancreatitis." Organ failure typically develops early in the course of acute pancreatitis, but also may develop later due to infected pancreatic necrosis-induced sepsis. Organ failure is the most important determinant of outcome in acute pancreatitis. We review here the current understanding of the risk factors, pathophysiology, timing, impact on outcome, and therapy of organ failure in acute pancreatitis. As we discuss the pathophysiology of severe systemic injury, the distinctions between markers and mediators of severity are highlighted based on evidence supporting their causality in organ failure. Emphasis is placed on clinically relevant end points of organ failure and the mechanisms underlying the pathophysiological perturbations, which offer insight into potential therapeutic targets to treat.
Collapse
|
111
|
Gukovskaya AS, Gorelick FS, Groblewski GE, Mareninova OA, Lugea A, Antonucci L, Waldron RT, Habtezion A, Karin M, Pandol SJ, Gukovsky I. Recent Insights Into the Pathogenic Mechanism of Pancreatitis: Role of Acinar Cell Organelle Disorders. Pancreas 2019; 48:459-470. [PMID: 30973461 PMCID: PMC6461375 DOI: 10.1097/mpa.0000000000001298] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute pancreatitis (AP) is a potentially lethal inflammatory disease that lacks specific therapy. Damaged pancreatic acinar cells are believed to be the site of AP initiation. The primary function of these cells is the synthesis, storage, and export of digestive enzymes. Beginning in the endoplasmic reticulum and ending with secretion of proteins stored in zymogen granules, distinct pancreatic organelles use ATP produced by mitochondria to move and modify nascent proteins through sequential vesicular compartments. Compartment-specific accessory proteins concentrate cargo and promote vesicular budding, targeting, and fusion. The autophagy-lysosomal-endosomal pathways maintain acinar cell homeostasis by removing damaged/dysfunctional organelles and recycling cell constituents for substrate and energy. Here, we discuss studies in experimental and genetic AP models, primarily from our groups, which show that acinar cell injury is mediated by distinct mechanisms of organelle dysfunction involved in protein synthesis and trafficking, secretion, energy generation, and autophagy. These early AP events (often first manifest by abnormal cytosolic Ca signaling) in the acinar cell trigger the inflammatory and cell death responses of pancreatitis. Manifestations of acinar cell organelle disorders are also prominent in human pancreatitis. Our findings suggest that targeting specific mediators of organelle dysfunction could reduce disease severity.
Collapse
Affiliation(s)
- Anna S. Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, CA
| | - Fred S. Gorelick
- Department of Cell Biology Yale University School of Medicine, New Haven, CT
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Guy E. Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, WI
| | - Olga A. Mareninova
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, CA
| | - Aurelia Lugea
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA
| | - Richard T. Waldron
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles
- Department of Medicine, West Los Angeles VA Healthcare Center, Los Angeles, CA
| |
Collapse
|
112
|
Abu-El-Haija M, Gukovskaya AS, Andersen DK, Gardner TB, Hegyi P, Pandol SJ, Papachristou GI, Saluja AK, Singh VK, Uc A, Wu BU. Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis: Summary of the Working Group on Drug Development and Trials in Acute Pancreatitis at the National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2019; 47:1185-1192. [PMID: 30325856 PMCID: PMC6692135 DOI: 10.1097/mpa.0000000000001175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities on drug development for pancreatitis. This conference was held on July 25, 2018, and structured into 3 working groups (WG): acute pancreatitis (AP) WG, recurrent AP WG, and chronic pancreatitis WG. This article reports the outcome of the work accomplished by the AP WG to provide the natural history, epidemiology, and current management of AP; inform about the role of preclinical models in therapy selection; and discuss clinical trial designs with clinical and patient-reported outcomes to test new therapies.
Collapse
Affiliation(s)
- Maisam Abu-El-Haija
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Anna S. Gukovskaya
- Department of Medicine, University of California, Los Angeles
- Pancreatic Research Group, UCLA/VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Dana K. Andersen
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Timothy B. Gardner
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Darmouth University, Hanover, NH
| | - Peter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged
- Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Stephen J. Pandol
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Georgios I. Papachristou
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh Medical Center
- Division of Gastroenterology and Hepatology, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA
| | - Ashok K. Saluja
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL
| | - Vikesh K. Singh
- Division of Gastroenterology, Department of Medicine, University of John’s Hopkins, Baltimore, MD
| | - Aliye Uc
- Stead Family Department of Pediatrics, University of Iowa, Stead Family Children’s Hospital, Iowa City, IA
| | - Bechien U. Wu
- Center for Pancreatic Care, Department of Gastroenterology, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA
| |
Collapse
|
113
|
de Oliveira C, Khatua B, Bag A, El-Kurdi B, Patel K, Mishra V, Navina S, Singh VP. Multimodal Transgastric Local Pancreatic Hypothermia Reduces Severity of Acute Pancreatitis in Rats and Increases Survival. Gastroenterology 2019; 156:735-747.e10. [PMID: 30518512 PMCID: PMC6368865 DOI: 10.1053/j.gastro.2018.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/11/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Acute pancreatitis (AP) of different etiologies is associated with the activation of different signaling pathways in pancreatic cells, posing challenges to the development of targeted therapies. We investigated whether local pancreatic hypothermia, without systemic hypothermia, could lessen the severity of AP induced by different methods in rats. METHODS A urethane balloon with 2 polyurethane tubes was placed inside the stomach of rats. AP was induced in Wistar rats by the administration of cerulein or glyceryl tri-linoleate (GTL). Then, cold water was infused into the balloon to cool the pancreas. Pancreatic temperatures were selected based on those found to decrease acinar cell injury. An un-perfused balloon was used as a control. Pancreatic and rectal temperatures were monitored, and an infrared lamp or heating pad was used to avoid generalized hypothermia. We collected blood, pancreas, kidney, and lung tissues and analyzed them by histology, immunofluorescence, immunoblot, cytokine and chemokine magnetic bead, and DNA damage assays. The effect of hypothermia on signaling pathways initiated by cerulein and GTL was studied in acinar cells. RESULTS Rats with pancreatic cooling developed less severe GTL-induced AP compared with rats that received the control balloon. In acinar cells, cooling decreased the lipolysis induced by GTL, increased the micellar form of its fatty acid, lowered the increase in cytosolic calcium, prevented the loss of mitochondrial membrane potential (by 70%-80%), and resulted in a 40%-50% decrease in the uptake of a fatty acid tracer. In rats with AP, cooling decreased pancreatic necrosis by 48%, decreased serum levels of cytokines and markers of cell damage, and decreased markers of lung and renal damage. Pancreatic cooling increased the proportions of rats surviving 6 hours after induction of AP (to 90%, from <10% of rats that received the control balloon). In rats with cerulein-induced AP, pancreatic cooling decreased pancreatic markers of apoptosis and inflammation. CONCLUSIONS In rats with AP, transgastric local pancreatic hypothermia decreases pancreatic necrosis, apoptosis, inflammation, and markers of pancreatitis severity and increases survival.
Collapse
Affiliation(s)
- Cristiane de Oliveira
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Biswajit Khatua
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Arup Bag
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Bara El-Kurdi
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Krutika Patel
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| | - Vivek Mishra
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Sarah Navina
- Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Vijay P. Singh
- Department of Medicine, Mayo Clinic, Scottsdale, AZ, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
114
|
Zhang X, Jin T, Shi N, Yao L, Yang X, Han C, Wen L, Du D, Szatmary P, Mukherjee R, Liu T, Xia Q, Criddle DN, Huang W, Chvanov M, Sutton R. Mechanisms of Pancreatic Injury Induced by Basic Amino Acids Differ Between L-Arginine, L-Ornithine, and L-Histidine. Front Physiol 2019; 9:1922. [PMID: 30697165 PMCID: PMC6341295 DOI: 10.3389/fphys.2018.01922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Pancreatic acinar cells require high rates of amino acid uptake for digestive enzyme synthesis, but excessive concentrations can trigger acute pancreatitis (AP) by mechanisms that are not well understood. We have used three basic natural amino acids L-arginine, L-ornithine, and L-histidine to determine mechanisms of amino acid-induced pancreatic injury and whether these are common to all three amino acids. Caffeine markedly inhibited necrotic cell death pathway activation in isolated pancreatic acinar cells induced by L-arginine, but not L-ornithine, whereas caffeine accelerated L-histidine-induced cell death. Both necroptosis inhibitors of RIPK1 and RIPK3 and a necroptosis activator/apoptosis inhibitor z-VAD increased cell death caused by L-histidine, but not L-arginine or L-ornithine. Cyclophilin D knock-out (Ppif-/-) significantly attenuated cell death induced by L-histidine, but not L-arginine, or L-ornithine. Allosteric modulators of calcium-sensing receptor (CaSR) and G-protein coupled receptor class C group 6 member A (GPRC6A) had inhibitory effects on cell death induced by L-arginine but not L-ornithine or L-histidine. We developed a novel amino acid-induced AP murine model with high doses of L-histidine and confirmed AP severity was significantly reduced in Ppif-/- vs. wild type mice. In L-arginine-induced AP neither Ppif-/-, caffeine, or allosteric modulators of CaSR or GPRC6A reduced pancreatic damage, even though CaSR inhibition with NPS-2143 significantly reduced pancreatic and systemic injury in caerulein-induced AP. These findings demonstrate marked differences in the mechanisms of pancreatic injury induced by different basic amino acids and suggest the lack of effect of treatments on L-arginine-induced AP may be due to conversion to L-ornithine in the urea cycle.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wen
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
115
|
Research Progress on the Relationship Between Acute Pancreatitis and Calcium Overload in Acinar Cells. Dig Dis Sci 2019; 64:25-38. [PMID: 30284136 DOI: 10.1007/s10620-018-5297-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/01/2018] [Indexed: 02/07/2023]
Abstract
Acute pancreatitis is a human disease with multiple causes that leads to autodigestion of the pancreas. There is sufficient evidence to support the key role of sustained increase in cytosolic calcium concentrations in the early pathogenesis of the disease. To clarify the mechanism of maintaining calcium homeostasis in the cell and pathological processes caused by calcium overload would help to research directly targeted therapeutic agents. We will specifically review the following: intracellular calcium homeostasis and regulation, the occurrence of calcium overload in acinar cells, the role of calcium overload in the pathogenesis of AP, the treatment strategy proposed for calcium overload.
Collapse
|
116
|
Liu H, Kabrah A, Ahuja M, Muallem S. CRAC channels in secretory epithelial cell function and disease. Cell Calcium 2018; 78:48-55. [PMID: 30641249 DOI: 10.1016/j.ceca.2018.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 02/08/2023]
Abstract
The receptor-evoked Ca2+ signal in secretory epithelia mediate many cellular functions essential for cell survival and their most fundamental functions of secretory granules exocytosis and fluid and electrolyte secretion. Ca2+ influx is a key component of the receptor-evoked Ca2+ signal in secretory cell and is mediated by both TRPC and the STIM1-activated Orai1 channels that mediates the Ca2+ release-activated current (CRAC) Icrac. The core components of the receptor-evoked Ca2+ signal are assembled at the ER/PM junctions where exchange of materials between the plasma membrane and internal organelles take place, including transfer of lipids and Ca2+. The Ca2+ signal generated at the confined space of the ER/PM junctions is necessary for activation of the Ca2+-regulated proteins and ion channels that mediate exocytosis with high fidelity and tight control. In this review we discuss the general properties of Ca2+ signaling, PI(4,5)P2 and other lipids at the ER/PM junctions with regard to secretory cells function and disease caused by uncontrolled Ca2+ influx.
Collapse
Affiliation(s)
- Haiping Liu
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ahmed Kabrah
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
117
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
118
|
Azimi I, Bong AH, Poo GXH, Armitage K, Lok D, Roberts-Thomson SJ, Monteith GR. Pharmacological inhibition of store-operated calcium entry in MDA-MB-468 basal A breast cancer cells: consequences on calcium signalling, cell migration and proliferation. Cell Mol Life Sci 2018; 75:4525-4537. [PMID: 30105615 PMCID: PMC11105359 DOI: 10.1007/s00018-018-2904-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Store-operated Ca2+ entry is a pathway that is remodelled in a variety of cancers, and altered expression of the components of store-operated Ca2+ entry is a feature of breast cancer cells of the basal molecular subtype. Studies of store-operated Ca2+ entry in breast cancer cells have used non-specific pharmacological inhibitors, complete depletion of intracellular Ca2+ stores and have mostly focused on MDA-MB-231 cells (a basal B breast cancer cell line). These studies compared the effects of the selective store-operated Ca2+ entry inhibitors Synta66 and YM58483 (also known as BTP2) on global cytosolic free Ca2+ ([Ca2+]CYT) changes induced by physiological stimuli in a different breast cancer basal cell line model, MDA-MB-468. The effects of these agents on proliferation as well as serum and epidermal growth factor (EGF) induced migration were also assessed. Activation with the purinergic receptor activator adenosine triphosphate, produced a sustained increase in [Ca2+]CYT that was entirely dependent on store-operated Ca2+ entry. The protease activated receptor 2 activator, trypsin, and EGF also produced Ca2+ influx that was sensitive to both Synta66 and YM58483. Serum-activated migration of MDA-MB-468 breast cancer cells was sensitive to both store-operated Ca2+ inhibitors. However, proliferation and EGF-activated migration was differentially affected by Synta66 and YM58483. These studies highlight the need to define the exact mechanisms of action of different store-operated calcium entry inhibitors and the impact of such differences in the control of tumour progression pathways.
Collapse
Affiliation(s)
- Iman Azimi
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Division of Pharmacy, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Alice H Bong
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Greta X H Poo
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Kaela Armitage
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Dawn Lok
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia.
- Mater Research Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
119
|
Anchi P, Khurana A, Swain D, Samanthula G, Godugu C. Sustained-Release Curcumin Microparticles for Effective Prophylactic Treatment of Exocrine Dysfunction of Pancreas: A Preclinical Study on Cerulein-Induced Acute Pancreatitis. J Pharm Sci 2018; 107:2869-2882. [DOI: 10.1016/j.xphs.2018.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
|
120
|
Riva B, Griglio A, Serafini M, Cordero-Sanchez C, Aprile S, Di Paola R, Gugliandolo E, Alansary D, Biocotino I, Lim D, Grosa G, Galli U, Niemeyer B, Sorba G, Canonico PL, Cuzzocrea S, Genazzani AA, Pirali T. Pyrtriazoles, a Novel Class of Store-Operated Calcium Entry Modulators: Discovery, Biological Profiling, and in Vivo Proof-of-Concept Efficacy in Acute Pancreatitis. J Med Chem 2018; 61:9756-9783. [PMID: 30347159 DOI: 10.1021/acs.jmedchem.8b01512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In recent years, channels that mediate store-operated calcium entry (SOCE, i.e., the ability of cells to sense a decrease in endoplasmic reticulum luminal calcium and induce calcium entry across the plasma membrane) have been associated with a number of disorders, spanning from immune disorders to acute pancreatitis and have been suggested to be druggable targets. In the present contribution, we exploited the click chemistry approach to synthesize a class of SOCE modulators where the arylamide substructure that characterizes most inhibitors so far described is substituted by a 1,4-disubstituted 1,2,3-triazole ring. Within this series, inhibitors of SOCE were identified and the best compound proved effective in an animal model of acute pancreatitis, a disease characterized by a hyperactivation of SOCE. Strikingly, two enhancers of the process were discovered, affording invaluable research tools to further explore the (patho)physiological role of capacitative calcium entry.
Collapse
Affiliation(s)
- Beatrice Riva
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy.,ChemICare Srl , Enne3 , Novara 28100 , Italy
| | - Alessia Griglio
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Marta Serafini
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Celia Cordero-Sanchez
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Silvio Aprile
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Enviromental Sciences , Università di Messina , Messina 98166 , Italy
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical, and Enviromental Sciences , Università di Messina , Messina 98166 , Italy
| | - Dalia Alansary
- Department of Molecular Biophysics , Saarland University CIPMM , Homburg 66421 , Germany
| | - Isabella Biocotino
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Giorgio Grosa
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Ubaldina Galli
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Barbara Niemeyer
- Department of Molecular Biophysics , Saarland University CIPMM , Homburg 66421 , Germany
| | - Giovanni Sorba
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Pier Luigi Canonico
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Enviromental Sciences , Università di Messina , Messina 98166 , Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy
| | - Tracey Pirali
- Department of Pharmaceutical Sciences , Università del Piemonte Orientale , Novara 28100 , Italy.,ChemICare Srl , Enne3 , Novara 28100 , Italy
| |
Collapse
|
121
|
Wen L, Javed TA, Yimlamai D, Mukherjee A, Xiao X, Husain SZ. Transient High Pressure in Pancreatic Ducts Promotes Inflammation and Alters Tight Junctions via Calcineurin Signaling in Mice. Gastroenterology 2018; 155:1250-1263.e5. [PMID: 29928898 PMCID: PMC6174093 DOI: 10.1053/j.gastro.2018.06.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/29/2018] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Pancreatitis after endoscopic retrograde cholangiopancreatography (PEP) is thought to be provoked by pancreatic ductal hypertension, via unknown mechanisms. We investigated the effects of hydrostatic pressures on the development of pancreatitis in mice. METHODS We performed studies with Swiss Webster mice, B6129 mice (controls), and B6129 mice with disruption of the protein phosphatase 3, catalytic subunit, βisoform gene (Cnab-/- mice). Acute pancreatitis was induced in mice by retrograde biliopancreatic ductal or intraductal infusion of saline with a constant hydrostatic pressure while the proximal common bile duct was clamped -these mice were used as a model of PEP. Some mice were given pancreatic infusions of adeno-associated virus 6-nuclear factor of activated T-cells-luciferase to monitor calcineurin activity or the calcineurin inhibitor FK506. Blood samples and pancreas were collected at 6 and 24 hours and analyzed by enzyme-linked immunosorbent assay, histology, immunohistochemistry, or fluorescence microscopy. Ca2+ signaling and mitochondrial permeability were measured in pancreatic acinar cells isolated 15 minutes after PEP induction. Ca2+-activated phosphatase calcineurin within the pancreas was tracked in vivo over 24 hours. RESULTS Intraductal pressures of up to 130 mm Hg were observed in the previously reported model of PEP; we found that application of hydrostatic pressures of 100 and 150 mm Hg for 10 minutes consistently induced pancreatitis. Pancreatic tissues had markers of inflammation (increased levels of interleukin [IL] 6, IL1B, and tumor necrosis factor), activation of signal transducer and activator of transcription 3, increased serum amylase and IL6, and loss of tight junction integrity. Transiently high pressures dysregulated Ca2+ processing (reduced Ca2+ oscillations and an increased peak plateau Ca2+ signal) and reduced the mitochondrial membrane potential. We observed activation of pancreatic calcineurin in the pancreas in mice. Cnab-/- mice, which lack the catalytic subunit of calcineurin, and mice given FK506 did not develop pressure-induced pancreatic inflammation, edema, or loss of tight junction integrity. CONCLUSIONS Transient high ductal pressure produces pancreatic inflammation and loss of tight junction integrity in a mouse model of PEP. These processes require calcineurin signaling. Calcineurin inhibitors might be used to prevent acute pancreatitis that results from obstruction.
Collapse
Affiliation(s)
- Li Wen
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Tanveer A Javed
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Dean Yimlamai
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Amitava Mukherjee
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- Department of Surgery, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania
| | - Sohail Z Husain
- Department of Pediatric Gastroenterology, University of Pittsburgh and the Children's Hospital of Pittsburgh of UMPC, Pittsburgh, Pennsylvania.
| |
Collapse
|
122
|
Peng S, Gerasimenko JV, Tsugorka TM, Gryshchenko O, Samarasinghe S, Petersen OH, Gerasimenko OV. Galactose protects against cell damage in mouse models of acute pancreatitis. J Clin Invest 2018; 128:3769-3778. [PMID: 29893744 PMCID: PMC6118583 DOI: 10.1172/jci94714] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/06/2018] [Indexed: 12/21/2022] Open
Abstract
Acute pancreatitis (AP), a human disease in which the pancreas digests itself, has substantial mortality with no specific therapy. The major causes of AP are alcohol abuse and gallstone complications, but it also occurs as an important side effect of the standard asparaginase-based therapy for childhood acute lymphoblastic leukemia. Previous investigations into the mechanisms underlying pancreatic acinar cell death induced by alcohol metabolites, bile acids, or asparaginase indicated that loss of intracellular ATP generation is an important factor. We now report that, in isolated mouse pancreatic acinar cells or cell clusters, removal of extracellular glucose had little effect on this ATP loss, suggesting that glucose metabolism was severely inhibited under these conditions. Surprisingly, we show that replacing glucose with galactose prevented or markedly reduced the loss of ATP and any subsequent necrosis. Addition of pyruvate had a similar protective effect. We also studied the effect of galactose in vivo in mouse models of AP induced either by a combination of fatty acids and ethanol or asparaginase. In both cases, galactose markedly reduced acinar necrosis and inflammation. Based on these data, we suggest that galactose feeding may be used to protect against AP.
Collapse
Affiliation(s)
- Shuang Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | | | - Tetyana M Tsugorka
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom.,Bogomoletz Institute of Physiology, Kiev, Ukraine
| | - Sujith Samarasinghe
- Great Ormond Street Hospital for Children, NHS Foundation Trust, London, United Kingdom
| | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
123
|
CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74:147-159. [PMID: 30075400 DOI: 10.1016/j.ceca.2018.07.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Calcium release-activated calcium (CRAC) channels have been the target of drug discovery for many years. The identification of STIM and Orai proteins as key components of CRAC channels greatly facilitated this process because their co-expression in cell lines produced electrophysiological currents (ICRAC) much larger than those in native cells, making it easier to confirm and characterize the effects of modulatory compounds. A driving force in the quest for CRAC channel drugs has been the immunocompromised phenotype displayed by humans and mice with null or loss-of-function mutations in STIM1 or Orai1, suggesting that CRAC channel inhibitors could be useful therapeutics for autoimmune or inflammatory conditions. Emerging data also suggests that other therapeutic conditions may benefit from CRAC channel inhibition. However, only recently have CRAC channel inhibitors reached clinical trials. This review discusses the challenges associated with drug discovery and development on CRAC channels and the approaches employed to date, as well as the results, starting from initial high-throughput screens for CRAC channel modulators and progressing through target selection and justification, descriptions of pharmacological, safety and toxicological profiles of compounds, and finally the entry of CRAC channel inhibitors into clinical trials.
Collapse
|
124
|
Wang L, Yule DI. Differential regulation of ion channels function by proteolysis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1698-1706. [PMID: 30009861 DOI: 10.1016/j.bbamcr.2018.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 12/23/2022]
Abstract
Ion channels are pore-forming protein complexes in membranes that play essential roles in a diverse array of biological activities. Ion channel activity is strictly regulated at multiple levels and by numerous cellular events to selectively activate downstream effectors involved in specific biological activities. For example, ions, binding proteins, nucleotides, phosphorylation, the redox state, channel subunit composition have all been shown to regulate channel activity and subsequently allow channels to participate in distinct cellular events. While these forms of modulation are well documented and have been extensively reviewed, in this article, we will first review and summarize channel proteolysis as a novel and quite widespread mechanism for altering channel activity. We will then highlight the recent findings demonstrating that proteolysis profoundly alters Inositol 1,4,5 trisphosphate receptor activity, and then discuss its potential functional ramifications in various developmental and pathological conditions.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, United States of America.
| |
Collapse
|
125
|
Wang L, Wagner LE, Alzayady KJ, Yule DI. Region-specific proteolysis differentially modulates type 2 and type 3 inositol 1,4,5-trisphosphate receptor activity in models of acute pancreatitis. J Biol Chem 2018; 293:13112-13124. [PMID: 29970616 DOI: 10.1074/jbc.ra118.003421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/04/2018] [Indexed: 12/22/2022] Open
Abstract
Fine-tuning of the activity of inositol 1,4,5-trisphosphate receptors (IP3R) by a diverse array of regulatory inputs results in intracellular Ca2+ signals with distinct characteristics. These events allow the activation of specific downstream effectors. We reported previously that region-specific proteolysis represents a novel regulatory event for type 1 IP3R (R1). Specifically, caspase-fragmented R1 display a marked increase in single-channel open probability. More importantly, the distinct characteristics of the Ca2+ signals elicited via fragmented R1 can activate alternate downstream effectors. In this report, we expand these studies to investigate whether all IP3R subtypes are regulated by proteolysis. We now show that type 2 and type 3 IP3R (R2 and R3, respectively) are proteolytically cleaved in rodent models of acute pancreatitis. Surprisingly, fragmented IP3R retained tetrameric architecture, remained embedded in endoplasmic reticulum membranes and were not functionally disabled. Proteolysis was associated with a marked attenuation of the frequency of Ca2+ signals in pancreatic lobules. Consistent with these data, expression of DNAs encoding complementary R2 and R3 peptides mimicking fragmented receptors at particular sites, resulted in a significant decrease in the frequency of agonist-stimulated Ca2+ oscillations. Further, proteolysis of R2 resulted in a marked decrease in single-channel open probability. Taken together, proteolytic fragmentation modulates R2 and R3 activity in a region-specific manner, and this event may contribute to the altered Ca2+ signals in pancreatic acinar cells during acute pancreatitis.
Collapse
Affiliation(s)
- Liwei Wang
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - Kamil J Alzayady
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| | - David I Yule
- From the Department of Pharmacology and Physiology, University of Rochester, Rochester, New York 14642
| |
Collapse
|
126
|
Shen Y, Wen L, Zhang R, Wei Z, Shi N, Xiong Q, Xia Q, Xing Z, Zeng Z, Niu H, Huang W. Dihydrodiosgenin protects against experimental acute pancreatitis and associated lung injury through mitochondrial protection and PI3Kγ/Akt inhibition. Br J Pharmacol 2018; 175:1621-1636. [PMID: 29457828 DOI: 10.1111/bph.14169] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Acute pancreatitis (AP) is a painful and distressing disorder of the exocrine pancreas with no specific treatment. Diosgenyl saponins extracted from from Dioscorea zingiberensis C. H. Wright have been reported to protect against experimental models of AP. Diosgenin, or its derivatives are anti-inflammatory in various conditions. However, the effects of diosgenin and its spiroacetal ring opened analogue, dihydrodiosgenin (Dydio), on AP have not been determined. EXPERIMENTAL APPROACH Effects of diosgenin and Dydio on sodium taurocholate hydrate (Tauro)-induced necrosis were tested, using freshly isolated murine pancreatic acinar cells. Effects of Dydio on mitochondrial dysfunction in response to Tauro, cholecystokinin-8 and palmitoleic acid ethyl ester were also assessed. Dydio (5 or 10 mg·kg-1 ) was administered after the induction in vivo of Tauro-induced AP (Wistar rats), caerulein-induced AP and palmitoleic acid plus ethanol-induced AP (Balb/c mice). Pancreatitis was assessed biochemically and histologically. Activation of pancreatic PI3Kγ/Akt was measured by immunoblotting. KEY RESULTS Dydio inhibited Tauro-induced activation of the necrotic cell death pathway and prevented pancreatitis stimuli-induced mitochondrial dysfunction. Therapeutic administration of Dydio ameliorated biochemical and histopathological responses in all three models of AP through pancreatic mitochondrial protection and PI3Kγ/Akt inactivation. Moreover, Dydio improved pancreatitis-associated acute lung injury through preventing excessive inflammatory responses. CONCLUSION AND IMPLICATIONS These data provide in vitro and in vivo mechanistic evidence that the diosgenin analogue, Dydio could be potential treatment for AP. Further medicinal optimization of diosgenin and its analogue might be a useful strategy for identifying lead candidates for inflammatory diseases.
Collapse
Affiliation(s)
- Yan Shen
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Li Wen
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China.,Department of Pediatric Gastroenterology, Children's Hospital of Pittsburgh of UPMC and School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rui Zhang
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zeliang Wei
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyang Xiong
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Zhi Zeng
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China.,College of Mathematics, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- Laboratory of Ethnopharmacology/Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
127
|
Williams JA, Yule DI. Can pancreatitis be treated by inhibiting Ca 2+ signaling? ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:124. [PMID: 29955584 DOI: 10.21037/atm.2017.06.07] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- John A Williams
- Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
128
|
Gryshchenko O, Gerasimenko JV, Peng S, Gerasimenko OV, Petersen OH. Calcium signalling in the acinar environment of the exocrine pancreas: physiology and pathophysiology. J Physiol 2018; 596:2663-2678. [PMID: 29424931 PMCID: PMC6046068 DOI: 10.1113/jp275395] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
Key points Ca2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca2+ signals evoked by K+‐induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol‐related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation.
Abstract Physiological Ca2+ signals in pancreatic acinar cells control fluid and enzyme secretion, whereas excessive Ca2+ signals induced by pathological agents induce destructive processes leading to acute pancreatitis. Ca2+ signals in the peri‐acinar stellate cells may also play a role in the development of acute pancreatitis. In this study, we explored Ca2+ signalling in the different cell types in the acinar environment of the pancreatic tissue. We have, for the first time, recorded depolarization‐evoked Ca2+ signals in pancreatic nerves and shown that whereas acinar cells receive a functional cholinergic innervation, there is no evidence for functional innervation of the stellate cells. The stellate, like the acinar, cells are not electrically excitable as they do not generate Ca2+ signals in response to membrane depolarization. The principal agent evoking Ca2+ signals in the stellate cells is bradykinin, but in experimental alcohol‐related acute pancreatitis, these cells become much less responsive to bradykinin and then acquire sensitivity to trypsin. Our new findings have implications for our understanding of the development of acute pancreatitis and we propose a scheme in which Ca2+ signals in stellate cells provide an amplification loop promoting acinar cell death. Initial release of the proteases kallikrein and trypsin from dying acinar cells can, via bradykinin generation and protease‐activated receptors, induce Ca2+ signals in stellate cells which can then, possibly via nitric oxide generation, damage more acinar cells and thereby cause additional release of proteases, generating a vicious circle. Ca2+ signalling in different cell types in exocrine pancreatic lobules was monitored simultaneously and signalling responses to various stimuli were directly compared. Ca2+ signals evoked by K+‐induced depolarization were recorded from pancreatic nerve cells. Nerve cell stimulation evoked Ca2+ signals in acinar but not in stellate cells. Stellate cells are not electrically excitable as they, like acinar cells, did not generate Ca2+ signals in response to membrane depolarization. The responsiveness of the stellate cells to bradykinin was markedly reduced in experimental alcohol‐related acute pancreatitis, but they became sensitive to stimulation with trypsin. Our results provide fresh evidence for an important role of stellate cells in acute pancreatitis. They seem to be a critical element in a vicious circle promoting necrotic acinar cell death. Initial trypsin release from a few dying acinar cells generates Ca2+ signals in the stellate cells, which then in turn damage more acinar cells causing further trypsin liberation.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | | | - Shuang Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | | | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.,Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
129
|
Zhang W, Qi Z, Wang Y. BTP2, a Store-Operated Calcium Channel Inhibitor, Attenuates Lung Ischemia-Reperfusion Injury in Rats. Inflammation 2018; 40:778-787. [PMID: 28168659 DOI: 10.1007/s10753-017-0522-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung ischemia-reperfusion (I/R) injury is a critical complication following a lung transplant, cardiopulmonary bypass, pulmonary embolism, and trauma. Immune cells and their effector functions are involved in the lung I/R injury. Store-operated calcium channels (SOCC) are highly Ca2+-selective cation channels and have crucial effects on the immune system. It has been indicated that BTP2, a potent SOCC blocker, could inhibit pro-inflammatory cytokine production from immune cells both in vitro and in vivo. Therefore, this study was conducted to investigate the beneficial effects of BTP2 on lung I/R injury in Sprague-Dawley (SD) rats. The left lungs of male SD rats underwent ischemia for 60 min and reperfusion for 2 h. Treated animals received BTP2 4 mg/kg or 10 mg/kg intraperitoneally 30 min before the ischemia. The results revealed that pretreatment with BTP2 markedly attenuated I/R injury-induced pulmonary edema, microvascular protein leakage, neutrophil infiltration, adhesion molecules, cytokine production (e.g., ICAM-1, TNF-α, IL-1β, and IL-2), and the transcription factor nuclear factor of activated T cells c1 nuclear translocation in the lung tissue. These findings indicate that BTP2 can be a potential therapeutic drug for lung I/R injury and suggest that SOCC may play a critical role in lung I/R injury.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zeyou Qi
- Center for Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yaping Wang
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
130
|
Zhu ZD, Yu T, Liu HJ, Jin J, He J. SOCE induced calcium overload regulates autophagy in acute pancreatitis via calcineurin activation. Cell Death Dis 2018; 9:50. [PMID: 29352220 PMCID: PMC5833430 DOI: 10.1038/s41419-017-0073-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
Abstract
Acute pancreatitis (AP) is an acute inflammatory process of the pancreas that is characterized by inflammation, edema, vacuolization and necrosis, which has significant morbidity and lethality. The pathogenesis of AP has not been established completely. An early and critical feature of AP is the aberrant signaling of Calcium (Ca2+) within the pancreatic acinar cell, termed Ca2+ overload. Store-operated Ca2+ (SOC) channels are the principal Ca2+ influx channels that contribute to Ca2+ overload in pancreatic acinar cells. Store-operated Ca2+ entry (SOCE) has been proved to be a key pathogenic step in AP development that leads to trypsin activation, inflammation and vacuolization. However, the molecular mechanisms are still poorly understood. By establishing Ca2+ overload model and mouse AP model using caerulein, we found that caerulein triggered SOCE via inducing interaction between STIM1 and Orai1, which activated calcineurin (CaN); CaN activated the nuclear factor of activated T cells (NFAT) and transcription factor EB (TFEB), thus promoting the transcriptional activation of multiple chemokines genes and autophagy-associated genes respectively. To the best of our knowledge, this is the first evidence showing that SOCE activates TFEB via CaN activation, which may have noticeable longer-term effects on autophagy and vacuolization in AP development. Our findings reveal the role for SOCE/CaN in AP development and provide potential targets for AP treatment.
Collapse
Affiliation(s)
- Zhen-Dong Zhu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Yu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Jing Liu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Jin
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun He
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
131
|
Accelerating the Drug Delivery Pipeline for Acute and Chronic Pancreatitis-Knowledge Gaps and Research Opportunities: Overview Summary of a National Institute of Diabetes and Digestive and Kidney Diseases Workshop. Pancreas 2018; 47:1180-1184. [PMID: 30325855 PMCID: PMC6201320 DOI: 10.1097/mpa.0000000000001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A workshop was sponsored by the Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, on July 25, 2018, in Pittsburgh, Penn. The workshop was designed to bring together a multidisciplinary group of experts to accelerate the development of therapeutics for clinical application in inflammatory diseases of the exocrine pancreas. Three separate working groups (acute pancreatitis, recurrent acute pancreatitis, and chronic pancreatitis) were formed to address the needs, gaps, and opportunities. The working groups included patients with pancreatic diseases, pharmaceutical company leaders, basic scientists, clinical researchers, and representatives from the US Food and Drug Administration to assist with regulatory considerations and to identify the unmet needs, research targets, and opportunities to provide direction for successful development of therapeutic agents in these diseases. This article represents the summary of the overview presentations at the National Institute of Diabetes and Digestive and Kidney Diseases workshop including an ongoing drug trial in acute pancreatitis; a successful drug development network developed by the Cystic Fibrosis Foundation; and considerations for subject selection in drug trials, incorporating Food and Drug Administration guidelines on clinical trial design and clinical outcome measures. The summaries of each working group follow separately in accompanying articles.
Collapse
|
132
|
Jakubowska MA, Ferdek PE, Gerasimenko OV, Gerasimenko JV, Petersen OH. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation. Open Biol 2017; 6:rsob.160149. [PMID: 27488376 PMCID: PMC5008014 DOI: 10.1098/rsob.160149] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022] Open
Abstract
The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Monika A Jakubowska
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Pawel E Ferdek
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Julia V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Ole H Petersen
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK
| |
Collapse
|
133
|
Acinar injury and early cytokine response in human acute biliary pancreatitis. Sci Rep 2017; 7:15276. [PMID: 29127325 PMCID: PMC5681596 DOI: 10.1038/s41598-017-15479-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 10/27/2017] [Indexed: 12/16/2022] Open
Abstract
Clinical acute pancreatitis (AP) is marked by an early phase of systemic inflammatory response syndrome (SIRS) with multiorgan dysfunction (MODS), and a late phase characterized by sepsis with MODS. However, the mechanisms of acinar injury in human AP and the associated systemic inflammation are not clearly understood. This study, for the first time, evaluated the early interactions of bile acid induced human pancreatic acinar injury and the resulting cytokine response. We exposed freshly procured resected human pancreata to taurolithocolic acid (TLCS) and evaluated for acinar injury, cytokine release and interaction with peripheral blood mononuclear cells (PBMCs). We observed autophagy in acinar cells in response to TLCS exposure. There was also time-dependent release of IL-6, IL-8 and TNF-α from the injured acini that resulted in activation of PBMCs. We also observed that cytokines secreted by activated PBMCs resulted in acinar cell apoptosis and further cytokine release from them. Our data suggests that the earliest immune response in human AP originates within the acinar cell itself, which subsequently activates circulating PBMCs leading to SIRS. These findings need further detailed evaluation so that specific therapeutic targets to curb SIRS and resulting early adverse outcomes could be identified and tested.
Collapse
|
134
|
Petersen OH, Verkhratsky A. Calcium and ATP control multiple vital functions. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0418. [PMID: 27377728 DOI: 10.1098/rstb.2015.0418] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 01/01/2023] Open
Abstract
Life on Planet Earth, as we know it, revolves around adenosine triphosphate (ATP) as a universal energy storing molecule. The metabolism of ATP requires a low cytosolic Ca(2+) concentration, and hence tethers these two molecules together. The exceedingly low cytosolic Ca(2+) concentration (which in all life forms is kept around 50-100 nM) forms the basis for a universal intracellular signalling system in which Ca(2+) acts as a second messenger. Maintenance of transmembrane Ca(2+) gradients, in turn, requires ATP-dependent Ca(2+) transport, thus further emphasizing the inseparable links between these two substances. Ca(2+) signalling controls the most fundamental processes in the living organism, from heartbeat and neurotransmission to cell energetics and secretion. The versatility and plasticity of Ca(2+) signalling relies on cell specific Ca(2+) signalling toolkits, remodelling of which underlies adaptive cellular responses. Alterations of these Ca(2+) signalling toolkits lead to aberrant Ca(2+) signalling which is fundamental for the pathophysiology of numerous diseases from acute pancreatitis to neurodegeneration. This paper introduces a theme issue on this topic, which arose from a Royal Society Theo Murphy scientific meeting held in March 2016.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Ole H Petersen
- Cardiff School of Biosciences and Systems Immunity Institute, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
135
|
Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0425. [PMID: 27377719 PMCID: PMC4938025 DOI: 10.1098/rstb.2015.0425] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/23/2022] Open
Abstract
Acute pancreatitis (AP) is a leading cause of hospitalization among non-malignant gastrointestinal disorders. The mortality of severe AP can reach 30-50%, which is most probably owing to the lack of specific treatment. Therefore, AP is a major healthcare problem, which urges researchers to identify novel drug targets. Studies from the last decades highlighted that the toxic cellular Ca(2+) overload and mitochondrial damage are key pathogenic steps in the disease development affecting both acinar and ductal cell functions. Moreover, recent observations showed that modifying the cellular Ca(2+) signalling might be beneficial in AP. The inhibition of Ca(2+) release from the endoplasmic reticulum or the activity of plasma membrane Ca(2+) influx channels decreased the severity of AP in experimental models. Similarly, inhibition of mitochondrial permeability transition pore (MPTP) opening also seems to improve the outcome of AP in in vivo animal models. At the moment MPTP blockers are under detailed clinical investigation to test whether interventions in MPTP openings and/or Ca(2+) homeostasis of the cells can be specific targets in prevention or treatment of cell damage in AP.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary MTA-SZTE Momentum Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary Institute for Translational Medicine, University of Pécs, Pécs, Hungary
| |
Collapse
|
136
|
Peng S, Gerasimenko JV, Tsugorka T, Gryshchenko O, Samarasinghe S, Petersen OH, Gerasimenko OV. Calcium and adenosine triphosphate control of cellular pathology: asparaginase-induced pancreatitis elicited via protease-activated receptor 2. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0423. [PMID: 27377732 PMCID: PMC4938023 DOI: 10.1098/rstb.2015.0423] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 12/16/2022] Open
Abstract
Exocytotic secretion of digestive enzymes from pancreatic acinar cells is elicited by physiological cytosolic Ca2+ signals, occurring as repetitive short-lasting spikes largely confined to the secretory granule region, that stimulate mitochondrial adenosine triphosphate (ATP) production. By contrast, sustained global cytosolic Ca2+ elevations decrease ATP levels and cause necrosis, leading to the disease acute pancreatitis (AP). Toxic Ca2+ signals can be evoked by products of alcohol and fatty acids as well as bile acids. Here, we have investigated the mechanism by which l-asparaginase evokes AP. Asparaginase is an essential element in the successful treatment of acute lymphoblastic leukaemia, the most common type of cancer affecting children, but AP is a side-effect occurring in about 5–10% of cases. Like other pancreatitis-inducing agents, asparaginase evoked intracellular Ca2+ release followed by Ca2+ entry and also substantially reduced Ca2+ extrusion because of decreased intracellular ATP levels. The toxic Ca2+ signals caused extensive necrosis. The asparaginase-induced pathology depended on protease-activated receptor 2 and its inhibition prevented the toxic Ca2+ signals and necrosis. We tested the effects of inhibiting the Ca2+ release-activated Ca2+ entry by the Ca2+ channel inhibitor GSK-7975A. This markedly reduced asparaginase-induced Ca2+ entry and also protected effectively against the development of necrosis. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’.
Collapse
Affiliation(s)
- Shuang Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Department of Pathophysiology, Medical College, Jinan University, Guangzhou 510632, People's Republic of China
| | - Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Tatiana Tsugorka
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Bogomoletz Institute of Physiology, Kiev 01024, Ukraine
| | - Sujith Samarasinghe
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
137
|
Lugea A, Waldron RT, Mareninova OA, Shalbueva N, Deng N, Su HY, Thomas DD, Jones EK, Messenger SW, Yang J, Hu C, Gukovsky I, Liu Z, Groblewski GE, Gukovskaya AS, Gorelick FS, Pandol SJ. Human Pancreatic Acinar Cells: Proteomic Characterization, Physiologic Responses, and Organellar Disorders in ex Vivo Pancreatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2726-2743. [PMID: 28935577 DOI: 10.1016/j.ajpath.2017.08.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/30/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022]
Abstract
Knowledge of the molecular mechanisms of acute pancreatitis is largely based on studies using rodents. To assess similar mechanisms in humans, we performed ex vivo pancreatitis studies in human acini isolated from cadaveric pancreata from organ donors. Because data on these human acinar preparations are sparse, we assessed their functional integrity and cellular and organellar morphology using light, fluorescence, and electron microscopy; and their proteome by liquid chromatography-tandem mass spectrometry. Acinar cell responses to the muscarinic agonist carbachol (CCh) and the bile acid taurolithocholic acid 3-sulfate were also analyzed. Proteomic analysis of acini from donors of diverse ethnicity showed similar profiles of digestive enzymes and proteins involved in translation, secretion, and endolysosomal function. Human acini preferentially expressed the muscarinic acetylcholine receptor M3 and maintained physiological responses to CCh for at least 20 hours. As in rodent acini, human acini exposed to toxic concentrations of CCh and taurolithocholic acid 3-sulfate responded with trypsinogen activation, decreased cell viability, organelle damage manifest by mitochondrial depolarization, disordered autophagy, and pathological endoplasmic reticulum stress. Human acini also secreted inflammatory mediators elevated in acute pancreatitis patients, including IL-6, tumor necrosis factor-α, IL-1β, chemokine (C-C motif) ligands 2 and 3, macrophage inhibitory factor, and chemokines mediating neutrophil and monocyte infiltration. In conclusion, human cadaveric pancreatic acini maintain physiological functions and have similar pathological responses and organellar disorders with pancreatitis-causing treatments as observed in rodent acini.
Collapse
Affiliation(s)
- Aurelia Lugea
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Richard T Waldron
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Olga A Mareninova
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Natalia Shalbueva
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Nan Deng
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hsin-Yuan Su
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Diane D Thomas
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Elaina K Jones
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Scott W Messenger
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Jiayue Yang
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Cheng Hu
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Zhenqiu Liu
- Department of Biostatistics and Bioinformatics, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Guy E Groblewski
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin
| | - Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| | - Fred S Gorelick
- Departments of Internal Medicine and Cell Biology, Yale University School of Medicine, New Haven, Connecticut; Veterans Administration Connecticut Healthcare, West Haven, Connecticut
| | - Stephen J Pandol
- Department of Medicine and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California; Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California; Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
138
|
Huang W, Haynes AC, Mukherjee R, Wen L, Latawiec D, Tepikin AV, Criddle DN, Prinjha RK, Smithers N, Sutton R. Selective inhibition of BET proteins reduces pancreatic damage and systemic inflammation in bile acid- and fatty acid ethyl ester- but not caerulein-induced acute pancreatitis. Pancreatology 2017. [PMID: 28648518 DOI: 10.1016/j.pan.2017.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the therapeutic potential of I-BET-762, an inhibitor of the bromodomain and extra-terminal (BET) protein family, in experimental acute pancreatitis (AP). METHODS AP was induced by retrograde infusion of taurolithocholic acid sulphate into the biliopancreatic duct (TLCS-AP) or 2 intraperitoneal (i.p.) injections of ethanol and palmitoleic acid 1 h apart (FAEE-AP) or 12 hourly i.p. injections of caerulein (CER-AP). In all treatment groups, I-BET-762 (30 mg/kg, i.p.) was administered at the time of disease induction and again 12 h later. AP severity was assessed at 24 h by serum biochemistry, multiple cytokines and histopathology. RESULTS TLCS-AP, FAEE-AP and CER-AP resulted in characteristic elevations in serum amylase and cytokine levels, increased pancreatic trypsin and myeloperoxidase activity, typical pancreatic histopathological changes and lung injury. Treatment with I-BET-762 significantly reduced biochemical, cytokine and histopathological responses in TLCS-AP and FAEE-AP, but not CER-AP. CONCLUSIONS These results suggest that in different forms of AP there are significant differences in the epigenetic control of gene transcription contributing to the severity of disease responses. There is therapeutic potential in targeting bromodomains for the treatment of gallstone- and alcohol-related pancreatitis.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea C Haynes
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Rajarshi Mukherjee
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Li Wen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Diane Latawiec
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Alexei V Tepikin
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - David N Criddle
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rab K Prinjha
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Nicholas Smithers
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Robert Sutton
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
139
|
Gorelick FS, Lerch MM. Do Animal Models of Acute Pancreatitis Reproduce Human Disease? Cell Mol Gastroenterol Hepatol 2017; 4:251-262. [PMID: 28752114 PMCID: PMC5518169 DOI: 10.1016/j.jcmgh.2017.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/26/2017] [Indexed: 12/10/2022]
Abstract
Acute pancreatitis is currently the most common cause of hospital admission among all nonmalignant gastrointestinal diseases. To understand the pathophysiology of the disease and as a potential step toward developing targeted therapies, attempts to induce the disease experimentally began more than 100 years ago. Recent decades have seen progress in developing new experimental pancreatitis models as well as elucidating many underlying cell biological and pathophysiological disease mechanisms. Some models have been developed to reflect specific causes of acute pancreatitis in human beings. However, the paucity of data relating to the molecular mechanisms of human disease, the likelihood that multiple genetic and environmental factors affect the risk of disease development and its severity, and the limited information regarding the natural history of disease in human beings make it difficult to evaluate the value of disease models. Here, we provide an overview of key models and discuss our views on their strengths for characterizing cell biological disease mechanisms or for identifying potential therapeutic targets. We also acknowledge their limitations.
Collapse
Affiliation(s)
- Fred S. Gorelick
- Yale University Medical School and Veterans Affairs Medical Center, West Haven, Connecticut
- Correspondence Address correspondence to: Fred S. Gorelick, MD, VA Connecticut Healthcare System/Yale University Medical School, 950 Campbell Avenue, West Haven, Connecticut 06516. fax: (203) 937-3852.VA Connecticut Healthcare System/Yale University Medical School950 Campbell AvenueWest HavenConnecticut 06516
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
140
|
Gerasimenko JV, Peng S, Tsugorka T, Gerasimenko OV. Ca 2+ signalling underlying pancreatitis. Cell Calcium 2017; 70:95-101. [PMID: 28552244 DOI: 10.1016/j.ceca.2017.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/16/2017] [Accepted: 05/16/2017] [Indexed: 12/13/2022]
Abstract
In spite of significant scientific progress in recent years, acute pancreatitis (AP) is still a dangerous and in up to 5% of cases deadly disease with no specific cure. It is self-resolved in the majority of cases, but could result in chronic pancreatitis (CP) and increased risk of pancreatic cancer (PC). One of the early events in AP is premature activation of digestive pro-enzymes, including trypsinogen, inside pancreatic acinar cells (PACs) due to an excessive rise in the cytosolic Ca2+ concentration, which is the result of Ca2+ release from internal stores followed by Ca2+ entry through the store operated Ca2+ channels in the plasma membrane. The leading causes of AP are high alcohol intake and biliary disease with gallstones obstruction leading to bile reflux into the pancreatic duct. Recently attention in this area of research turned to another cause of AP - Asparaginase based drugs - which have been used quite successfully in treatments of childhood acute lymphoblastic leukaemia (ALL). Unfortunately, Asparaginase is implicated in triggering AP in 5-10% of cases as a side effect of the anti-cancer therapy. The main features of Asparaginase-elicited AP (AAP) were found to be remarkably similar to AP induced by alcohol metabolites and bile acids. Several potential therapeutic avenues in counteracting AAP have been suggested and could also be useful for dealing with AP induced by other causes. Another interesting development in this field includes recent research related to pancreatic stellate cells (PSCs) that are much less studied in their natural environment but nevertheless critically involved in AP, CP and PC. This review will attempt to evaluate developments, approaches and potential therapies for AP and discuss links to other relevant diseases.
Collapse
Affiliation(s)
- J V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - S Peng
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK; Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - T Tsugorka
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - O V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| |
Collapse
|
141
|
Ferdek PE, Jakubowska MA. Biology of pancreatic stellate cells-more than just pancreatic cancer. Pflugers Arch 2017; 469:1039-1050. [PMID: 28382480 PMCID: PMC5554282 DOI: 10.1007/s00424-017-1968-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/13/2017] [Accepted: 03/16/2017] [Indexed: 01/18/2023]
Abstract
Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes.
Collapse
Affiliation(s)
- Pawel E Ferdek
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Monika A Jakubowska
- Medical Research Council Group, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK
| |
Collapse
|
142
|
Ahuja M, Schwartz DM, Tandon M, Son A, Zeng M, Swaim W, Eckhaus M, Hoffman V, Cui Y, Xiao B, Worley PF, Muallem S. Orai1-Mediated Antimicrobial Secretion from Pancreatic Acini Shapes the Gut Microbiome and Regulates Gut Innate Immunity. Cell Metab 2017; 25:635-646. [PMID: 28273482 PMCID: PMC5345693 DOI: 10.1016/j.cmet.2017.02.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 12/06/2016] [Accepted: 02/12/2017] [Indexed: 02/07/2023]
Abstract
The gut microbiome participates in numerous physiologic functions and communicates intimately with the host immune system. Antimicrobial peptides are critical components of intestinal innate immunity. We report a prominent role for antimicrobials secreted by pancreatic acini in shaping the gut microbiome that is essential for intestinal innate immunity, barrier function, and survival. Deletion of the Ca2+ channel Orai1 in pancreatic acini of adult mice resulted in 60%-70% mortality within 3 weeks. Despite robust activation of the intestinal innate immune response, mice lacking acinar Orai1 exhibited intestinal bacterial outgrowth and dysbiosis, ultimately causing systemic translocation, inflammation, and death. While digestive enzyme supplementation was ineffective, treatments constraining bacterial outgrowth (purified liquid diet, broad-spectrum antibiotics) rescued survival, feeding, and weight gain. Pancreatic levels of cathelicidin-related antimicrobial peptide (CRAMP) were reduced, and supplement of synthetic CRAMP prevented intestinal disease. These findings reveal a critical role for antimicrobial pancreatic secretion in gut innate immunity.
Collapse
Affiliation(s)
- Malini Ahuja
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniella M Schwartz
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayank Tandon
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aran Son
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mei Zeng
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - William Swaim
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Eckhaus
- Office of Research Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Victoria Hoffman
- Office of Research Services, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yiyuan Cui
- Department of Neuroscience, Sichuan University, Chengdu 610041, China
| | - Bo Xiao
- Department of Neuroscience, Sichuan University, Chengdu 610041, China
| | - Paul F Worley
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Shmuel Muallem
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
143
|
BH3 mimetic-elicited Ca 2+ signals in pancreatic acinar cells are dependent on Bax and can be reduced by Ca 2+-like peptides. Cell Death Dis 2017; 8:e2640. [PMID: 28252652 PMCID: PMC5386550 DOI: 10.1038/cddis.2017.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/20/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023]
Abstract
BH3 mimetics are small-molecule inhibitors of B-cell lymphoma-2 (Bcl-2) and Bcl-xL, which disrupt the heterodimerisation of anti- and pro-apoptotic Bcl-2 family members sensitising cells to apoptotic death. These compounds have been developed as anti-cancer agents to counteract increased levels of Bcl-2 proteins often present in cancer cells. Application of a chemotherapeutic drug supported with a BH3 mimetic has the potential to overcome drug resistance in cancers overexpressing anti-apoptotic Bcl-2 proteins and thus increase the success rate of the treatment. We have previously shown that the BH3 mimetics, BH3I-2' and HA14-1, induce Ca2+ release from intracellular stores followed by a sustained elevation of the cytosolic Ca2+ concentration. Here we demonstrate that loss of Bax, but not Bcl-2 or Bak, inhibits this sustained Ca2+ elevation. What is more, in the absence of Bax, thapsigargin-elicited responses were decreased; and in two-photon-permeabilised bax-/- cells, Ca2+ loss from the ER was reduced compared to WT cells. The Ca2+-like peptides, CALP-1 and CALP-3, which activate EF hand motifs of Ca2+-binding proteins, significantly reduced excessive Ca2+ signals and necrosis caused by two BH3 mimetics: BH3I-2' and gossypol. In the presence of CALP-1, cell death was shifted from necrotic towards apoptotic, whereas CALP-3 increased the proportion of live cells. Importantly, neither of the CALPs markedly affected physiological Ca2+ signals elicited by ACh, or cholecystokinin. In conclusion, the reduction in passive ER Ca2+ leak in bax-/- cells as well as the fact that BH3 mimetics trigger substantial Ca2+ signals by liberating Bax, indicate that Bax may regulate Ca2+ leak channels in the ER. This study also demonstrates proof-of-principle that pre-activation of EF hand Ca2+-binding sites by CALPs can be used to ameliorate excessive Ca2+ signals caused by BH3 mimetics and shift necrotic death towards apoptosis.
Collapse
|
144
|
Peng T, Peng X, Huang M, Cui J, Zhang Y, Wu H, Wang C. Serum calcium as an indicator of persistent organ failure in acute pancreatitis. Am J Emerg Med 2017; 35:978-982. [PMID: 28291705 DOI: 10.1016/j.ajem.2017.02.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 02/03/2017] [Indexed: 02/06/2023] Open
Abstract
AIM Decreased level of serum calcium was commonly seen in critical illness. Hypocalcemia was significantly more frequent in patients with severe form of acute pancreatitis (AP), and a negative correlation was observed between endotoxemia and serum calcium in AP. AP patients with persistent organ failure (POF) show an extremely high mortality. The association underlying calcium and POF in AP has not been characterized. METHODS We conducted a retrospective cohort study of adult patients who presented within 72hours from symptom onset of AP at our center between January 2014 and May 2015. Demographic parameters on admission, organ failure assessment, laboratory data and in-hospital mortality were compared between patients with and without POF. Uni-and multi-variate logistic regression analyses were utilized to evaluated the predictive ability of serum calcium. RESULTS A total of 128 consecutive AP patients, including 29 with POF, were included. Compared to patients without POF, patients with POF showed a significantly lower value of serum calcium on admission (2.11±0.46 vs. 1.55±0.36mmol/L, P<0.001). After multivariate logistic analysis, serum calcium remained an independent risk factor for POF (Hazard ratio 0.21, 95% confident interval: 0.08-0.58; P=0.002). A calcium value of 1.97mmol/L predicted POF with an area under the curve (AUC) of 0.888, a sensitivity with 89.7% and specificity with 74.8%, respectively. CONCLUSION Our results indicate that serum calcium on admission is independently associated with POF in AP and may serve as a potential prognostic factor.
Collapse
Affiliation(s)
- Tao Peng
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Xin Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Min Huang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Jing Cui
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Yushun Zhang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China.
| | - Heshui Wu
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| | - Chunyou Wang
- Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, People's Republic of China
| |
Collapse
|
145
|
Huang W, Cane MC, Mukherjee R, Szatmary P, Zhang X, Elliott V, Ouyang Y, Chvanov M, Latawiec D, Wen L, Booth DM, Haynes AC, Petersen OH, Tepikin AV, Criddle DN, Sutton R. Caffeine protects against experimental acute pancreatitis by inhibition of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ release. Gut 2017; 66:301-313. [PMID: 26642860 PMCID: PMC5284483 DOI: 10.1136/gutjnl-2015-309363] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/31/2015] [Accepted: 09/22/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Caffeine reduces toxic Ca2+ signals in pancreatic acinar cells via inhibition of inositol 1,4,5-trisphosphate receptor (IP3R)-mediated signalling, but effects of other xanthines have not been evaluated, nor effects of xanthines on experimental acute pancreatitis (AP). We have determined effects of caffeine and its xanthine metabolites on pancreatic acinar IP3R-mediated Ca2+ signalling and experimental AP. DESIGN Isolated pancreatic acinar cells were exposed to secretagogues, uncaged IP3 or toxins that induce AP and effects of xanthines, non-xanthine phosphodiesterase (PDE) inhibitors and cyclic adenosine monophosphate and cyclic guanosine monophosphate (cAMP/cGMP) determined. The intracellular cytosolic calcium concentration ([Ca2+]C), mitochondrial depolarisation and necrosis were assessed by confocal microscopy. Effects of xanthines were evaluated in caerulein-induced AP (CER-AP), taurolithocholic acid 3-sulfate-induced AP (TLCS-AP) or palmitoleic acid plus ethanol-induced AP (fatty acid ethyl ester AP (FAEE-AP)). Serum xanthines were measured by liquid chromatography-mass spectrometry. RESULTS Caffeine, dimethylxanthines and non-xanthine PDE inhibitors blocked IP3-mediated Ca2+ oscillations, while monomethylxanthines had little effect. Caffeine and dimethylxanthines inhibited uncaged IP3-induced Ca2+ rises, toxin-induced Ca2+ release, mitochondrial depolarisation and necrotic cell death pathway activation; cAMP/cGMP did not inhibit toxin-induced Ca2+ rises. Caffeine significantly ameliorated CER-AP with most effect at 25 mg/kg (seven injections hourly); paraxanthine or theophylline did not. Caffeine at 25 mg/kg significantly ameliorated TLCS-AP and FAEE-AP. Mean total serum levels of dimethylxanthines and trimethylxanthines peaked at >2 mM with 25 mg/kg caffeine but at <100 µM with 25 mg/kg paraxanthine or theophylline. CONCLUSIONS Caffeine and its dimethylxanthine metabolites reduced pathological IP3R-mediated pancreatic acinar Ca2+ signals but only caffeine ameliorated experimental AP. Caffeine is a suitable starting point for medicinal chemistry.
Collapse
Affiliation(s)
- Wei Huang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Matthew C Cane
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Rajarshi Mukherjee
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Peter Szatmary
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Xiaoying Zhang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Victoria Elliott
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - Yulin Ouyang
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Michael Chvanov
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Diane Latawiec
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| | - Li Wen
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David M Booth
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andrea C Haynes
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Alexei V Tepikin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - David N Criddle
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK,Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- NIHR Liverpool Pancreas Biomedical Research Unit, Royal Liverpool University Hospital, University of Liverpool, Liverpool, UK
| |
Collapse
|
146
|
Concepcion AR, Feske S. Regulation of epithelial ion transport in exocrine glands by store-operated Ca 2+ entry. Cell Calcium 2016; 63:53-59. [PMID: 28027799 DOI: 10.1016/j.ceca.2016.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/17/2016] [Indexed: 02/08/2023]
Abstract
Store-operated Ca2+ entry (SOCE) is a conserved mechanism of Ca2+ influx that regulates Ca2+ signaling in many cell types. SOCE is activated by depletion of endoplasmic reticulum (ER) Ca2+ stores in response to physiological agonist stimulation. After it was first postulated by J.W. Putney Jr. in 1986, SOCE has been described in a large number of non-excitable cell types including secretory cells of different exocrine glands. Here we discuss the mechanisms by which SOCE controls salt and fluid secretion in exocrine glands, with a special focus on eccrine sweat glands. In sweat glands, SOCE plays an important, non-redundant role in regulating the function of Ca2+-activated Cl- channels (CaCC), Cl- secretion and sweat production. In the absence of key regulators of SOCE such as the CRAC channel pore subunit ORAI1 and its activator STIM1, the Ca2+-activated chloride channel TMEM16A is inactive and fails to secrete Cl-, resulting in anhidrosis in mice and human patients.
Collapse
Affiliation(s)
- Axel R Concepcion
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
147
|
Zhang R, Wen L, Shen Y, Shi N, Xing Z, Xia Q, Niu H, Huang W. One compound of saponins from Disocorea zingiberensis protected against experimental acute pancreatitis by preventing mitochondria-mediated necrosis. Sci Rep 2016; 6:35965. [PMID: 27779235 PMCID: PMC5078795 DOI: 10.1038/srep35965] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis (AP) is a painful inflammatory disorder of the exocrine pancreas, ranking as the most common gastrointestinal reasons for hospitalization with no specific therapy currently. Diosgenyl saponins extracted from natural products and diosgenin or its derivatives have been shown to exert anti-inflammatory effects in various diseases. However, the therapeutic effects of diosgenyl saponins from Dioscorea zingiberensis C. H. Wright in AP have not yet been determined. Five compounds were extracted and screened for taurocholate-induced necrosis in mouse pancreatic acinar cells. Particularly, 26-O-β-d-glucopyranosyl-3β, 22α, 26-trihydroxy-25(R)-furosta-5-en-3-O-[α-L-rhamnopyranosyl-(1 → 4)]-β-d-glucopyranoside (compound 1) exhibited the best protective effects with no toxicity observed. Next, we showed compound 1 concentration-dependently inhibited necrotic cell death pathway activation and 2.5 mM compound 1 also prevented the loss of mitochondrial membrane potential, adenosine triphosphate production, and reactive oxygen species generation in mouse pancreatic acinar cells. Finally, we showed compound 1 protected against three clinically representative murine models of AP and significantly improved pancreatitis-associated acute lung injury. These data provide in vitro and in vivo evidence that one compound of diosgenyl saponins can be potential treatment for AP. This study suggests natural saponins may serve as fruitful sources for exploring/identifying potential therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Li Wen
- Department of Pediatric Gastroenterology, Children’s Hospital of Pittsburgh of UPMC and School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Shen
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hai Niu
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
- College of Mathematics, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- Laboratory of Ethnopharmacology, Regenerative Medicine Research Center, West China Hospital/West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
148
|
Zhan X, Wang F, Bi Y, Ji B. Animal models of gastrointestinal and liver diseases. Animal models of acute and chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 311:G343-55. [PMID: 27418683 PMCID: PMC5076005 DOI: 10.1152/ajpgi.00372.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/06/2016] [Indexed: 01/31/2023]
Abstract
Animal models of pancreatitis are useful for elucidating the pathogenesis of pancreatitis and developing and testing novel interventions. In this review, we aim to summarize the most commonly used animal models, overview their pathophysiology, and discuss their strengths and limitations. We will also briefly describe common animal study procedures and refer readers to more detailed protocols in the literature. Although animal models include pigs, dogs, opossums, and other animals, we will mainly focus on rodent models because of their popularity. Autoimmune pancreatitis and genetically engineered animal models will be reviewed elsewhere.
Collapse
Affiliation(s)
- Xianbao Zhan
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Fan Wang
- 1Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| | - Yan Bi
- 2Department of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida and
| |
Collapse
|
149
|
Gukovskaya AS, Pandol SJ, Gukovsky I. New insights into the pathways initiating and driving pancreatitis. Curr Opin Gastroenterol 2016; 32:429-435. [PMID: 27428704 PMCID: PMC5235997 DOI: 10.1097/mog.0000000000000301] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this article, we discuss recent studies that advance our understanding of molecular and cellular factors initiating and driving pancreatitis, with the emphasis on the role of acinar cell organelle disorders. RECENT FINDINGS The central physiologic function of the pancreatic acinar cell - to synthesize, store, and secrete digestive enzymes - critically relies on coordinated actions of the endoplasmic reticulum (ER), the endolysosomal system, mitochondria, and autophagy. Recent studies begin to unravel the roles of these organelles' disordering in the mechanism of pancreatitis. Mice deficient in key autophagy mediators Atg5 or Atg7, or lysosome-associated membrane protein-2, exhibit dysregulation of multiple signaling and metabolic pathways in pancreatic acinar cells and develop spontaneous pancreatitis. Mitochondrial dysfunction caused by sustained opening of the permeability transition pore is shown to mediate pancreatitis in several clinically relevant experimental models, and its inhibition by pharmacologic or genetic means greatly reduces local and systemic pathologic responses. Experimental pancreatitis is also alleviated with inhibitors of ORAI1, a key component of the plasma membrane channel mediating pathologic rise in acinar cell cytosolic Ca2+. Pancreatitis-promoting mutations are increasingly associated with the ER stress. These findings suggest novel pathways and drug targets for pancreatitis treatment. In addition, the recent studies identify new mediators (e.g., neutrophil extracellular traps) of the inflammatory and other responses of pancreatitis. SUMMARY The recent findings illuminate a critical role of organelles regulating the autophagic, endolysosomal, mitochondrial, and ER pathways in maintaining pancreatic acinar cell homeostasis and secretory function; provide compelling evidence that organelle disordering is a key pathogenic mechanism initiating and driving pancreatitis; and identify molecular and cellular factors that could be targeted to restore organellar functions and thus alleviate or treat pancreatitis.
Collapse
Affiliation(s)
- Anna S. Gukovskaya
- University of California, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Ilya Gukovsky
- University of California, VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
150
|
Okeke E, Dingsdale H, Parker T, Voronina S, Tepikin AV. Endoplasmic reticulum-plasma membrane junctions: structure, function and dynamics. J Physiol 2016; 594:2837-47. [PMID: 26939537 DOI: 10.1113/jp271142] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/13/2016] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER)-plasma membrane (PM) junctions are contact sites between the ER and the PM; the distance between the two organelles in the junctions is below 40 nm and the membranes are connected by protein tethers. A number of molecular tools and technical approaches have been recently developed to visualise, modify and characterise properties of ER-PM junctions. The junctions serve as the platforms for lipid exchange between the organelles and for cell signalling, notably Ca(2+) and cAMP signalling. Vice versa, signalling events regulate the development and properties of the junctions. Two Ca(2+) -dependent mechanisms of de novo formation of ER-PM junctions have been recently described and characterised. The junction-forming proteins and lipids are currently the focus of vigorous investigation. Junctions can be relatively short-lived and simple structures, forming and dissolving on the time scale of a few minutes. However, complex, sophisticated and multifunctional ER-PM junctions, capable of attracting numerous protein residents and other cellular organelles, have been described in some cell types. The road from simplicity to complexity, i.e. the transformation from simple 'nascent' ER-PM junctions to advanced stable multiorganellar complexes, is likely to become an attractive research avenue for current and future junctologists. Another area of considerable research interest is the downstream cellular processes that can be activated by specific local signalling events in the ER-PM junctions. Studies of the cell physiology and indeed pathophysiology of ER-PM junctions have already produced some surprising discoveries, likely to expand with advances in our understanding of these remarkable organellar contact sites.
Collapse
Affiliation(s)
- Emmanuel Okeke
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Hayley Dingsdale
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Tony Parker
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Svetlana Voronina
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| | - Alexei V Tepikin
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, L69 3BX, UK
| |
Collapse
|