101
|
Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin. Neurobiol Aging 2015; 39:19-24. [PMID: 26923398 DOI: 10.1016/j.neurobiolaging.2015.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 11/11/2015] [Indexed: 11/20/2022]
Abstract
Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND (p = 0.0002) but not in cognitively impaired (p = 0.884) subjects, indicating potentially important physiological differences between these cohorts.
Collapse
|
102
|
Grillo CA, Piroli GG, Lawrence RC, Wrighten SA, Green AJ, Wilson SP, Sakai RR, Kelly SJ, Wilson MA, Mott DD, Reagan LP. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity. Diabetes 2015; 64. [PMID: 26216852 PMCID: PMC4613975 DOI: 10.2337/db15-0596] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS-treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS-treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control.
Collapse
Affiliation(s)
- Claudia A Grillo
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Gerardo G Piroli
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Robert C Lawrence
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC Department of Psychology, University of South Carolina, Columbia, SC
| | - Shayna A Wrighten
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Adrienne J Green
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Steven P Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Randall R Sakai
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH
| | - Sandra J Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC Department of Psychology, University of South Carolina, Columbia, SC
| | - Marlene A Wilson
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| | - David D Mott
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC William Jennings Bryan Dorn Veterans Affairs Medical Center, Columbia, SC
| |
Collapse
|
103
|
Wang D, Yan J, Chen J, Wu W, Zhu X, Wang Y. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice. Cell Mol Neurobiol 2015; 35:1061-71. [PMID: 25939427 PMCID: PMC11486290 DOI: 10.1007/s10571-015-0201-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
Abstract
The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin improves cognitive functions in HFD-induced obese mice.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China.
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, China
| | - Jing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road 2, Zhengzhou, 450014, China
| | - Wenlan Wu
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China
| | - Xiaoying Zhu
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China
| | - Yong Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China
| |
Collapse
|
104
|
Streptozotocin Intracerebroventricular-Induced Neurotoxicity and Brain Insulin Resistance: a Therapeutic Intervention for Treatment of Sporadic Alzheimer's Disease (sAD)-Like Pathology. Mol Neurobiol 2015; 53:4548-62. [PMID: 26298663 DOI: 10.1007/s12035-015-9384-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is remarkably characterized by pathological hallmarks which include amyloid plaques, neurofibrillary tangles, neuronal loss, and progressive cognitive loss. Several well-known genetic mutations which are being used for the development of a transgenic model of AD lead to an early onset familial AD (fAD)-like condition. However, these settings are only reasons for a small percentage of the total AD cases. The large majorities of AD cases are considered as a sporadic in origin and are less influenced by a single mutation of a gene. The etiology of sporadic Alzheimer's disease (sAD) remains unclear, but numerous risk factors have been identified that increase the chance of developing AD. Among these risk factors are insulin desensitization/resistance state, oxidative stress, neuroinflammation, synapse dysfunction, tau hyperphosphorylation, and deposition of Aβ in the brain. Subsequently, these risk factors lead to development of sAD. However, the underlying molecular mechanism is not so clear. Streptozotocin (STZ) produces similar characteristic pathology of sAD such as altered glucose metabolism, insulin signaling, synaptic dysfunction, protein kinases such as protein kinase B/C, glycogen synthase-3β (GSK-3β) activation, tau hyperphosphorylation, Aβ deposition, and neuronal apoptosis. Further, STZ also leads to inhibition of Akt/PKB, insulin receptor (IR) signaling molecule, and insulin resistance in brain. These alterations mediated by STZ can be used to explore the underlying molecular and pathophysiological mechanism of AD (especially sAD) and their therapeutic intervention for drug development against AD pathology.
Collapse
|
105
|
Abstract
Alzheimer's disease (AD) is a neurological disorder characterized by profound memory loss and progressive dementia. Accumulating evidence suggests that Type 2 diabetes mellitus, a metabolic disorder characterized by insulin resistance and glucose intolerance, significantly increases the risk for developing AD. Whereas amyloid-β (Aβ) deposition and neurofibrillary tangles are major histological hallmarks of AD, impairment of cerebral glucose metabolism precedes these pathological changes during the early stage of AD and likely triggers or exacerbates AD pathology. However, the mechanisms linking disturbed insulin signaling/glucose metabolism and AD pathogenesis remain unclear. The low-density lipoprotein receptor-related protein 1 (LRP1), a major apolipoprotein E receptor, plays critical roles in lipoprotein metabolism, synaptic maintenance, and clearance of Aβ in the brain. Here, we demonstrate that LRP1 interacts with the insulin receptor β in the brain and regulates insulin signaling and glucose uptake. LRP1 deficiency in neurons leads to impaired insulin signaling as well as reduced levels of glucose transporters GLUT3 and GLUT4. Consequently, glucose uptake is reduced. By using an in vivo microdialysis technique sampling brain glucose concentration in freely moving mice, we further show that LRP1 deficiency in conditional knock-out mice resulted in glucose intolerance in the brain. We also found that hyperglycemia suppresses LRP1 expression, which further exacerbates insulin resistance, glucose intolerance, and AD pathology. As loss of LRP1 expression is seen in AD brains, our study provides novel insights into insulin resistance in AD. Our work also establishes new targets that can be explored for AD prevention or therapy.
Collapse
|
106
|
Bloch K, Gil-Ad I, Tarasenko I, Vanichkin A, Taler M, Hornfeld SH, Vardi P, Weizman A. Intracranial pancreatic islet transplantation increases islet hormone expression in the rat brain and attenuates behavioral dysfunctions induced by MK-801 (dizocilpine). Horm Behav 2015; 72:1-11. [PMID: 25943974 DOI: 10.1016/j.yhbeh.2015.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 01/15/2023]
Abstract
The treatment of rodents with non-competitive antagonist of the N-Methyl-D-aspartate (NMDA) receptor, MK-801 (dizocilpine), induces symptoms of psychosis, deficits in spatial memory and impairment of synaptic plasticity. Recent studies have suggested that insulin administration might attenuate the cognitive dysfunctions through the modulatory effect on the expression of NMDA receptors and on the brain insulin signaling. Intrahepatic pancreatic islet transplantation is known as an efficient tool for correcting impaired insulin signaling. We examined the capacity of syngeneic islets grafted into the cranial subarachnoid cavity to attenuate behavioral dysfunctions in rats exposed to MK-801. Animals were examined in the open field (OF) and the Morris Water Maze (MWM) tests following acute or subchronic administration of MK-801. We found well-vascularized grafted islets expressing insulin, glucagon and somatostatin onto the olfactory bulb and prefrontal cortex. Significantly higher levels of insulin were detected in the hippocampus and prefrontal cortex of transplanted animals compared to the non-transplanted rats. All animals expressed normal peripheral glucose homeostasis for two months after transplantation. OF tests revealed that rats exposed to MK-801 treatment, showed hyper-responsiveness in motility parameters and augmented center field exploration compared to intact controls and these effects were attenuated by the grafted islets. Moreover, in the MWM, the rats treated with MK-801 showed impairment of spatial memory that were partially corrected by the grafted islets. In conclusion, intracranial islet transplantation leads to the expression of islet hormones in the brain and attenuates behavioral and cognitive dysfunctions in rats exposed to MK-801 administration without altering the peripheral glucose homeostasis.
Collapse
Affiliation(s)
- Konstantin Bloch
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel.
| | - Irit Gil-Ad
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Igor Tarasenko
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Alexey Vanichkin
- Laboratory of Transplantation, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Michal Taler
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Shay Henry Hornfeld
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Pnina Vardi
- Laboratory of Diabetes and Obesity Research, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel
| | - Abraham Weizman
- Laboratory of Biological Psychiatry, Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva, Israel; Research Unit, Geha Mental Health Center, Petah Tikva, Israel
| |
Collapse
|
107
|
Iwamoto T, Ouchi Y. Emerging evidence of insulin-like growth factor 2 as a memory enhancer: a unique animal model of cognitive dysfunction with impaired adult neurogenesis. Rev Neurosci 2015; 25:559-74. [PMID: 24778346 DOI: 10.1515/revneuro-2014-0010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022]
Abstract
In the current aging society, cognitive dysfunction is one of the most serious issues that should be urgently resolved. It also affects a wide range of age groups harboring neurological and psychiatric disorders, such as Alzheimer's disease and schizophrenia. Although the molecular mechanism of memory impairment still remains to be determined, neuronal loss and dysfunction has been revealed to mainly attribute to its pathology. The discovery of neural stem cells in the adult brain that are proliferating and able to generate functional neurons has given rise to the idea that neuronal loss could be rescued by manipulating endogenous neural progenitor and stem cells. To this end, we must characterize them in detail and their developmental programming must be better understood. A growing body of evidence has indicated that insulin-like peptides are involved in learning and memory and maintenance of neural progenitor and stem cells, and clinical trials of insulin as a memory enhancer have begun. In contrast to the expectation of insulin and IGF1, the roles of IGF2 in cognitive ability have been poorly understood. However, recent evidence demonstrated in rodents suggests that IGF2 may play a pivotal role in adult neurogenesis and cognitive function. Here, we would like to review the rapidly growing world of IGF2 in cognitive neuroscience and introduce the evidence that its deficit is indeed involved in the impairment of the hippocampal neurogenesis and cognitive dysfunction in the model mouse of 22q11.2 deletion syndrome, which deletes Dgcr8, a critical gene for microRNA processing.
Collapse
|
108
|
del Pino J, Moyano-Cires PV, Anadon MJ, Díaz MJ, Lobo M, Capo MA, Frejo MT. Molecular Mechanisms of Amitraz Mammalian Toxicity: A Comprehensive Review of Existing Data. Chem Res Toxicol 2015; 28:1073-94. [PMID: 25973576 DOI: 10.1021/tx500534x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Javier del Pino
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Paula Viviana Moyano-Cires
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Maria Jose Anadon
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Jesús Díaz
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Margarita Lobo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - Miguel Andrés Capo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| | - María Teresa Frejo
- Departament of Toxicology
and Pharmacology, Veterinary School, and ‡Department of
Toxicology and Legal Medicine, Medicine School, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040 Madrid, Spain
| |
Collapse
|
109
|
Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plast 2015; 2015:657928. [PMID: 25977822 PMCID: PMC4419237 DOI: 10.1155/2015/657928] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/02/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.
Collapse
|
110
|
Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 2015; 9:91. [PMID: 25852482 PMCID: PMC4362409 DOI: 10.3389/fncel.2015.00091] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Although glutamate is one of the most important excitatory neurotransmitters of the central nervous system, its excessive extracellular concentration leads to uncontrolled continuous depolarization of neurons, a toxic process called, excitotoxicity. In excitotoxicity glutamate triggers the rise of intracellular Ca2+ levels, followed by up regulation of nNOS, dysfunction of mitochondria, ROS production, ER stress, and release of lysosomal enzymes. Excessive calcium concentration is the key mediator of glutamate toxicity through over activation of ionotropic and metabotropic receptors. In addition, glutamate accumulation can also inhibit cystine (CySS) uptake by reversing the action of the CySS/glutamate antiporter. Reversal of the antiporter action reinforces the aforementioned events by depleting neurons of cysteine and eventually glutathione’s reducing potential. Various cell lines have been employed in the pursuit to understand the mechanism(s) by which excitotoxicity affects the cells leading them ultimately to their demise. In some cell lines glutamate toxicity is exerted mainly through over activation of NMDA, AMPA, or kainate receptors whereas in other cell lines lacking such receptors, the toxicity is due to glutamate induced oxidative stress. However, in the greatest majority of the cell lines ionotropic glutamate receptors are present, co-existing to CySS/glutamate antiporters and metabotropic glutamate receptors, supporting the assumption that excitotoxicity effect in these cells is accumulative. Different cell lines differ in their responses when exposed to glutamate. In this review article the responses of PC12, SH-SY5Y, HT-22, NT-2, OLCs, C6, primary rat cortical neurons, RGC-5, and SCN2.2 cell systems are systematically collected and analyzed.
Collapse
Affiliation(s)
- Aristeidis A Kritis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Eleni G Stamoula
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Krystallenia A Paniskaki
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| | - Theofanis D Vavilis
- Laboratory of Physiology, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki Greece
| |
Collapse
|
111
|
Cardiotrophin-1 (CT-1) Improves High Fat Diet-Induced Cognitive Deficits in Mice. Neurochem Res 2015; 40:843-53. [DOI: 10.1007/s11064-015-1535-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 01/29/2015] [Accepted: 02/04/2015] [Indexed: 01/12/2023]
|
112
|
Maimaiti S, Anderson KL, DeMoll C, Brewer LD, Rauh BA, Gant JC, Blalock EM, Porter NM, Thibault O. Intranasal Insulin Improves Age-Related Cognitive Deficits and Reverses Electrophysiological Correlates of Brain Aging. J Gerontol A Biol Sci Med Sci 2015; 71:30-9. [PMID: 25659889 DOI: 10.1093/gerona/glu314] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/23/2014] [Indexed: 12/25/2022] Open
Abstract
Peripheral insulin resistance is a key component of metabolic syndrome associated with obesity, dyslipidemia, hypertension, and type 2 diabetes. While the impact of insulin resistance is well recognized in the periphery, it is also becoming apparent in the brain. Recent studies suggest that insulin resistance may be a factor in brain aging and Alzheimer's disease (AD) whereby intranasal insulin therapy, which delivers insulin to the brain, improves cognition and memory in AD patients. Here, we tested a clinically relevant delivery method to determine the impact of two forms of insulin, short-acting insulin lispro (Humalog) or long-acting insulin detemir (Levemir), on cognitive functions in aged F344 rats. We also explored insulin effects on the Ca(2+)-dependent hippocampal afterhyperpolarization (AHP), a well-characterized neurophysiological marker of aging which is increased in the aged, memory impaired animal. Low-dose intranasal insulin improved memory recall in aged animals such that their performance was similar to that seen in younger animals. Further, because ex vivo insulin also reduced the AHP, our results suggest that the AHP may be a novel cellular target of insulin in the brain, and improved cognitive performance following intranasal insulin therapy may be the result of insulin actions on the AHP.
Collapse
Affiliation(s)
- Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Chris DeMoll
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Lawrence D Brewer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Benjamin A Rauh
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - John C Gant
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Nada M Porter
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, Lexington, Kentucky.
| |
Collapse
|
113
|
Burette AC, Park H, Weinberg RJ. Postsynaptic distribution of IRSp53 in spiny excitatory and inhibitory neurons. J Comp Neurol 2015; 522:2164-78. [PMID: 24639075 DOI: 10.1002/cne.23526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 11/07/2022]
Abstract
The 53 kDa insulin receptor substrate protein (IRSp53) is highly enriched in the brain. Despite evidence that links mutations of IRSp53 with autism and other neuropsychiatric problems, the functional significance of this protein remains unclear. We used light and electron microscopic immunohistochemistry to demonstrate that IRSp53 is expressed throughout the adult rat brain. Labeling concentrated selectively in dendritic spines, where it was associated with the postsynaptic density (PSD). Surprisingly, its organization within the PSD of spiny excitatory neurons of neocortex and hippocampus differed from that within spiny inhibitory neurons of neostriatum and cerebellar cortex. The present data support previous suggestions that IRSp53 is involved in postsynaptic signaling, while hinting that its signaling role may differ in different types of neurons.
Collapse
Affiliation(s)
- Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | |
Collapse
|
114
|
Calvo-Ochoa E, Arias C. Cellular and metabolic alterations in the hippocampus caused by insulin signalling dysfunction and its association with cognitive impairment during aging and Alzheimer's disease: studies in animal models. Diabetes Metab Res Rev 2015; 31:1-13. [PMID: 24464982 DOI: 10.1002/dmrr.2531] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
Abstract
A growing body of animal and epidemiological studies suggest that metabolic diseases such as obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus are associated with the development of cognitive impairment, dementia and Alzheimer's disease, particularly in aging. Several lines of evidence suggest that insulin signalling dysfunction produces these metabolic alterations and underlie the development of these neurodegenerative diseases. In this article, we address normal insulin function in the synapse; we review and discuss the physiopathological hallmarks of synaptic insulin signalling dysfunction associated with metabolic alterations. Additionally, we describe and review the major animal models of obesity, insulin resistance, metabolic syndrome and type 2 diabetes mellitus. The comprehensive knowledge of the molecular mechanisms behind the association of metabolic alterations and cognitive impairment could facilitate the early detection of neurodegenerative diseases in patients with metabolic alterations, with treatment that focus on neuroprotection. It could also help in the development of metabolic-based therapies and drugs for using in dementia and Alzheimer's disease patients to alleviate their symptoms in a more efficient and comprehensive way.
Collapse
Affiliation(s)
- Erika Calvo-Ochoa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, DF, Mexico
| | | |
Collapse
|
115
|
Adzovic L, Domenici L. Insulin induces phosphorylation of the AMPA receptor subunit GluR1, reversed by ZIP, and over-expression of Protein Kinase M zeta, reversed by amyloid beta. J Neurochem 2014; 131:582-7. [PMID: 25230927 DOI: 10.1111/jnc.12947] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/22/2014] [Accepted: 09/10/2014] [Indexed: 11/30/2022]
Abstract
Insulin receptor (IR) in the brain plays a role in synaptic plasticity and cognitive functions. Phosphorylation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors GluR1 subunit at Serine 831 is regulated by calcium-calmodulin-dependent protein kinase II and protein kinase C that underlie long-term potentiation and learning/memory. Recent studies have shown that the novel Protein Kinase M zeta (PKMζ) underlies synaptic plasticity and may regulate AMPAr. In this study, we show that insulin induces phosphorylation of Serine 831 GluR1 subunit of AMPAr and induces over-expression of PKMζ; pre-treatment with either the IR inhibitor 3-Bromo-5-t-butyl-4-hydroxy-benzylidenemalonitrile (AG1024) or PKMζ inhibitor protein kinase C zeta pseudo-substrate inhibitor returned the phosphorylation value of GluR1 to control level. Amyloid beta (Aβ) peptide in the form of oligomers interferes with IR signaling. Pre-treating neuronal cultures with Aβ following incubation with insulin, we found a reduction of insulin-dependent PKMζ over-expression and MAPK/Erk (1/2) phosphorylation, i.e., signaling pathways involved in synaptic plasticity and learning/memory. These results indicate a new intracellular insulin signaling pathway, and, additionally, that insulin resistance in Alzheimer's disease is a response to the production and accumulation of Aβ.
Collapse
Affiliation(s)
- Linda Adzovic
- Neuroscience Institute, CNR, Pisa, Italy; Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
116
|
Che F, Fu Q, Li X, Gao N, Qi F, Sun Z, Du Y, Li M. Association of insulin receptor H1085H C>T, insulin receptor substrate 1 G972R and insulin receptor substrate 2 1057G/A polymorphisms with refractory temporal lobe epilepsy in Han Chinese. Seizure 2014; 25:178-80. [PMID: 25458098 DOI: 10.1016/j.seizure.2014.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/25/2014] [Accepted: 09/29/2014] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Insulin/insulin receptor (INSR) signaling plays diverse roles in the central nervous system, including regulation of blood glucose, synaptic plasticity, dendritic growth, modulation of electrophysiological activity, proliferation of astrocytes and neuronal apoptosis. Interestingly, many of these and/or related processes represent biological mechanisms associated with temporal lobe epilepsy (TLE). Thus, insulin signaling may play a role in the development of TLE and its therapeutic responses. We hypothesized that functional polymorphisms in the insulin pathway genes INSR, insulin receptor substrate 1 (IRS1), and IRS2 may be associated with the therapeutic responses of TLE. Therefore, in this study we analyzed the association of three single nucleotide polymorphisms (SNPs) showing a risk for TLE drug resistance using a hospital-based case-control design. METHOD Two hundred and one patients with refractory TLE and one hundred and seventy-five drug-responsive TLE patients were recruited for the study. Polymerase chain reaction-restriction fragment length polymorphism was used to detect the genotypes of INSR His1085His, IRS1 G972R and IRS2 1057G/A. RESULTS No significant differences between refractory and drug-responsive TLE patients were observed for the IRS1 G972R and IRS2 1057G/A polymorphisms (P>0.05), but a significant association was found for the INSR His1085His polymorphism for both genotypes (P=0.035) and alleles (P=0.011). IRS2 1057G/A combined with the INSR His 1085 His polymorphism increased the odds ratio of drug resistance in TLE (P=0.011, OR=2.263, 95% CI: 1.208-4.239). CONCLUSION These results suggest that a genetic variation in the insulin signaling pathway genes may affect the therapeutic response of TLE.
Collapse
Affiliation(s)
- Fengyuan Che
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China; Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Qingxi Fu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China.
| | - Xuesong Li
- Linyi Health School, Linyi, Shandong 276003, PR China
| | - Naiyong Gao
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Faying Qi
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Zhiqing Sun
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| | - Yifeng Du
- Department of Neurology, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, PR China.
| | - Ming Li
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, PR China
| |
Collapse
|
117
|
Chen TJ, Wang DC, Hung HS, Ho HF. Insulin can induce the expression of a memory-related synaptic protein through facilitating AMPA receptor endocytosis in rat cortical neurons. Cell Mol Life Sci 2014; 71:4069-80. [PMID: 24705985 PMCID: PMC11113657 DOI: 10.1007/s00018-014-1620-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/10/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022]
Abstract
Learning and memory depend on long-term synaptic plasticity including long-term potentiation (LTP) and depression (LTD). Activity-regulated cytoskeleton-associated protein (Arc) plays versatile roles in synaptic plasticity mainly through inducing F-actin formation, underlying consolidation of LTP, and promoting AMPA receptor (AMPAR) endocytosis, underlying LTD. Insulin can also induce LTD by facilitating the internalization of AMPARs. In neuroblastoma cells, insulin induced a dramatic increase in Arc mRNA and Arc protein levels, which may underlie the memory-enhancing action of insulin. Thus, a hypothesis was made that, in response to insulin, increased AMPAR endocytosis leads to enhanced Arc expression, and vice versa. Primary cultures of neonatal Sprague-Dawley rat cortical neurons were used. Using Western-blot analysis and immunofluorescent staining, our results reveal that inhibiting AMPAR-mediated responses with AMPAR antagonists significantly enhanced whereas blocking AMPAR endocytosis with various reagents significantly prevented insulin (200 nM, 2 h)-induced Arc expression. Furthermore, via surface biotinylation assay, we demonstrate that acute blockade of new Arc synthesis after insulin stimulation using Arc antisense oligodeoxynucleotide prevented insulin-stimulated AMPAR endocytosis. These findings suggest for the first time that an interaction exists between insulin-stimulated AMPAR endocytosis and insulin-induced Arc expression.
Collapse
Affiliation(s)
- Tsan-Ju Chen
- Department of Physiology, School of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 807, Taiwan,
| | | | | | | |
Collapse
|
118
|
Romain G, Opacka-Juffry J. Cerebral ageing-the role of insulin and insulin-like growth factor signalling: A review. World J Neurol 2014; 4:12-22. [DOI: 10.5316/wjn.v4.i3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/11/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023] Open
Abstract
Cerebral ageing is a complex biological process associated with progressing cerebrovascular disease and neuronal death. It does not always, however, associate with a functional decline, as the ageing mammalian brain retains considerable functional plasticity which supports successful cerebral ageing where age-related cognitive decline is modest. On the contrary, pathological cerebral ageing results in memory impairment and cognitive deterioration, with Alzheimer’s disease (AD) being a florid example. Trophic/growth factors promote brain plasticity; among them are peptides which belong to the insulin family. Preclinical research suggests that the evolutionarily conserved brain insulin/insulin-like growth factor-1 (IGF-1) signalling system controls lifespan and protects against some features of AD such as neurodegeneration-related accumulation of toxic proteins and cognitive deficiencies, as observed in animal models. Insulin and IGF-1 activate cell signalling mechanisms which play protective and regenerative roles; abnormalities in the insulin/IGF-1 system may trigger a cascade of neurodegeneration in AD. AD patients show cerebral resistance to insulin which associates with IGF-I resistance and dysregulation of insulin/IGF-1 receptors as well as cognitive deterioration. This review is focused on the roles of the insulin/IGF-1 signalling system in cerebral ageing and its potential involvement in neurodegeneration in the human brain as seen against the background of preclinical evidence.
Collapse
|
119
|
Li YK, Hui CLM, Lee EHM, Chang WC, Chan SKW, Leung CM, Chen EYH. Coupling physical exercise with dietary glucose supplement for treating cognitive impairment in schizophrenia: a theoretical model and future directions. Early Interv Psychiatry 2014; 8:209-20. [PMID: 24224943 DOI: 10.1111/eip.12109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/10/2013] [Indexed: 01/09/2023]
Abstract
AIMS Metabolic dysregulation may disrupt the complex neuroprotective mechanisms essential for brain health. Recent studies have pointed out the possible aetiological role of metabolic dysregulation in the onset of schizophrenia and the associated cognitive impairment. In this paper, we aimed to generate a theoretical model of how a combination of physical exercise and dietary glucose supplement may help to alleviate cognitive impairment in schizophrenia. METHODS Literature on metabolic dysregulation, especially insulin resistance, in relation to the onset of schizophrenia and the associated cognitive impairment is reviewed. The cognitive enhancement effects of physical exercise and dietary glucose supplement are then summarised. Finally, we propose a theoretical model based on the concerted effects of physical exercise and glucose supplement. RESULTS In general, the joint action of physical exercise and dietary glucose supplement could up-regulate glucose and insulin transport into the brain, as well as augmenting the release of insulin growth factor-1 and brain-derived neurotrophic factor. Physical exercise and glucose supplement could enhance energy supply and neuroplasticity in brain, subsequently leading to potential cognitive enhancement in schizophrenia. However, glucose supplement is not suitable for patients with abnormal metabolic profile. CONCLUSIONS The combination of physical exercise and glucose supplement has potential therapeutic values in treating cognitive impairment in schizophrenia. Further research is necessary to investigate the optimal patterns of exercise and doses of glucose for treating cognitive impairment in schizophrenia.
Collapse
Affiliation(s)
- Yuet-Keung Li
- Department of Psychiatry, University of Hong Kong, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
120
|
Morán J, Garrido P, Cabello E, Alonso A, González C. Effects of estradiol and genistein on the insulin signaling pathway in the cerebral cortex of aged female rats. Exp Gerontol 2014; 58:104-12. [PMID: 25086228 DOI: 10.1016/j.exger.2014.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/04/2014] [Accepted: 07/30/2014] [Indexed: 01/29/2023]
Abstract
Menopause leads to a decrease in estrogen production that increases central insulin resistance, contributing to the development of neurodegenerative diseases. We have evaluated the influence of aging and estradiol or genistein treatments on some key stages of the insulin signaling pathway in the cerebral cortex. Young and aged female Wistar rats were ovariectomized and treated acutely with 17β-estradiol (1.4μg/kg body weight), two doses of genistein (10 or 40mg/kg body weight), or vehicle. The cortical expression of several key insulin signaling pathway components was analyzed by western blotting. Our results showed an age-related deterioration in the interactions between the regulatory subunit of phosphatidylinositol 3-kinase (p85α) and the activated form of insulin receptor substrate 1 (p-IRS1tyr612), as well as between p85α and the 46kDa isoform of the estrogen receptor α (ERα46). Moreover, aging also decreased the translocation of glucose transporter-4 (GLUT4) to the plasma membrane. 17β-Estradiol but not genistein reduced the negative impact of aging on central insulin sensitivity by favoring this GLUT4 translocation, and therefore could be neuroprotective against the associated neurodegenerative diseases. However, protein kinase B (Akt) activation by genistein suggests that other possible mechanisms are involved in the neuroprotective effects of this phytoestrogen during the aging process.
Collapse
Affiliation(s)
- Javier Morán
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Pablo Garrido
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Estefanía Cabello
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Ana Alonso
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| | - Celestino González
- Department of Functional Biology, Physiology Area, University of Oviedo, Av. Julián Clavería, No. 6, 33006 Oviedo, Spain.
| |
Collapse
|
121
|
Abstract
Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- André Kleinridders
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Heather A Ferris
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - Weikang Cai
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| | - C Ronald Kahn
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
122
|
Mansur RB, Cha DS, Woldeyohannes HO, Soczynska JK, Zugman A, Brietzke E, McIntyre RS. Diabetes mellitus and disturbances in brain connectivity: a bidirectional relationship? Neuromolecular Med 2014; 16:658-68. [PMID: 24974228 DOI: 10.1007/s12017-014-8316-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus (DM) is associated with deficits across multiple cognitive domains. The observed impairments in cognitive function are hypothesized to be subserved by alterations in brain structure and function. Several lines of evidence indicate that alterations in glial integrity and function, as well as abnormal synchrony within brain circuits and associated networks, are observed in adults with DM. Microangiopathy and alterations in insulin homeostasis appear to be principal effector systems, although a unitary explanation subsuming the complex etiopathology of white matter in DM is unavailable. A contemporary model of disease pathophysiology for several mental disorders, including but not limited to mood disorders, posits abnormalities in the synchronization of cellular systems in circuits. The observation that similar abnormalities occur in diabetic populations provides the basis for hypothesizing the convergence of pathoetiological factors. Herein, we propose that abnormal structure, function and chemical composition as well as synchrony within and between circuits is an accompaniment of DM and is shared in common with several mental disorders.
Collapse
Affiliation(s)
- Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, 399 Bathurst Street, MP 9-325, Toronto, ON, M5T 2S8, Canada,
| | | | | | | | | | | | | |
Collapse
|
123
|
Insulin blocks glutamate-induced neurotoxicity in differentiated SH-SY5Y neuronal cells. Behav Neurol 2014; 2014:674164. [PMID: 25018588 PMCID: PMC4082871 DOI: 10.1155/2014/674164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/04/2014] [Accepted: 05/26/2014] [Indexed: 12/30/2022] Open
Abstract
Insulin is a cytokine which promotes cell growth. Recently, a few published reports on insulin in different cell lines support the antiapoptotic effect of insulin. But the reports fail to explain the role of insulin in modulating glutamate-mediated neuronal cell death through excitotoxicity. Thus, we examined the neuroprotective effect of insulin on glutamate-induced toxicity on differentiated SH-SY5Y neuronal cells. Changes in cell viability were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) based assay, while apoptotic damage was detected by acridine orange/ethidium bromide and Hoechst staining. Intracellular reactive oxygen species (ROS) accumulation and morphological alterations were also measured. Treatment with glutamate induced apoptosis, elevated ROS levels and caused damage to neurons. Insulin was able to attenuate the glutamate-induced excitotoxic damage to neuronal cells.
Collapse
|
124
|
Short-term high-fat-and-fructose feeding produces insulin signaling alterations accompanied by neurite and synaptic reduction and astroglial activation in the rat hippocampus. J Cereb Blood Flow Metab 2014; 34:1001-8. [PMID: 24667917 PMCID: PMC4050245 DOI: 10.1038/jcbfm.2014.48] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/20/2014] [Accepted: 02/24/2014] [Indexed: 11/09/2022]
Abstract
Chronic consumption of high-fat-and-fructose diets (HFFD) is associated with the development of insulin resistance (InsRes) and obesity. Systemic insulin resistance resulting from long-term HFFD feeding has detrimental consequences on cognitive performance, neurogenesis, and long-term potentiation establishment, accompanied by neuronal alterations in the hippocampus. However, diet-induced hippocampal InsRes has not been reported. Therefore, we investigated whether short-term HFFD feeding produced hippocampal insulin signaling alterations associated with neuronal changes in the hippocampus. Rats were fed with a control diet or an HFFD consisting of 10% lard supplemented chow and 20% high-fructose syrup in the drinking water. Our results show that 7 days of HFFD feeding induce obesity and InsRes, associated with the following alterations in the hippocampus: (1) a decreased insulin signaling; (2) a decreased hippocampal weight; (3) a reduction in dendritic arborization in CA1 and microtubule-associated protein 2 (MAP-2) levels; (4) a decreased dendritic spine number in CA1 and synaptophysin content, along with an increase in tau phosphorylation; and finally, (5) an increase in reactive astrocyte associated with microglial changes. To our knowledge, this is the first report addressing hippocampal insulin signaling, as well as morphologic, structural, and functional modifications due to short-term HFFD feeding in the rat.
Collapse
|
125
|
Pham N, Dhar A, Khalaj S, Desai K, Taghibiglou C. Down regulation of brain cellular prion protein in an animal model of insulin resistance: Possible implication in increased prevalence of stroke in pre-diabetics/diabetics. Biochem Biophys Res Commun 2014; 448:151-6. [DOI: 10.1016/j.bbrc.2014.04.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/14/2014] [Indexed: 01/06/2023]
|
126
|
Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer's disease a systemic disease? Biochim Biophys Acta Mol Basis Dis 2014; 1842:1340-9. [PMID: 24747741 DOI: 10.1016/j.bbadis.2014.04.012] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022]
Abstract
Although Alzheimer's disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease-modifying therapies.
Collapse
Affiliation(s)
- Jill K Morris
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Robyn A Honea
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Eric D Vidoni
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Russell H Swerdlow
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| | - Jeffrey M Burns
- The University of Kansas Department of Neurology, University of Kansas, Alzheimer's Disease Center, USA.
| |
Collapse
|
127
|
Morris JK, Vidoni ED, Perea RD, Rada R, Johnson DK, Lyons K, Pahwa R, Burns JM, Honea RA. Insulin resistance and gray matter volume in neurodegenerative disease. Neuroscience 2014; 270:139-47. [PMID: 24735819 DOI: 10.1016/j.neuroscience.2014.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/08/2023]
Abstract
The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n=21) and neurodegenerative disease (Alzheimer's disease (AD), n=20; Parkinson's disease (PD), n=22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. We found that HOMA2 was increased in both AD and PD compared to the HC group (HC vs. AD, p=0.002, HC vs. PD, p=0.003), although only AD subjects exhibited increased fasting glucose (p=0.005). Furthermore, our voxel-based morphometry analysis revealed that HOMA2 was related to GMV in all cohorts in a region-specific manner (p<0.001, uncorrected). Significant relationships were observed in the medial prefrontal cortex (HC), medial temporal regions (AD), and parietal regions (PD). Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.
Collapse
Affiliation(s)
- J K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - E D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R D Perea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R Rada
- Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - D K Johnson
- Department of Psychology, University of Kansas, Lawrence, KS, United States.
| | - K Lyons
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R Pahwa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States.
| | - J M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| | - R A Honea
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States; Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
128
|
Chen Y, Deng Y, Zhang B, Gong CX. Deregulation of brain insulin signaling in Alzheimer's disease. Neurosci Bull 2014; 30:282-94. [PMID: 24652456 PMCID: PMC5562654 DOI: 10.1007/s12264-013-1408-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/03/2014] [Indexed: 01/09/2023] Open
Abstract
Contrary to the previous belief that insulin does not act in the brain, studies in the last three decades have demonstrated important roles of insulin and insulin signal transduction in various functions of the central nervous system. Deregulated brain insulin signaling and its role in molecular pathogenesis have recently been reported in Alzheimer's disease (AD). In this article, we review the roles of brain insulin signaling in memory and cognition, the metabolism of amyloid β precursor protein, and tau phosphorylation. We further discuss deficiencies of brain insulin signaling and glucose metabolism, their roles in the development of AD, and recent studies that target the brain insulin signaling pathway for the treatment of AD. It is clear now that deregulation of brain insulin signaling plays an important role in the development of sporadic AD. The brain insulin signaling pathway also offers a promising therapeutic target for treating AD and probably other neurodegenerative disorders.
Collapse
Affiliation(s)
- Yanxing Chen
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Yanqiu Deng
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070 China
| | - Baorong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York 10314 USA
| |
Collapse
|
129
|
Irving AJ, Harvey J. Leptin regulation of hippocampal synaptic function in health and disease. Philos Trans R Soc Lond B Biol Sci 2013; 369:20130155. [PMID: 24298156 DOI: 10.1098/rstb.2013.0155] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The endocrine hormone leptin plays a key role in regulating food intake and body weight via its actions in the hypothalamus. However, leptin receptors are highly expressed in many extra-hypothalamic brain regions and evidence is growing that leptin influences many central processes including cognition. Indeed, recent studies indicate that leptin is a potential cognitive enhancer as it markedly facilitates the cellular events underlying hippocampal-dependent learning and memory, including effects on glutamate receptor trafficking, neuronal morphology and activity-dependent synaptic plasticity. However, the ability of leptin to regulate hippocampal synaptic function markedly declines with age and aberrant leptin function has been linked to neurodegenerative disorders such as Alzheimer's disease (AD). Here, we review the evidence supporting a cognitive enhancing role for the hormone leptin and discuss the therapeutic potential of using leptin-based agents to treat AD.
Collapse
Affiliation(s)
- Andrew J Irving
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, , Dundee DD1 9SY, UK
| | | |
Collapse
|
130
|
Cognitive and motor perturbations in elderly with longstanding diabetes mellitus. Nutrition 2013; 30:628-35. [PMID: 24800665 DOI: 10.1016/j.nut.2013.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 10/11/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023]
Abstract
Type 2 diabetes mellitus is a chronic disease characterized by insulin resistance; inflammation; oxidative stress; vascular damage; and dysfunction of glucose, protein, and lipid metabolisms. However, comparatively less attention has been paid to neurologic alterations seen in elderly individuals with type 2 diabetes. We review clinical, metabolic, and biochemical aspects of diabetic encephalopathy (DE) and propose that quality of dietary lipids is closely linked to DE. This implies that preventive nutritional interventions may be designed to improve DE.
Collapse
|
131
|
Cholerton B, Baker LD, Craft S. Insulin, cognition, and dementia. Eur J Pharmacol 2013; 719:170-179. [PMID: 24070815 DOI: 10.1016/j.ejphar.2013.08.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/21/2013] [Accepted: 08/26/2013] [Indexed: 01/21/2023]
Abstract
Cognitive disorders of aging represent a serious threat to the social and economic welfare of current society. It is now widely recognized that pathology related to such conditions, particularly Alzheimer's disease, likely begins years or decades prior to the onset of clinical dementia symptoms. This revelation has led researchers to consider candidate mechanisms precipitating the cascade of neuropathological events that eventually lead to clinical Alzheimer's disease. Insulin, a hormone with potent effects in the brain, has recently received a great deal of attention for its potential beneficial and protective role in cognitive function. Insulin resistance, which refers to the reduced sensitivity of target tissues to the favorable effects of insulin, is related to multiple chronic conditions known to impact cognition and increase dementia risk. With insulin resistance-associated conditions reaching epidemic proportions, the prevalence of Alzheimer's disease and other cognitive disorders will continue to rise exponentially. Fortunately, these chronic insulin-related conditions are amenable to pharmacological intervention. As a result, novel therapeutic strategies that focus on increasing insulin sensitivity in the brain may be an important target for protecting or treating cognitive decline. The following review will highlight our current understanding of the role of insulin in brain, potential mechanisms underlying the link between insulin resistance and dementia, and current experimental therapeutic strategies aimed at improving cognitive function via modifying the brain's insulin sensitivity.
Collapse
Affiliation(s)
- Brenna Cholerton
- Department of Psychiatry and Behavioral Science, University of Washington School of Medicine, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Laura D Baker
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, Winston-Salem, NC 27157-1207, USA
| | - Suzanne Craft
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, Winston-Salem, NC 27157-1207, USA.
| |
Collapse
|
132
|
Harvey J. Leptin regulation of neuronal morphology and hippocampal synaptic function. Front Synaptic Neurosci 2013; 5:3. [PMID: 23964236 PMCID: PMC3734345 DOI: 10.3389/fnsyn.2013.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/12/2013] [Indexed: 12/14/2022] Open
Abstract
The central actions of the hormone leptin in regulating energy homeostasis via the hypothalamus are well documented. However, evidence is growing that this hormone can also modify the structure and function of synapses throughout the CNS. The hippocampus is a region of the forebrain that plays a crucial role in associative learning and memory and is an area also highly vulnerable to neurodegenerative processes. Recent studies indicate that leptin is a potential cognitive enhancer as it modulates the cellular processes underlying hippocampal-dependent learning and memory including dendritic morphology, glutamate receptor trafficking and activity-dependent synaptic plasticity. Here, we review the recent evidence implicating the hormone leptin as a key regulator of hippocampal synaptic function and discuss the role of leptin receptor-driven lipid signaling pathways involved in this process.
Collapse
Affiliation(s)
- Jenni Harvey
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee Dundee, UK
| |
Collapse
|
133
|
Kostakis E, Smith C, Jang MK, Martin SC, Richards KG, Russek SJ, Gibbs TT, Farb DH. The neuroactive steroid pregnenolone sulfate stimulates trafficking of functional N-methyl D-aspartate receptors to the cell surface via a noncanonical, G protein, and Ca2+-dependent mechanism. Mol Pharmacol 2013; 84:261-74. [PMID: 23716622 PMCID: PMC3716320 DOI: 10.1124/mol.113.085696] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/28/2013] [Indexed: 01/06/2023] Open
Abstract
N-methyl D-aspartate (NMDA) receptors (NMDARs) mediate fast excitatory synaptic transmission and play a critical role in synaptic plasticity associated with learning and memory. NMDAR hypoactivity has been implicated in the pathophysiology of schizophrenia, and clinical studies have revealed reduced negative symptoms of schizophrenia with a dose of pregnenolone that elevates serum levels of the neuroactive steroid pregnenolone sulfate (PregS). This report describes a novel process of delayed-onset potentiation whereby PregS approximately doubles the cell's response to NMDA via a mechanism that is pharmacologically and kinetically distinct from rapid positive allosteric modulation by PregS. The number of functional cell-surface NMDARs in cortical neurons increases 60-100% within 10 minutes of exposure to PregS, as shown by surface biotinylation and affinity purification. Delayed-onset potentiation is reversible and selective for expressed receptors containing the NMDAR subunit subtype 2A (NR2A) or NR2B, but not the NR2C or NR2D, subunits. Moreover, substitution of NR2B J/K helices and M4 domain with the corresponding region of NR2D ablates rapid allosteric potentiation of the NMDA response by PregS but not delayed-onset potentiation. This demonstrates that the initial phase of rapid positive allosteric modulation is not a first step in NMDAR upregulation. Delayed-onset potentiation by PregS occurs via a noncanonical, pertussis toxin-sensitive, G protein-coupled, and Ca(2+)-dependent mechanism that is independent of NMDAR ion channel activation. Further investigation into the sequelae for PregS-stimulated trafficking of NMDARs to the neuronal cell surface may uncover a new target for the pharmacological treatment of disorders in which NMDAR hypofunction has been implicated.
Collapse
Affiliation(s)
- Emmanuel Kostakis
- Laboratory of Molecular Neurobiology, Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Thibault O, Anderson KL, DeMoll C, Brewer LD, Landfield PW, Porter NM. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur J Pharmacol 2013; 719:34-43. [PMID: 23872402 DOI: 10.1016/j.ejphar.2013.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 01/19/2023]
Abstract
Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States.
| | - Katie L Anderson
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Chris DeMoll
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Philip W Landfield
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| |
Collapse
|
135
|
Yang Y, Song W. Molecular links between Alzheimer's disease and diabetes mellitus. Neuroscience 2013; 250:140-50. [PMID: 23867771 DOI: 10.1016/j.neuroscience.2013.07.009] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/03/2013] [Indexed: 01/07/2023]
Abstract
Substantial epidemiological evidence shows an increased risk for developing Alzheimer's disease (AD) in people with diabetes. Yet the underlying molecular mechanisms still remain to be elucidated. This article reviews the current studies on common pathological processes of Alzheimer's disease and diabetes with particular focus on potential mechanisms through which diabetes affects the initiation and progression of Alzheimer's disease. Impairment of insulin signaling, inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, APOEε4 and cholesterol appear to be important mediators and are likely to act synergistically in promoting AD pathology.
Collapse
Affiliation(s)
- Y Yang
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | | |
Collapse
|
136
|
Morris JK, Burns JM. Insulin: an emerging treatment for Alzheimer's disease dementia? Curr Neurol Neurosci Rep 2013; 12:520-7. [PMID: 22791280 DOI: 10.1007/s11910-012-0297-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Accumulating evidence indicates a role for metabolic dysfunction in the pathogenesis of Alzheimer's disease (AD). It is widely reported that Type 2 diabetes (T2D) increases the risk of developing AD, and several postmortem analyses have found evidence of insulin resistance in the AD brain. Thus, insulin-based therapies have emerged as potential strategies to slow cognitive decline in AD. The main methods for targeting insulin to date have been intravenous insulin infusion, intranasal insulin administration, and use of insulin sensitizers. These methods have elicited variable results regarding improvement in cognitive function. This review will discuss the rationale for targeting insulin signaling to improve cognitive function in AD, the results of clinical studies that have targeted insulin signaling, and what these results mean for future studies of the role of insulin-based therapies for AD.
Collapse
Affiliation(s)
- Jill K Morris
- Department of Neurology and Alzheimer's Disease Center, University of Kansas Medical Center, Fairway, KS 66205, USA.
| | | |
Collapse
|
137
|
No effect of adjunctive, repeated-dose intranasal insulin treatment on psychopathology and cognition in patients with schizophrenia. J Clin Psychopharmacol 2013; 33:226-30. [PMID: 23422397 PMCID: PMC5366038 DOI: 10.1097/jcp.0b013e31828701d0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE This study examined the effect of adjunctive intranasal insulin therapy on psychopathology and cognition in patients with schizophrenia. METHODS Each subject had a Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, diagnosis of schizophrenia or schizoaffective disorder and been on stable antipsychotics for at least 1 month. In an 8-week randomized, double-blind, placebo-controlled study, subjects received either intranasal insulin (40 IU 4 times per day) or placebo. Psychopathology was assessed using the Positive and Negative Syndrome Scale and the Scale for Assessment of Negative Symptoms. A neuropsychological battery was used to assess cognitive performance. The assessment for psychopathology and cognition was conducted at baseline, week 4, and week 8. RESULTS A total of 45 subjects were enrolled in the study (21 in the insulin group and 24 in the placebo group). The mixed model analysis showed that there were no significant differences between the 2 groups at week 8 on various psychopathology and cognitive measures (P > 0.1). CONCLUSIONS Adjunctive therapy with intranasal insulin did not seem to be beneficial in improving schizophrenia symptoms or cognition in the present study. The implications for future studies were discussed.
Collapse
|
138
|
Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther 2012; 136:82-93. [PMID: 22820012 PMCID: PMC4134675 DOI: 10.1016/j.pharmthera.2012.07.006] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BECs), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, are themselves regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BECs, protect the integrity of the BBB and its ability to transport insulin. Most of insulin's known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer's disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain.
Collapse
Affiliation(s)
- William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Seattle, WA, USA.
| | | | | |
Collapse
|
139
|
Ghasemi R, Haeri A, Dargahi L, Mohamed Z, Ahmadiani A. Insulin in the brain: sources, localization and functions. Mol Neurobiol 2012; 47:145-71. [PMID: 22956272 DOI: 10.1007/s12035-012-8339-9] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/20/2012] [Indexed: 02/07/2023]
Abstract
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
Collapse
Affiliation(s)
- Rasoul Ghasemi
- Department of Physiology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | | | | |
Collapse
|
140
|
Fatigue and cognitive symptoms in patients with diabetes: relationship with disease phenotype and insulin treatment. Psychoneuroendocrinology 2012; 37:1468-78. [PMID: 22370460 DOI: 10.1016/j.psyneuen.2012.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/31/2012] [Accepted: 01/31/2012] [Indexed: 12/16/2022]
Abstract
Neurobehavioral symptoms are frequently reported in patients with diabetes. Nevertheless, the characterization of the specific symptom dimensions that develop in diabetic patients with respect to disease phenotype and treatment status remains obscure. This study comparatively assessed fatigue symptoms and cognitive performance using a dimensional approach in 21 patients with insulin-treated type 1 diabetes, 24 type 2 diabetic patients either insulin-free or undergoing insulin treatment for at least six months, and 15 healthy subjects. Specific dimensions of fatigue were assessed using the Multidimensional-Fatigue-Inventory (MFI). Cognitive performance on tests of choice reaction time, pattern recognition memory and spatial planning was evaluated using the Cambridge-Neuropsychological-Automated-Battery (CANTAB). Body mass index (BMI) and glycated-hemoglobin (HbA1C) concentrations were collected, as well as information on diabetes complications and disease duration. Patients with type 2 diabetes, regardless of insulin treatment status, exhibited higher scores of fatigue, primarily in the dimensions of general and physical fatigue as well as reduced activity. Cognitive alterations, in the form of longer reaction times and impaired spatial planning, were also detected in type 2 diabetic patients treated with insulin. These alterations were overall unrelated to glucose control, as reflected in HbA1C levels, and were not explained by complications and duration of diabetes. No specific alteration was measured in type 1 diabetic patients who exhibited fatigue scores and cognitive performance comparable to healthy participants. While associated with fatigue, increased BMI did not significantly account for the relationship of type 2 diabetes with general fatigue and physical fatigue. BMI, however, modulated the association of type 2 diabetes with reduced activity and the association of insulin-treated type 2 diabetes with psychomotor slowing. These findings reveal specific fatigue and cognitive symptoms in patients with type 2 diabetes and suggest the involvement of differential pathophysiological processes.
Collapse
|
141
|
Abstract
Diabetes mellitus (DM) is one of the major health problems of the elderly. Developed countries face an epidemic of Type 2 DM. Healthcare providers should be aware of the frequent coexistence of psychiatric conditions in elderly patients with DM. Dementia, depression, and anxiety are commonly seen in addition to other psychiatric conditions. The relationship between diabetes and psychiatric disorders is complex. Evidence suggests that common mechanisms may play a role in both the pathogenesis of DM and several psychiatric illnesses. Possible mechanisms, diagnosis, and management options are reviewed and discussed. Common mechanisms of psychiatric illness involving brain-derived neurotrophic factor, insulin resistance, and inflammatory cytokines are throwing new light that these psychiatric illnesses could be due to the complications of Type 2 DM. Periodic screening should be done in DM patients to identify the psychiatric complications. Healthcare professionals should routinely screen for psychiatric complications of DM in addition to the microvascular and macrovascular complications of DM. It is important to screen all diabetic elderly patients for mental health issues as these may interfere with self-care and the overall management of DM. Recognition and management of psychiatric disorders will help to optimize the diabetes management. Good diabetes control can also reduce the mental health complications in these patients.
Collapse
|
142
|
Ravona-Springer R, Schnaider-Beeri M. The association of diabetes and dementia and possible implications for nondiabetic populations. Expert Rev Neurother 2012; 11:1609-17. [PMID: 22014139 DOI: 10.1586/ern.11.152] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Diabetes and prediabetic states have consistently been shown to be risk factors for cognitive decline, mild cognitive impairment and dementia. The importance of these findings is that diabetes and diabetes-related factors are modifiable, potentially permitting interventions aimed at postponing or preventing dementia. However, diabetes control cannot yet be implemented universally in diabetic subjects as a strategy for dementia prevention since the mechanisms by which diabetes impairs brain function and cognition are not fully understood. It is not clear which of the diabetes-related factors is crucial to this relationship. In addition, strict diabetic control has been demonstrated to carry risk for certain diabetic populations. The aim of the current article is to discuss current understanding of the relationships of diabetes and some of its characteristics with dementia, and suggest future questions to be answered.
Collapse
|
143
|
Nisticò R, Cavallucci V, Piccinin S, Macrì S, Pignatelli M, Mehdawy B, Blandini F, Laviola G, Lauro D, Mercuri NB, D'Amelio M. Insulin receptor β-subunit haploinsufficiency impairs hippocampal late-phase LTP and recognition memory. Neuromolecular Med 2012; 14:262-9. [PMID: 22661254 DOI: 10.1007/s12017-012-8184-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
Abstract
The insulin receptor (IR) is a protein tyrosine kinase playing a pivotal role in the regulation of peripheral glucose metabolism and energy homoeostasis. IRs are also abundantly distributed in the cerebral cortex and hippocampus, where they regulate synaptic activity required for learning and memory. As the major anabolic hormone in mammals, insulin stimulates protein synthesis partially through the activation of the PI3K/Akt/mTOR pathway, playing fundamental roles in neuronal development, synaptic plasticity and memory. Here, by means of a multidisciplinary approach, we report that long-term synaptic plasticity and recognition memory are impaired in IR β-subunit heterozygous mice. Since IR expression is diminished in type-2 diabetes as well as in Alzheimer's disease (AD) patients, these data may provide a mechanistic link between insulin resistance, impaired synaptic transmission and cognitive decline in humans with metabolic disorders.
Collapse
Affiliation(s)
- Robert Nisticò
- IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano, 64/65, 00143, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Williamson R, McNeilly A, Sutherland C. Insulin resistance in the brain: an old-age or new-age problem? Biochem Pharmacol 2012; 84:737-45. [PMID: 22634336 DOI: 10.1016/j.bcp.2012.05.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/21/2023]
Abstract
Life expectancy is rising however with more people living longer there is a concomitant rise in the incidence of dementia. In addition to age-related cognitive decline there is a higher risk of going on to develop vascular dementia and Alzheimer's disease associated with aspects of modern lifestyle. Most worryingly, recent data reports accelerated cognitive decline in adolescents associated with poor diet (high fat and calorie intake). Thus the increase in dementia in 'old-age' may have as much to do with 'new-age' lifestyle as it does with normal ageing. It would seem wise therefore to investigate the molecular connections between lifestyle and cognitive decline in more detail. Epidemiological evidence suggests an increased risk of developing dementia (including Alzheimer's disease) in individuals with obesity and type 2 diabetes but also in those with poor insulin sensitivity without diabetes, implicating a mechanistic link between adiposity, insulin sensitivity and dementia. Insulin receptors are expressed in the brain and physiological roles for insulin in the CNS are starting to be delineated. Indeed disrupted neuronal insulin action may underlie the link between diabetes and neurodegenerative disorders. This review discusses the difficulties in quantifying insulin sensitivity of the brain and why it is vital that we develop technology for this purpose so that we can establish its role in this 'new-age' dementia. This has particular relevance to the design and interpretation of clinical trials in progress to assess potential benefits of insulin and insulin sensitisers on prevention of cognitive decline.
Collapse
|
145
|
Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci 2012; 13:225-39. [PMID: 22430016 DOI: 10.1038/nrn3209] [Citation(s) in RCA: 652] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Central and peripheral insulin-like peptides (ILPs), which include insulin, insulin-like growth factor 1 (IGF1) and IGF2, exert many effects in the brain. Through their actions on brain growth and differentiation, ILPs contribute to building circuitries that subserve metabolic and behavioural adaptation to internal and external cues of energy availability. In the adult brain each ILP has distinct effects, but together their actions ultimately regulate energy homeostasis - they affect nutrient sensing and regulate neuronal plasticity to modulate adaptive behaviours involved in food seeking, including high-level cognitive operations such as spatial memory. In essence, the multifaceted activity of ILPs in the brain may be viewed as a system organization involved in the control of energy allocation.
Collapse
Affiliation(s)
- Ana M Fernandez
- Cajal Institute, CSIC and Ciberned, Avenida Doctor Arce, 37, Madrid 28002, Spain
| | | |
Collapse
|
146
|
Costello DA, Claret M, Al-Qassab H, Plattner F, Irvine EE, Choudhury AI, Giese KP, Withers DJ, Pedarzani P. Brain deletion of insulin receptor substrate 2 disrupts hippocampal synaptic plasticity and metaplasticity. PLoS One 2012; 7:e31124. [PMID: 22383997 PMCID: PMC3287998 DOI: 10.1371/journal.pone.0031124] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/03/2012] [Indexed: 01/17/2023] Open
Abstract
Objective Diabetes mellitus is associated with cognitive deficits and an increased risk of dementia, particularly in the elderly. These deficits and the corresponding neurophysiological structural and functional alterations are linked to both metabolic and vascular changes, related to chronic hyperglycaemia, but probably also defects in insulin action in the brain. To elucidate the specific role of brain insulin signalling in neuronal functions that are relevant for cognitive processes we have investigated the behaviour of neurons and synaptic plasticity in the hippocampus of mice lacking the insulin receptor substrate protein 2 (IRS-2). Research Design and Methods To study neuronal function and synaptic plasticity in the absence of confounding factors such as hyperglycaemia, we used a mouse model with a central nervous system- (CNS)-restricted deletion of IRS-2 (NesCreIrs2KO). Results We report a deficit in NMDA receptor-dependent synaptic plasticity in the hippocampus of NesCreIrs2KO mice, with a concomitant loss of metaplasticity, the modulation of synaptic plasticity by the previous activity of a synapse. These plasticity changes are associated with reduced basal phosphorylation of the NMDA receptor subunit NR1 and of downstream targets of the PI3K pathway, the protein kinases Akt and GSK-3β. Conclusions These findings reveal molecular and cellular mechanisms that might underlie cognitive deficits linked to specific defects of neuronal insulin signalling.
Collapse
Affiliation(s)
- Derek A. Costello
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Marc Claret
- Department of Medicine, University College London, London, United Kingdom
| | - Hind Al-Qassab
- Department of Medicine, University College London, London, United Kingdom
| | - Florian Plattner
- Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Elaine E. Irvine
- Department of Medicine, University College London, London, United Kingdom
- Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Agharul I. Choudhury
- Department of Medicine, University College London, London, United Kingdom
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - K. Peter Giese
- Wolfson Institute of Biomedical Research, University College London, London, United Kingdom
| | - Dominic J. Withers
- Department of Medicine, University College London, London, United Kingdom
- Metabolic Signalling Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Paola Pedarzani
- Research Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
147
|
Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res 2012; 2012:384017. [PMID: 22500228 PMCID: PMC3303591 DOI: 10.1155/2012/384017] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/12/2011] [Accepted: 11/23/2011] [Indexed: 12/14/2022] Open
Abstract
Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimer's disease (AD) considered as the "brain-type diabetes." In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human "healthy" longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.
Collapse
Affiliation(s)
- Ana I. Duarte
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Paula I. Moreira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina R. Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
148
|
Leptin: a novel therapeutic target in Alzheimer's disease? Int J Alzheimers Dis 2012; 2012:594137. [PMID: 22254146 PMCID: PMC3255100 DOI: 10.1155/2012/594137] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 10/15/2011] [Indexed: 12/12/2022] Open
Abstract
It is well established that the hormone leptin circulates in the plasma in amounts proportional to body fat content and it regulates food intake and body weight via its actions in the hypothalamus. However, numerous studies have shown that leptin receptors are widely expressed throughout the CNS and evidence is growing that leptin plays a role in modulating a variety of neuronal processes. In particular, recent studies have highlighted a potential cognitive enhancing role for leptin as it regulates diverse aspects of hippocampal synaptic function that are thought to underlie learning and memory processes including glutamate receptor trafficking, dendritic morphology, and activity-dependent synaptic plasticity. Characterisation of the novel actions of leptin in limbic brain regions is providing valuable insights into leptin's role in higher cognitive functions in health and disease.
Collapse
|
149
|
Al Hazzouri AZ, Haan MN, Whitmer RA, Yaffe K, Neuhaus J. Central obesity, leptin and cognitive decline: the Sacramento Area Latino Study on Aging. Dement Geriatr Cogn Disord 2012; 33:400-9. [PMID: 22814127 PMCID: PMC3483312 DOI: 10.1159/000339957] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND/AIMS Central obesity is a risk factor for cognitive decline. Leptin is secreted by adipose tissue and has been associated with better cognitive function. Aging Mexican Americans have higher levels of obesity than non-Hispanic Whites, but no investigations examined the relationship between leptin and cognitive decline among them or the role of central obesity in this association. METHODS We analyzed 1,480 dementia-free older Mexican Americans who were followed over 10 years. Cognitive function was assessed every 12-15 months with the Modified Mini Mental State Exam (3MSE) and the Spanish and English Verbal Learning Test (SEVLT). RESULTS For females with a small waist circumference (≤35 inches), an interquartile range difference in leptin was associated with 35% less 3MSE errors and 22% less decline in the SEVLT score over 10 years. For males with a small waist circumference (≤40 inches), an interquartile range difference in leptin was associated with 44% less 3MSE errors and 30% less decline in the SEVLT score over 10 years. There was no association between leptin and cognitive decline among females or males with a large waist circumference. CONCLUSION Leptin interacts with central obesity in shaping cognitive decline. Our findings provide valuable information about the effects of metabolic risk factors on cognitive function.
Collapse
Affiliation(s)
- Adina Zeki Al Hazzouri
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, United States,Department of Psychiatry, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Mary N. Haan
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Rachel A. Whitmer
- Kaiser Permanente, Northern California Division of Research, Oakland, CA, United States
| | - Kristine Yaffe
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, United States,Department of Psychiatry, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
150
|
Urban MJ, Dobrowsky RT, Blagg BSJ. Heat shock response and insulin-associated neurodegeneration. Trends Pharmacol Sci 2011; 33:129-37. [PMID: 22172248 DOI: 10.1016/j.tips.2011.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/24/2011] [Accepted: 11/01/2011] [Indexed: 02/07/2023]
Abstract
Dysfunctional insulin and insulin-like growth factor-I (IGF-I) signaling contributes to the pathological progression of diabetes, diabetic peripheral neuropathy (DPN), Alzheimer's (AD), Parkinson's (PD) and Huntington's diseases (HD). Despite their prevalence, there are limited therapeutic options available for the treatment of these neurodegenerative disorders. Therefore, establishing a link between insulin/IGF-I and the pathoetiology of these diseases may provide alternative approaches toward their management. Many of the heat shock proteins (Hsps) are well-known molecular chaperones that solubilize and clear damaged proteins and protein aggregates. Recent studies suggest that modulating Hsps may represent a promising therapeutic avenue for improving insulin and IGF-I signaling. Pharmacological induction of the heat shock response (HSR) may intersect with insulin/IGF-I signaling to improve aspects of neurodegenerative phenotypes. Herein, we review the intersection between Hsps and the insulin/IGF systems under normal and pathological conditions. The discussion will emphasize the potential of non-toxic HSR inducers as viable therapeutic agents.
Collapse
Affiliation(s)
- Michael J Urban
- Neuroscience Graduate Program, The University of Kansas, Lawrence, KS 66045, USA
| | | | | |
Collapse
|