101
|
Obermüller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S. Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 2005; 118:4271-82. [PMID: 16141231 DOI: 10.1242/jcs.02549] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretory granules of insulin-secreting cells are used to store and release peptide hormones as well as low-molecular-weight compounds such as nucleotides. Here we have compared the rate of exocytosis with the time courses of nucleotide and peptide release by a combination of capacitance measurements, electrophysiological detection of ATP release and single-granule imaging. We demonstrate that the release of nucleotides and peptides is delayed by approximately 0.1 and approximately 2 seconds with respect to membrane fusion, respectively. We further show that in up to 70% of the cases exocytosis does not result in significant release of the peptide cargo, likely because of a mechanism that leads to premature closure of the fusion pore. Release of nucleotides and protons occurred regardless of whether peptides were secreted or not. These observations suggest that insulin-secreting cells are able to use the same secretory vesicles to release small molecules either alone or together with the peptide hormone.
Collapse
Affiliation(s)
- Stefanie Obermüller
- Department of Experimental Medicinal Sciences, Lund University, BMC B11, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
102
|
Koumanov F, Jin B, Yang J, Holman GD. Insulin signaling meets vesicle traffic of GLUT4 at a plasma-membrane-activated fusion step. Cell Metab 2005; 2:179-89. [PMID: 16154100 DOI: 10.1016/j.cmet.2005.08.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 06/14/2005] [Accepted: 08/16/2005] [Indexed: 11/21/2022]
Abstract
A hypothesis that accounts for most of the available literature on insulin-stimulated GLUT4 translocation is that insulin action controls the access of GLUT4 vesicles to a constitutively active plasma-membrane fusion process. However, using an in vitro fusion assay, we show here that fusion is not constitutively active. Instead, the rate of fusion activity is stimulated 8-fold by insulin. Both the magnitude and time course of stimulated in vitro fusion recapitulate the cellular insulin response. Fusion is cell cytoplasm and SNARE dependent but does not require cell cytoskeleton. Furthermore, insulin activation of the plasma-membrane fraction of the fusion reaction is the essential step in regulation. Akt from the cytoplasm fraction is required for fusion. However, the participation of Akt in the stimulation of in vitro fusion is dependent on its in vitro recruitment onto the insulin-activated plasma membrane.
Collapse
|
103
|
Chen XK, Wang LC, Zhou Y, Cai Q, Prakriya M, Duan KL, Sheng ZH, Lingle C, Zhou Z. Activation of GPCRs modulates quantal size in chromaffin cells through G(betagamma) and PKC. Nat Neurosci 2005; 8:1160-8. [PMID: 16116443 DOI: 10.1038/nn1529] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Accepted: 07/28/2005] [Indexed: 11/09/2022]
Abstract
Exocytosis proceeds by either full fusion or 'kiss-and-run' between vesicle and plasma membrane. Switching between these two modes permits the cell to regulate the kinetics and amount of secretion. Here we show that ATP receptor activation reduces secretion downstream from cytosolic Ca2+ elevation in rat adrenal chromaffin cells. This reduction is mediated by activation of a pertussis toxin-sensitive G(i/o) protein, leading to activation of G(betagamma) subunits, which promote the 'kiss-and-run' mode by reducing the total open time of the fusion pore during a vesicle fusion event. Furthermore, parallel activation of the muscarinic acetylcholine receptor removes the inhibitory effects of ATP on secretion. This is mediated by a G(q) pathway through protein kinase C activation. The inhibitory effects of ATP and its reversal by protein kinase C activation are also shared by opioids and somatostatin. Thus, a variety of G protein pathways exist to modulate Ca2+-evoked secretion at specific steps in fusion pore formation.
Collapse
Affiliation(s)
- Xiao-Ke Chen
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences and Graduate School, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Richards DA, Bai J, Chapman ER. Two modes of exocytosis at hippocampal synapses revealed by rate of FM1-43 efflux from individual vesicles. ACTA ACUST UNITED AC 2005; 168:929-39. [PMID: 15767463 PMCID: PMC2171786 DOI: 10.1083/jcb.200407148] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the kinetics by which FM1-43 escapes from individual synaptic vesicles during exocytosis at hippocampal boutons. Two populations of exocytic events were observed; small amplitude events that lose dye slowly, which made up more than half of all events, and faster, larger amplitude events with a fluorescence intensity equivalent to single stained synaptic vesicles. These populations of destaining events are distinct in both brightness and kinetics, suggesting that they result from two distinct modes of exocytosis. Small amplitude events show tightly clustered rate constants of dye release, whereas larger events have a more scattered distribution. Kinetic analysis of the association and dissociation of FM1-43 with membranes, in combination with a simple pore permeation model, indicates that the small, slowly destaining events may be mediated by a narrow ∼1-nm fusion pore.
Collapse
Affiliation(s)
- David A Richards
- Department of Physiology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
105
|
Abstract
Munc-18 interacts with the SNARE protein syntaxin and is supposed to influence transmitter release by controlling the formation of exocytosis-relevant SNARE complexes. Here, we used combined biochemical and physiological analyses to study the role of the Munc-18/syntaxin interaction in large dense core vesicle (LDCV) exocytosis of neuroendocrine PC12 cells. We compared two Munc-18 mutants carrying mutations in the syntaxin-binding region and show that Munc-18's membrane association depends on direct binding to syntaxin. The data suggest that perturbation of syntaxin binding inhibits neurotransmitter release upstream of the individual fusion event implying an essential role of the Munc-18/syntaxin complex leading to exocytosis. Furthermore, we show that a Munc-18 mutant lacking any syntaxin binding has a stimulatory effect on secretion, and provide evidence that the Munc-18/Mint1 interaction may constitute a second pathway for Munc-18 to regulate exocytosis. We propose that Munc-18 represents a dynamic link between syntaxin-related and Mint1-related mechanisms, both involved in the control of LDCV exocytosis in neuroendocrine cells.
Collapse
Affiliation(s)
- Dagmar Schütz
- Max-Planck-Institute for Biophysical Chemistry, Department of Neurobiology, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
106
|
Abstract
Neurons communicate with one another through the release of molecules from synaptic vesicles and large dense core granules through the process of exocytosis. During exocytosis, molecules are released to the extracellular space through a fusion pore, which can either dilate, resulting in full fusion, or close, resulting in incomplete exocytosis, often referred to as 'kiss and run' exocytosis. Recently, there has been much interest in the regulation of this process in both neurons and neuroendocrine cells. There has been much recent work that addresses the existence of incomplete exocytosis in neurons and neuroendocrine cells, as well as recent work probing the molecular components and modulation of the fusion pore.
Collapse
Affiliation(s)
- Seong An
- Yale University School of Medicine, Department of Cellular and Molecular Physiology, Sterling Hall of Medicine, B-147, 333 Cedar St, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
107
|
Li D, Xiong J, Qu A, Xu T. Three-dimensional tracking of single secretory granules in live PC12 cells. Biophys J 2005; 87:1991-2001. [PMID: 15345575 PMCID: PMC1304602 DOI: 10.1529/biophysj.104.043281] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deconvolution wide-field fluorescence microscopy and single-particle tracking were used to study the three-dimensional mobility of single secretory granules in live PC12 cells. Acridine orange-labeled granules were found to travel primarily in random and caged diffusion, whereas only a small fraction of granules traveled in directed fashion. High K(+) stimulation increased significantly the percentage of granules traveling in directed fashion. By dividing granules into the near-membrane group (within 1 microm from the plasma membrane) and cytosolic group, we have revealed significant differences between these two groups of granules in their mobility. The mobility of these two groups of granules is also differentially affected by disruption of F-actin, suggesting different mechanisms are involved in the motion of the two groups of granules. Our results demonstrate that combined deconvolution and single-particle tracking may find its application in three-dimensional tracking of long-term motion of granules and elucidating the underlying mechanisms.
Collapse
Affiliation(s)
- Dongdong Li
- Institute of Biophysics and Biochemistry, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | |
Collapse
|
108
|
Yamashita T, Hige T, Takahashi T. Vesicle endocytosis requires dynamin-dependent GTP hydrolysis at a fast CNS synapse. Science 2005; 307:124-7. [PMID: 15637282 DOI: 10.1126/science.1103631] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Molecular dependence of vesicular endocytosis was investigated with capacitance measurements at the calyx of Held terminal in brainstem slices. Intraterminal loading of botulinum toxin E revealed that the rapid capacitance transient implicated as "kiss-and-run" was unrelated to transmitter release. The release-related capacitance change decayed with an endocytotic time constant of 10 to 25 seconds, depending on the magnitude of exocytosis. Presynaptic loading of the nonhydrolyzable guanosine 5'-triphosphate (GTP) analog GTPgS or dynamin-1 proline-rich domain peptide abolished endocytosis. These compounds had no immediate effect on exocytosis, but caused a use-dependent rundown of exocytosis. Thus, the guanosine triphosphatase dynamin-1 is indispensable for vesicle endocytosis at this fast central nervous system (CNS) synapse.
Collapse
Affiliation(s)
- Takayuki Yamashita
- Department of Neurophysiology, University of Tokyo Graduate School of Medicine, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
109
|
Thorn P, Parker I. Two phases of zymogen granule lifetime in mouse pancreas: ghost granules linger after exocytosis of contents. J Physiol 2005; 563:433-42. [PMID: 15637100 PMCID: PMC1665585 DOI: 10.1113/jphysiol.2004.077230] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Different cell types show widely divergent mechanisms and kinetics of exocytosis. We investigated these processes in pancreatic acinar cells by using video-rate 2-photon microscopy to image entry of extracellular dye into individual zymogen granules undergoing exocytosis. Fluorescence signals display two distinct phases; an initial peak that then decays over several seconds to a prolonged plateau. Several observations suggest that the first component reflects the binding of dye to the granule contents and their subsequent release into the acinar duct. These observations include: the peak/plateau fluorescence ratio differs between different dyes; the initial fluorescence decay mirrors the loss of granule contents as monitored by differential interference contrast microscopy; and the fall in vesicular fluorescence is accompanied by a rise in fluorescence in the adjacent duct lumen. We thus propose the use of extracellular fluorescent probes as a convenient means to monitor the kinetics of loss of proteinaceous content from secretory granules. In pancreatic acinar cells the fusion pore remains open much longer than required to ensure secretion of the granule contents, and instead the persistent empty 'ghost-granule' may act as a conduit to which secondary granules can fuse and release their contents by compound exocytosis.
Collapse
Affiliation(s)
- Peter Thorn
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
110
|
Abstract
The MHC-class-I-like Fcgamma receptor FcRn recycles immunoglobulin (Ig)G from most cells and transports it bi-directionally across epithelial barriers to affect systemic and mucosal immunity. Recent studies have shown that FcRn rescues IgG from intracellular lysosomal degradation by recycling it from the sorting endosome to the cell surface. Most recycling vesicles fuse completely with the plasma membrane in a classical pattern of exocytosis. Similar to the process seen for neurotransmitter release at synaptic junctions, other vesicles fuse only partially, releasing FcRn-IgG complexes to mix into the plasma membrane in cycles of 3-4s over prolonged periods of time.
Collapse
Affiliation(s)
- Wayne I Lencer
- GI Cell Biology, Division of Pediatric Gastroenterology and Nutrition, Children's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
111
|
Sherry DM, Heidelberger R. Distribution of proteins associated with synaptic vesicle endocytosis in the mouse and goldfish retina. J Comp Neurol 2005; 484:440-57. [PMID: 15770653 DOI: 10.1002/cne.20504] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current models of synaptic transmission require retrieval of membrane from the presynaptic terminal following neurotransmitter exocytosis. Dynamin, a GTPase, is thought to be critical for this retrieval process. At ribbon synapses of retinal bipolar neurons, however, compensatory endocytosis does not require GTP hydrolysis, suggesting that endocytosis mechanisms may differ among synapses. To understand better the synaptic vesicle recycling at conventional and ribbon synapses, the distributions of dynamin and two associated proteins, amphiphysin and clathrin, were examined in the retinas of goldfish and mouse by using immunocytochemical methods. Labeling for dynamin, clathrin, and amphiphysin was distributed differentially among conventional and ribbon synapses in retinas of both species. Ribbon synapses of photoreceptors and most bipolar cells labeled only weakly for dynamin relative to conventional synapses. Amphyiphysin labeling was strong at many ribbon synapses, and labeling in rod terminals was stronger than in cone terminals in the mouse retina. Clathrin labeling was heterogeneous among ribbon synapses. Similarly to the case with amphiphysin, mouse rod terminals showed stronger clathrin labeling than cone terminals. Among conventional synapses, there was heterogeneous labeling for all three endocytic proteins. Some labeling for each protein might have been associated with postsynaptic terminals. The differential distribution of labeling for these proteins among identified synapses in the retina suggests considerable heterogeneity in the molecular mechanisms underlying synaptic membrane retrieval, even among synapses with similar active zone ultrastructure. Thus, as with exocytosis, mechanisms of synaptic membrane retrieval may be tuned by the precise complement of proteins expressed within the synaptic terminal.
Collapse
Affiliation(s)
- David M Sherry
- University of Houston College of Optometry, Houston, Texas 77204-2020, USA.
| | | |
Collapse
|
112
|
Abstract
Synaptic transmission is based on the regulated exocytotic fusion of synaptic vesicles filled with neurotransmitter. In order to sustain neurotransmitter release, these vesicles need to be recycled locally. Recent data suggest that two tracks for the cycling of synaptic vesicles coexist: a slow track in which vesicles fuse completely with the presynaptic plasma membrane, followed by clathrin-mediated recycling of the vesicular components, and a fast track that may correspond to the transient opening and closing of a fusion pore. In this review, we attempt to provide an overview of the components involved in both tracks of vesicle cycling, as well as to identify possible mechanistic links between these two pathways.
Collapse
|
113
|
Trajkovski M, Mziaut H, Altkrüger A, Ouwendijk J, Knoch KP, Müller S, Solimena M. Nuclear translocation of an ICA512 cytosolic fragment couples granule exocytosis and insulin expression in {beta}-cells. ACTA ACUST UNITED AC 2004; 167:1063-74. [PMID: 15596545 PMCID: PMC2172607 DOI: 10.1083/jcb.200408172] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Islet cell autoantigen 512 (ICA512)/IA-2 is a receptor tyrosine phosphatase-like protein associated with the insulin secretory granules (SGs) of pancreatic β-cells. Here, we show that exocytosis of SGs and insertion of ICA512 in the plasma membrane promotes the Ca2+-dependent cleavage of ICA512 cytoplasmic domain by μ-calpain. This cleavage occurs at the plasma membrane and generates an ICA512 cytosolic fragment that is targeted to the nucleus, where it binds the E3-SUMO ligase protein inhibitor of activated signal transducer and activator of transcription-y (PIASy) and up-regulates insulin expression. Accordingly, this novel pathway directly links regulated exocytosis of SGs and control of gene expression in β-cells, whose impaired insulin production and secretion causes diabetes.
Collapse
Affiliation(s)
- Mirko Trajkovski
- Experimental Diabetology, Carl Gustav Carus Medical School, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | |
Collapse
|
114
|
Tsuboi T, McMahon HT, Rutter GA. Mechanisms of dense core vesicle recapture following "kiss and run" ("cavicapture") exocytosis in insulin-secreting cells. J Biol Chem 2004; 279:47115-24. [PMID: 15331588 DOI: 10.1074/jbc.m408179200] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms underlying "kiss and run" or "cavicapture" exocytosis of dense core secretory vesicles are presently unclear. Although dynamin-1 has previously been implicated in the recapture process in neurons, the recruitment of this fission protein to a single exocytosing vesicle has not been examined in real time during peptide release from pancreatic beta-cells. Imaged simultaneously in clonal insulin-secreting cells by dual color total internal reflection fluorescence microscopy, monomeric red fluorescent protein (mRFP)-tagged neuropeptide Y and green fluorescent protein (GFP)-tagged synaptotagmin-1 or synaptobrevin-2 rapidly diffused from sites of exocytosis, whereas the vesicle membrane protein phogrin and tissue plasminogen activator (tPA) were retained, consistent with fusion pore closure. Vesicle recovery frequently involved the recruitment of enhanced GFP-tagged dynamin-1, and GTPase-defective dynamin-1(K44E) increased the dwell time of tPA-mRFP at the plasma membrane. By contrast, recruitment of GFP chimeras of clathrin, epsin, and amphiphysin was not observed. Expression of dynamin-1(K535A), mutated in the pleckstrin homology domain, caused the apparent full fusion of vesicles, as reported by the additional release of tPA-mRFP (15-nm diameter) and enhanced GFP-tagged phogrin. We conclude that re-uptake of vesicles after peptide release by cavicapture corresponds to a novel form of endocytosis in which dynamin-1 stabilizes and eventually closes the fusion pore, with no requirement for "classical" endocytosis for retreat from the plasma membrane.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Henry Wellcome Laboratories for Integrated Cell Signalling and the Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | |
Collapse
|
115
|
Peters C, Baars TL, Bühler S, Mayer A. Mutual Control of Membrane Fission and Fusion Proteins. Cell 2004; 119:667-78. [PMID: 15550248 DOI: 10.1016/j.cell.2004.11.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 09/27/2004] [Accepted: 10/20/2004] [Indexed: 11/24/2022]
Abstract
Membrane fusion and fission are antagonistic reactions controlled by different proteins. Dynamins promote membrane fission by GTP-driven changes of conformation and polymerization state, while SNAREs fuse membranes by forming complexes between t- and v-SNAREs from apposed vesicles. Here, we describe a role of the dynamin-like GTPase Vps1p in fusion of yeast vacuoles. Vps1p forms polymers that couple several t-SNAREs together. At the onset of fusion, the SNARE-activating ATPase Sec18p/NSF and the t-SNARE depolymerize Vps1p and release it from the membrane. This activity is independent of the SNARE coactivator Sec17p/alpha-SNAP and of the v-SNARE. Vps1p release liberates the t-SNAREs for initiating fusion and at the same time disrupts fission activity. We propose that reciprocal control between fusion and fission components exists, which may prevent futile cycles of fission and fusion.
Collapse
Affiliation(s)
- Christopher Peters
- Département de Biochimie, Université de Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland.
| | | | | | | |
Collapse
|
116
|
Rutter GA. Visualising insulin secretion. The Minkowski Lecture 2004. Diabetologia 2004; 47:1861-72. [PMID: 15551048 DOI: 10.1007/s00125-004-1541-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 09/04/2004] [Indexed: 01/09/2023]
Abstract
Insulin secretion from pancreatic islet beta cells is a tightly regulated process, under the close control of blood glucose concentrations, neural inputs and circulating hormones. Defects in glucose-triggered insulin secretion, possibly exacerbated by a decrease in beta cell mass, are ultimately responsible for the development of type 2 diabetes. A full understanding of the mechanisms by which glucose and other nutrients trigger insulin secretion will probably be essential to allow for the development of new therapies of type 2 diabetes and for the derivation of "artificial" beta cells from embryonic stem cells as a treatment for type 1 diabetes. I focus here on recent developments in our understanding of beta cell glucose sensing, achieved in part through the development of recombinant targeted probes (luciferase, green fluorescent protein) that allow islet beta cell metabolism and Ca(2+) handling to be imaged in situ in the intact islet with single cell resolution. Combined with classical biochemistry, these techniques show that the beta cell is uniquely poised, thanks to the expression of low levels of lactate dehydrogenase and plasma membrane lactate/monocarboxylate transporters, to channel glucose carbons towards oxidative metabolism, ATP synthesis and inhibition of AMP-activated protein kinase, a newly defined regulator of insulin release. I also discuss the molecular basis of the recruitment of secretory vesicles to the cell surface, analysed by the use of new imaging techniques including total internal reflection of fluorescence, as well as the "nanomechanics" of the exocytotic event itself.
Collapse
Affiliation(s)
- G A Rutter
- Henry Wellcome Laboratories for Integrated Cell Signalling, School of Medical Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
117
|
Michael DJ, Geng X, Cawley NX, Loh YP, Rhodes CJ, Drain P, Chow RH. Fluorescent cargo proteins in pancreatic beta-cells: design determines secretion kinetics at exocytosis. Biophys J 2004; 87:L03-5. [PMID: 15516519 PMCID: PMC1304941 DOI: 10.1529/biophysj.104.052175] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We compared secretion kinetics for four different fluorescent cargo proteins, each targeted to the lumen of insulin secretory vesicles. Upon stimulation, individual vesicles displayed one of four distinct patterns of fluorescence change: i), disappearance, ii), dimming, iii), transient brightening, or iv), persistent brightening. For each fusion protein, a different pattern of fluorescence change dominated. Furthermore, we demonstrated that the dominant pattern depends upon both i), the specific choice of fluorescent protein, and ii), the sequence of amino acids linking the cargo protein to the fluorescent protein. Thus, in beta-cells, experiments involving fluorescent cargo proteins for the study of exocytosis must be interpreted carefully, as design of a fluorescent cargo protein determines secretion kinetics at exocytosis.
Collapse
Affiliation(s)
- Darren J Michael
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | |
Collapse
|
118
|
Perrais D, Kleppe IC, Taraska JW, Almers W. Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 2004; 560:413-28. [PMID: 15297569 PMCID: PMC1665250 DOI: 10.1113/jphysiol.2004.064410] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 08/04/2004] [Indexed: 11/08/2022] Open
Abstract
After exocytosis, chromaffin granules release essentially all their catecholamines in small fractions of a second, but it is unknown how fast they release stored peptides and proteins. Here we compare the exocytic release of fluorescently labelled neuropeptide Y (NPY) and tissue plasminogen activator from single granules. Exocytosis was tracked by measuring the membrane capacitance, and single granules in live cells were imaged by evanescent field microscopy. Neuropeptide Y left most granules in small fractions of a second, while tissue plasminogen activator remained in open granules for minutes. Taking advantage of the dependence on pH of the fluorescence of green fluorescent protein, we used rhythmic external acidification to determine whether and when granules re-sealed. One-third of them re-sealed within 100 s and retained significant levels of tissue plasminogen activator. Re-sealing accounts for only a fraction of the endocytosis monitored in capacitance measurements. When external [Ca2+] was raised, even neuropeptide Y remained in open granules until they re-sealed. It is concluded that a significant fraction of chromaffin granules re-seal after exocytosis, and retain those proteins that leave granules slowly. We suggest that granules vary the stoichiometry of release by varying both granule re-sealing and the association of proteins with the granule matrix.
Collapse
Affiliation(s)
- David Perrais
- Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | | | | | | |
Collapse
|
119
|
Meldolesi J, Chieregatti E, Luisa Malosio M. Requirements for the identification of dense-core granules. Trends Cell Biol 2004; 14:13-9. [PMID: 14729176 DOI: 10.1016/j.tcb.2003.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dense-core granules (DCGs), cytoplasmic organelles competent for regulated exocytosis, show considerable heterogeneity depending upon the specificity of their expressing cells--primarily neurons and neurosecretory cells. DCGs have been mainly identified by detecting their cargo molecules, often members of the granin family, and using conventional electron microscopy and immunocytochemistry. However, by a critical analysis of the various stages of DCG "life" within neurosecretory cells, we have highlighted several specific molecular and functional properties that are common to all these organelles. We propose that these properties be considered as strict requirements for the identification of DCGs.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- Vita-Salute San Raffaele University and Scientific Institute San Raffaele, Department of Neuroscience and Immunology, Centre of Excellence in Physiopathology of Cell Differentiation, via Olgettina 58, 20132 Milan, Italy.
| | | | | |
Collapse
|
120
|
Jaiswal JK, Chakrabarti S, Andrews NW, Simon SM. Synaptotagmin VII restricts fusion pore expansion during lysosomal exocytosis. PLoS Biol 2004; 2:E233. [PMID: 15226824 PMCID: PMC439782 DOI: 10.1371/journal.pbio.0020233] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 05/24/2004] [Indexed: 11/18/2022] Open
Abstract
Synaptotagmin is considered a calcium-dependent trigger for regulated exocytosis. We examined the role of synaptotagmin VII (Syt VII) in the calcium-dependent exocytosis of individual lysosomes in wild-type (WT) and Syt VII knockout (KO) mouse embryonic fibroblasts (MEFs) using total internal reflection fluorescence microscopy. In WT MEFs, most lysosomes only partially released their contents, their membrane proteins did not diffuse into the plasma membrane, and inner diameters of their fusion pores were smaller than 30 nm. In Syt VII KO MEFs, not only was lysosomal exocytosis triggered by calcium, but all of these restrictions on fusion were also removed. These observations indicate that Syt VII does not function as the calcium-dependent trigger for lysosomal exocytosis. Instead, it restricts the kinetics and extent of calcium-dependent lysosomal fusion.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- 1Department of Cellular Biophysics, Rockefeller UniversityNew York, New YorkUnited States of America
| | - Sabyasachi Chakrabarti
- 2Section of Microbial Pathogenesis and Department of Cell Biology, Yale University School of MedicineNew Haven, ConnecticutUnited States of America
| | - Norma W Andrews
- 2Section of Microbial Pathogenesis and Department of Cell Biology, Yale University School of MedicineNew Haven, ConnecticutUnited States of America
| | - Sanford M Simon
- 1Department of Cellular Biophysics, Rockefeller UniversityNew York, New YorkUnited States of America
| |
Collapse
|
121
|
Barclay JW, Aldea M, Craig TJ, Morgan A, Burgoyne RD. Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J Biol Chem 2004; 279:41495-503. [PMID: 15273248 DOI: 10.1074/jbc.m406670200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase involved in synaptogenesis and brain development, and its enzymatic activity is essential for slow forms of synaptic vesicle endocytosis. Recent work also has implicated Cdk5 in exocytosis and synaptic plasticity. Pharmacological inhibition of Cdk5 modifies secretion in neuroendocrine cells, synaptosomes, and brain slices; however, the specific mechanisms involved remain unclear. Here we demonstrate that dominant-negative inhibition of Cdk5 increases quantal size and broadens the kinetics of individual exocytotic events measured by amperometry in adrenal chromaffin cells. Conversely, Cdk5 overexpression narrows the kinetics of fusion, consistent with an increase in the extent of kiss-and-run exocytosis. Cdk5 inhibition also increases the total charge and current of catecholamine released during the amperometric foot, representing a modification of the conductance of the initial fusion pore connecting the granule and plasma membrane. We suggest that these effects are not attributable to an alteration in catecholamine content of secretory granules and therefore represent an effect on the fusion mechanism itself. Finally, mutational silencing of the Cdk5 phosphorylation site in Munc18, an essential protein of the late stages of vesicle fusion, has identical effects on amperometric spikes as dominant-negative Cdk5 but does not affect the amperometric feet. Cells expressing Munc18 T574A have increased quantal size and broader kinetics of fusion. These results suggest that Cdk5 could, in part, control the kinetics of exocytosis through phosphorylation of Munc18, but Cdk5 also must have Munc18-independent effects that modify fusion pore conductance, which may underlie a role of Cdk5 in synaptic plasticity.
Collapse
Affiliation(s)
- Jeff W Barclay
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | | | | | |
Collapse
|
122
|
Ober RJ, Martinez C, Lai X, Zhou J, Ward ES. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci U S A 2004; 101:11076-81. [PMID: 15258288 PMCID: PMC503743 DOI: 10.1073/pnas.0402970101] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IgG transport within and across cells is essential for effective humoral immunity. Through a combination of biochemical and in vivo analyses, the MHC class I-related neonatal Fc receptor (FcRn) is known to play a central role in delivering IgGs within and across cells. However, little is known about the molecular and cellular mechanisms that are involved in the exocytosis of IgG from cells that express FcRn. Here, we use single-molecule fluorescence microscopy to analyze exocytic processes in FcRn-GFP-transfected human endothelial cells. We show that exocytosis can occur by means of multiple modes that range from complete fusion of the exocytic vesicle with the plasma membrane to a slower-release mode ("prolonged release") that only involves partial mixing of membrane contents. Even for prolonged release, diffusion of FcRn into the plasma membrane can occur, indicating that FcRn is directly involved in IgG exocytosis. The slower-release mode is characterized by periodic, stepwise release of IgG, rather than the rapid burst that is observed for complete-fusion events. Analyses of single-molecule tracks suggest that IgG may be bound to FcRn for several seconds after exocytosis. Unexpectedly, after diffusion out of the exocytic site, IgG and FcRn molecules can also migrate back into the epicenter of the release site. Such retrograde movement may represent a mechanism for FcRn retrieval. Our studies provide insight into the events that lead to IgG exocytosis.
Collapse
Affiliation(s)
- Raimund J Ober
- Center for Immunology, University of Texas Southwestern Medical Center, and Department of Electrical Engineering, University of Texas at Dallas, USA
| | | | | | | | | |
Collapse
|
123
|
Bauer RA, Khera RS, Lieber JL, Angleson JK. Recycling of intact dense core vesicles in neurites of NGF-treated PC12 cells. FEBS Lett 2004; 571:107-11. [PMID: 15280026 DOI: 10.1016/j.febslet.2004.05.086] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 05/15/2004] [Accepted: 05/31/2004] [Indexed: 12/14/2022]
Abstract
Exocytic fusion in neuroendocrine cells does not always result in complete release of the peptide contents from dense core vesicles (DCVs). In this study, we use fluorescence imaging and immunoelectron microscopy to examine the retention, endocytosis and recycling of chromogranin B in DCVs of NGF-treated PC12 cells. Our results indicate that DCVs retained and retrieved an intact core that was available for subsequent exocytic release. The endocytic process was inhibited by cyclosporine A or by substitution of extracellular Ca(2+) with Ba(2+) and the total recycling time was less than 5 min.
Collapse
Affiliation(s)
- Roslyn A Bauer
- Department of Biological Sciences, University of Denver, 2190 E. Iliff Avenue, Denver, CO 80208, USA
| | | | | | | |
Collapse
|
124
|
Ma L, Bindokas VP, Kuznetsov A, Rhodes C, Hays L, Edwardson JM, Ueda K, Steiner DF, Philipson LH. Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proc Natl Acad Sci U S A 2004; 101:9266-71. [PMID: 15197259 PMCID: PMC438965 DOI: 10.1073/pnas.0403201101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Confocal imaging of GFP-tagged secretory granules combined with the use of impermeant extracellular dyes permits direct observation of insulin packaged in secretory granules, trafficking of these granules to the plasma membrane, exocytotic fusion of granules with the plasma membrane, and eventually the retrieval of membranes by endocytosis. Most such studies have been done in tumor cell lines, using either confocal methods or total internal reflectance microscopy. Here we compared these methods by using GFP-syncollin or PC3-GFP plus rhodamine dextrans to study insulin granule dynamics in insulinoma cells, normal mouse islets, and primary pancreatic beta cells. We found that most apparently docked granules did not fuse with the plasma membrane after stimulation. Granules that did fuse typically fused completely, but a few dextran-filled granules lingered at the membrane. Direct recycling of granules occurred only rarely. Similar results were obtained with both confocal and total internal reflection microscopy, although each technique had advantages for particular aspects of the granule life cycle. We conclude that insulin exocytosis involves a prolonged interaction of secretory granules with the plasma membrane, and that the majority of exocytotic events occur by full, not partial, fusion.
Collapse
Affiliation(s)
- Li Ma
- Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Stenovec M, Kreft M, Poberaj I, Betz WJ, Zorec R. Slow spontaneous secretion from single large dense‐core vesicles monitored in neuroendocrine cells. FASEB J 2004; 18:1270-2. [PMID: 15180959 DOI: 10.1096/fj.03-1397fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hormones are released from cells by passing through an exocytotic pore that forms after vesicle and plasma membrane fusion. In stimulated exocytosis vesicle content is discharged swiftly. Although rapid vesicle discharge has also been proposed to mediate basal secretion, this has not been studied directly. We investigated basal hormone release by preloading fluorescent peptides into single vesicles. The hormone discharge, monitored with confocal microscopy, was compared with the simultaneous loading of vesicle by FM styryl dye. In stimulated vesicles FM 4-64 (4 microM), loading and hormone discharge occurs within seconds. In contrast, in approximately 50% of spontaneously releasing vesicles, the vesicle content discharge and the FM 4-64 loading were slow (approximately 3 min). These results show that in peptide secreting neuroendocrine cells the elementary vesicle content discharge differs in basal and in stimulated exocytosis. It is proposed that the view dating back for some decades, which is that, at rest, the vesicle discharge of hormones and neurotransmitters is similar to that occurring after stimulation, needs to be extended. In addition to the classical paradigm that secretory capacity of a cell is determined by controlling the probability of occurrence of elementary exocytotic events, one will have to consider activity modulation of elementary exocytotic events as well.
Collapse
|
126
|
Abstract
During exocytosis, the lumen of secretory vesicles connects with the extracellular space. In some vesicles, this connection closes again, causing the vesicle to be recaptured mostly intact. The degree to which the bilayers of such vesicles mix with the plasma membrane is unknown. Work supporting the kiss-and-run model of transient exocytosis implies that synaptic vesicles allow neither lipid nor protein to escape into the plasma membrane, suggesting that the two bilayers never merge. Here, we test whether neuroendocrine granules behave similarly. Using two-color evanescent field microscopy, we imaged the lipid probe FM4-64 and fluorescent proteins in single dense core granules. During exocytosis, granules lost FM4-64 into the plasma membrane in small fractions of a second. Although FM4-64 was lost, granules retained the membrane protein, GFP-phogrin. By using GFP-phogrin as a probe for resealing, it was found that even granules that reseal lose FM4-64. We conclude that the lipid bilayers of the granule and the plasma membrane become continuous even when exocytosis is transient.
Collapse
Affiliation(s)
- Justin W Taraska
- Vollum Institute, Oregon Health and Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
127
|
Wenk MR, De Camilli P. Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc Natl Acad Sci U S A 2004; 101:8262-9. [PMID: 15146067 PMCID: PMC420382 DOI: 10.1073/pnas.0401874101] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Great progress has been made in the elucidation of the function of proteins in membrane traffic. Less is known about the regulatory role of lipids in membrane dynamics. Studies of nerve terminals, compartments highly specialized for the recycling of synaptic vesicles, have converged with studies from other systems to reveal mechanisms in protein-lipid interactions that affect membrane shape as well as the fusion and fission of vesicles. Phosphoinositides have emerged as major regulators of the binding of cytosolic proteins to the bilayer. Phosphorylation on different positions of the inositol ring generates different isomers that are heterogeneously distributed on cell membranes and that together with membrane proteins generate a "dual keys" code for the recruitment of cytosolic proteins. This code helps controlling vectoriality of membrane transport. Powerful methods for the detection of lipids are rapidly advancing this field, thus complementing the broad range of information about biological systems that can be obtained from genomic and proteomic approaches.
Collapse
Affiliation(s)
- Markus R Wenk
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | |
Collapse
|
128
|
Arimura SI, Yamamoto J, Aida GP, Nakazono M, Tsutsumi N. Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci U S A 2004; 101:7805-8. [PMID: 15136720 PMCID: PMC419687 DOI: 10.1073/pnas.0401077101] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Accepted: 03/25/2004] [Indexed: 11/18/2022] Open
Abstract
The balance between mitochondrial fusion and fission influences the reticular shape of mitochondria in yeasts. Little is known about whether mitochondria fusion occurs in plants. Plant mitochondria are usually more numerous and more grain-shaped than animal mitochondria. BLAST searches of the nuclear and mitochondrial genome sequences of Arabidopsis thaliana did not find any obvious homologue of mitochondrial fusion genes found in animals and yeasts. To determine whether mitochondrial fusion actually occurs in plants, we labeled mitochondria in onion epidermal cells with a mitochondria-targeted, photoconvertible fluorescent protein Kaede and then altered the fluorescence of some of the mitochondria within a cell from green to red. Frequent and transient fusion of red and green mitochondria was demonstrated by the appearance of yellow mitochondria that subsequently redivided. We also show that mitochondrial fission occasionally occurs without an equal distribution of the nucleoid (DNA-protein complex in mitochondria), resulting in the coexistence of mitochondria containing various amounts of DNA within a single cell. The heterogeneity of DNA contents in mitochondria may be overcome by the frequent and transient fusion of mitochondria.
Collapse
Affiliation(s)
- Shin-ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
129
|
Thorn P, Fogarty KE, Parker I. Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci U S A 2004; 101:6774-9. [PMID: 15090649 PMCID: PMC404121 DOI: 10.1073/pnas.0400336101] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics of the fusion pore that forms between a secretory vesicle and the plasma membrane are important in the regulation of both exocytosis and endocytosis. Here, we describe characteristics of fusion during zymogen granule exocytosis in exocrine pancreatic acinar cells. By using fluorescence recovery after photobleaching techniques, we show that the fusion pore remains open to allow free aqueous exchange with the vesicle lumen. There is no lipid interchange between the plasma and granule membranes during this time, and at the end of its life, the intact granule shrinks in situ, probably by a gradual pinching off of membrane patches. We propose that the protracted fusion pore lifetime is adapted to permit compound exocytosis, whereby the lingering primary granule acts as a conduit through which the contents of a secondary granule can be released. The lack of lipid intermixing may then facilitate selective recycling of granule membrane and preservation of apical membrane integrity.
Collapse
Affiliation(s)
- Peter Thorn
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, United Kingdom.
| | | | | |
Collapse
|
130
|
Tsuboi T, Lippiat JD, Ashcroft FM, Rutter GA. ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K+ channel Kir6.2 revealed by fluorescence resonance energy transfer. Proc Natl Acad Sci U S A 2004; 101:76-81. [PMID: 14681552 PMCID: PMC314141 DOI: 10.1073/pnas.0306347101] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Indexed: 11/18/2022] Open
Abstract
ATP-sensitive K(+) (K(ATP)) channels play important roles in the regulation of membrane excitability in many cell types. ATP inhibits channel activity by binding to a specific site formed by the N and C termini of the pore-forming subunit, Kir6.2, but the structural changes associated with this interaction remain unclear. Here, we use fluorescence resonance energy transfer (FRET) to study the ATP-dependent interaction between the N and C termini of Kir6.2 using a construct bearing fused cyan and yellow fluorescent proteins (ECFP-Kir6.2-EYFP). When expressed in human embryonic kidney cells, ECFP-Kir6.2-EYFP/SUR1 channels displayed FRET that was augmented by agonist stimulation and diminished by metabolic poisoning. Addition of ATP to permeabilized cells or isolated plasma membrane sheets increased FRET. FRET changes were abolished by Kir6.2 mutations that altered ATP-dependent channel closure and channel gating. In the wild-type channel, the ATP concentrations, which increased FRET (EC(50) = 1.36 mM), were significantly higher than those causing channel inhibition (IC(50) = 0.29 mM). Demonstrating the existence of intermolecular interactions, a dimeric construct comprising two molecules of Kir6.2 linked head-to-tail (ECFP-Kir6.2-Kir6.2-EYFP) displayed less FRET than the monomer in the absence of nucleotide but still exhibited ATP-dependent FRET increases (EC(50) = 1.52 mM) and channel inhibition. We conclude that binding of ATP to Kir6.2, (i). alters the interaction between the N- and C-terminal domains, (ii). probably involves both intrasubunit and intersubunit interactions, (iii). reflects ligand binding not channel gating, and (iv). occurs in intact cells when subplasmalemmal [ATP] changes in the millimolar range.
Collapse
Affiliation(s)
- Takashi Tsuboi
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | | | | | | |
Collapse
|
131
|
Abstract
The mechanisms by which large, dense core, peptide-containing vesicles release their cargo from neuroendocrine cells has been the subject of intense debate during the past few years. Thanks to recent studies of the vesicle membrane post fusion, the view that exocytosis is obligatorily linked to the complete collapse of these vesicles at the cell surface is gradually being revised. We discuss here the evidence supporting a model in which (1) exocytosis and endocytosis of dense core vesicles are closely coupled, and (2) the release of peptides occurs from largely intact vesicles via the formation of a large, but transient, fusion pore.
Collapse
Affiliation(s)
- Guy A Rutter
- Henry Wellcome Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| | | |
Collapse
|
132
|
Llobet A, Beaumont V, Lagnado L. Real-Time Measurement of Exocytosis and Endocytosis Using Interference of Light. Neuron 2003; 40:1075-86. [PMID: 14687543 DOI: 10.1016/s0896-6273(03)00765-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We describe a new approach for making real-time measurements of exocytosis and endocytosis in neurons and neuroendocrine cells. The method utilizes interference reflection microscopy (IRM) to image surface membrane in close contact with a glass coverslip (the "footprint"). At the synaptic terminal of retinal bipolar cells, the footprint expands during exocytosis and retracts during endocytosis, paralleling changes in total surface area measured by capacitance. In chromaffin cells, IRM detects the fusion of individual granules as the appearance of bright spots within the footprint with spatial and temporal resolution similar to total internal reflection fluorescence microscopy. Advantages of IRM over capacitance are that it can monitor changes in surface area while cells are electrically active and it can be applied to mammalian neurons with relatively small synaptic terminals. IRM reveals that vesicles at the synapse of bipolar cells rapidly collapse into the surface membrane while secretory granules in chromaffin cells do not.
Collapse
Affiliation(s)
- Artur Llobet
- MRC Laboratory of Molecular Biology, Hills Road, CB2 2QH, Cambridge, United Kingdom.
| | | | | |
Collapse
|
133
|
Das S, Gerwin C, Sheng ZH. Syntaphilin binds to dynamin-1 and inhibits dynamin-dependent endocytosis. J Biol Chem 2003; 278:41221-6. [PMID: 12896979 DOI: 10.1074/jbc.m304851200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syntaphilin is a brain-specific syntaxin-binding partner first characterized as an inhibitor of SNARE complex formation and neurotransmitter release. Here we show that syntaphilin also binds to dynamin-1 and through this interaction inhibits dynamin-mediated endocytosis. Immunoprecipitation studies from cross-linked rat synaptosomes demonstrate that an endogenous syntaphilin-dynamin-1 complex exists independently of dynamin-1 binding to amphiphysin. Functionally, syntaphilin expression inhibits transferrin internalization in COS-7 cells. These data reveal that syntaphilin is an inhibitor of both SNARE-based fusion and dynamin-mediated endocytosis.
Collapse
Affiliation(s)
- Sunit Das
- Synaptic Function Unit, NINDS, National Institutes of Health, Bethesda, Maryland 20892-4154, USA
| | | | | |
Collapse
|
134
|
Abstract
The secretory process requires many different steps and stages. Vesicles must be formed and transported to the target membrane. They must be tethered or docked at the appropriate sites and must be prepared for fusion (priming). As the last step, a fusion pore is formed and the contents are released. Release of neurotransmitter is an extremely rapid event leading to rise times of the postsynaptic response of less than 100 micro s. The release thus occurs during the initial formation of the exocytotic fusion pore. To understand the process of synaptic transmission, it is thus of outstanding importance to understand the molecular structure of the fusion pore, what are the properties of the initial fusion pore, how these properties affect the release process and what other factors may be limiting the kinetics of release. Here we review the techniques currently employed in fusion pore studies and discuss recent data and opinions on exocytotic fusion pore properties.
Collapse
Affiliation(s)
- Manfred Lindau
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14850, USA.
| | | |
Collapse
|
135
|
Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem 2003; 278:31159-66. [PMID: 12782620 DOI: 10.1074/jbc.m305500200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tomosyn is a 130-kDa syntaxin-binding protein that contains a large N-terminal domain with WD40 repeats and a C-terminal domain homologous to R-SNAREs. Here we show that tomosyn forms genuine SNARE core complexes with the SNAREs syntaxin 1 and SNAP-25. In vitro studies with recombinant proteins revealed that complex formation proceeds from unstructured monomers to a stable four-helical bundle. The assembled complex displayed features typical for SNARE core complexes, including a profound hysteresis upon unfolding-refolding transitions. No stable complexes were formed between the SNARE motif of tomosyn and either syntaxin or SNAP-25 alone. Furthermore, both native tomosyn and its isolated C-terminal domain competed with synaptobrevin for binding to endogenous syntaxin and SNAP-25 on inside-out sheets of plasma membranes. Tomosyn-SNARE complexes were effectively disassembled by the ATPase N-ethylmaleimide-sensitive factor together with its cofactor alpha-SNAP. Moreover, the C-terminal domain of tomosyn was as effective as the cytoplasmic portion of synaptobrevin in inhibiting evoked exocytosis in a cell-free preparation derived from PC12 cells. Similarly, overexpression of tomosyn in PC12 cells resulted in a massive reduction of exocytosis, but the release parameters of individual exocytotic events remained unchanged. We conclude that tomosyn is a soluble SNARE that directly competes with synaptobrevin in the formation of SNARE complexes and thus may function in down-regulating exocytosis.
Collapse
Affiliation(s)
- Kiyotaka Hatsuzawa
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
136
|
Sim ATR, Baldwin ML, Rostas JAP, Holst J, Ludowyke RI. The role of serine/threonine protein phosphatases in exocytosis. Biochem J 2003; 373:641-59. [PMID: 12749763 PMCID: PMC1223558 DOI: 10.1042/bj20030484] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 05/09/2003] [Accepted: 05/16/2003] [Indexed: 10/27/2022]
Abstract
Modulation of exocytosis is integral to the regulation of cellular signalling, and a variety of disorders (such as epilepsy, hypertension, diabetes and asthma) are closely associated with pathological modulation of exocytosis. Emerging evidence points to protein phosphatases as key regulators of exocytosis in many cells and, therefore, as potential targets for the design of novel therapies to treat these diseases. Diverse yet exquisite regulatory mechanisms have evolved to direct the specificity of these enzymes in controlling particular cell processes, and functionally driven studies have demonstrated differential regulation of exocytosis by individual protein phosphatases. This Review discusses the evidence for the regulation of exocytosis by protein phosphatases in three major secretory systems, (1) mast cells, in which the regulation of exocytosis of inflammatory mediators plays a major role in the respiratory response to antigens, (2) insulin-secreting cells in which regulation of exocytosis is essential for metabolic control, and (3) neurons, in which regulation of exocytosis is perhaps the most complex and is essential for effective neurotransmission.
Collapse
Affiliation(s)
- Alistair T R Sim
- School of Biomedical Sciences, Faculty of Health, University of Newcastle, and Clinical Neuroscience Program, Hunter Medical Research Institute, Callaghan, NSW 2308, Australia.
| | | | | | | | | |
Collapse
|
137
|
Abstract
Recent results have provided graphic support for the hypothesis that vesicle secretion involves a 'kiss-and-run' mechanism. Evanescent field microscopy has shown that, during exocytosis, intravesicular markers escape without collapse of the vesicular membrane into the surface membrane and that the empty vesicle is immediately retrieved back into the cell.
Collapse
Affiliation(s)
- H Clive Palfrey
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
138
|
Affiliation(s)
- Gilbert Di Paolo
- Howard Hughes Medical Institute and Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
139
|
Ryan TA. Kiss-and-run, fuse-pinch-and-linger, fuse-and-collapse: the life and times of a neurosecretory granule. Proc Natl Acad Sci U S A 2003; 100:2171-3. [PMID: 12606723 PMCID: PMC151312 DOI: 10.1073/pnas.0530260100] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Timothy A Ryan
- Department of Biochemistry, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
140
|
Abstract
The chemical synapse is a specialized intercellular junction that operates nearly autonomously to allow rapid, specific, and local communication between neurons. Focusing our attention on the presynaptic terminal, we review the current understanding of how synaptic morphology is maintained and then the mechanisms in synaptic vesicle exocytosis and recycling.
Collapse
Affiliation(s)
- Venkatesh N Murthy
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | | |
Collapse
|
141
|
Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 2003; 100:2070-5. [PMID: 12538853 PMCID: PMC149960 DOI: 10.1073/pnas.0337526100] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2002] [Accepted: 12/10/2002] [Indexed: 11/18/2022] Open
Abstract
Classical cell biology teaches that exocytosis causes the membrane of exocytic vesicles to disperse into the cell surface and that a cell must later retrieve by molecular sorting whatever membrane components it wishes to keep inside. We have tested whether this view applies to secretory granules in intact PC-12 cells. Three granule proteins were labeled with fluorescent proteins in different colors, and two-color evanescent-field microscopy was used to view single granules during and after exocytosis. Whereas neuro-peptide Y was lost from granules in seconds, tissue plasminogen activator (tPA) and the membrane protein phogrin remained at the granule site for over 1 min, thus providing markers for postexocytic granules. When tPA was imaged simultaneously with cyan fluorescent protein (CFP) as a cytosolic marker, the volume occupied by the granule appeared as a dark spot where it excluded CFP. The spot remained even after tPA reported exocytosis, indicating that granules failed to flatten into the cell surface. Phogrin was labeled with GFP at its luminal end and used to sense the pH in granules. When exocytosis caused the acidic granule interior to neutralize, GFP-phogrin at first brightened and later dimmed again as the interior separated from the extracellular space and reacidified. Reacidification and dimming could be reversed by application of NH(4)Cl. We conclude that most granules reseal in <10 s after releasing cargo, and that these empty or partially empty granules are recaptured otherwise intact.
Collapse
Affiliation(s)
- Justin W Taraska
- Vollum Institute, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
142
|
Plattner H, Kissmehl R. Molecular Aspects of Membrane Trafficking in Paramecium. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 232:185-216. [PMID: 14711119 DOI: 10.1016/s0074-7696(03)32005-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Results achieved in the molecular biology of Paramecium have shed new light on its elaborate membrane trafficking system. Paramecium disposes not only of the standard routes (endoplasmic reticulum --> Golgi --> lysosomes or secretory vesicles; endo- and phagosomes --> lysosomes/digesting vacuoles), but also of some unique features, e.g. and elaborate phagocytic route with the cytoproct and membrane recycling to the cytopharynx, as well as the osmoregulatory system with multiple membrane fusion sites. Exocytosis sites for trichocysts (dense-core secretory vesicles), parasomal sacs (coated pits), and terminal cisternae (early endosomes) display additional regularly arranged predetermined fusion/fission sites, which now can be discussed on a molecular basis. Considering the regular, repetitive arrangements of membrane components, availability of mutants for complementation studies, sensitivity to gene silencing, and so on, Paramecium continues to be a valuable model system for analyzing membrane interactions. This review intends to set a new baseline for ongoing work along these lines.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | |
Collapse
|