101
|
Stevenson D, Wokosin D, Girkin J, Grant MH. Measurement of the intracellular distribution of reduced glutathione in cultured rat hepatocytes using monochlorobimane and confocal laser scanning microscopy. Toxicol In Vitro 2002; 16:609-19. [PMID: 12206828 DOI: 10.1016/s0887-2333(02)00042-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular reduced glutathione (GSH) plays a key role in protecting cells from toxicity by maintaining intracellular redox status, conjugating with electrophilic xenobiotics and free radicals, and detoxifying reactive peroxides. Several toxic chemicals interact with GSH during their metabolism, and in many cases it would be advantageous to monitor intracellular GSH distribution during that process. We present a novel method to monitor intracellular GSH levels utilising a new laser light source, InGaN laser, for confocal microscopy and fluorescent detection of monochlorobimane (mBCl) binding to GSH. The sensitivity of the method was compared with that obtained using o-phthalaldehyde (OPT) as a fluorochrome. In the presence of a source of glutathione S-transferase (GST), mBCl was specific for GSH, forming a fluorescent conjugate that was retained in hepatocytes for at least 35 min. mBCl was able to detect the GSH depleting effects caused by progressive inhibition of GSH synthesis by increasing concentrations of buthionine sulfoximine. It effectively monitored the rapid effects of menadione and chromium VI metabolism on intracellular GSH levels in the cytosol and nuclear compartments of the cells. The combination of a specific stain, a novel laser light source and confocal microscopy provide a valuable system for mechanistic studies of intracellular GSH distribution in toxicology studies.
Collapse
Affiliation(s)
- D Stevenson
- Bioengineering Unit, University of Strathclyde, Wolfson Centre, 106 Rottenrow, Glasgow G4 0NW, Scotland, UK
| | | | | | | |
Collapse
|
102
|
Sanz N, Díez-Fernández C, Andrés D, Cascales M. Hepatotoxicity and aging: endogenous antioxidant systems in hepatocytes from 2-, 6-, 12-, 18- and 30-month-old rats following a necrogenic dose of thioacetamide. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1587:12-20. [PMID: 12009419 DOI: 10.1016/s0925-4439(02)00048-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influence of aging on the mechanisms of liver injury and regeneration was studied in a model of hepatotoxicity induced in 2-, 6-, 12-, 18- and 30-month-old rats by a sublethal dose of thioacetamide (500 mg/kg body weight), a soft nucleophilic and hepatotoxic compound metabolized by the hepatic microsomal FAD monooxygenase system. Samples-blood and hepatocytes-were obtained at 0, 12, 24, 48, 72 and 96 h following thioacetamide intoxication. Parameters of liver injury in serum (NADPH-isocitrate dehydrogenase (ICDH) activity) indicate that the severity of injury was significantly higher in the adult groups (6 and 12 months old) when compared either with the youngest (2 months old) or oldest (18 and 30 months old) groups. Parameters related to biotransformation, such as microsomal FAD monooxygenase, followed mainly the same pattern of age-dependent changes as those observed for injury. The profile of glutathione-S-transferase activity showed an initial induction parallel to liver injury and opposite to the levels of reduced glutathione and protein -SH groups. Enzyme activities and gene expression of the systems involved in the cell endogenous antioxidant defense, such as Mn- and Cu,Zn-superoxide dismutases (SOD), catalase and glutathione peroxidase (GPX) showed significant age-dependent changes that can be summarized as follows: an increase in all enzyme activities and gene expression and a decreased ability to restore the initial activities following 96 h of thioacetamide. We conclude, first, that the gene expression and activity of the enzymes involved in the intracellular antioxidant defense system increased with aging, which can be considered a consequence of the enhanced oxidative state of the cell (decreased in GSH level); and second, that the lower and delayed response in the aged groups significantly influenced the restoration towards normal of GSH and the antioxidant enzyme activities.
Collapse
Affiliation(s)
- Nuria Sanz
- Instituto de Bioquímica (CSIC-UCM), Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal sn, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
103
|
Jones CM, Lawrence A, Wardman P, Burkitt MJ. Electron paramagnetic resonance spin trapping investigation into the kinetics of glutathione oxidation by the superoxide radical: re-evaluation of the rate constant. Free Radic Biol Med 2002; 32:982-90. [PMID: 12008114 DOI: 10.1016/s0891-5849(02)00791-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of glutathione to scavenge the superoxide radical is a matter of serious contention in the literature: reported values for the second-order rate constant range from 10(2) to greater than 10(5) M(-1) s(-1). The physiological implications of this discrepancy will determine, for example, whether or not glutathione can compete with Mn-superoxide dismutase for reaction with the radical in the mitochondrial matrix, leading to formation of the potentially harmful glutathionyl radical. Several authors have investigated the kinetics of glutathione oxidation by superoxide using spectrophotometric assays, based on competition between either ferricytochrome c or epinephrine for reaction with the radical. However, these approaches have received criticism because the contributions of various secondary reactions to the overall kinetics have been largely overlooked (e.g., the reduction of ferricytochrome c by glutathione). In the present investigation, we have used electron paramagnetic resonance spectroscopy to monitor competition between GSH and the spin trap 5,5-dimethyl-1-pyrroline N-oxide for reaction with superoxide. This method has been used previously and a rate constant of 1.8 x 10(5) M(-1) s(-1) obtained (Dikalov, S.; Khramtsov, V.; Zimmer, G. Arch. Biochem. Biophys. 326:207-218; 1996). However, we demonstrate that this value is a gross overestimation because the spectrum of the hydroxyl radical adduct of the spin trap was incorrectly assigned to the glutathionyl radical adduct. The relatively high yield of the DMPO hydroxyl radical adduct is shown to be due to the two-electron reduction of the corresponding superoxide radical adduct by glutathione. Taking these factors into consideration, we estimate the second order rate constant for the oxidation of glutathione by superoxide to be approximately 200 M(-1) s(-1).
Collapse
Affiliation(s)
- Clare M Jones
- Gray Cancer Institute, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR, UK
| | | | | | | |
Collapse
|
104
|
Galaris D, Evangelou A. The role of oxidative stress in mechanisms of metal-induced carcinogenesis. Crit Rev Oncol Hematol 2002; 42:93-103. [PMID: 11923071 DOI: 10.1016/s1040-8428(01)00212-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Metals are necessary for the normal functioning of cells and the survival of organisms. However, exposure to higher than the physiological levels of several metals may lead to tumor development. Although the exact molecular mechanism(s) of metal-induced carcinogenesis is not clear, a vast body of evidence indicates that metal-induced generation of reactive oxygen species (ROS) may play a central role in this process. Two main pathways of ROS-induced effects are discussed in this chapter: (i) increased DNA damage induced either directly or indirectly by impeding DNA repair, and (ii) modulation of nuclear transcriptional factor activities, such as NF-kappaB and AP-1, through mitogen-activated protein kinases signal transduction mechanisms.
Collapse
Affiliation(s)
- Dimitrios Galaris
- Laboratory of Biological Chemistry, University of Ioannina Medical School, 451 10 Ioannina, Greece.
| | | |
Collapse
|
105
|
Hansen JM, Harris KK, Philbert MA, Harris C. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit limb versus rat limb. J Pharmacol Exp Ther 2002; 300:768-76. [PMID: 11861780 DOI: 10.1124/jpet.300.3.768] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalidomide produces numerous birth defects, the most notable being phocomelia. Mechanisms behind thalidomide-induced malformations have not been fully elucidated, although recent evidence suggests a role for reactive oxygen species. A thalidomide-resistant (rat) and -sensitive (rabbit) species were used to compare potential inherent differences related to oxidative stress that may provide a more definitive understanding of mechanisms of thalidomide embryopathy. Limb bud cells (LBCs) were removed from the rat and rabbit embryo, dissociated, and plated in culture for 24 h. A fluorescence (6-carboxy-2',7'-dichlorofluorescin diacetate; DCF) assay for oxidative stress was used with varying concentrations of thalidomide (5-100 microM). Thalidomide (100 microM) showed a 6-fold greater production of oxidative stress in rabbit cultures than in rat. Lower concentrations (50 and 25 microM) also showed a significant increase in reactive oxygen species. Confocal microscopy revealed DCF fluorescence preferentially in rabbit LBC nuclei compared with the uniform distribution of DCF fluorescence in rat LBC. Localization of glutathione (GSH) was determined using 5-chloromethylfluorescein diacetate fluorescent confocal microscopy. In rat cultures, significant thalidomide-induced GSH depletion was detected in the cytosol but the nuclei maintained its GSH content, but rabbit LBC showed significant GSH depletion in both compartments. GSH depletion was confirmed by high-performance liquid chromatography analysis. These observations provide evidence that thalidomide preferentially produces oxidative stress in the thalidomide-sensitive species but not the thalidomide-resistant species. Nuclear GSH content in the rabbit LBC is selectively modified and indicates a shift in the nuclear redox environment. Redox shifts in the nucleus may result in the misregulation of transcription factor/DNA interactions and cause defective growth and development.
Collapse
Affiliation(s)
- Jason M Hansen
- University of Michigan, Department of Environmental Health Sciences Toxicology Program, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
106
|
Wellejus A, Loft S. Receptor-mediated ethinylestradiol-induced oxidative DNA damage in rat testicular cells. FASEB J 2002; 16:195-201. [PMID: 11818367 DOI: 10.1096/fj.01-0385com] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Estrogenic chemicals are suspected of affecting cancer risk and male reproduction, possibly involving oxidative DNA damage. In this study, formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), was measured in testicular cells from rats after 17 alpha-ethinylestradiol (EE) exposure in vivo and in vitro after incubation with EE with or without an antiestrogen. In vivo, preadult (30-35 days) and adult (110-120 days) Wistar rats received 0, 2.8, or 56 mg EE/kg body weight as intraperitoneal injections (n=6). After 1 or 4 h, the 8-oxodG/10(6) dG ratio was measured in the liver, kidneys, and testes. Testes DNA analysis revealed an age-related effect (adult animals had a higher ratio than the young animals) and a concentration effect in preadult rats (increased EE-concentration caused increased ratio), but no time effect. No differences were found in the liver or kidneys. In vitro, testicular cells were isolated and incubated with EE concentrations ranging from 0.1 to 1000 nM. The results indicated an increase in 8-oxodG/10(6) dG from 0 to 10 nM estrogen. At 1000 nM, the level was close to control level. Coincubation of 10 nM EE (maximum damage) with an estrogen antagonist, ICI 182.780, abolished the effect at 10 nM, indicating that the damaging effect is estrogen receptor mediated.
Collapse
Affiliation(s)
- Anja Wellejus
- Institute of Public Health, University of Copenhagen, Denmark
| | | |
Collapse
|
107
|
Oupický D, Parker AL, Seymour LW. Laterally stabilized complexes of DNA with linear reducible polycations: strategy for triggered intracellular activation of DNA delivery vectors. J Am Chem Soc 2002; 124:8-9. [PMID: 11772047 DOI: 10.1021/ja016440n] [Citation(s) in RCA: 201] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Target-specific DNA delivery requires vectors that combine stability in the biological milieu, receptor-mediated uptake into target cells, and intracellular activation to mediate transgene expression. This is achieved here using polymer-coated vectors based on plasmid DNA complexed with a reductively degradable polycation (RPC), designed for intercellular degradation. The RPC were prepared by oxidation of the terminal cysteinyl thiol groups of Cys(Lys)10Cys. The complexes were coated and surface-cross-linked using multivalent reactive copolymers of N-(2-hydroxypropyl)methacrylamide (PHPMA), providing a unique combination of steric and reversible lateral stabilization, known to promote extended circulation in the bloodstream. Coated complexes containing RPC exhibited lateral stabilization that was reversible by treatment with 2.5 mM dithiothreitol, releasing free DNA after incubation with a polyanion. In contrast, coated complexes containing nonreducible poly(l-lysine) (PLL) were not destabilized by reduction. The biological usefulness of this trigger mechanism was examined by measuring transfection activity in human retinoblast 911 cells of coated complexes, based on PLL or RPC, targeted to cell surface receptors by covalent linkage of basic fibroblast growth factor. The levels of transgene expression observed for RPC-based targeted vectors indicated efficient intracellular activation, authenticating the concept that lateral stabilization introduced by surface coating with PHPMA can be reversed by intracellular reduction.
Collapse
Affiliation(s)
- David Oupický
- CRC Institute for Cancer Studies, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
108
|
Keelan J, Allen NJ, Antcliffe D, Pal S, Duchen MR. Quantitative imaging of glutathione in hippocampal neurons and glia in culture using monochlorobimane. J Neurosci Res 2001; 66:873-84. [PMID: 11746414 DOI: 10.1002/jnr.10085] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glutathione (GSH) is a major antioxidant system in the mammalian central nervous system (CNS). Abnormalities of GSH metabolism have been associated with many disorders of the CNS, including Parkinson's, Alzheimer's, and Huntingdon's diseases and ischaemic/reperfusion injury. Investigation of GSH levels in the CNS generally relies on biochemical assays from cultures enriched for different cell types. Because glia influence neuronal metabolism, we have studied cultures in which neurons and glia are cocultured. This approach demands fluorescence imaging to differentiate between the different cell types in the culture, permitted by the use of monochlorobimane (MCB), which reacts with GSH to produce a fluorescent product. We have defined the conditions required to ensure steady-state MCB loading and show the specificity of MCB for GSH through a reaction catalysed by glutathione-S-transferase (GST). [GSH] was consistently higher in glia than in neurons, and [GSH] in both cell types decreased with time in culture. Inhibition of GSH synthesis by buthionine sulfoximine (BSO) caused a greater proportional depletion of GSH in glia than in neurons. The depletion of GSH induced by BSO was significantly greater in cells cultured for >10 days. Furthermore, release of GSH from glia and its breakdown by the ectoenzyme gamma-glutamyltranspeptidase (gammaGT) maintains [GSH] in neurons. In older cultures, inhibition of gammaGT by acivicin caused significant depletion of neuronal GSH. After inhibition of GSH synthesis by BSO, inhibition of the glia-neuron trafficking pathway by acivicin caused widespread neuronal death. Such neurotoxicity was independent of the endogenous glutamate and nitric oxide synthase, suggesting that it is not due to secondary excitotoxicity.
Collapse
Affiliation(s)
- J Keelan
- Department of Physiology, University College London, Gower Street, London WC1N 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
109
|
Carlisle RC, Bettinger T, Ogris M, Hale S, Mautner V, Seymour LW. Adenovirus hexon protein enhances nuclear delivery and increases transgene expression of polyethylenimine/plasmid DNA vectors. Mol Ther 2001; 4:473-83. [PMID: 11708884 DOI: 10.1006/mthe.2001.0472] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inefficient nuclear delivery restricts transgene expression using polyelectrolyte DNA vectors. To increase transfer from the cytoplasm to the nucleus, we have covalently linked adenovirus hexon protein to polyethylenimine (PEI, 800 kDa). Activity of the conjugate was compared with PEI and PEI linked to albumin. Hexon-containing complexes gave 10-fold greater transgene expression in HepG2 cells than PEI/DNA or complexes containing albumin, without increasing cell uptake. Following cytoplasmic injection into Xenopus laevis oocytes, hexon-containing complexes showed reporter gene expression to be elevated by 10-fold compared with PEI/DNA. The ability of hexon to promote nuclear delivery of PEI/DNA nanoparticles was compared with that of classical nuclear localization sequences (NLS) by measuring transgene expression following intracytoplasmic microinjection of hexon-PEI/DNA complexes and NLS-albumin-PEI/DNA complexes in rat-1 fibroblasts. The resulting nuclear transfer efficiency was in the following order: hexon-PEI/DNA>NLS-albumin-PEI/DNA>PEI/DNA>DNA alone>albumin-PEI/DNA. The activities of both NLS-albumin-PEI and hexon-PEI were abolished by co-injection of wheat germ agglutinin, suggesting that both act by means of the nuclear pore complex (NPC); in contrast, excess free NLS-albumin abolished transgene expression with NLS-albumin-PEI/DNA, but only partially inhibited hexon-PEI/DNA. Nuclear transfer efficiency following cytoplasmic injection was dependent on DNA concentration for all materials, although hexon conjugates showed much better activity than NLS-albumin at low DNA doses (500-1000 plasmids/cell). Our data are consistent with hexon mediating nuclear delivery of plasmid complexes by means of the NPC, using mechanisms that are only partially dependent on the classical NLS import pathway. The hexon-mediated mechanism of nuclear import enables substantially better transgene expression, particularly when DNA concentrations in the cytoplasm are limiting.
Collapse
Affiliation(s)
- R C Carlisle
- CRC Institute for Cancer Studies, University of Birmingham, Birmingham, B15 2TA, UK
| | | | | | | | | | | |
Collapse
|
110
|
Vairetti M, Griffini P, Pietrocola G, Richelmi P, Freitas I. Cold-induced apoptosis in isolated rat hepatocytes: protective role of glutathione. Free Radic Biol Med 2001; 31:954-61. [PMID: 11595380 DOI: 10.1016/s0891-5849(01)00670-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Liver conservation for transplantation is usually made at 2-4 degrees C. We studied the effect of rewarming to 37 degrees C for up to 3 h of rat hepatocytes kept at 4 degrees C for 20 h, modulating intracellular glutathione (GSH) concentration either with a GSH precursor (N-acetyl-L-cysteine, NAC), or with GSH depleting agents (diethylmaleate and buthionine sulfoximine, DEM/BSO). Untreated hepatocytes showed time-dependent production of reactive oxygen species (ROS), lipid peroxidation, chromatin condensation and membrane blebbing, decrease in GSH concentration, and protein sulfhydryl groups. Fluorochromatization with Propidium Iodide (PI) and Annexin V (AnxV) of cells rewarmed for 1 h caused an increase of AnxV-positive cells without PI staining and any observed lactate dehydrogenase leakage. TUNEL and DNA-laddering tests were negative for all times and treatments, indicating that apoptosis may occur without DNA fragmentation. Cold preservation and rewarming in the presence of NAC induced a significant improvement in the morphology, less oxidative stress and apoptosis. Conversely, DEM/BSO caused a marked deterioration of morphology, increase of oxidative stress and apoptosis. These results suggested that marked changes in GSH status might play a critical role in triggering apoptosis during cold preservation of isolated rat hepatocytes. NAC, added before rewarming, might represent a therapeutic approach for preventing the early events of apoptosis during cold storage.
Collapse
Affiliation(s)
- M Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.
| | | | | | | | | |
Collapse
|
111
|
Abstract
The p53 protein is a tumor suppressor often inactivated in cancer, which controls cell proliferation and survival through several coordinated pathways. The p53 protein is induced in response to many forms of cellular stress, genotoxic or not. p53 is a zinc-binding protein containing several reactive cysteines, and its key biochemical property, sequence-specific DNA binding, is dependent upon metal and redox regulation in vitro. In this review, we describe the main features of p53 as a metalloprotein and we discuss how metal binding and oxidation-reduction may affect p53 activity in vivo. In particular, we stress the possible involvement of thioredoxin, Ref-1 (redox factor 1), and metallothionein in the control of p53 protein conformation and activity. Furthermore, we also review the available evidence on the role of p53 as a transactivator or transrepressor of genes involved in the production and control of reactive oxygen intermediates. Overall, these data indicate that p53 lies at the center of a network of complex redox interactions. In this network, p53 can control the timely production of reactive oxygen intermediates (e.g., to initiate apoptosis), but this activity is itself under the control of changes in metal levels and in cellular redox status. This redox sensitivity may be one of the biochemical mechanisms by which p53 acts as a "sensor" of multiple forms of stress.
Collapse
Affiliation(s)
- P Hainaut
- Group of Molecular Carcinogenesis, International Agency for Research on Cancer, Lyon, France.
| | | |
Collapse
|
112
|
Lundberg M, Johansson C, Chandra J, Enoksson M, Jacobsson G, Ljung J, Johansson M, Holmgren A. Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem 2001; 276:26269-75. [PMID: 11297543 DOI: 10.1074/jbc.m011605200] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Glutaredoxin (Grx) is a glutathione-dependent hydrogen donor for ribonucleotide reductase. Today glutaredoxins are known as a multifunctional family of GSH-disulfide-oxidoreductases belonging to the thioredoxin fold superfamily. In contrast to Escherichia coli and yeast, a single human glutaredoxin is known. We have identified and cloned a novel 18-kDa human dithiol glutaredoxin, named glutaredoxin-2 (Grx2), which is 34% identical to the previously known cytosolic 12-kDa human Grx1. The human Grx2 sequence contains three characteristic regions of the glutaredoxin family: the dithiol/disulfide active site, CSYC, the GSH binding site, and a hydrophobic surface area. The human Grx2 gene, located at chromosome 1q31.2--31.3, consisted of five exons that were transcribed to a 0.9-kilobase human Grx2 mRNA ubiquitously expressed in several tissues. Two alternatively spliced Grx2 mRNA isoforms that differed in their 5' region were identified. These corresponded to alternative proteins with a common 125-residue C-terminal Grx domain but with different N-terminal extensions of 39 and 40 residues, respectively. The 125-residue Grx domain and the two full-length variants were expressed in E. coli and exhibited GSH-dependent hydroxyethyl disulfide and dehydroascorbate reducing activities. Western blot analysis of subcellular fractions from Jurkat cells with a specific anti-Grx2 antibody showed that human Grx2 was predominantly located in the nucleus but also present in the mitochondria. We further showed that one of the mRNA isoforms corresponding to Grx2a encoded a functional N-terminal mitochondrial translocation signal.
Collapse
Affiliation(s)
- M Lundberg
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Shishido N, Nakayama K, Takazawa A, Ohyama T, Nakamura M. Cu-metallothioneins (Cu(I)8-MTs) in LEC rat livers 13 weeks after birth still act as antioxidants. Arch Biochem Biophys 2001; 387:216-22. [PMID: 11370844 DOI: 10.1006/abbi.2000.2233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox properties of metallothioneins (MTs) and Cu in the cytosol from Long-Evans Cinnamon (LEC) rat livers 13 weeks after birth were investigated. MTs from LEC rat livers contain 8 g atoms of Cu and 1 g atom of Zn per mole of protein (Cu(I)8-MTs). Titration of Cu(I)8-MTs with CuCl2 indicates that Cu(I)8-MTs were able to reduce further 2-g atoms of cupric ions per mole MTs as bound form. Hg2+-induced hydroxyl radical generation from Cu(I)8-MTs was demonstrated by ESR using the spin trap, 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The intensity of DMPO-OH signal from Cu-loaded MTs was increased with the increasing number of Cu in MTs. The used cytosol fraction contained 1.37 mM total Cu and 5 mM DTNB titrable-SH groups has a potential to reduce 2 mM CuCl2. No ESR signal due to Cu2+ was also detected with LEC rat liver cytosol, whereas strong Cu2+ signal appeared by the addition of HgCl2. The rate constants for the reaction of Cu(I)8-MTs with superoxide and hydroxyl radicals were estimated to be 2 x 10(6) and > or = 10(12) M(-1)s(-1), respectively, from competition kinetics. Cu2+-catalyzed oxidation of DNA was strongly inhibited both in the presence of Cu-unsaturated MTs and GSH. The results suggest that Cu(I)8-MTs from LEC rat livers just before hepatitis still act as antioxidants.
Collapse
Affiliation(s)
- N Shishido
- Department of Chemistry, Asahikawa Medical College, Japan
| | | | | | | | | |
Collapse
|
114
|
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 2001; 30:1191-212. [PMID: 11368918 DOI: 10.1016/s0891-5849(01)00480-4] [Citation(s) in RCA: 3170] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.
Collapse
Affiliation(s)
- F Q Schafer
- Free Radical Research Institute & ESR Facility, The University of Iowa, Iowa City, IA 52242-1101, USA.
| | | |
Collapse
|
115
|
Gailer J, Madden S, Buttigieg GA, Denton MB, Younis HS. Identification of [(GS)2AsSe]? in rabbit bile by size-exclusion chromatography and simultaneous multielement-specific detection by inductively coupled plasma atomic emission spectroscopy. Appl Organomet Chem 2001. [DOI: 10.1002/aoc.260] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
116
|
Balakirev M, Schoehn G, Chroboczek J. Lipoic acid-derived amphiphiles for redox-controlled DNA delivery. CHEMISTRY & BIOLOGY 2000; 7:813-9. [PMID: 11033084 DOI: 10.1016/s1074-5521(00)00030-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Intracellular release of free DNA from the vector complex is one of the critical steps limiting the efficiency of non-viral gene delivery. The complex should be stable enough to prevent DNA degradation but it should be destabilized inside the cell to allow DNA release and transcription. Destabilization and degradation of synthetic vectors is also required to reduce their cytotoxicity and augment the life-time of transfected cells. RESULTS Here we describe new cationic amphiphiles made from the natural pro-vitamin, lipoic acid, that reversibly binds and releases DNA, depending on the redox state of the lipoate moieties. In the oxidized state these amphiphiles condense DNA into homogeneous spherical particles, which, upon reduction, swell into DNA toroids with subsequent release of free DNA. Complex reduction and DNA release can be induced by various thiols as well as enzymatically, by thioredoxin reductase. Transfection with amphiphile-DNA complexes in vitro shows a several fold increase of transgene expression compared with DOTAP, and can be further augmented by attachment of the nucleus-targeting peptide to the amphiphile. The increase of transfection efficiency results from GSH- and NAD(P)H-dependent complex reduction and release of free DNA inside the cells. CONCLUSIONS The present work demonstrates the principle of a redox-controlled gene delivery system that uses the reversibility of thiol-disulfide exchange reaction. Our data suggest that the efficiency of synthetic vectors can be augmented by their controlled destabilization inside the cells. Being formed from the natural non-toxic compound lipoic acid, these cationic amphiphiles provide a new promising class of synthetic vectors for gene delivery.
Collapse
Affiliation(s)
- M Balakirev
- Institute de Biologie Structurale, Grenoble, France.
| | | | | |
Collapse
|
117
|
Spolarics Z, Meyenhofer M. Augmented resistance to oxidative stress in fatty rat livers induced by a short-term sucrose-rich diet. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1487:190-200. [PMID: 11018471 DOI: 10.1016/s1388-1981(00)00093-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hepatic steatosis and the accompanying oxidative stress have been associated with a variety of liver diseases. It is not known if fat accumulation per se plays a direct role in the oxidative stress of the organ. This study tested if steatosis induced by a short-term carbohydrate-rich diet results in an increased hepatic sensitivity to oxidative stress. Antioxidant status was determined in a liver perfusion system and in isolated parenchymal, endothelial and Kupffer cells from rats kept on sucrose-rich diet or on regular diet for 48 h. t-Butyl hydroperoxide addition (2 mM) to the perfusion fluid resulted in a release of alanine aminotransferase (ALT) in livers from controls, whereas no ALT release was observed in fatty livers. After t-butyl hydroperoxide addition, oxidized glutathione release was 40% less in fatty than in control livers, whereas reduced glutathione (GSH) release was not different. Sinusoidal oxidant stress was mimicked by the addition of lipopolysaccharide (LPS) from Escherichia coli (10 microg/ml) followed by the addition of opsonized zymosan (8 mg/ml) to the perfusion medium. LPS plus zymosan treatments resulted in the release of ALT in control but not in fatty livers. At the end of perfusion, liver glutathione content was 3-fold elevated, and the tissue content of lipid peroxidation products was approx. 40% less in fatty livers compared to controls. GSH content was doubled and glucose-6-phosphate dehydrogenase (G6PD) expression was elevated by 3- and 10-fold in sinusoidal endothelial and parenchymal cells form fatty livers compared to cells from control animals. Following H(2)O(2) administration in vitro (0.2-1 mM), GSH remained elevated in endothelial and parenchymal cells from fatty livers compared to cells from controls. In contrast, G6PD activity and GSH content were similar in Kupffer cells isolated from fatty or control livers. The study shows that hepatic fat accumulation caused by a short-term sucrose diet is not accompanied by elevated hepatic lipid peroxidation, and an elevated hepatic antioxidant activity can be manifested in the presence of prominent steatosis. The diet-induced increase in G6PD expression and, thus, the efficient maintenance of reduced glutathione in endothelial and parenchymal cells are a supportive mechanism in the observed hepatic resistance against intracellular or sinusoidal oxidative stress.
Collapse
Affiliation(s)
- Z Spolarics
- Department of Anatomy, Cell Biology and Injury Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA.
| | | |
Collapse
|
118
|
Abstract
Cell survival requires multiple factors, including appropriate proportions of molecular oxygen and various antioxidants. Although most oxidative insults can be overcome by the cell's natural defenses, sustained perturbation of this balance may result in either apoptotic or necrotic cell death. Numerous, recent studies have shown that the mode of cell death that occurs depends on the severity of the insult. Oxidants and antioxidants can not only determine cell fate, but can also modulate the mode of cell death. Effects of oxidative stress on components of the apoptotic machinery may mediate this modulation. This review will address some of the current paradigms for oxidative stress and apoptosis, and discuss the potential mechanisms by which oxidants can modulate the apoptotic pathway.
Collapse
Affiliation(s)
- J Chandra
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
119
|
Kitteringham NR, Powell H, Clement YN, Dodd CC, Tettey JN, Pirmohamed M, Smith DA, McLellan LI, Kevin Park B. Hepatocellular response to chemical stress in CD-1 mice: induction of early genes and gamma-glutamylcysteine synthetase. Hepatology 2000; 32:321-33. [PMID: 10915739 DOI: 10.1053/jhep.2000.9602] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Exposure of cells to toxic chemical species can result in reduced glutathione (GSH) depletion, generation of free radicals, and/or binding to critical cell determinants. Chemical stress is usually followed by a concerted cellular response aimed at restoring homeostasis, although the precise initial stimulus for the response is unclear. We have focused on one component of this stress response, the up-regulation of gamma-glutamylcysteine synthetase (gamma-GCS) and the preceding molecular events involved in its regulation in an in vivo mouse model. Male CD-1 mice received buthionine sulphoximine (BSO; 7.2 mmol/kg), diethyl maleate (DEM; 4.2 mmol/kg), paracetamol (APAP; 3.5 and 1.0 mmol/kg), or carbon tetrachloride (CCl(4); 1.0 and 0.2 mmol/kg). Biochemical (serum transaminase and hepatic GSH levels) and molecular (c-jun and c-fos messenger RNA [mRNA] levels and activator protein 1 [AP-1] DNA binding activity) parameters were measured, as well as the consequent effects on gamma-GCS levels and activity. All compounds produced GSH depletion, but only the higher doses of APAP and CCl(4) caused liver damage. DEM, APAP, and CCl(4) increased c-jun and c-fos mRNA levels, together with an increase in AP-1 binding; BSO failed to induce AP-1 despite an increase in c-fos. Interestingly, the effects on gamma-GCS varied markedly according to the compound: BSO and DEM increased gamma-GCS enzyme activity, although only DEM, but not BSO, resulted in an increase in gamma-GCS(h) mRNA and protein. In contrast, APAP and CCl(4) both increased gamma-GCS(h) mRNA and protein; however, there was a marked dose-dependent decrease in gamma-GCS activity. These data indicate that the effect of chemical stress on the liver is compound specific and is not merely dependent on depletion of GSH.
Collapse
Affiliation(s)
- N R Kitteringham
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, Merseyside, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Carretero J, Obrador E, Anasagasti MJ, Martin JJ, Vidal-Vanaclocha F, Estrela JM. Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis 2000; 17:567-74. [PMID: 10845555 DOI: 10.1023/a:1006725226078] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
B16 melanoma (B16M) was used to study the relationship between glutathione (GSH) metabolism and the metastatic activity of malignant cells. GSH content increased in B16M cells during the initial period of exponential growth in vitro, to reach a maximum of 37 +/- 3 nmol/10(6) cells 12 h after plating, and then gradually decreased to control values (10 +/- 2 nmol/10(6) cells) when cultures approached confluency. On the contrary, glutathione disulphide (GSSG) levels (0.5 +/- 0.2 nmol/10(6) cells) and the rate of glutathione efflux (GSH + GSSG) (2.5 +/- 0.4 nmol/10(6) cells per h) remained constant as B16M grew. Changes in enzyme activities involved in GSH synthesis or the glutathione redox cycle did not explain shifts in the glutathione status (GSH/GSSG). However, two facts contributed to explain why GSH levels changed within B16M cells: a) high intracellular levels of GSH induced a feed-back inhibition of its own synthesis in B16M cells from cultures with low cellular density (LD cells); b) transport of cyst(e)ine, whose availability is the major rate-limiting step for GSH synthesis, was limited by cell-cell contact in cultures with high cellular density (HD cells). Intrasplenic injection of B16M cells with high GSH content (exponentially-growing cultures) showed higher metastatic activity in the liver than cells with low GSH content (cells at confluency). However, when low GSH-content cells (HD cells) were incubated in the presence of GSH ester, which rapidly enters the cell and delivers free GSH, their metastatic activity significantly increased. Our results demonstrate that changes in GSH content regulate the metastatic behaviour of B16M cells.
Collapse
Affiliation(s)
- J Carretero
- Dpto. Fisiología, Univ. Valencia, Fac. Medicina, Spain
| | | | | | | | | | | |
Collapse
|
121
|
West JA, Chichester CH, Buckpitt AR, Tyler NK, Brennan P, Helton C, Plopper CG. Heterogeneity of clara cell glutathione. A possible basis for differences in cellular responses to pulmonary cytotoxicants. Am J Respir Cell Mol Biol 2000; 23:27-36. [PMID: 10873150 DOI: 10.1165/ajrcmb.23.1.3907] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clara-cell populations show a high degree of variation in susceptibility to injury by bioactivated cytotoxicants. Because glutathione (GSH) is critical for detoxification of electrophilic metabolites, heterogeneity in Clara cell GSH levels may lead to a wide range of cytotoxic responses. This study was designed to define the distinct GSH pools within Clara cells, characterize heterogeneity within the population, and examine whether heterogeneity contributes to susceptibility. Using fluorescent imaging combined with high-performance liquid chromatography analysis, semiquantitative measurements were obtained by evaluation of GSH using monochlorobimane and monobromobimane. In steady-state conditions, the GSH measured in isolated cells was in the femtomole range, but varied 4-fold between individual cells. Clara cells analyzed in situ and in vitro confirmed this heterogeneity. The response of these cells to compounds that modulate GSH was also variable. Diethylmaleate depleted GSH, whereas GSH monoethylester augmented it. However, both acted nonuniformly in isolated Clara cells. The depletion of intracellular GSH caused a striking decrease in cell viability upon incubation with naphthalene (NA). The sulfhydryl-binding fluorochrome BODIPY, which colocalized with tetramethylrosamine, a mitochondrial dye, demonstrated by confocal microscopy that cellular sulfhydryls are highest in the mitochondria, next-highest in cytoplasm, and lowest in the nucleus. These pools responded differently to modulators of GSH. We concluded that the steady-state intracellular GSH of Clara cells exists in distinct pools and is highly heterogeneous within the population, and that the heterogeneity of GSH levels corresponds closely to the response of Clara cells to injury by NA.
Collapse
Affiliation(s)
- J A West
- Department of Anatomy, School of Veterinary Medicine, University of California, Davis, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Gailer J, George GN, Pickering IJ, Prince RC, Ringwald SC, Pemberton JE, Glass RS, Younis HS, DeYoung DW, Aposhian HV. A Metabolic Link between Arsenite and Selenite: The Seleno-bis(S-glutathionyl) Arsinium Ion. J Am Chem Soc 2000. [DOI: 10.1021/ja993064m] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
123
|
Mukhtar M, Stubbs M, Agius L. Evidence for glucose and sorbitol-induced nuclear export of glucokinase regulatory protein in hepatocytes. FEBS Lett 1999; 462:453-8. [PMID: 10622744 DOI: 10.1016/s0014-5793(99)01580-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Glucokinase is rapidly exported from the nucleus of hepatocytes in response to a rise in glucose or fructose 1-P. We demonstrate using confocal microscopy and quantitative imaging that in contrast to previous findings, the regulatory protein of glucokinase (GKRP) also translocates from the nucleus during substrate-induced translocation of glucokinase. However, the fractional decrease in nuclear GKRP is smaller than for glucokinase and is determined by the metabolic state and not by the distribution of glucokinase. Translocation of glucokinase and GKRP is not inhibited by leptomycin B, an inhibitor of exportin-1 function. These findings highlight the importance of quantitative imaging for determining nuclear export of proteins and suggest that GKRP may have a role in nuclear export or import of glucokinase.
Collapse
Affiliation(s)
- M Mukhtar
- Department of Diabetes, University of Newcastle upon Tyne, The Medical School, UK
| | | | | |
Collapse
|
124
|
Abstract
Glutathione (GSH) is the major cellular thiol participating in cellular redox reactions and thioether formation. This article serves as introduction to the FRBM Forum on glutathione and emphasizes cellular functions: What is GSH? Where does it come from? Where does it go? What does it do? What is new and noteworthy? Research tools, historical remarks, and links to current trends.
Collapse
Affiliation(s)
- H Sies
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany.
| |
Collapse
|
125
|
Nock BA, Maina T, Yannoukakos D, Pirmettis IC, Papadopoulos MS, Chiotellis E. Glutathione-mediated metabolism of technetium-99m SNS/S mixed ligand complexes: a proposed mechanism of brain retention. J Med Chem 1999; 42:1066-75. [PMID: 10090789 DOI: 10.1021/jm980174f] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Two series of [99mTc](SNS/S) mixed ligand complexes each carrying the N-diethylaminoethyl or the N-ethyl-substituted bis(2-mercaptoethyl)amine ligand (SNS) are produced at tracer level using tin chloride as reductant and glucoheptonate as transfer ligand. The identity of [99mTc](SNS/S) complexes is established by high-performance liquid chromatographic (HPLC) comparison with authentic rhenium samples. The para substituent R on the phenylthiolate coligand (S) ranges from electron-donating (-NH2) to electron-withdrawing (-NO2) groups, to study complex stability against nucleophiles as a result of N- and R-substitution. The relative resistance of [99mTc](SNS/S) complexes against nucleophilic attack of glutathione (GSH), a native nucleophilic thiol of 2 mM intracerebral concentration, is investigated in vitro by HPLC. The reaction of [99mTc](SNS/S) complexes with GSH is reversible and advances via substitution of the monothiolate ligand by GS- and concomitant formation of the hydrophilic [99mTc](SNS/GS) daughter compound. The N-diethylaminoethyl complexes are found to be more reactive against GSH as compared to the N-ethyl ones. Complex reactivity as a result of R-substitution follows the sequence -NO2 >> -H > -NH2. These in vitro findings correlate well with in vivo distribution data in mice. Thus, brain retention parallels complex susceptibility to GSH attack. Furthermore, isolation of the hydrophilic [99mTc](SNS/GS) metabolite from biological fluids and brain homogenates provides additional evidence that the brain retention mechanism of [99mTc](SNS/S) complexes is GSH-mediated.
Collapse
Affiliation(s)
- B A Nock
- Institute of Radioisotopes - Radiodiagnostic Products, NCSR "Demokritos", P.O. Box 60228, 153 10 Aghia Paraskevi, Athens, Greece
| | | | | | | | | | | |
Collapse
|
126
|
Yamane Y, Furuichi M, Song R, Van NT, Mulcahy RT, Ishikawa T, Kuo MT. Expression of multidrug resistance protein/GS-X pump and gamma-glutamylcysteine synthetase genes is regulated by oxidative stress. J Biol Chem 1998; 273:31075-85. [PMID: 9813007 DOI: 10.1074/jbc.273.47.31075] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the MRP1 gene encoding the GS-X pump and of the gamma-GCSh gene encoding the heavy (catalytic) subunit of the gamma-glutamylcysteine synthetase is frequently elevated in many drug-resistant cell lines and can be co-induced by many cytotoxic agents. However, mechanisms that regulate the expression of these genes remain to be elucidated. We report here that like gamma-GCSh, the expression of MRP1 can be induced in cultured cells treated with pro-oxidants such as tert-butylhydroquinone, 2,3-dimethoxy-1, 4-naphthoquinone, and menadione. Intracellular reactive oxygen intermediate (ROI) levels were increased in hepatoma cells treated with tert-butylhydroquinone for 2 h as measured by flow cytometry using an ROI-specific probe, dihydrorhodamine 123. Elevated GSH levels in stably gamma-GCSh-transfected cell lines down-regulated endogenous MRP1 and gamma-GCSh expression. ROI levels in these transfected cells were lower than those in the untransfected control. In the cell lines in which depleting cellular GSH pools did not affect the expression of the MRP1 and gamma-GCSh genes, only minor increased intracellular levels of ROIs were observed. These results suggest that intracellular ROI levels play an important role in the regulation of MRP1 and gamma-GCSh expression. Our data also suggest that elevated intracellular GSH levels not only facilitate substrate transport by the MRP1/GS-X pump as previously demonstrated, but also suppress MRP1 and gamma-GCSh expression.
Collapse
Affiliation(s)
- Y Yamane
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
127
|
Sturgeon BE, Sipe HJ, Barr DP, Corbett JT, Martinez JG, Mason RP. The fate of the oxidizing tyrosyl radical in the presence of glutathione and ascorbate. Implications for the radical sink hypothesis. J Biol Chem 1998; 273:30116-21. [PMID: 9804766 DOI: 10.1074/jbc.273.46.30116] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cellular systems contain as much as millimolar concentrations of both ascorbate and GSH, although the GSH concentration is often 10-fold that of ascorbate. It has been proposed that GSH and superoxide dismutase (SOD) act in a concerted effort to eliminate biologically generated radicals. The tyrosyl radical (Tyr.) generated by horseradish peroxidase in the presence of hydrogen peroxide can react with GSH to form the glutathione thiyl radical (GS.). GS. can react with the glutathione anion (GS-) to form the disulfide radical anion (GSSG-). This highly reactive disulfide radical anion will reduce molecular oxygen, forming superoxide and glutathione disulfide (GSSG). In a concerted effort, SOD will catalyze the dismutation of superoxide, resulting in the elimination of the radical. The physiological relevance of this GSH/SOD concerted effort is questionable. In a tyrosyl radical-generating system containing ascorbate (100 microM) and GSH (8 mM), the ascorbate nearly eliminated oxygen consumption and diminished GS. formation. In the presence of ascorbate, the tyrosyl radical will oxidize ascorbate to form the ascorbate radical. When measuring the ascorbate radical directly using fast-flow electron spin resonance, only minor changes in the ascorbate radical electron spin resonance signal intensity occurred in the presence of GSH. These results indicate that in the presence of physiological concentrations of ascorbate and GSH, GSH is not involved in the detoxification pathway of oxidizing free radicals formed by peroxidases.
Collapse
Affiliation(s)
- B E Sturgeon
- Laboratory of Pharmacology and Chemistry, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | |
Collapse
|
128
|
Xu C, Siu CS, Pasco DS. DNA binding activity of the aryl hydrocarbon receptor is sensitive to redox changes in intact cells. Arch Biochem Biophys 1998; 358:149-56. [PMID: 9750175 DOI: 10.1006/abbi.1998.0851] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The potential involvement of vicinal dithiols in the transformation of the aryl hydrocarbon (Ah) receptor from its ligand binding to DNA binding form in Hepa-1 cells was explored through the use of diamide and phenylarsine oxide (PAO), which have been shown to specifically form a stable ring complex with vicinal sulfhydryl groups in selected proteins. Pretreatment with diamide and PAO rapidly prevented the inducer-dependent formation of the Ah receptor/xenobiotic response element complex detected by electrophoretic mobility shift assays and suppressed Ah receptor-mediated transcription. Diamide and PAO also inhibited DNA binding activity of the nuclear Ah receptor subsequent to its translocation to the nucleus but to a lesser extent than that observed with pretreatment conditions. The Ah receptor exhibited much higher sensitivity to cellular redox changes than Sp1, a transcription factor previously shown to be very sensitive to redox regulation. Diamide added to nuclear extracts inhibited Ah receptor DNA binding more than when it was added in intact cells. In contrast, Ah receptor DNA binding activity was more sensitive to PAO when it was added to intact cells than when it was added to nuclear extracts. Finally, dithiol 2,3-dimercaptopropanol was over 100 times more effective than monothiol 2-mercaptoethanol in reversing the PAO-dependent inhibition of Ah receptor DNA binding activity. This suggests that vicinal sulfhydryl residues may be involved in DNA binding of the Ah receptor.
Collapse
Affiliation(s)
- C Xu
- Department of Pharmacognosy, University of Mississippi, University, Mississippi, 38677, USA
| | | | | |
Collapse
|
129
|
Gailer J, Lindner W. On-column formation of arsenic-glutathione species detected by size-exclusion chromatography in conjunction with arsenic-specific detectors. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1998; 716:83-93. [PMID: 9824221 DOI: 10.1016/s0378-4347(98)00282-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The 'retention analysis method', which is based on size-exclusion chromatography (SEC) in conjunction with an arsenic-specific detector (graphite furnace atomic absorption spectrometer, GFAAS), was used to study the effect of pH (range 2.0-10.0), temperature (4, 25 and 37 degrees C), and the concentration of glutathione in the mobile phase (0.5-7.5 mM) on the formation of arsenic-glutathione species after injection of sodium arsenite using phosphate-buffered saline solutions as mobile phases. The formation of arsenic-GSH species was facilitated by low temperatures (4 degrees C), pH 6.0-8.0 and high concentrations of glutathione (7.5 mM) in the mobile phase. Simulating the physicochemical parameters found inside human red blood cells (approximately 3.0 mM glutathione, 37 degrees C, pH 7.4) and hepatocytes (approximately 7.5 mM glutathione, 37 degrees C, pH 7.4), SEC-GFAAS provided evidence for the formation of arsenic-glutathione species under these conditions. In addition, the 'chelating agent', sodium DL-2,3-dimercapto- -propanesulfonate (1.0 and 2.0 mM) was demonstrated to bind arsenous acid stronger in the presence of glutathione (7.5 mM) under these conditions (PBS buffer, pH 7.4, 37 degrees C).
Collapse
Affiliation(s)
- J Gailer
- University Department of Molecular and Cellular Biology, The University of Arizona, Tucson 85721, USA
| | | |
Collapse
|
130
|
Morales A, Miranda M, Sánchez-Reyes A, Biete A, Fernández-Checa JC. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells. Int J Radiat Oncol Biol Phys 1998; 42:191-203. [PMID: 9747838 DOI: 10.1016/s0360-3016(98)00185-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. METHODS AND MATERIALS GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. RESULTS Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). CONCLUSION GSH plays a critical protective role in maintaining nuclear and mtDNA functional integrity, determining the intrinsic radiosensitivity of Hep G2. Although the DNA repair is a complex process that is not yet completely understood, the protective role of GSH probably does not seem to involve the repair of classical DNA damage but may relate to modification of DNA damage dependent signaling.
Collapse
Affiliation(s)
- A Morales
- Instituto Investigaciones Biomédicas, August Pi i Suñer (IDIBAPS), CSIC-UB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
131
|
Oikawa S, Kawanishi S. Distinct mechanisms of site-specific DNA damage induced by endogenous reductants in the presence of iron(III) and copper(II). BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1399:19-30. [PMID: 9714716 DOI: 10.1016/s0167-4781(98)00092-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ability of Cu(II) and Fe(III) to promote site-specific DNA damage in the presence of endogenous reductants was investigated by using 32P-5'-end-labeled DNA fragments obtained from the human p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. Ascorbate induced metal-dependent DNA damage most efficiently (ascorbate > GSH > NADH). Cu(II) induced endogenous reductants-dependent DNA damage more efficiently than Fe(III). Endogenous reductants plus Fe(III) caused DNA cleavage at every nucleotide, without marked site preference. DNA damage by Fe(III) was inhibited by hydroxyl free radical (.OH) scavengers and catalase. These results suggest that endogenous reductants plus Fe(III) generate free or extremely near free .OH via H2O2 formation, and that .OH causes DNA damage. In the presence of 50 microM Cu(II) in bicarbonate buffer, ascorbate caused DNA cleavage frequently at sites of two or more adjacent guanine residues. In contrast, in the presence of 20 microM Cu(II), ascorbate caused DNA cleavage frequently at thymine residues. Catalase and a Cu(I)-specific chelator inhibited DNA damage by Cu(II), whereas .OH scavengers did not. Fe(III)-dependent 8-oxo-7,8-dihydro-2'-deoxyguanosine formation was inhibited by .OH scavengers, whereas no inhibition by .OH scavengers was observed with Cu(II). These results suggest that .OH is the main active species formed with Fe(III), whereas copper-peroxide complexes with a reactivity similar to .OH participate in Cu(II)-dependent DNA damage. The polyguanosine sequence specificity of DNA damage in the presence of high concentrations of Cu(II) can be explained by the preferential binding of Cu(II) to guanine residues.
Collapse
Affiliation(s)
- S Oikawa
- Department of Hygiene, Mie University School of Medicine, Japan
| | | |
Collapse
|
132
|
Lazo JS, Kuo SM, Woo ES, Pitt BR. The protein thiol metallothionein as an antioxidant and protectant against antineoplastic drugs. Chem Biol Interact 1998; 111-112:255-62. [PMID: 9679559 DOI: 10.1016/s0009-2797(97)00165-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metallothioneins (MTs) are major zinc-binding protein thiols that are readily inducible and whose functions remain unclear. Recent evidence supports a role for MT as an antioxidant. Mechanisms underlying this function may include direct interception of free radicals, complexation of redox sensitive transition metals, altered zinc homeostasis or interaction with glutathione (GSH). MT overexpression after direct gene transfer in cultured cells, decreases cytotoxicity, to partially reduce reactive oxygen and nitrogen species and markedly attenuates intracellular oxidation of reporter molecules including dichlorofluorescein and cis-parinaric acid. Conversely, enhanced intracellular oxidation is seen in cells derived from mice lacking both functional MTI and MTII genes. GSH levels are unaffected in MT null cells relative to wildtype, suggesting the antioxidant function of MT is independent of GSH. In tumor cells there is at least a 400-fold range in MT levels and a 10-fold difference in the ratio of nuclear to cytoplasmic distribution. No correlation exists between MT levels and GSH levels demonstrating the autonomous regulation of intracellular thiol pools. This may be important for cancer chemotherapies since MT overexpression is seen in human tumor cells with acquired drug resistance. The authors found no evidence for altered MT isoform profiles in drug resistant cells that overexpress MT. Recent evidence suggests MT subcellular location may dictate functionality and MT may help determine the threshold for apoptosis. Thus, MT is a stress-inducible protein with antioxidant attributes that may participate independently or in conjunction with GSH to protect cells against injurious agents.
Collapse
Affiliation(s)
- J S Lazo
- Department of Pharmacology, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
133
|
Sanz N, Díez-Fernández C, Fernández-Simón L, Alvarez A, Cascales M. Necrogenic and regenerative responses of liver of newly weaned rats against a sublethal dose of thioacetamide. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1384:66-78. [PMID: 9602062 DOI: 10.1016/s0167-4838(97)00218-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The hepatocellular necrogenic and regenerative responses of newly weaned rats (21 days old) to a sublethal dose of thioacetamide (6.6 mmol kg-1) were studied in comparison to adult (6-month old rats), in terms of liver injury, antioxidant defense systems and cell proliferation. Hepatocellular necrosis, detected by serum aspartate aminotransferase, was less severe in newly weaned rats than in adult animals and was parallel to previous changes in the activity of microsomal FAD monooxygenase system responsible for thioacetamide biotransformation. Liver damage in hepatocytes from newly weaned rats was also detected by the decreased levels of glutathione and protein thiol groups (47%, p < 0.001 and 52%, p < 0.001 vs. untreated, respectively) and by the enhanced malondialdehyde production (334%, p < 0.001) and glutathione S-transferase activity (384%, p < 0.001). No significant differences were detected in these values when compared to adults. Changes in cytosolic and mitochondrial superoxide dismutase and catalase activities in hepatocytes from newly weaned rats at 24 h, following thioacetamide (49%, p < 0.001; 50% and 53%, p < 0.001 vs. untreated, respectively), were less severe against those in adult hepatocytes at 48 h of intoxication, and the increases in glutathione peroxidase and glutathione reductase activities were significantly lowered: 25% (p < 0.001) and 41% (p < 0.001), respectively. Post-necrotic DNA synthesis in hepatocytes from newly weaned rats peaked at 48 h of intoxication, while in adults a more intense peak appeared at 72 h preceded by a sharp decrease in tetraploid population. These differences indicate that the lower necrogenic response against the same dose of thioacetamide in newly weaned rats may be due to the lower rate of thioacetamide biotransformation and to the earlier onset of cell division. Accordingly, the growing liver from newly weaned rats presents advantages against the necrogenic aggression of thioacetamide, first, because the diminished activity of its specific microsomal detoxification system, and second because the earlier increase in the proliferative response prevents the progression of injury permitting an earlier restoration of liver function.
Collapse
Affiliation(s)
- N Sanz
- Instituto de Bioquímica (CSIC-UCM), Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
134
|
Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE. Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci U S A 1998; 95:2956-60. [PMID: 9501197 PMCID: PMC19676 DOI: 10.1073/pnas.95.6.2956] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this study we used HeLa cells transfected with a conditional Bcl-2 expression construct to study the effects of Bcl-2 on reduced glutathione (GSH) metabolism. Our previous work demonstrated that depletion of GSH by culturing cells in tissue culture medium lacking the amino acids cysteine and methionine, essential for GSH biosynthesis, caused cells overexpressing Bcl-2 to become sensitized to apoptotic induction. Here we report that Bcl-2 also dramatically alters GSH compartmentalization. Cellular distribution of GSH, assayed by confocal microscopy, revealed that when Bcl-2 expression was suppressed GSH was uniformly distributed primarily in the cytosol, whereas overexpression of Bcl-2 led to a relocalization of GSH into the nucleus. Isolated nuclei readily accumulated radiolabeled GSH and maintained higher nuclear GSH concentration in direct relation to Bcl-2 nuclear protein levels. Moreover, exogenous GSH blocked apoptotic changes and caspase activity in isolated nuclei exposed to the pro-apoptotic protease granzyme B. Our results indicate that one of the functions of Bcl-2 is to promote sequestration of GSH into the nucleus, thereby altering nuclear redox and blocking caspase activity as well as other nuclear alterations characteristic of apoptosis. We speculate that this mechanism contributes to the suppression of apoptosis in cells with elevated Bcl-2 levels.
Collapse
Affiliation(s)
- D W Voehringer
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
135
|
Vendemiale G, Grattagliano I, Signorile A, Altomare E. Ethanol-induced changes of intracellular thiol compartmentation and protein redox status in the rat liver: effect of tauroursodeoxycholate. J Hepatol 1998; 28:46-53. [PMID: 9537863 DOI: 10.1016/s0168-8278(98)80201-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Ethanol impairs cellular antioxidant defense and protein metabolism. Hydrophilic bile acids are protective against ethanol-induced cytotoxicity. This study investigated the compartmentation of intracellular thiol and protein redox status after acute ethanol intoxication in the liver and the effect of tauroursodeoxycholate pretreatment. METHODS The concentrations of total glutathione, glutathione bound to proteins, sulfhydryl proteins, carbonyl proteins and malondialdehyde were measured in hepatic cytosol, mitochondria and nuclei after oral administration of 25% ethanol (4 g/kg) or isocaloric carbohydrate solution to rats. The metabolisms of ethanol and acetaldehyde were investigated by giving 4-methylpyrazole (1 mmol/kg i.p.) or cyanamide (15 mg/kg i.p.) 1 h prior to ethanol ingestion. One group of rats received tauroursodeoxycholate (12 mg/kg p.os) 1 h before ethanol ingestion. RESULTS Ethanol significantly decreased the glutathione concentrations. Significant increases in glutathione bound to proteins, carbonyl protein and malondialdehyde concentrations were also noted, especially at the mitochondrial level. Enhanced carbonyl protein formation was also observed (p < 0.01). The inhibition of acetaldehyde metabolism, but not ethanol metabolism, exaggerated the alterations produced by ethanol. Pretreatment with tauroursodeoxycholate significantly reduced lipid and protein oxidation, particularly in mitochondria. By contrast, no changes were observed in glutathione content and compartmentation. CONCLUSIONS Ethanol intoxication differentially impairs thiol and protein redox status in the subcellular fractions of rat liver. These alterations seem dependent on acetaldehyde rather than ethanol. Tauroursodeoxycholate administration protects proteins and lipids from ethanol-induced oxidative damage without influencing the glutathione content and compartmentation.
Collapse
Affiliation(s)
- G Vendemiale
- Department of Internal and Occupational Medicine, University of Bari, Italy
| | | | | | | |
Collapse
|
136
|
Spolarics Z, Wu JX. Role of glutathione and catalase in H2O2 detoxification in LPS-activated hepatic endothelial and Kupffer cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:G1304-11. [PMID: 9435555 DOI: 10.1152/ajpgi.1997.273.6.g1304] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present study investigated the effect of lipopolysaccharide (LPS; from Escherichia coli, 2 mg/kg body wt ip) on selected aspects of the antioxidant status in Kupffer and sinusoidal endothelial cells. Cells were isolated 18 h after the injection of saline or LPS. In fresh suspension cultures, cellular reduced glutathione (GSH) and H2O2 were determined by monochlorobimane, and 2',7'-dichlorofluorescein diacetate, respectively, using a fluorescence plate reader. LPS injection increased GSH content two- to threefold in Kupffer cells compared with cells from control rats. Cellular GSH content was higher in endothelial than Kupffer cells. However, LPS did not increase GSH content in endothelial cells. Addition of H2O2 (40-200 microM) to Kupffer or endothelial cells caused a transient decrease in GSH, which was more pronounced in cells from control rats (approximately 45% drop) than in LPS-exposed cells (approximately 25% drop). Depleted GSH levels were accompanied by a proportional increase in cellular H2O2. After inhibition of catalase by 3-amino-1,2,4-triazole, the presence of 0.2 mM H2O2 depleted GSH content by 75% and 40% in Kupffer cells from saline- or LPS-injected rats, respectively. The same treatments caused a similar 50% decrease in both activated and control endothelial cells. LPS decreased catalase activity by 45% in Kupffer cells, whereas it had no effect on catalase in endothelial cells. Glutathione reductase activity was not altered by LPS in either cell type. These data show that in activated Kupffer cells the elevated level of cellular glutathione plays an augmented role in the protection against reactive oxygen species, whereas the contribution of catalase to H2O2 detoxification is attenuated. In LPS-stimulated endothelial and Kupffer cells, the efficient maintenance of GSH is consistent with upregulated production of reducing power through the hexose phosphate shunt observed previously.
Collapse
Affiliation(s)
- Z Spolarics
- Department of Anatomy, Cell Biology, and Injury Sciences, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
137
|
Mitton KP, Hess JL, Bunce GE. Free amino acids reflect impact of selenite-dependent stress on primary metabolism in rat lens. Curr Eye Res 1997; 16:997-1005. [PMID: 9330851 DOI: 10.1076/ceyr.16.10.997.9016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE A decrease in phase separation temperature, prior to nuclear cataract, has been correlated with elevated free amino acid content. Hence, we determined how selenite-induced stress alters free amino acid pools in the rat lens, following a single subcutaneous dose of sodium selenite (30 nmol g-1 body weight) in 10- to 14-day-old Sprague Dawley rats. RESULT Oxidative stress was evident in lenses 24 h after rats were treated with selenite. Glutathione content was decreased by 60% in the lens cortex and nucleus; the flux of glucose through the pentose phosphate pathway was increased; and glycerol-3-phosphate content was elevated. Amino acid transport, evaluated as 14C-cycloleucine uptake, was not altered, although 14C-glutamine was oxidized at a slower rate. Lenses from treated animals displayed, among the free amino acids, increased glutamine, proline, serine, glycine and the branched chain amino acids, while aspartate, glutamate, and taurine were less. CONCLUSIONS A systemic delivery of sodium selenite caused oxidative stress in the rat lens. Direct effects on primary metabolism altered free amino acid pools that may contribute to transient and permanent changes in lens transparency.
Collapse
Affiliation(s)
- K P Mitton
- Laboratory of Mechanisms of Ocular Diseases, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
138
|
Sanz N, Díez-Fernández C, Alvarez A, Cascales M. Age-dependent modifications in rat hepatocyte antioxidant defense systems. J Hepatol 1997; 27:525-34. [PMID: 9314131 DOI: 10.1016/s0168-8278(97)80358-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS Age-dependent changes in the hepatic antioxidant systems were studied in hepatocytes from newly weaned (21 days) to 30-month-old rats. RESULTS Biphasic changes were observed in superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G6PDH) and malic enzyme (ME), in which noticeable decreases were detected in hepatocytes from newly weaned to 6-month-old rats: Cu-Zn SOD decreased to 46% (p < 0.001), Mn SOD to 41% (p < 0.001), G6PDH to 71% and ME to 19% (p < 0,001), and significant increases were observed from 6 to 30 months. In hepatocytes from 6- to 30- month-old rats the enzymes involved in antioxidant defense underwent increases in their activities as well in their mRNA: Cu-Zn SOD (142%, p < 0.001), catalase (182%, p < 0.001) and glutathione peroxidase (325%, p < 0.001). However, chronological decreases were observed in the levels of reduced glutathione (69%, p < 0.001), in the GSH/GSSG ratio (78%) and in protein thiol groups (55%, p < 0.001), with concomitant increases in peroxides (155%, p < 0.001) and malondialdehyde (142%, p < 0.001) levels. DNA ploidy was also assayed by flow cytometry; a sharp increase in tetraploid (2.5-40.1%, p < 0.001) and octoploid (0.1-16.1%; p < 0.001) populations, and a noticeable decrease in diploid hepatocytes (92.9-34.3%; p < 0.001), were observed. Populations involved in 2C-->4C DNA synthesis decreased from 3.6 to 0.9% (p < 0.001), while those involved in 4C-->8C increased from 0.9% to 5.2% (p < 0.001). A hypodiploid population (apoptotic cells) was detected from 12 months, increasing thereafter. CONCLUSIONS These results show that the antioxidant cell defense system increases with age but the rate of reactive oxygen species generation exceeds the induced antioxidant ability, generating a situation that favors oxidative stress and peroxidation. The progressive polyploidization is accompanied by changes in the proliferative potential that decreases from 2C to 4C and increased from 4C to 8C. The relationship between the modifications of the oxidant/antioxidant system and increased polyploidy is not clear and may be interpreted as two independent manifestations of the aging process.
Collapse
Affiliation(s)
- N Sanz
- Instituto de Bioquímica (CSIC-UCM), Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
139
|
Stabel-Burow J, Kleu A, Schuchmann S, Heinemann U. Glutathione levels and nerve cell loss in hippocampal cultures from trisomy 16 mouse--a model of Down syndrome. Brain Res 1997; 765:313-8. [PMID: 9313904 DOI: 10.1016/s0006-8993(97)00480-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tripeptide glutathione (reduced state, GSH) is an important intracellular free radical scavenger protecting cells against oxidative stress. The trisomy 16 mouse is a model of the human trisomy 21 (Down syndrome). Here we demonstrate that cultured hippocampal neurons from trisomy 16 mouse exhibit decreased GSH levels and augmented cell death when compared to diploid cells. Additional lowering of GSH levels led to enhanced cell death in trisomy 16 cells. Based on these results we suggest that a GSH level which is decreased under a specific threshold by increased consumption, reduced synthesis or lack in precursor contributes to cell loss and neurodegeneration in Down syndrome.
Collapse
Affiliation(s)
- J Stabel-Burow
- Department of Neurophysiology, Humboldt University, Berlin, Germany
| | | | | | | |
Collapse
|
140
|
Tang DG, Honn KV. Apoptosis of W256 carcinosarcoma cells of the monocytoid origin induced by NDGA involves lipid peroxidation and depletion of GSH: role of 12-lipoxygenase in regulating tumor cell survival. J Cell Physiol 1997; 172:155-70. [PMID: 9258337 DOI: 10.1002/(sici)1097-4652(199708)172:2<155::aid-jcp3>3.0.co;2-n] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arachidonate lipoxygenases (LOX) and their products play an important role in mediating growth factor-supported tumor cell proliferation and growth. The LOX pathway may also be critical in regulating tumor cell survival and apoptosis. Blocking the 12-LOX gene expression with sequence-specific antisense oligos or its activity with general or isoform-specific LOX inhibitors induces a strong apoptotic response in rat W256 carcinosarcoma cells of the monocytoid origin (Tang et al., 1996, Proc. Natl. Acad. Sci. U.S.A., 93:5241-5246). In the present study, several molecular approaches confirmed the predominant expression of platelet-type 12-LOX in W256 cells, with no or little expression of 5- and 15-LOX. NDGA, a general LOX inhibitor and BHPP, a 12-LOX-selective inhibitor, induced rapid and dose-dependent apoptosis of serum-cultured W256 cells as well as several other tumor (in particular leukemia) cell lines, thus suggesting a potential role for LOX in mediating serum-supported tumor cell survival. The molecular mechanism of NDGA-induced W256 cell death was subsequently investigated. NDGA-induced apoptosis could be significantly postponed by overexpression of 12-LOX, thus suggesting that the NDGA effect is, at least partly, dependent on its inhibition of LOX (i.e., 12-LOX). W256 cell apoptosis induced by NDGA could also be effectively inhibited by GSH-elevating or thiol agents as well as by lipid peroxidation inhibitors and an inhibitor of mitochondria respiratory chain rotenone. Further experiments demonstrated that NDGA treatment triggered rapid lipid peroxidation leading to the depletion of cytosolic and mitochondrial GSH pools. Interestingly, the lipid peroxidation induced by NDGA could not be inhibited by conventional free radical scavengers nor by cyclooxygenase or cytochrome P-450 monooxygenase inhibitors. In summary, the present work suggests a role of 12-LOX in regulating serum (growth factor)-supported survival of certain tumor cells.
Collapse
Affiliation(s)
- D G Tang
- Department of Radiation Oncology, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
141
|
Reichelt W, Stabel-Burow J, Pannicke T, Weichert H, Heinemann U. The glutathione level of retinal Müller glial cells is dependent on the high-affinity sodium-dependent uptake of glutamate. Neuroscience 1997; 77:1213-24. [PMID: 9130799 DOI: 10.1016/s0306-4522(96)00509-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dependence of intracellular glutathione, an important radical scavenger, on the extracellular glutamate and cystine concentration and the velocity of the high affinity sodium/glutamate transporter was studied in freshly-isolated Müller glial cells of the guinea-pig, kept in vitro for up to 11 h. To this end the relative Müller cell glutathione levels were measured using the fluorescent dye monochlorobimane, using different concentrations of glutamate and cystine in Ringer solution. In some experiments L-buthionine-[S,R]-sulfoximine, a blocker of glutathione synthesis, or L-trans-pyrrolidine-2,4-dicarboxylic acid and L-alpha-aminoadipic acid, inhibitors of glutamate uptake, were added. The Müller cells maintained about 80% of the normal glutathione level when maintained in Ringer solution containing 100 microM glutamate for 11 h. When under these conditions 100 microM cystine was added, the glutathione level increased to values, which were even higher than those at the beginning of the incubation period. Addition of cystine without glutamate caused a run down of the glutathione level to about 45% of the normal level, which is comparable to the run down in pure Ringer solution. Likewise, application of L-buthionine-[S,R]-sulfoximine (5 mM) lead to a strong run down of the glutathione level even in glutamate/cystine (100 microM)-containing solution. A similar suppressing effect was observed using L-trans-pyrrolidine-2,4-dicarboxylic acid and L-alpha-aminoadipic acid in the presence of 100 microM cystine and glutamate. We conclude that the intracellular glutamate concentration of the Müller cells is determined by the extracellular glutamate concentration and the velocity of the sodium/glutamate uptake. Consequently, cystine uptake into Müller cells, which is performed by the cystine/glutamate antiporter, is fueled by the sodium/glutamate transporter with intracellular glutamate. Both glutamate and cystine are also substrates for glutathione synthesis. The glutathione level is logically limited by the capacity of the sodium/glutamate transporter to provide glutamate intracellularly for, first, cystine uptake and, second, direct insertion into glutathione. Accordingly, the glutathione level is reduced when the sodium/glutamate transporter is blocked. Thus, a diminution of the glutathione level should be taken into consideration when the effects of sodium/glutamate uptake failure and reduced intracellular glutamate concentrations are discussed.
Collapse
Affiliation(s)
- W Reichelt
- Paul-Flechsig-Institute for Brain Research, Department of Neurophysiology, University of Leipzig, Germany
| | | | | | | | | |
Collapse
|
142
|
Jayaraman L, Murthy KG, Zhu C, Curran T, Xanthoudakis S, Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev 1997; 11:558-70. [PMID: 9119221 DOI: 10.1101/gad.11.5.558] [Citation(s) in RCA: 375] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
p53 can be isolated from cells in a form that is inert for binding to DNA but that can be stimulated dramatically by phosphorylation, antibody binding, or short single strands of DNA. This suggests that upon genotoxic stress, cells can convert latent p53 to one that is active for DNA binding. Surprisingly, we observed that latent p53 is as effective in activating transcription in vitro as is active p53. We found that HeLa nuclear extracts can stimulate DNA binding by latent p53 and have purified from them a p53-stimulating protein that we have determined to be the product of the Ref-1 gene. Interestingly, Ref-1 is a dual function protein that can both regulate the redox state of a number of proteins and function as a DNA repair (A/P) endonuclease. We observed that oxidized forms of full-length and carboxy-terminally truncated p53 (p53 delta30), which are inactive for DNA binding, are both stimulated by the Ref-1 protein. However, in the presence of reducing agent, Ref-1 is an extremely potent stimulator of full-length p53 but not p53 delta30. These and additional data indicate that Ref-1 protein stimulates p53 by both redox-dependent and -independent means and imply a key role for it in p53 regulation. Importantly, we have also determined that Ref-1 can stimulate p53 transactivation in vivo. This is the first example of a noncovalent protein modifier of p53 function identified in cells.
Collapse
Affiliation(s)
- L Jayaraman
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | |
Collapse
|
143
|
Bellomo G, Palladini G, Vairetti M. Intranuclear distribution, function and fate of glutathione and glutathione-S-conjugate in living rat hepatocytes studied by fluorescence microscopy. Microsc Res Tech 1997; 36:243-52. [PMID: 9140925 DOI: 10.1002/(sici)1097-0029(19970215)36:4<243::aid-jemt3>3.0.co;2-n] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The availability of fluorescent probes to detect soluble and protein-bound thiols has made it possible to investigate some aspects of reduced glutathione (GSH) metabolism and function in intact rat hepatocytes and in hepatocyte nuclei. Monochlorobimane (BmCl) has been employed to study the subcellular compartmentation of GSH and the formation and fate of the BmCl-GSH conjugate. The occurrence of relatively high concentrations of GSH within the nuclear matrix has been inferred from fluorescence quantitation using image analysis. Concomitant biochemical studies have revealed the presence of a GSH-stimulated ATP hydrolysis and of an ATP-stimulated GSH accumulation in isolated nuclei, providing the molecular basis for nuclear glutathione compartmentation. The contemporary use of fluorescent probes to label nuclear free sulfhydryl groups, proteins and chromatin status led to the demonstration that intranuclear accumulation of glutathione may modulate the thiol/disulfide redox status of nuclear proteins and control chromatin compacting and decondensation.
Collapse
Affiliation(s)
- G Bellomo
- Department of Medical Sciences, University of Torino, Novara, Italy
| | | | | |
Collapse
|
144
|
Affiliation(s)
- WG Rice
- Laboratory of Antiviral Drug Mechanisms, Developmental Therapeutics Program, Division of Cancer Treatment, Diagnosis and Centers, National Cancer Institute-Frederick Cancer Research and Development Center, SAIC Frederick, Building 431T-B, P.O. Box B, Frederick MD 21702-1201, USA
| | | |
Collapse
|
145
|
Schröder CP, Godwin AK, O'Dwyer PJ, Tew KD, Hamilton TC, Ozols RF. Glutathione and drug resistance. Cancer Invest 1996; 14:158-68. [PMID: 8597901 DOI: 10.3109/07357909609018891] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- C P Schröder
- Department of Medical Oncology, Fox Chase Cancer Center, Philadephia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
146
|
Soboll S, Gründel S, Harris J, Kolb-Bachofen V, Ketterer B, Sies H. The content of glutathione and glutathione S-transferases and the glutathione peroxidase activity in rat liver nuclei determined by a non-aqueous technique of cell fractionation. Biochem J 1995; 311 ( Pt 3):889-94. [PMID: 7487946 PMCID: PMC1136084 DOI: 10.1042/bj3110889] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocellular nuclei require glutathione, glutathione S-transferases (GSTs) and Se-dependent glutathione peroxidase (GPx) for intranuclear protection against damage from electrophiles or products of active oxygen. Data so far available from the literature on nuclei isolated in aqueous systems range from glutathione, GSTs and GPx either being absent altogether to being present in quantities in excess of those in the cytoplasm. This paper describes a small-scale preparation of a nuclear fraction from rat liver by a non-aqueous technique, designed to retain nuclear water-soluble molecules in situ, since low-molecular-mass compounds can diffuse freely into other compartments during aqueous separation. This non-aqueous procedure shows the nucleus to contain glutathione at 8.4 mM and soluble GSTs at 38 micrograms/mg of protein, the enrichment over the homogenate being 1.2-1.4-fold. Se-dependent GPx activity was also present in the nucleus (56 m-units/mg), although with slightly lower activity than in the homogenate (0.7-fold).
Collapse
Affiliation(s)
- S Soboll
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
147
|
Thomas M, Nicklee T, Hedley DW. Differential effects of depleting agents on cytoplasmic and nuclear non-protein sulphydryls: a fluorescence image cytometry study. Br J Cancer 1995; 72:45-50. [PMID: 7599065 PMCID: PMC2034154 DOI: 10.1038/bjc.1995.275] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The intracellular distribution of glutathione (GSH) was measured by a quantitative image cytometry method, using the sulphydryl-reactive agent mercury orange. This readily forms fluorescent adducts with GSH and other non-protein sulphydryls (NPSH), but reacts much more slowly with protein sulphydryls. Under optimum staining conditions mean integrated mercury orange fluorescence per cell was closely correlated with a standard biochemical assay for GSH. Use of the DNA dye DAPI as a counterstain allowed measurement of nuclear NPSH. The mean nuclear-cytoplasmic ratio was 0.57 +/- 0.05. Isolation of nuclei under aqueous conditions resulted in the loss of approximately 90% of mercury orange fluorescence, compared with nuclear fluorescence from intact cells, suggesting that background labelling of protein sulphydryls or other macromolecules is low. Depletion of GSH with N-ethylmaleimide or diethylmaleate decreased mercury orange fluorescence in the nucleus and cytoplasm to a similar extent. In contrast, mercury orange fluorescence in the nucleus was much more resistant to DL-buthionine-S,R-sulphoximine (BSO) depletion than that in the cytoplasm. This finding is compatible with a distinct pool of GSH in the nucleus that is comparatively resistant to BSO depletion. Alternatively, the retention of fluorescence in the nucleus following GSH depletion by BSO treatment might be due to accumulation of cysteine. These findings have implications for cancer treatment since the level of NPSH in the nucleus might be a more important determinant of resistance to DNA-damaging agents than that in cytoplasm. The image cytometry method described here is quantitative, allows a measure of tumour cell heterogeneity and can be applied to small biopsy samples obtained by fine-needle aspiration. Thus it appears suitable for prospective clinical studies in cancer patients, and for monitoring the effects of GSH-depleting agents used as adjuncts to cancer chemotherapy or radiotherapy.
Collapse
Affiliation(s)
- M Thomas
- Department of Oncologic Pathology, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada
| | | | | |
Collapse
|
148
|
Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K. Role of cysteine residues in regulation of p53 function. Mol Cell Biol 1995; 15:3892-903. [PMID: 7791795 PMCID: PMC230629 DOI: 10.1128/mcb.15.7.3892] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies of p53 have implicated cysteine residues in site-specific DNA binding via zinc coordination and redox regulation (P. Hainaut and J. Milner, Cancer Res. 53:4469-4473, 1993; T. R. Hupp, D. W. Meek, C. A. Midgley, and D. P. Lane, Nucleic Acids Res. 21:3167-3174, 1993). We show here that zinc binding and redox regulation are, at least in part, distinct determinants of the binding of p53 to DNA. Moreover, by substituting serine for each cysteine in murine p53, we have investigated the roles of individual cysteines in the regulation of p53 function. Substitution of serine for cysteine at position 40, 179, 274, 293, or 308 had little or no effect on p53 function. In contrast, replacement of cysteine at position 173, 235, or 239 markedly reduced in vitro DNA binding, completely blocked transcriptional activation, and led to a striking enhancement rather than a suppression of transformation by p53. These three cysteines have been implicated in zinc binding by X-ray diffraction studies (Y. Cho, S. Gorina, P.D. Jeffrey, and N.P. Pavletich, Science 265:346-355, 1994); our studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to studies demonstrate the functional consequences of the inability of the central DNA-binding domain of p53 to bind zinc. Lastly, substitutions for cysteines at position 121, 132, 138, or 272 partially blocked both transactivation and the suppression of transformation by p53. These four cysteines are located in the loop-sheet-helix region of the site-specific DNA-binding domain of p53. Like the cysteines in the zinc-binding region, therefore, these cysteines may cooperate to modulate the structure of the DNA-binding domain. Our findings argue that p53 is subject to more than one level of conformational modulation through oxidation-reduction of cysteines at or near the p53-DNA interface.
Collapse
Affiliation(s)
- R Rainwater
- Biology Department, University of Alaska, Anchorage 99508, USA
| | | | | | | | | |
Collapse
|
149
|
Abstract
An involvement of free radicals in thrombosis has been suggested previously. In order to further explore the role of free radicals and antioxidants in thrombosis, we have measured preventive (enzymes of the glutathione redox cycle) and chain-breaking antioxidants (vitamin E and C) in whole blood, platelets, neutrophils (PMNLs), heart and lung following collagen and adrenaline induced thrombosis in mice. A significant decrease in platelet glutathione (GSH) level (54%) and glutathione reductase activity was observed after thrombosis. In addition, GSH content in whole blood was also found to be reduced. In PMNLs, an increase in glutathione peroxidase activity and a four-fold elevation in vitamin C content was observed following thrombosis. However, levels of vitamin E and total thiol groups remained unchanged in both the cells and tissues. The results further suggest involvement of free radicals and PMNLs in thrombosis.
Collapse
Affiliation(s)
- R Kumari
- a Division of Pharmacology , Central Drug Research Institute , Lucknow , India
| | - P Seth
- a Division of Pharmacology , Central Drug Research Institute , Lucknow , India
| | - M Dikshit
- a Division of Pharmacology , Central Drug Research Institute , Lucknow , India
| |
Collapse
|
150
|
Barhoumi R, Bailey RH, Burghardt RC. Kinetic analysis of glutathione in anchored cells with monochlorobimane. CYTOMETRY 1995; 19:226-34. [PMID: 7736868 DOI: 10.1002/cyto.990190306] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A method for the measurement of intracellular glutathione content and glutathione S-transferase activity with monochlorobimane in adherent cells is described. The method involves the kinetic analysis of monochlorobimane conjugation to glutathione over a relatively short period of time. This permits extrapolation over time for determination of equilibrium fluorescence intensity (relative glutathione level) from scan intensity data that follows first-order kinetics, minimizing problems commonly associated with the use of monochlorobimane. By using measured fluorescence intensity values from glutathione standards, a suspension calibration curve was generated and, subsequently, was used to determine the photomultiplier tube saturation rate. A theoretical intracellular calibration curve was then generated to quantify glutathione content in cells. This method was also applied to study the changes in glutathione in a variety of rodent and human cell lines and in selected cocultures of cells exhibiting similar or different glutathione levels. Comparison of the glutathione levels obtained with monochlorobimane and a standard colorimetric method (GSH-400) indicated good correlation between the two methods. These studies support the use of laser cytometry for measuring intracellular glutathione with monochlorobimane as well as changes in glutathione occurring in cells that establish physical contacts with other cells. Laser cytometric analysis of glutathione in anchored cells also provides opportunities to monitor individual cellular responses to a variety of experimental manipulations, such as responses to various toxic insults or the protective effects of gap junction-mediated intercellular communication.
Collapse
Affiliation(s)
- R Barhoumi
- Department of Veterinary Anatomy and Public Health, Texas A&M University, College Station 77843-4458, USA
| | | | | |
Collapse
|