101
|
Ahn SJ, Ruiz-Uribe NE, Li B, Porter J, Sakadzic S, Schaffer CB. Label-free assessment of hemodynamics in individual cortical brain vessels using third harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:2665-2678. [PMID: 32499951 PMCID: PMC7249811 DOI: 10.1364/boe.385848] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 05/04/2023]
Abstract
We show that third harmonic generation (THG) microscopy using a 1-MHz train of 1,300-nm femtosecond duration laser pulses enabled visualization of the structure and quantification of flow speed in the cortical microvascular network of mice to a depth of > 1 mm. Simultaneous three-photon imaging of an intravascular fluorescent tracer enabled us to quantify the cell free layer thickness. Using the label-free imaging capability of THG, we measured flow speed in different types of vessels with and without the presence of an intravascular tracer conjugated to a high molecular weight dextran (2 MDa FITC-dextran, 5% w/v in saline, 100 µl). We found a ∼20% decrease in flow speeds in arterioles and venules due to the dextran-conjugated FITC, which we confirmed with Doppler optical coherence tomography. Capillary flow speeds did not change, although we saw a ∼7% decrease in red blood cell flux with dextran-conjugated FITC injection.
Collapse
Affiliation(s)
- Sung Ji Ahn
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Nancy E. Ruiz-Uribe
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jason Porter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Sava Sakadzic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
102
|
Matsuda M, Terai K. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathol Int 2020; 70:379-390. [PMID: 32270554 PMCID: PMC7383902 DOI: 10.1111/pin.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
The invention of two‐photon excitation microscopes widens the potential application of intravital microscopy (IVM) to the broad field of experimental pathology. Moreover, the recent development of fluorescent protein‐based, genetically encoded biosensors provides an ideal tool to visualize the cell function in live animals. We start from a brief review of IVM with two‐photon excitation microscopes and genetically encoded biosensors based on the principle of Förster resonance energy transfer (FRET). Then, we describe how IVM using biosensors has revealed the pathogenesis of several disease models.
Collapse
Affiliation(s)
- Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
103
|
Liu C, Liang Y, Wang L. Single-shot photoacoustic microscopy of hemoglobin concentration, oxygen saturation, and blood flow in sub-microseconds. PHOTOACOUSTICS 2020; 17:100156. [PMID: 31956486 PMCID: PMC6957791 DOI: 10.1016/j.pacs.2019.100156] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 05/04/2023]
Abstract
We present fast functional optical-resolution photoacoustic microscopy (OR-PAM) that can simultaneously image hemoglobin concentration, blood flow speed, and oxygen saturation with three-pulse excitation. To instantaneously determine the blood flow speed, dual-pulse photoacoustic flowmetry is developed to determine the blood flow speed from photoacoustic signal decay in sub-microseconds. Grueneisen relaxation effect is compensated for in the oxygen saturation calculation. The blood flow imaging is validated in phantom and in vivo experiments. The results show that the flow speed can be measured accurately in sub-microseconds by comparing the dual-pulse flowmetric method with photoacoustic Doppler flowmetry. Wide-field OR-PAM of hemoglobin concentration, blood flow speed, and oxygen saturation are demonstrated in the mouse ear. This technical advance enables more biomedical applications for fast functional OR-PAM.
Collapse
Affiliation(s)
- Chao Liu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, Guang Dong, 518057, China
| | - Yizhi Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou, 510632, China
- Corresponding author.
| | - Lidai Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Yuexing Yi Dao, Nanshan District, Shenzhen, Guang Dong, 518057, China
- Corresponding author at: Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave., Kowloon, Hong Kong, China.
| |
Collapse
|
104
|
Li B, Ohtomo R, Thunemann M, Adams SR, Yang J, Fu B, Yaseen MA, Ran C, Polimeni JR, Boas DA, Devor A, Lo EH, Arai K, Sakadžić S. Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J Cereb Blood Flow Metab 2020; 40:501-512. [PMID: 30829101 PMCID: PMC7026840 DOI: 10.1177/0271678x19831016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/15/2023]
Abstract
Despite the importance of understanding the regulation of microvascular blood flow in white matter, no data on subcortical capillary blood flow parameters are available, largely due to the lack of appropriate imaging methods. To address this knowledge gap, we employed two-photon microscopy using a far-red fluorophore Alexa680 and photon-counting detection to measure capillary red blood cell (RBC) flux in both cerebral gray and white matter, in isoflurane-anesthetized mice. We have found that in control animals, baseline capillary RBC flux in the white matter was significantly higher than in the adjacent cerebral gray matter. In response to mild hypercapnia, RBC flux in the white matter exhibited significantly smaller fractional increase than in the gray matter. Finally, during global cerebral hypoperfusion, RBC flux in the white matter was reduced significantly in comparison to the controls, while RBC flux in the gray matter was preserved. Our results suggest that blood flow in the white matter may be less efficiently regulated when challenged by physiological perturbations as compared to the gray matter. Importantly, the blood flow in the white matter may be more susceptible to hypoperfusion than in the gray matter, potentially exacerbating the white matter deterioration in brain conditions involving global cerebral hypoperfusion.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Martin Thunemann
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
105
|
Cheng Z, Sun S, Gan W, Cui M. Contrast gain through simple illumination control for wide-field fluorescence imaging of scattering samples. OPTICS EXPRESS 2020; 28:2326-2336. [PMID: 32121925 PMCID: PMC7053499 DOI: 10.1364/oe.385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Wide field fluorescence microscopy is the most commonly employed fluorescence imaging modality. However, a major drawback of wide field imaging is the very limited imaging depth in scattering samples. By experimentally varying the control of illumination, we found that the optimized illumination profile can lead to large contrast improvement for imaging at a depth beyond four scattering path lengths. At such imaging depth, we found that the achieved image signal-to-noise ratio can rival that of confocal measurement. As the employed illumination control is very simple, the method can be broadly applied to a wide variety of wide field fluorescence imaging systems.
Collapse
Affiliation(s)
- Zongyue Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang 330031, China
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Shiyi Sun
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- State Key Laboratory of Modern Optical Instrumentation, Department of Optical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Wenbiao Gan
- Skirball Institute, Department of Neuroscience and Physiology, Department of Anesthesiology, New York University School of Medicine, New York, NY 10016, USA
| | - Meng Cui
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Biology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
106
|
Mantegazza A, Clavica F, Obrist D. In vitro investigations of red blood cell phase separation in a complex microchannel network. BIOMICROFLUIDICS 2020; 14:014101. [PMID: 31933711 PMCID: PMC6941945 DOI: 10.1063/1.5127840] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
Microvascular networks feature a complex topology with multiple bifurcating vessels. Nonuniform partitioning (phase separation) of red blood cells (RBCs) occurs at diverging bifurcations, leading to a heterogeneous RBC distribution that ultimately affects the oxygen delivery to living tissues. Our understanding of the mechanisms governing RBC heterogeneity is still limited, especially in large networks where the RBC dynamics can be nonintuitive. In this study, our quantitative data for phase separation were obtained in a complex in vitro network with symmetric bifurcations and 176 microchannels. Our experiments showed that the hematocrit is heterogeneously distributed and confirmed the classical result that the branch with a higher blood fraction received an even higher RBC fraction (classical partitioning). An inversion of this classical phase separation (reverse partitioning) was observed in the case of a skewed hematocrit profile in the parent vessels of bifurcations. In agreement with a recent computational study [P. Balogh and P. Bagchi, Phys. Fluids 30,051902 (2018)], a correlation between the RBC reverse partitioning and the skewness of the hematocrit profile due to sequential converging and diverging bifurcations was reported. A flow threshold below which no RBCs enter a branch was identified. These results highlight the importance of considering the RBC flow history and the local RBC distribution to correctly describe the RBC phase separation in complex networks.
Collapse
Affiliation(s)
- A Mantegazza
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3010 Bern, Switzerland
| | | | - D Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
107
|
Arakawa C, Gunnarsson C, Howard C, Bernabeu M, Phong K, Yang E, DeForest CA, Smith JD, Zheng Y. Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries. SCIENCE ADVANCES 2020; 6:eaay7243. [PMID: 32010773 PMCID: PMC6968943 DOI: 10.1126/sciadv.aay7243] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
Microcirculatory obstruction is a hallmark of severe malaria, but mechanisms of parasite sequestration are only partially understood. Here, we developed a robust three-dimensional microvessel model that mimics the arteriole-capillary-venule (ACV) transition consisting of a narrow 5- to 10-μm-diameter capillary region flanked by arteriole- or venule-sized vessels. Using this platform, we investigated red blood cell (RBC) transit at the single cell and at physiological hematocrits. We showed normal RBCs deformed via in vivo-like stretching and tumbling with negligible interactions with the vessel wall. By comparison, Plasmodium falciparum-infected RBCs exhibited virtually no deformation and rapidly accumulated in the capillary-sized region. Comparison of wild-type parasites to those lacking either cytoadhesion ligands or membrane-stiffening knobs showed highly distinctive spatial and temporal kinetics of accumulation, linked to velocity transition in ACVs. Our findings shed light on mechanisms of microcirculatory obstruction in malaria and establish a new platform to study hematologic and microvascular diseases.
Collapse
Affiliation(s)
- Christopher Arakawa
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Celina Gunnarsson
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Caitlin Howard
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Maria Bernabeu
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Kiet Phong
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Eric Yang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Cole A. DeForest
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joseph D. Smith
- Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
108
|
Lu X, Moeini M, Li B, Lu Y, Damseh R, Pouliot P, Thorin É, Lesage F. A Pilot Study Investigating Changes in Capillary Hemodynamics and Its Modulation by Exercise in the APP-PS1 Alzheimer Mouse Model. Front Neurosci 2019; 13:1261. [PMID: 31920472 PMCID: PMC6915102 DOI: 10.3389/fnins.2019.01261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in neurovascular coupling that results in a mismatch between cerebral blood flow and neuronal activity has been suggested to play a key role in the pathogenesis of Alzheimer's disease (AD). Meanwhile, physical exercise is a powerful approach for maintaining cognitive health and could play a preventive role against the progression of AD. Given the fundamental role of capillaries in oxygen transport to tissue, our pilot study aimed to characterize changes in capillary hemodynamics with AD and AD supplemented by exercise. Exploiting two-photon microscopy, intrinsic signal optical imaging, and magnetic resonance imaging, we found hemodynamic alterations and lower vascular density with AD that were reversed by exercise. We further observed that capillary properties were branch order-dependent and that stimulation-evoked changes were attenuated with AD but increased by exercise. Our study provides novel indications into cerebral microcirculatory disturbances with AD and the modulating role of voluntary exercise on these alterations.
Collapse
Affiliation(s)
- Xuecong Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Mohammad Moeini
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yuankang Lu
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Rafat Damseh
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Philippe Pouliot
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| | - Éric Thorin
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Frédéric Lesage
- Biomedical Engineering Institute, École Polytechnique de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Research Center, Montreal, QC, Canada
| |
Collapse
|
109
|
Zheng Z, Li D, Liu Z, Peng HQ, Sung HHY, Kwok RTK, Williams ID, Lam JWY, Qian J, Tang BZ. Aggregation-Induced Nonlinear Optical Effects of AIEgen Nanocrystals for Ultradeep In Vivo Bioimaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904799. [PMID: 31523871 DOI: 10.1002/adma.201904799] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/23/2019] [Indexed: 05/22/2023]
Abstract
Nonlinear optical microscopy has become a powerful tool in bioimaging research due to its unique capabilities of deep optical sectioning, high-spatial-resolution imaging, and 3D reconstruction of biological specimens. Developing organic fluorescent probes with strong nonlinear optical effects, in particular third-harmonic generation (THG), is promising for exploiting nonlinear microscopic imaging for biomedical applications. Herein, a simple method for preparing organic nanocrystals based on an aggregation-induced emission (AIE) luminogen (DCCN) with bright near-infrared emission is successfully demonstrated. Aggregation-induced nonlinear optical effects, including two-photon fluorescence (2PF), three-photon fluorescence (3PF), and THG, of DCCN are observed in nanoparticles, especially for crystalline nanoparticles. The nanocrystals of DCCN are successfully applied for 2PF microscopy at 1040 nm NIR-II excitation and THG microscopy at 1560 nm NIR-II excitation, respectively, to reconstruct the 3D vasculature of the mouse cerebral vasculature. Impressively, the THG microscopy provides much higher spatial resolution and brightness than the 2PF microscopy and can visualize small vessels with diameters of ≈2.7 µm at the deepest depth of 800 µm in a mouse brain. Thus, this is expected to inspire new insights into the development of advanced AIE materials with multiple nonlinearity, in particular THG, for multimodal nonlinear optical microscopy.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dongyu Li
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhiyang Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hui-Qing Peng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, Institute of Molecular Functional Materials, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
110
|
Zhang T, Hernandez O, Chrapkiewicz R, Shai A, Wagner MJ, Zhang Y, Wu CH, Li JZ, Inoue M, Gong Y, Ahanonu B, Zeng H, Bito H, Schnitzer MJ. Kilohertz two-photon brain imaging in awake mice. Nat Methods 2019; 16:1119-1122. [PMID: 31659327 PMCID: PMC9438750 DOI: 10.1038/s41592-019-0597-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 07/25/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023]
Abstract
Two-photon microscopy is a mainstay technique for imaging in scattering media and normally provides frame-acquisition rates of ~10–30 Hz. To track high-speed phenomena, we created a two-photon microscope with 400 illumination beams that collectively sample 95,000–211,000 μm2 areas at rates up to 1 kHz. Using this microscope, we visualized microcirculatory flow, fast venous constrictions, and neuronal Ca2+ spiking with millisecond-scale timing resolution in the brains of awake mice.
Collapse
|
111
|
Shin P, Choi W, Joo J, Oh WY. Quantitative hemodynamic analysis of cerebral blood flow and neurovascular coupling using optical coherence tomography angiography. J Cereb Blood Flow Metab 2019; 39:1983-1994. [PMID: 29757059 PMCID: PMC6775585 DOI: 10.1177/0271678x18773432] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Functional hyperemia in the rat cortex was investigated using high-speed optical coherence tomography (OCT) angiography and Doppler OCT. OCT angiography (OCTA) was performed to image the hemodynamic stimulus-response over a wide field of view. Temporal changes in vessel diameters in different vessel compartments, which were determined as the diameters of erythrocyte flows in OCT angiograms, were measured in order to monitor localized hemodynamic changes. Our results showed that the dilation of arterioles at the site of activation was accompanied by the dilation of upstream arteries. Relatively negligible dilation was observed in veins. An increase in the OCTA signal was observed during stimulus in multiple capillaries, which may imply that capillary blood flow increases as a result of the expanded arterial blood volume. These results agree with previous observations using two-photon laser scanning microscopy (TPLSM). Doppler OCT was performed to quantitatively measure stimulus-induced blood flow response in pial arteries. The measurement showed small but clear hemodynamic response in upstream arteries with diameters exceeding 100 μm. Our results demonstrate the potential of OCTA and Doppler OCT for the investigation of neurovascular coupling in small animal models.
Collapse
Affiliation(s)
- Paul Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - WooJhon Choi
- KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - JongYoon Joo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Wang-Yuhl Oh
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,KI for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
112
|
Sadegh S, Yang MH, Ferri CGL, Thunemann M, Saisan PA, Wei Z, Rodriguez EA, Adams SR, Kiliç K, Boas DA, Sakadžić S, Devor A, Fainman Y. Efficient non-degenerate two-photon excitation for fluorescence microscopy. OPTICS EXPRESS 2019; 27:28022-28035. [PMID: 31684560 PMCID: PMC6825618 DOI: 10.1364/oe.27.028022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Non-degenerate two-photon excitation (ND-TPE) has been explored in two-photon excitation microscopy. However, a systematic study of the efficiency of ND-TPE to guide the selection of fluorophore excitation wavelengths is missing. We measured the relative non-degenerate two-photon absorption cross-section (ND-TPACS) of several commonly used fluorophores (two fluorescent proteins and three small-molecule dyes) and generated 2-dimensional ND-TPACS spectra. We observed that the shape of a ND-TPACS spectrum follows that of the corresponding degenerate two-photon absorption cross-section (D-TPACS) spectrum, but is higher in magnitude. We found that the observed enhancements are higher than theoretical predictions.
Collapse
Affiliation(s)
- Sanaz Sadegh
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- These authors contributed equally to this study
| | - Mu-Han Yang
- Electrical and Computer Engineering Graduate Program, UCSD, La Jolla, CA 92093, USA
- These authors contributed equally to this study
| | - Christopher G. L. Ferri
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- These authors contributed equally to this study
| | - Martin Thunemann
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Payam A. Saisan
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - Zhe Wei
- Bioengineering Undergraduate Program, UCSD, La Jolla, CA 92093, USA
| | - Erik A. Rodriguez
- Department of Chemistry, The George Washington University, Washington, DC 20052, USA
| | - Stephen R. Adams
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Kivilcim Kiliç
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sava Sakadžić
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Devor
- Department of Neurosciences, University of California, San Diego, CA 92093, USA
- Martinos Center for Biomedical Imaging, MGH, Harvard Medical School, Charlestown, MA 02129, USA
- Department of Radiology, University of California, San Diego, CA 92093, USA
- These senior authors equally contributed to this study
| | - Yeshaiahu Fainman
- Electrical and Computer Engineering Graduate Program, UCSD, La Jolla, CA 92093, USA
- These senior authors equally contributed to this study
| |
Collapse
|
113
|
Kleinfeld D, Luan L, Mitra PP, Robinson JT, Sarpeshkar R, Shepard K, Xie C, Harris TD. Can One Concurrently Record Electrical Spikes from Every Neuron in a Mammalian Brain? Neuron 2019; 103:1005-1015. [PMID: 31495645 PMCID: PMC6763354 DOI: 10.1016/j.neuron.2019.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/30/2019] [Accepted: 08/03/2019] [Indexed: 12/26/2022]
Abstract
The classic approach to measure the spiking response of neurons involves the use of metal electrodes to record extracellular potentials. Starting over 60 years ago with a single recording site, this technology now extends to ever larger numbers and densities of sites. We argue, based on the mechanical and electrical properties of existing materials, estimates of signal-to-noise ratios, assumptions regarding extracellular space in the brain, and estimates of heat generation by the electronic interface, that it should be possible to fabricate rigid electrodes to concurrently record from essentially every neuron in the cortical mantle. This will involve fabrication with existing yet nontraditional materials and procedures. We further emphasize the need to advance materials for improved flexible electrodes as an essential advance to record from neurons in brainstem and spinal cord in moving animals.
Collapse
Affiliation(s)
- David Kleinfeld
- Section of Neurobiology, University of California, San Diego, CA, USA; Department of Physics, University of California, San Diego, CA, USA.
| | - Lan Luan
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Partha P Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jacob T Robinson
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Rahul Sarpeshkar
- Department of Engineering, Dartmouth, Hanover, NH, USA; Department of Microbiology and Immunology, Dartmouth, Hanover, NH, USA; Department of Molecular and Systems Biology, Dartmouth, Hanover, NH, USA; Department of Physics, Dartmouth, Hanover, NH, USA
| | - Kenneth Shepard
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Chong Xie
- Department of Biomedical Engineering, University of Texas, Austin, TX, USA
| | - Timothy D Harris
- Howard Hughes Medical Institutes, Janelia Research Campus, Ashburn, VA, USA; Department of Bioengineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
114
|
Zille M, Ikhsan M, Jiang Y, Lampe J, Wenzel J, Schwaninger M. The impact of endothelial cell death in the brain and its role after stroke: A systematic review. Cell Stress 2019; 3:330-347. [PMID: 31799500 PMCID: PMC6859425 DOI: 10.15698/cst2019.11.203] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The supply of oxygen and nutrients to the brain is vital for its function and requires a complex vascular network that, when disturbed, results in profound neurological dysfunction. As part of the pathology in stroke, endothelial cells die. As endothelial cell death affects the surrounding cellular environment and is a potential target for the treatment and prevention of neurological disorders, we have systematically reviewed important aspects of endothelial cell death with a particular focus on stroke. After screening 2876 publications published between January 1, 2010 and August 7, 2019, we identified 154 records to be included. We found that endothelial cell death occurs rapidly as well as later after the onset of stroke conditions. Among the different cell death mechanisms, apoptosis was the most widely investigated (92 records), followed by autophagy (20 records), while other, more recently defined mechanisms received less attention, such as lysosome-dependent cell death (2 records) and necroptosis (2 records). We also discuss the differential vulnerability of brain cells to injury after stroke and the role of endothelial cell death in the no-reflow phenomenon with a special focus on the microvasculature. Further investigation of the different cell death mechanisms using novel tools and biomarkers will greatly enhance our understanding of endothelial cell death. For this task, at least two markers/criteria are desirable to determine cell death subroutines according to the recommendations of the Nomenclature Committee on Cell Death.
Collapse
Affiliation(s)
- Marietta Zille
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Maulana Ikhsan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Yun Jiang
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Jan Wenzel
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany
| |
Collapse
|
115
|
Schmid F, Barrett MJP, Obrist D, Weber B, Jenny P. Red blood cells stabilize flow in brain microvascular networks. PLoS Comput Biol 2019; 15:e1007231. [PMID: 31469820 PMCID: PMC6750893 DOI: 10.1371/journal.pcbi.1007231] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 09/18/2019] [Accepted: 07/01/2019] [Indexed: 12/28/2022] Open
Abstract
Capillaries are the prime location for oxygen and nutrient exchange in all tissues. Despite their fundamental role, our knowledge of perfusion and flow regulation in cortical capillary beds is still limited. Here, we use in vivo measurements and blood flow simulations in anatomically accurate microvascular network to investigate the impact of red blood cells (RBCs) on microvascular flow. Based on these in vivo and in silico experiments, we show that the impact of RBCs leads to a bias toward equating the values of the outflow velocities at divergent capillary bifurcations, for which we coin the term “well-balanced bifurcations”. Our simulation results further reveal that hematocrit heterogeneity is directly caused by the RBC dynamics, i.e. by their unequal partitioning at bifurcations and their effect on vessel resistance. These results provide the first in vivo evidence of the impact of RBC dynamics on the flow field in the cortical microvasculature. By structural and functional analyses of our blood flow simulations we show that capillary diameter changes locally alter flow and RBC distribution. A dilation of 10% along a vessel length of 100 μm increases the flow on average by 21% in the dilated vessel downstream a well-balanced bifurcation. The number of RBCs rises on average by 27%. Importantly, RBC up-regulation proves to be more effective the more balanced the outflow velocities at the upstream bifurcation are. Taken together, we conclude that diameter changes at capillary level bear potential to locally change the flow field and the RBC distribution. Moreover, our results suggest that the balancing of outflow velocities contributes to the robustness of perfusion. Based on our in silico results, we anticipate that the bi-phasic nature of blood and small-scale regulations are essential for a well-adjusted oxygen and energy substrate supply. Glucose and oxygen are key energy sources of the brain. As energy storage capabilities are limited in the brain, a continuous supply of oxygen and glucose via the bloodstream is crucial for the brain’s functioning. The bulk of discharge occurs at the level of capillaries, which are the smallest and most frequent vessels of the cortical vasculature. Nonetheless, our understanding of perfusion and topology of the capillary bed is still limited. Here, we use in vivo two-photon based blood flow measurements and numerical simulations in large realistic microvascular networks to study the flow in the cortical microvasculature. Our results reveal that the impact of red blood cells enhances the robustness of microvascular perfusion and increases the heterogeneity in red blood cell distribution. It is well established that higher neuronal activity leads to an increase in blood flow. However, the precise regulation mechanisms and their spatial extent remain largely unknown. We show that small-scale regulations locally alter flow and red blood cell distribution. We suggest that these mechanisms are key for an efficient and flexible circulatory system. Moreover, our results reveal a novel role of the bi-phasic nature of blood.
Collapse
Affiliation(s)
- Franca Schmid
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- * E-mail:
| | - Matthew J. P. Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Dominik Obrist
- ARTORG Center for Biomedical Engineering Research, University of Bern, Murtenstrasse 50, Bern, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Winterthurerstrasse 190, Zurich, Switzerland
| | - Patrick Jenny
- Institute of Fluid Dynamics, ETH Zurich, Sonneggstrasse 3, Zurich, Switzerland
| |
Collapse
|
116
|
Atherosclerosis is associated with a decrease in cerebral microvascular blood flow and tissue oxygenation. PLoS One 2019; 14:e0221547. [PMID: 31469849 PMCID: PMC6716780 DOI: 10.1371/journal.pone.0221547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 08/11/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic atherosclerosis may cause cerebral hypoperfusion and inadequate brain oxygenation, contributing to the progression of cognitive decline. In this study, we exploited two-photon phosphorescence lifetime microscopy to measure the absolute partial pressure of oxygen (PO2) in cortical tissue in both young and old LDLR-/-, hApoB100+/+ mice, spontaneously developing atherosclerosis with age. Capillary red-blood-cell (RBC) speed, flux, hematocrit and capillary diameter were also measured by two-photon imaging of FITC-labelled blood plasma. Our results show positive correlations between RBC speed, flux, diameter and capillary-adjacent tissue PO2. When compared to the young mice, we observed lower tissue PO2, lower RBC speed and flux, and smaller capillary diameter in the old atherosclerotic mice. The old mice also exhibited a higher spatial heterogeneity of tissue PO2, and RBC speed and flux, suggesting a less efficient oxygen extraction.
Collapse
|
117
|
Erdener ŞE, Dalkara T. Small Vessels Are a Big Problem in Neurodegeneration and Neuroprotection. Front Neurol 2019; 10:889. [PMID: 31474933 PMCID: PMC6707104 DOI: 10.3389/fneur.2019.00889] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022] Open
Abstract
The cerebral microcirculation holds a critical position to match the high metabolic demand by neuronal activity. Functionally, microcirculation is virtually inseparable from other nervous system cells under both physiological and pathological conditions. For successful bench-to-bedside translation of neuroprotection research, the role of microcirculation in acute and chronic neurodegenerative disorders appears to be under-recognized, which may have contributed to clinical trial failures with some neuroprotectants. Increasing data over the last decade suggest that microcirculatory impairments such as endothelial or pericyte dysfunction, morphological irregularities in capillaries or frequent dynamic stalls in blood cell flux resulting in excessive heterogeneity in capillary transit may significantly compromise tissue oxygen availability. We now know that ischemia-induced persistent abnormalities in capillary flow negatively impact restoration of reperfusion after recanalization of occluded cerebral arteries. Similarly, microcirculatory impairments can accompany or even precede neural loss in animal models of several neurodegenerative disorders including Alzheimer's disease. Macrovessels are relatively easy to evaluate with radiological or experimental imaging methods but they cannot faithfully reflect the downstream microcirculatory disturbances, which may be quite heterogeneous across the tissue at microscopic scale and/or happen fast and transiently. The complexity and size of the elements of microcirculation, therefore, require utilization of cutting-edge imaging techniques with high spatiotemporal resolution as well as multidisciplinary team effort to disclose microvascular-neurodegenerative connection and to test treatment approaches to advance the field. Developments in two photon microscopy, ultrafast ultrasound, and optical coherence tomography provide valuable experimental tools to reveal those microscopic events with high resolution. Here, we review the up-to-date advances in understanding of the primary microcirculatory abnormalities that can result in neurodegenerative processes and the combined neurovascular protection approaches that can prevent acute as well as chronic neurodegeneration.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Neurology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
118
|
Liu H, Deng X, Tong S, He C, Cheng H, Zhuang Z, Gan M, Li J, Xie W, Qiu P, Wang K. In Vivo Deep-Brain Structural and Hemodynamic Multiphoton Microscopy Enabled by Quantum Dots. NANO LETTERS 2019; 19:5260-5265. [PMID: 31268725 DOI: 10.1021/acs.nanolett.9b01708] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Visualizing deep-brain vasculature and hemodynamics is key to understanding brain physiology and pathology. Among the various adopted imaging modalities, multiphoton microscopy (MPM) is well-known for its deep-brain structural and hemodynamic imaging capability. However, the largest imaging depth in MPM is limited by signal depletion in the deep brain. Here we demonstrate that quantum dots are an enabling material for significantly deeper structural and hemodynamic MPM in mouse brain in vivo. We characterized both three-photon excitation and emission parameters for quantum dots: the measured three-photon cross sections of quantum dots are 4-5 orders of magnitude larger than those of conventional fluorescent dyes excited at the 1700 nm window, while the three-photon emission spectrum measured in the circulating blood in vivo shows a slight red shift and broadening compared with ex vivo measurement. On the basis of these measured results, we further demonstrate both structural and hemodynamic three-photon microscopy in the mouse brain in vivo labeled by quantum dots, at record depths among all MPM modalities at all demonstrated excitation wavelengths.
Collapse
Affiliation(s)
- Hongji Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Xiangquan Deng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Shen Tong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Chen He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Hui Cheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Ziwei Zhuang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Mengyao Gan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Jia Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Weixin Xie
- College of Electronics and Information Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Ping Qiu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| | - Ke Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering , Shenzhen University , Shenzhen , 518060 , China
| |
Collapse
|
119
|
Merkle CW, Zhu J, Bernucci MT, Srinivasan VJ. Dynamic Contrast Optical Coherence Tomography reveals laminar microvascular hemodynamics in the mouse neocortex in vivo. Neuroimage 2019; 202:116067. [PMID: 31394180 DOI: 10.1016/j.neuroimage.2019.116067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Studies of flow-metabolism coupling often presume that microvessel architecture is a surrogate for blood flow. To test this assumption, we introduce an in vivo Dynamic Contrast Optical Coherence Tomography (DyC-OCT) method to quantify layer-resolved microvascular blood flow and volume across the full depth of the mouse neocortex, where the angioarchitecture has been previously described. First, we cross-validate average DyC-OCT cortical flow against conventional Doppler OCT flow. Next, with laminar DyC-OCT, we discover that layer 4 consistently exhibits the highest microvascular blood flow, approximately two-fold higher than the outer cortical layers. While flow differences between layers are well-explained by microvascular volume and density, flow differences between subjects are better explained by transit time. Finally, from layer-resolved tracer enhancement, we also infer that microvascular hematocrit increases in deep cortical layers, consistent with predictions of plasma skimming. Altogether, our results show that while the cortical blood supply derives mainly from the pial surface, laminar hemodynamics ensure that the energetic needs of individual cortical layers are met. The laminar trends reported here provide data that links predictions based on the cortical angioarchitecture to cerebrovascular physiology in vivo.
Collapse
Affiliation(s)
- Conrad W Merkle
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Jun Zhu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Marcel T Bernucci
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA, 95616, USA; Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
| |
Collapse
|
120
|
Viessmann O, Scheffler K, Bianciardi M, Wald LL, Polimeni JR. Dependence of resting-state fMRI fluctuation amplitudes on cerebral cortical orientation relative to the direction of B0 and anatomical axes. Neuroimage 2019; 196:337-350. [PMID: 31002965 PMCID: PMC6559854 DOI: 10.1016/j.neuroimage.2019.04.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/30/2019] [Accepted: 04/11/2019] [Indexed: 01/21/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) is now capable of sub-millimetre scale measurements over the entire human brain, however with such high resolutions each voxel is influenced by the local fine-scale details of the cerebral cortical vascular anatomy. The cortical vasculature is structured with the pial vessels lying tangentially along the grey matter surface, intracortical diving arterioles and ascending venules running perpendicularly to the surface, and a randomly oriented capillary network within the parenchyma. It is well-known that the amplitude of the blood-oxygenation level dependent (BOLD) signal emanating from a vessel depends on its orientation relative to the B0-field. Thus the vascular geometric hierarchy will impart an orientation dependence to the BOLD signal amplitudes and amplitude differences due to orientation differences constitute a bias for interpreting neuronal activity. Here, we demonstrate a clear effect of cortical orientation to B0 in the resting-state BOLD-fMRI amplitude (quantified as the coefficient of temporal signal variation) for 1.1 mm isotropic data at 7T and 2 mm isotropic at 3T. The maximum bias, i.e. the fluctuation amplitude difference between regions where cortex is perpendicular to vs. parallel to B0, is about +70% at the pial surface at 7T and +11% at 3T. The B0 orientation bias declines with cortical depth, becomes progressively smaller closer to the white matter surface, but then increases again to a local maximum within the white matter just beneath the cortical grey matter, suggesting a distinct tangential network of white matter vessels that also generate a BOLD orientation effect. We further found significant (negative) biases with the cortex orientation to the anterior-posterior anatomical axis of the head: a maximum negative bias of about -30% at the pial surface at 7T and about -13% at 3T. The amount of signal variance explained by the low frequency drift, motion and the respiratory cycle also showed a cortical orientation dependence; only the cardiac cycle induced signal variance was independent of cortical orientation, suggesting that the cardiac induced component of the image time-series fluctuations is not related to a significant change in susceptibility. Although these orientation effects represent a signal bias, and are likely to be a nuisance in high-resolution analyses, they may help characterize the vascular influences on candidate fMRI acquisitions and, thereby, may be exploited to improve the neuronal specificity of fMRI.
Collapse
Affiliation(s)
- Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA.
| | - Klaus Scheffler
- Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076 Tübingen, Germany.
| | - Marta Bianciardi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA.
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA.
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, 149 13th St., Charlestown, Boston, MA 02129, USA; Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
121
|
Li B, Esipova TV, Sencan I, Kılıç K, Fu B, Desjardins M, Moeini M, Kura S, Yaseen MA, Lesage F, Østergaard L, Devor A, Boas DA, Vinogradov SA, Sakadžić S. More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction. eLife 2019; 8:42299. [PMID: 31305237 PMCID: PMC6636997 DOI: 10.7554/elife.42299] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/01/2019] [Indexed: 01/01/2023] Open
Abstract
Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Tatiana V Esipova
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Kıvılcım Kılıç
- Department of Neurosciences, University of California, San Diego, La Jolla, United States
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Michele Desjardins
- Department of Radiology, University of California, San Diego, La Jolla, United States
| | - Mohammad Moeini
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Sreekanth Kura
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Frederic Lesage
- Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada.,Research Centre, Montreal Heart Institute, Montréal, Canada
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurosciences, University of California, San Diego, La Jolla, United States.,Department of Radiology, University of California, San Diego, La Jolla, United States
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Biomedical Engineering, Boston University, Boston, United States
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States.,Department of Chemistry, University of Pennsylvania, Philadelphia, United States
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|
122
|
Li H, Zhou X, Li Y, Ma X, Gonzales RJ, Qiu S, Shi FD, Liu Q. The selective sphingosine 1‐phosphate receptor 1 modulator RP101075 improves microvascular circulation after cerebrovascular thrombosis. FASEB J 2019; 33:10935-10941. [DOI: 10.1096/fj.201900282r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Handong Li
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Xing Zhou
- Department of Basic Medical SciencesSchool of MedicineInstitute for ImmunologyTsinghua UniversityBeijingChina
| | - Yujing Li
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Barrow Neurological InstituteSt. Joseph's HospitalMedical CenterPhoenixArizonaUSA
| | - Xiaokuang Ma
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Rayna J. Gonzales
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Shenfeng Qiu
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixArizonaUSA
| | - Fu-Dong Shi
- Barrow Neurological InstituteSt. Joseph's HospitalMedical CenterPhoenixArizonaUSA
| | - Qiang Liu
- Department of Basic Medical SciencesUniversity of Arizona College of MedicinePhoenixArizonaUSA
- Barrow Neurological InstituteSt. Joseph's HospitalMedical CenterPhoenixArizonaUSA
| |
Collapse
|
123
|
|
124
|
Yang S, Liu K, Ding H, Gao H, Zheng X, Ding Z, Xu K, Li P. Longitudinal in vivo intrinsic optical imaging of cortical blood perfusion and tissue damage in focal photothrombosis stroke model. J Cereb Blood Flow Metab 2019; 39. [PMID: 29521548 PMCID: PMC6668510 DOI: 10.1177/0271678x18762636] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A thorough understanding of the spatiotemporal dynamics of blood supply and tissue viability is of great importance in stroke researches. In the current study, vascular and cellular responses to focal ischemia were monitored with optical coherence tomography on chronic rat photothrombotic stroke model. The 3D mapping of blood perfusion and cellular scattering were achieved by analyzing the temporal dynamics and depth attenuation of intrinsic backscattered light respectively. Optical coherence tomography revealed that vessels of different types presented various spatial and temporal dynamics during the photothrombotic occlusion and the later recovery period. The large distal middle cerebral arteries presented a spontaneous recanalization and the small pial microvessels presented a reperfusion along with newly appeared vessels from the peripheral into the core area. The cortical capillary perfusion presented a weak recovery. Compared to the male group, the female rats showed a faster vascular recovery after photothrombotic. Moreover, the dynamic changes of the cellular scattering signal showed a high spatial and temporal correlation with the cortical capillary perfusion. Combined with well-designed photothrombotic stroke model and chronic optical window, optical coherence tomography imaging offers a unique approach to improve the understanding of stroke procedure and evaluate the treatment outcomes.
Collapse
Affiliation(s)
- Shanshan Yang
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kezhou Liu
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,3 College of Life Information Science and Instruments Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huijie Ding
- 3 College of Life Information Science and Instruments Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huan Gao
- 4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
| | - Xiaoxiang Zheng
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,5 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Zhihua Ding
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kedi Xu
- 2 Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China.,4 Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China.,5 Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Peng Li
- 1 State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
125
|
Chaigneau E, Roche M, Charpak S. Unbiased Analysis Method for Measurement of Red Blood Cell Size and Velocity With Laser Scanning Microscopy. Front Neurosci 2019; 13:644. [PMID: 31316334 PMCID: PMC6610068 DOI: 10.3389/fnins.2019.00644] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
Two-photon laser scanning microscopy is widely used to measure blood hemodynamics in brain blood vessels. Still, the algorithms used so far to extract red blood cell (RBC) size and velocity from line-scan acquisitions have ignored the extent to which scanning speed influences the measurements. Here, we used a theoretical approach that takes into account the velocity and direction of both scanning mirrors and RBCs during acquisition to provide an algorithm that measures the real RBC size and velocity. We validate our approach in brain vessels of anesthetized mice, and demonstrate that it corrects online measurement errors that can reach several 10s of percent as well as data previously acquired. To conclude, our analysis allows unbiased comparisons of blood hemodynamic parameters from brain capillaries and large vessels in control and pathological animal models.
Collapse
Affiliation(s)
| | | | - Serge Charpak
- INSERM U1128, Laboratory of Neurophysiology and New Microscopy, Université Paris Descartes, Paris, France
| |
Collapse
|
126
|
Shen J, Wang D, Wang X, Gupta S, Ayloo B, Wu S, Prasad P, Xiong Q, Xia J, Ge S. Neurovascular Coupling in the Dentate Gyrus Regulates Adult Hippocampal Neurogenesis. Neuron 2019; 103:878-890.e3. [PMID: 31257104 DOI: 10.1016/j.neuron.2019.05.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/25/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Newborn dentate granule cells (DGCs) are continuously generated in the adult brain. The mechanism underlying how the adult brain governs hippocampal neurogenesis remains poorly understood. In this study, we investigated how coupling of pre-existing neurons to the cerebrovascular system regulates hippocampal neurogenesis. Using a new in vivo imaging method in freely moving mice, we found that hippocampus-engaged behaviors, such as exploration in a novel environment, rapidly increased microvascular blood-flow velocity in the dentate gyrus. Importantly, blocking this exploration-elevated blood flow dampened experience-induced hippocampal neurogenesis. By imaging the neurovascular niche in combination with chemogenetic manipulation, we revealed that pre-existing DGCs actively regulated microvascular blood flow. This neurovascular coupling was linked by parvalbumin-expressing interneurons, primarily through nitric-oxide signaling. Further, we showed that insulin growth factor 1 signaling participated in functional hyperemia-induced neurogenesis. Together, our findings revealed a neurovascular coupling network that regulates experience-induced neurogenesis in the adult brain.
Collapse
Affiliation(s)
- Jia Shen
- The Program of Genetics, SUNY at Stony Brook, Stony Brook, NY 11794, USA; Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Depeng Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Xinxing Wang
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shashank Gupta
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Bhargav Ayloo
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Song Wu
- Department of Applied Mathematics and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Paras Prasad
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Qiaojie Xiong
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA.
| |
Collapse
|
127
|
Cellular Control of Brain Capillary Blood Flow: In Vivo Imaging Veritas. Trends Neurosci 2019; 42:528-536. [PMID: 31255380 DOI: 10.1016/j.tins.2019.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023]
Abstract
The precise modulation of regional cerebral blood flow during neural activation is important for matching local energetic demand and supply and clearing brain metabolites. Here we discuss advances facilitated by high-resolution optical in vivo imaging techniques that for the first time have provided direct visualization of capillary blood flow and its modulation by neural activity. We focus primarily on studies of microvascular flow, mural cell control of vessel diameter, and oxygen level-dependent changes in red blood cell deformability. We also suggest methodological standards for best practices when studying microvascular perfusion, partly motivated by recent controversies about the precise location within the microvascular tree where neurovascular coupling is initiated, and the role of mural cells in the control of vasomotility.
Collapse
|
128
|
Direct wavefront sensing enables functional imaging of infragranular axons and spines. Nat Methods 2019; 16:615-618. [PMID: 31209383 DOI: 10.1038/s41592-019-0434-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 04/29/2019] [Indexed: 11/09/2022]
Abstract
We advance two-photon microscopy for near-diffraction-limited imaging up to 850 µm below the pia in awake mice. Our approach combines direct wavefront sensing of light from a guidestar (formed by descanned fluorescence from Cy5.5-conjugated dextran in brain microvessels) with adaptive optics to compensate for tissue-induced aberrations in the wavefront. We achieve high signal-to-noise ratios in recordings of glutamate release from thalamocortical axons and calcium transients in spines of layer 5b basal dendrites during active tactile sensing.
Collapse
|
129
|
Unekawa M, Tomita Y, Toriumi H, Osada T, Masamoto K, Kawaguchi H, Izawa Y, Itoh Y, Kanno I, Suzuki N, Nakahara J. Spatiotemporal dynamics of red blood cells in capillaries in layer I of the cerebral cortex and changes in arterial diameter during cortical spreading depression and response to hypercapnia in anesthetized mice. Microcirculation 2019; 26:e12552. [PMID: 31050358 DOI: 10.1111/micc.12552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Control of red blood cell velocity in capillaries is essential to meet local neuronal metabolic requirements, although changes of capillary diameter are limited. To further understand the microcirculatory response during cortical spreading depression, we analyzed the spatiotemporal changes of red blood cell velocity in intraparenchymal capillaries. METHODS In urethane-anesthetized Tie2-green fluorescent protein transgenic mice, the velocity of fluorescence-labeled red blood cells flowing in capillaries in layer I of the cerebral cortex was automatically measured with our Matlab domain software (KEIO-IS2) in sequential images obtained with a high-speed camera laser-scanning confocal fluorescence microscope system. RESULTS Cortical spreading depression repeatedly increased the red blood cell velocity prior to arterial constriction/dilation. During the first cortical spreading depression, red blood cell velocity significantly decreased, and sluggishly moving or retrograde-moving red blood cells were observed, concomitantly with marked arterial constriction. The velocity subsequently returned to around the basal level, while oligemia after cortical spreading depression with slight vasoconstriction remained. After several passages of cortical spreading depression, hypercapnia-induced increase of red blood cell velocity, regional cerebral blood flow and arterial diameter were all significantly reduced, and the correlations among them became extremely weak. CONCLUSIONS Taken together with our previous findings, these simultaneous measurements of red blood cell velocity in multiple capillaries, arterial diameter and regional cerebral blood flow support the idea that red blood cell flow might be altered independently, at least in part, from arterial regulation, that neuro-capillary coupling plays a role in rapidly meeting local neural demand.
Collapse
Affiliation(s)
- Miyuki Unekawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Tomita Hospital, Okazaki, Japan
| | - Yutaka Tomita
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Tomita Hospital, Okazaki, Japan
| | - Haruki Toriumi
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Osada
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuto Masamoto
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Japan.,Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Hiroshi Kawaguchi
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Yoshikane Izawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Iwao Kanno
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, Chiba, Japan
| | - Norihiro Suzuki
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,Department of Neurology, Shonan Keiiku Hospital, Fujisawa, Japan
| | - Jin Nakahara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
130
|
Desjardins M. Causality as a New Paradigm in Brain Science. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:506-507. [PMID: 31176385 DOI: 10.1016/j.bpsc.2019.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/22/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Michèle Desjardins
- Département de physique, de génie physique et d'optique and Axe oncologie, Centre de recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada.
| |
Collapse
|
131
|
van Huizen LM, Kuzmin NV, Barbé E, van der Velde S, te Velde EA, Groot ML. Second and third harmonic generation microscopy visualizes key structural components in fresh unprocessed healthy human breast tissue. JOURNAL OF BIOPHOTONICS 2019; 12:e201800297. [PMID: 30684312 PMCID: PMC7065644 DOI: 10.1002/jbio.201800297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 05/04/2023]
Abstract
Real-time assessment of excised tissue may help to improve surgical results in breast tumor surgeries. Here, as a step towards this purpose, the potential of second and third harmonic generation (SHG, THG) microscopy is explored. SHG and THG are nonlinear optical microscopic techniques that do not require labeling of tissue to generate 3D images with intrinsic depth-sectioning at sub-cellular resolution. Until now, this technique had been applied on fixated breast tissue or to visualize the stroma only, whereas most tumors start in the lobules and ducts. Here, SHG/THG images of freshly excised unprocessed healthy human tissue are shown to reveal key breast components-lobules, ducts, fat tissue, connective tissue and blood vessels, in good agreement with hematoxylin and eosin histology. DNA staining of fresh unprocessed mouse breast tissue was performed to aid in the identification of cell nuclei in label-free THG images. Furthermore, 2- and 3-photon excited auto-fluorescence images of mouse and human tissue are collected for comparison. The SHG/THG imaging modalities generate high quality images of freshly excised tissue in less than a minute with an information content comparable to that of the gold standard, histopathology. Therefore, SHG/THG microscopy is a promising tool for real-time assessment of excised tissue during surgery.
Collapse
Affiliation(s)
- Laura M.G. van Huizen
- Department of PhysicsLaserLab, Faculty of Science, VU AmsterdamAmsterdamThe Netherlands
| | - Nikolay V. Kuzmin
- Department of PhysicsLaserLab, Faculty of Science, VU AmsterdamAmsterdamThe Netherlands
| | - Ellis Barbé
- Department of PathologyAmsterdam UMC/VU University Medical CenterAmsterdamThe Netherlands
| | - Susanne van der Velde
- Department of SurgeryAmsterdam UMC/VU University Medical CenterAmsterdamThe Netherlands
| | - Elisabeth A. te Velde
- Department of SurgeryAmsterdam UMC/VU University Medical CenterAmsterdamThe Netherlands
| | - Marie Louise Groot
- Department of PhysicsLaserLab, Faculty of Science, VU AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
132
|
Joseph A, Guevara-Torres A, Schallek J. Imaging single-cell blood flow in the smallest to largest vessels in the living retina. eLife 2019; 8:45077. [PMID: 31084705 PMCID: PMC6516827 DOI: 10.7554/elife.45077] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Tissue light scatter limits the visualization of the microvascular network deep inside the living mammal. The transparency of the mammalian eye provides a noninvasive view of the microvessels of the retina, a part of the central nervous system. Despite its clarity, imperfections in the optics of the eye blur microscopic retinal capillaries, and single blood cells flowing within. This limits early evaluation of microvascular diseases that originate in capillaries. To break this barrier, we use 15 kHz adaptive optics imaging to noninvasively measure single-cell blood flow, in one of the most widely used research animals: the C57BL/6J mouse. Measured flow ranged four orders of magnitude (0.0002-1.55 µL min-1) across the full spectrum of retinal vessel diameters (3.2-45.8 µm), without requiring surgery or contrast dye. Here, we describe the ultrafast imaging, analysis pipeline and automated measurement of millions of blood cell speeds.
Collapse
Affiliation(s)
- Aby Joseph
- Institute of Optics, University of Rochester, New York, United States.,Center for Visual Science, University of Rochester, New York, United States
| | - Andres Guevara-Torres
- Institute of Optics, University of Rochester, New York, United States.,Center for Visual Science, University of Rochester, New York, United States
| | - Jesse Schallek
- Center for Visual Science, University of Rochester, New York, United States.,Flaum Eye Institute, University of Rochester, New York, United States.,Department of Neuroscience, University of Rochester, New York, United States
| |
Collapse
|
133
|
In vivo neurovascular response to focused photoactivation of Channelrhodopsin-2. Neuroimage 2019; 192:135-144. [DOI: 10.1016/j.neuroimage.2019.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/31/2018] [Accepted: 01/14/2019] [Indexed: 01/03/2023] Open
|
134
|
Wei W, Li Y, Xie Z, Deegan AJ, Wang RK. Spatial and Temporal Heterogeneities of Capillary Hemodynamics and Its Functional Coupling During Neural Activation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2019; 38:1295-1303. [PMID: 30489265 PMCID: PMC6563900 DOI: 10.1109/tmi.2018.2883244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The cerebral vascular system provides a means to meet the constant metabolic needs of neuronal activities in the brain. Within the cerebral capillary bed, the interactions of spatial and temporal hemodynamics play a deterministic role in oxygen diffusion, however, the progression of which remains unclear. Taking the advantages of high-spatiotemporal resolution of optical coherence tomography capillary velocimetry designed with the eigen-decomposition statistical analysis, we investigated intrinsic red blood cell (RBC) velocities and their spatiotemporal adjustment within the capillaries permeating mouse cerebral cortex during electrical stimulation of contralateral hind paw. We found that the mean capillary transit velocity (mCTV) is increased and its temporal fluctuation bandwidth (TFB) is broadened within hind-paw somatosensory cortex. In addition, the degree to which the mCTV is increased negatively correlates with resting state mCTV, and the degree to which the TFB is increased negatively correlates with both the resting state mCTV and the TFB. In order to confirm the changes are due to hemodynamic regulation, we performed angiographic analyses and found that the vessel density remains almost constant, suggesting the observed functional activation does not involve recruitment of reserved capillaries. To further differentiate the contributions of the mCTV and the TFB to the spatiotemporally coupled hemodynamics, changes in the mCTV and TBF of the capillary flow were modeled and investigated through a Monte Carlo simulation. The results suggest that neural activation evokes the spatial transit time homogenization within the capillary bed, which is regulated via both the heterogeneous acceleration of RBC flow and the heterogeneous increase of temporal RBC fluctuation, ensuring sufficient oxygenation during functional hyperemia.
Collapse
|
135
|
Erdener ŞE, Tang J, Sajjadi A, Kılıç K, Kura S, Schaffer CB, Boas DA. Spatio-temporal dynamics of cerebral capillary segments with stalling red blood cells. J Cereb Blood Flow Metab 2019; 39:886-900. [PMID: 29168661 PMCID: PMC6501506 DOI: 10.1177/0271678x17743877] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Optical coherence tomography (OCT) allows label-free imaging of red blood cell (RBC) flux within capillaries with high spatio-temporal resolution. In this study, we utilized time-series OCT-angiography to demonstrate interruptions in capillary RBC flux in mouse brain in vivo. We noticed ∼7.5% of ∼200 capillaries had at least one stall in awake mice with chronic windows during a 9-min recording. At any instant, ∼0.45% of capillaries were stalled. Average stall duration was ∼15 s but could last over 1 min. Stalls were more frequent and longer lasting in acute window preparations. Further, isoflurane anesthesia in chronic preparations caused an increase in the number of stalls. In repeated imaging, the same segments had a tendency to stall again over a period of one month. In awake animals, functional stimulation decreased the observance of stalling events. Stalling segments were located distally, away from the first couple of arteriolar-side capillary branches and their average RBC and plasma velocities were lower than nonstalling capillaries within the same region. This first systematic analysis of capillary RBC stalls in the brain, enabled by rapid and continuous volumetric imaging of capillaries with OCT-angiography, will lead to future investigations of the potential role of stalling events in cerebral pathologies.
Collapse
Affiliation(s)
- Şefik Evren Erdener
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jianbo Tang
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amir Sajjadi
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Kıvılcım Kılıç
- 2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sreekanth Kura
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chris B Schaffer
- 3 Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - David A Boas
- 1 Optics Division, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.,2 Neurophotonics Center, Department of Biomedical Engineering, Boston University, Boston, MA, USA
| |
Collapse
|
136
|
Dizeux A, Gesnik M, Ahnine H, Blaize K, Arcizet F, Picaud S, Sahel JA, Deffieux T, Pouget P, Tanter M. Functional ultrasound imaging of the brain reveals propagation of task-related brain activity in behaving primates. Nat Commun 2019; 10:1400. [PMID: 30923310 PMCID: PMC6438968 DOI: 10.1038/s41467-019-09349-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 03/04/2019] [Indexed: 01/24/2023] Open
Abstract
Neuroimaging modalities such as MRI and EEG are able to record from the whole brain, but this comes at the price of either limited spatiotemporal resolution or limited sensitivity. Here, we show that functional ultrasound imaging (fUS) of the brain is able to assess local changes in cerebral blood volume during cognitive tasks, with sufficient temporal resolution to measure the directional propagation of signals. In two macaques, we observed an abrupt transient change in supplementary eye field (SEF) activity when animals were required to modify their behaviour associated with a change of saccade tasks. SEF activation could be observed in a single trial, without averaging. Simultaneous imaging of anterior cingulate cortex and SEF revealed a time delay in the directional functional connectivity of 0.27 ± 0.07 s and 0.9 ± 0.2 s for both animals. Cerebral hemodynamics of large brain areas can be measured at high spatiotemporal resolution using fUS. Neuroimaging modalities such as MRI and EEG are able to record brain activity, but spatiotemporal resolution and sensitivity are limited. Here, the authors show how a recently developed method, functional ultrasound imaging (fUS), can measure brain activation during cognitive tasks in primates.
Collapse
Affiliation(s)
- Alexandre Dizeux
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France.
| | - Marc Gesnik
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France
| | - Harry Ahnine
- INSERM 1127, CNRS 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France
| | - Kevin Blaize
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Fabrice Arcizet
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - Serge Picaud
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France
| | - José-Alain Sahel
- INSERM, CNRS, Institut de la Vision, Sorbonne Université, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas Deffieux
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France
| | - Pierre Pouget
- INSERM 1127, CNRS 7225, Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Paris, France.
| | - Mickael Tanter
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France.
| |
Collapse
|
137
|
Anzabi M, Angleys H, Aamand R, Ardalan M, Mouridsen K, Rasmussen PM, Sørensen JCH, Plesnila N, Østergaard L, Iversen NK. Capillary flow disturbances after experimental subarachnoid hemorrhage: A contributor to delayed cerebral ischemia? Microcirculation 2019; 26:e12516. [DOI: 10.1111/micc.12516] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/21/2018] [Accepted: 11/12/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Maryam Anzabi
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
| | - Hugo Angleys
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
| | - Rasmus Aamand
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
| | - Maryam Ardalan
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
- Department of Clinical Medicine; Translational Neuropsychiatry Unit; Aarhus University; Aarhus Denmark
| | - Kim Mouridsen
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
| | - Peter Mondrup Rasmussen
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
| | | | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD); University of Munich Medical Center; Munich Germany
| | - Leif Østergaard
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
- Department of Neuroradiology; Aarhus University Hospital; Aarhus Denmark
| | - Nina Kerting Iversen
- Department of Clinical Medicine; Center of Functionally Integrative Neuroscience (CFIN); Aarhus University; Aarhus Denmark
| |
Collapse
|
138
|
Hassan AM, Wu X, Jarrett JW, Xu S, Yu J, Miller DR, Perillo EP, Liu YL, Chiu DT, Yeh HC, Dunn AK. Polymer dots enable deep in vivo multiphoton fluorescence imaging of microvasculature. BIOMEDICAL OPTICS EXPRESS 2019; 10:584-599. [PMID: 30800501 PMCID: PMC6377892 DOI: 10.1364/boe.10.000584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
Deep in vivo imaging of vasculature requires small, bright, and photostable fluorophores suitable for multiphoton microscopy (MPM). Although semiconducting polymer dots (pdots) are an emerging class of highly fluorescent contrast agents with favorable advantages for the next generation of in vivo imaging, their use for deep MPM has never before been demonstrated. Herein, we characterize the multiphoton properties of three pdot variants and perform deep in vivo MPM imaging of cortical rodent microvasculature. We find pdot brightness exceeds conventional fluorophores, including quantum dots, and their broad multiphoton absorption spectrum permits imaging at wavelengths better-suited for biological imaging and confers compatibility with a range of longer excitation wavelengths. This results in substantial improvements in signal-to-background ratio (>3.5-fold) and greater cortical imaging depths (z = 1,300 µm). Ultimately, pdots are a versatile tool for MPM due to their extraordinary brightness and broad absorption, enabling interrogation of deep structures in vivo.
Collapse
Affiliation(s)
- Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Xu Wu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jeremy W Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Shihan Xu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - David R Miller
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Yen-Liang Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
- Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W. Dean Keeton C0800, Austin, TX 78712, USA
| |
Collapse
|
139
|
Sandoval RM, Molitoris BA, Palygin O. Fluorescent Imaging and Microscopy for Dynamic Processes in Rats. Methods Mol Biol 2019; 2018:151-175. [PMID: 31228156 PMCID: PMC6693343 DOI: 10.1007/978-1-4939-9581-3_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The rat is a favored model organism to study physiological function in vivo. This is largely due to the fact that it has been used for decades and is often more comparable to corresponding human conditions (both normal and pathologic) than mice. Although the development of genetic manipulations in rats has been slower than in mice, recent advances of new genomic editing tools allow for the generation of targeted global and specific cell type mutations in different rat strains. The rat is an ideal model for advancing imaging techniques like intravital multi-photon microscopy or IVMPM. Multi-photon excitation microscopy can be applied to visualize real-time physiologic events in multiple organs including the kidney. This imaging modality can generate four-dimensional high resolution images that are inherently confocal due to the fact that the photon density needed to excite fluorescence only occurs at the objective focal plane, not above or below. Additionally, longer excitation wavelengths allow for deeper penetration into tissue, improved excitation, and are inherently less phototoxic than shorter excitation wavelengths. Applying imaging tools to study physiology in rats has become a valuable scientific technique due to the relatively simple surgical procedures, improved quality of reagents, and reproducibility of established assays. In this chapter, the authors provide an example of the application of fluorescent techniques to study cardio-renal functions in rat models. Use of experimental procedures described here, together with multiple available genetically modified animal models, provide new prospective for the further application of multi-photon microscopy in basic and translational research.
Collapse
Affiliation(s)
- Ruben M Sandoval
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Bruce A Molitoris
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Center for Biological Microscopy, Indianapolis, IN, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
140
|
Germuska M, Chandler HL, Stickland RC, Foster C, Fasano F, Okell TW, Steventon J, Tomassini V, Murphy K, Wise RG. Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivity. Neuroimage 2019; 184:717-728. [PMID: 30278214 PMCID: PMC6264385 DOI: 10.1016/j.neuroimage.2018.09.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 01/14/2023] Open
Abstract
Dual-calibrated fMRI is a multi-parametric technique that allows for the quantification of the resting oxygen extraction fraction (OEF), the absolute rate of cerebral metabolic oxygen consumption (CMRO2), cerebral vascular reactivity (CVR) and baseline perfusion (CBF). It combines measurements of arterial spin labelling (ASL) and blood oxygenation level dependent (BOLD) signal changes during hypercapnic and hyperoxic gas challenges. Here we propose an extension to this methodology that permits the simultaneous quantification of the effective oxygen diffusivity of the capillary network (DC). The effective oxygen diffusivity has the scope to be an informative biomarker and useful adjunct to CMRO2, potentially providing a non-invasive metric of microvascular health, which is known to be disturbed in a range of neurological diseases. We demonstrate the new method in a cohort of healthy volunteers (n = 19) both at rest and during visual stimulation. The effective oxygen diffusivity was found to be highly correlated with CMRO2 during rest and activation, consistent with previous PET observations of a strong correlation between metabolic oxygen demand and effective diffusivity. The increase in effective diffusivity during functional activation was found to be consistent with previously reported increases in capillary blood volume, supporting the notion that measured oxygen diffusivity is sensitive to microvascular physiology.
Collapse
Affiliation(s)
- M Germuska
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - H L Chandler
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - R C Stickland
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - C Foster
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - F Fasano
- Siemens Healthcare Ltd, Frimley, Camberley, UK
| | - T W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - J Steventon
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - V Tomassini
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, UK; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - K Murphy
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - R G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK.
| |
Collapse
|
141
|
Young TL, Zychowski KE, Denson JL, Campen MJ. Blood-brain barrier at the interface of air pollution-associated neurotoxicity and neuroinflammation. ROLE OF INFLAMMATION IN ENVIRONMENTAL NEUROTOXICITY 2019. [DOI: 10.1016/bs.ant.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
Han J, Lee S, Choi P, Wu J, Lee K, Dai Q, Park J, Lee KB, Choi M. Improving collection efficiency in two-photon endoscopy with reflective waveguiding. OPTICS EXPRESS 2018; 26:32365-32373. [PMID: 30645405 DOI: 10.1364/oe.26.032365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Two-photon endoscopy based on a gradient-index lens has been widely utilized for studying cellular behaviors in deep-lying tissues with minimal invasiveness in vivo. Although the efficient collection of emitted light is critical to attain high-contrast spatiotemporal information, the intrinsic low numerical aperture of the endoscopic probe poses a physical limitation. We report a simple solution to overcome this limit by incorporating a reflective waveguide ensheathing the endoscopic probe, which improves the collection efficiency by approximately two-fold. We describe its principle, fabrication procedure, optical characterization, and utilities in biological tissues.
Collapse
|
143
|
DeStefano JG, Jamieson JJ, Linville RM, Searson PC. Benchmarking in vitro tissue-engineered blood-brain barrier models. Fluids Barriers CNS 2018; 15:32. [PMID: 30514389 PMCID: PMC6280508 DOI: 10.1186/s12987-018-0117-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a key role in regulating transport into and out of the brain. With increasing interest in the role of the BBB in health and disease, there have been significant advances in the development of in vitro models. The value of these models to the research community is critically dependent on recapitulating characteristics of the BBB in humans or animal models. However, benchmarking in vitro models is surprisingly difficult since much of our knowledge of the structure and function of the BBB comes from in vitro studies. Here we describe a set of parameters that we consider a starting point for benchmarking and validation. These parameters are associated with structure (ultrastructure, wall shear stress, geometry), microenvironment (basement membrane and extracellular matrix), barrier function (transendothelial electrical resistance, permeability, efflux transport), cell function (expression of BBB markers, turnover), and co-culture with other cell types (astrocytes and pericytes). In suggesting benchmarks, we rely primarily on imaging or direct measurements in humans and animal models.
Collapse
Affiliation(s)
- Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA. .,120 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
144
|
Masamoto K, Vazquez A. Optical imaging and modulation of neurovascular responses. J Cereb Blood Flow Metab 2018; 38:2057-2072. [PMID: 30334644 PMCID: PMC6282226 DOI: 10.1177/0271678x18803372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/02/2018] [Indexed: 12/17/2022]
Abstract
The cerebral microvasculature consists of pial vascular networks, parenchymal descending arterioles, ascending venules and parenchymal capillaries. This vascular compartmentalization is vital to precisely deliver blood to balance continuously varying neural demands in multiple brain regions. Optical imaging techniques have facilitated the investigation of dynamic spatial and temporal properties of microvascular functions in real time. Their combination with transgenic animal models encoding specific genetic targets have further strengthened the importance of optical methods for neurovascular research by allowing for the modulation and monitoring of neuro vascular function. Image analysis methods with three-dimensional reconstruction are also helping to understand the complexity of microscopic observations. Here, we review the compartmentalized cerebral microvascular responses to global perturbations as well as regional changes in response to neural activity to highlight the differences in vascular action sites. In addition, microvascular responses elicited by optical modulation of different cell-type targets are summarized with emphasis on variable spatiotemporal dynamics of microvascular responses. Finally, long-term changes in microvascular compartmentalization are discussed to help understand potential relationships between CBF disturbances and the development of neurodegenerative diseases and cognitive decline.
Collapse
Affiliation(s)
- Kazuto Masamoto
- Faculty of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
- Brain Science Inspired Life Support Research Center, University of Electro-Communications, Tokyo, Japan
| | - Alberto Vazquez
- Departments of Radiology and Bioengineering, University of Pittsburgh, PA, USA
| |
Collapse
|
145
|
Clendenon SG, Fu X, Von Hoene RA, Clendenon JL, Sluka JP, Winfree S, Mang H, Martinez M, Filson AJ, Klaunig JE, Glazier JA, Dunn KW. A simple automated method for continuous fieldwise measurement of microvascular hemodynamics. Microvasc Res 2018; 123:7-13. [PMID: 30502365 DOI: 10.1016/j.mvr.2018.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 01/25/2023]
Abstract
Microvascular perfusion dynamics are vital to physiological function and are frequently dysregulated in injury and disease. Typically studies measure microvascular flow in a few selected vascular segments over limited time, failing to capture spatial and temporal variability. To quantify microvascular flow in a more complete and unbiased way we developed STAFF (Spatial Temporal Analysis of Fieldwise Flow), a macro for FIJI open-source image analysis software. Using high-speed microvascular flow movies, STAFF generates kymographs for every time interval for every vascular segment, calculates flow velocities from red blood cell shadow angles, and outputs the data as color-coded velocity map movies and spreadsheets. In untreated mice, analyses demonstrated profound variation even between adjacent sinusoids over seconds. In acetaminophen-treated mice we detected flow reduction localized to pericentral regions. STAFF is a powerful new tool capable of providing novel insights by enabling measurement of the complex spatiotemporal dynamics of microvascular flow.
Collapse
Affiliation(s)
- Sherry G Clendenon
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Xiao Fu
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Physics, Indiana University, Bloomington, IN, USA
| | - Robert A Von Hoene
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - James P Sluka
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Seth Winfree
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Henry Mang
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | | | - Adele J Filson
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - James E Klaunig
- School of Public Health, Indiana University, Bloomington, IN, USA
| | - James A Glazier
- Biocomplexity Institute, Indiana University, Bloomington, IN, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Kenneth W Dunn
- Department of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
146
|
Østergaard L, Jørgensen MB, Knudsen GM. Low on energy? An energy supply-demand perspective on stress and depression. Neurosci Biobehav Rev 2018; 94:248-270. [DOI: 10.1016/j.neubiorev.2018.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/09/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
|
147
|
Schulz A, Chuquimia OD, Antypas H, Steiner SE, Sandoval RM, Tanner GA, Molitoris BA, Richter-Dahlfors A, Melican K. Protective vascular coagulation in response to bacterial infection of the kidney is regulated by bacterial lipid A and host CD147. Pathog Dis 2018; 76:5210089. [PMID: 30476069 PMCID: PMC7297223 DOI: 10.1093/femspd/fty087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/23/2018] [Indexed: 01/26/2023] Open
Abstract
Bacterial infection of the kidney leads to a rapid cascade of host protective responses, many of which are still poorly understood. We have previously shown that following kidney infection with uropathogenic Escherichia coli (UPEC), vascular coagulation is quickly initiated in local perivascular capillaries that protects the host from progressing from a local infection to systemic sepsis. The signaling mechanisms behind this response have not however been described. In this study, we use a number of in vitro and in vivo techniques, including intravital microscopy, to identify two previously unrecognized components influencing this protective coagulation response. The acylation state of the Lipid A of UPEC lipopolysaccharide (LPS) is shown to alter the kinetics of local coagulation onset in vivo. We also identify epithelial CD147 as a potential host factor influencing infection-mediated coagulation. CD147 is expressed by renal proximal epithelial cells infected with UPEC, contingent to bacterial expression of the α-hemolysin toxin. The epithelial CD147 subsequently can activate tissue factor on endothelial cells, a primary step in the coagulation cascade. This study emphasizes the rapid, multifaceted response of the kidney tissue to bacterial infection and the interplay between host and pathogen during the early hours of renal infection.
Collapse
Affiliation(s)
- Anette Schulz
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Olga D Chuquimia
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Haris Antypas
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Svava E Steiner
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Ruben M Sandoval
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - George A Tanner
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruce A Molitoris
- Indiana University School of Medicine, Roudebush VAMC, Indiana Center for Biological Microscopy, Indianapolis, IN 46202, USA
| | - Agneta Richter-Dahlfors
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Keira Melican
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
148
|
Hrabetova S, Cognet L, Rusakov DA, Nägerl UV. Unveiling the Extracellular Space of the Brain: From Super-resolved Microstructure to In Vivo Function. J Neurosci 2018; 38:9355-9363. [PMID: 30381427 PMCID: PMC6706003 DOI: 10.1523/jneurosci.1664-18.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 11/21/2022] Open
Abstract
The extracellular space occupies approximately one-fifth of brain volume, molding a spider web of gaps filled with interstitial fluid and extracellular matrix where neurons and glial cells perform in concert. Yet, very little is known about the spatial organization and dynamics of the extracellular space, let alone its influence on brain function, owing to a lack of appropriate techniques (and a traditional bias toward the inside of cells, not the spaces in between). At the same time, it is clear that understanding fundamental brain functions, such as synaptic transmission, memory, sleep, and recovery from disease, calls for more focused research on the extracellular space of the brain. This review article highlights several key research areas, covering recent methodological and conceptual progress that illuminates this understudied, yet critically important, brain compartment, providing insights into the opportunities and challenges of this nascent field.
Collapse
Affiliation(s)
- Sabina Hrabetova
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York 11203
| | - Laurent Cognet
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, F-33400 Talence, France
- Institut d'Optique and Centre National de la Recherche Scientifique, F-33400 Talence, France
| | - Dmitri A Rusakov
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
| | - U Valentin Nägerl
- Institut Interdisciplinaire des Neurosciences, Université de Bordeaux, 33077 Bordeaux, France, and
- Institut Interdisciplinaire des Neurosciences, Centre National de la Recherche, 33077 Bordeaux, France
| |
Collapse
|
149
|
Jandke S, Garz C, Schwanke D, Sendtner M, Heinze HJ, Carare RO, Schreiber S. The association between hypertensive arteriopathy and cerebral amyloid angiopathy in spontaneously hypertensive stroke-prone rats. Brain Pathol 2018; 28:844-859. [PMID: 30062722 PMCID: PMC8028507 DOI: 10.1111/bpa.12629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to test the hypothesis that in spontaneously hypertensive stroke‐prone rats (SHRSP), non‐amyloid cerebral small vessel disease/hypertensive arteriopathy (HA) results in vessel wall injury that may promote cerebral amyloid angiopathy (CAA). Our study comprised 21 male SHRSP (age 17–44 weeks) and 10 age‐ and sex‐matched Wistar control rats, that underwent two‐photon (2PM) imaging of the arterioles in the parietal cortex using Methoxy‐X04, Dextran and cerebral blood flow (CBF) measurements. Our data suggest that HA in SHRSP progresses in a temporal and age‐dependent manner, starting from small vessel wall damage (stage 1A), proceeding to CBF reduction (stage 1B), non‐occlusive (stage 2), and finally, occlusive thrombi (stage 3). Wistar animals also demonstrated small vessel wall damage, but were free of any of the later HA stages. Nearly half of all SHRSP additionally displayed vascular Methoxy‐X04 positivity indicative of cortical CAA. Vascular β‐amyloid deposits were found in small vessels characterized by thrombotic occlusions (stage 2 or 3). Post‐mortem analysis of the rat brains confirmed the findings derived from intravital 2PM microscopy. Our data thus overall suggest that advanced HA may play a role in CAA development with the two small vessel disease entities might be related to the same pathological spectrum of the aging brain.
Collapse
Affiliation(s)
- Solveig Jandke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Cornelia Garz
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Daniel Schwanke
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| | | | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE) within the Helmholtz Association, Magdeburg, Germany
| |
Collapse
|
150
|
Lücker A, Secomb TW, Barrett MJP, Weber B, Jenny P. The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 2: Capillary Networks. Front Physiol 2018; 9:1296. [PMID: 30298017 PMCID: PMC6160581 DOI: 10.3389/fphys.2018.01296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 08/29/2018] [Indexed: 12/22/2022] Open
Abstract
Brain metabolism is highly dependent on continuous oxygen supply. Cortical microvascular networks exhibit heterogeneous blood flow, leading to non-uniform tissue oxygenation and capillary hemoglobin saturation. We recently proposed capillary outflow saturation heterogeneity (COSH) to represent effects of heterogeneity on oxygen supply to tissue regions most vulnerable to hypoxia, and showed that diffusive oxygen exchange among red blood cells within capillaries and among capillaries (diffusive interaction) significantly reduces COSH in simplified geometrical configurations. Here, numerical simulations of oxygen transport in capillary network geometries derived from mouse somatosensory cortex are presented. Diffusive interaction was found to reduce COSH by 41 to 62% compared to simulations where diffusive interaction was excluded. Hemoglobin saturation drop across the microvascular network is strongly correlated with red blood cell transit time, but the coefficient of variation of saturation drop is approximately one third lower. Unexpectedly, the radius of the tissue cylinder supplied by a capillary correlates weakly with the anatomical tissue cylinder radius, but strongly with hemoglobin saturation. Thus, diffusive interaction contributes greatly to the microcirculation's ability to achieve tissue oxygenation, despite heterogeneous capillary transit time and hematocrit distribution. These findings provide insight into the effects of cerebral small vessel disease on tissue oxygenation and brain function.
Collapse
Affiliation(s)
- Adrien Lücker
- Department of Mechanical and Process Engineering, Institute of Fluid Dynamics, ETH Zürich, Zurich, Switzerland
| | - Timothy W Secomb
- Department of Physiology, University of Arizona, Tucson, AZ, United States
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zürich, Zurich, Switzerland
| | - Patrick Jenny
- Department of Mechanical and Process Engineering, Institute of Fluid Dynamics, ETH Zürich, Zurich, Switzerland
| |
Collapse
|