101
|
Shafeeq T, Ahmed S, Kim Y. Toll immune signal activates cellular immune response via eicosanoids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:408-419. [PMID: 29577956 DOI: 10.1016/j.dci.2018.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Upon immune challenge, insects recognize nonself. The recognition signal will propagate to nearby immune effectors. It is well-known that Toll signal pathway induces antimicrobial peptide (AMP) gene expression. Eicosanoids play crucial roles in mediating the recognition signal to immune effectors by enhancing humoral immune response through activation of AMP synthesis as well as cellular immune responses, suggesting a functional cross-talk between Toll and eicosanoid signals. This study tested a cross-talk between these two signals. Two signal transducing factors (MyD88 and Pelle) of Toll immune pathway were identified in Spodoptera exigua. RNA interference (RNAi) of either SeMyD88 or SePelle expression interfered with the expression of AMP genes under Toll signal pathway. Bacterial challenge induced PLA2 enzyme activity. However, RNAi of these two immune factors significantly suppressed the induction of PLA2 enzyme activity. Furthermore, RNAi treatment prevented gene expression of cellular PLA2. Inhibition of PLA2 activity reduced phenoloxidase activity and subsequent suppression in cellular immune response measured by hemocyte nodule formation. However, immunosuppression induced by RNAi of Toll signal molecules was significantly reversed by addition of arachidonic acid (AA), a catalytic product of PLA2. The addition also significantly reduced the enhanced fungal susceptibility of S. exigua treated by RNAi against two Toll signal molecules. These results indicate that there is a cross-talk between Toll and eicosanoid signals in insect immunity.
Collapse
Affiliation(s)
- Tahir Shafeeq
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Natural Sciences, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
102
|
Choi KM, Joo MS, Cho DH, Bae JS, Jeong JM, Woo WS, Han HJ, Lee DC, Cho MY, Jung SH, Kim DH, Park CI. Molecular characterization, expression and functional analysis of peptidoglycan recognition protein-SC2 from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2018; 77:286-293. [PMID: 29625244 DOI: 10.1016/j.fsi.2018.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/31/2018] [Accepted: 04/02/2018] [Indexed: 06/08/2023]
Abstract
Peptidoglycan recognition proteins are members of the family of pattern recognition receptors (PRRs), that play important roles in the recognition of peptidoglycan and various biological processes. In this study, we have characterized peptidoglycan recognition protein-SC2 (PGRP-SC2) in rock bream (Oplegnathus fasciatus) (RbPGRP-SC2) and analysed its expression in various tissues after pathogen challenge. A sequence alignment revealed that the residues essential to zinc binding of the deduced protein were highly conserved among all the organisms. Phylogenetic analysis revealed that RbPGRP-SC2 is most closely related to the large yellow croaker PGRP-SC2. RbPGRP-SC2 was ubiquitously expressed in all tissues analysed, predominantly distributed in muscle and skin. After challenge with microbial pathogens (Edwardsiella piscicida), Streptococcus iniae or red seabream iridovirus [RSIV]), RbPGRP-SC2 was up-regulated in all the tissues examined, especially in liver. We produced recombinant RbPGRP-SC2 (rRbPGRP-SC2) using an Escherichia coli expression system. The rRbPGRP-SC2 had agglutination activity towards both Gram-negative (E. piscicida) and Gram-positive bacteria (S. iniae). In addition, rRbPGRP-SC2 induced leukocyte apoptosis and promoted leukocyte phagocytosis. These results suggest that the RbPGRP-SC2 plays an important role in the immune system and in maintaining cellular homeostasis of rock bream.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jin-Sol Bae
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ji-Min Jeong
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Won-Sik Woo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Deok Chan Lee
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Sung Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
103
|
Liu Y, Xin ZZ, Zhang DZ, Zhu XY, Wang Y, Chen L, Tang BP, Zhou CL, Chai XY, Tian JW, Liu QN. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi. Int J Biol Macromol 2018; 112:1199-1207. [DOI: 10.1016/j.ijbiomac.2018.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
|
104
|
Wang X, Luo H, Zhang R. Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:22-33. [PMID: 29241953 DOI: 10.1016/j.dci.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Innate immunity, the evolutionarily conserved defense system, has been extensively analyzed in insect models over recent decades. The significant progress in this area has formed our dominant conceptual framework of the innate immune system, but critical advances in other insects have had a profound impact on our insights into the mystery of innate immunity. In recent years, we focused on the immune responses in Antheraea pernyi, an important commercial silkworm species reared in China. Here, we review the immune responses of A. pernyi based on immune-related gene-encoded proteins that are divided into five categories, namely pattern recognition receptors, hemolymph proteinases and their inhibitors, prophenoloxidase, Toll pathway factors and antimicrobial peptides, and others. Although the summarized information is limited since the research on A. pernyi immunity is in its infancy, we hope to provide evidence for further exploration of innate immune mechanisms.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
105
|
Wang J, Song X, Wang M. Peptidoglycan recognition proteins in hematophagous arthropods. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:89-95. [PMID: 29269264 PMCID: PMC5889321 DOI: 10.1016/j.dci.2017.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 05/24/2023]
Abstract
Hematophagous arthropods are medically important disease vectors that transmit a variety of pathogens. Unlike mammals that employ both innate and adaptive immunity to clear invading pathogens, these vectors rely mainly on an innate immune system to combat pathogens. Peptidoglycan recognition proteins (PGRPs) are important components of innate immune signaling pathways and are responsible for recognizing microbe-associated molecular patterns (MAMPs), thus regulating host immune interactions with both harmful and helpful microbes. Here we review a number of recent studies in different vectors that address the function of PGRPs in immune regulation. Further, we discuss the variation of PGRPs between vectors and Drosophila.
Collapse
Affiliation(s)
- Jingwen Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China.
| | - Xiumei Song
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| | - Mengfei Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200438, PR China
| |
Collapse
|
106
|
Chen K, Lu Z. Immune responses to bacterial and fungal infections in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:3-11. [PMID: 29289612 DOI: 10.1016/j.dci.2017.12.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
The silkworm Bombyx mori, an economically important insect that is usually reared indoors, is susceptible to various pathogens, including bacteria, fungi, viruses, and microsporidia. As with other insects, the silkworm lacks an adaptive immune system and relies solely on innate immunity to defend itself against infection. Compared to other intensively studied insects, such as the fruit fly and tobacco hornworm, the principal immune pathways in the silkworm remain unclear. In this article, we review the literature concerning silkworm immune responses to bacteria and fungi and present our perspectives on future research into silkworm immunity.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
107
|
Zheng W, Rus F, Hernandez A, Kang P, Goldman W, Silverman N, Tatar M. Dehydration triggers ecdysone-mediated recognition-protein priming and elevated anti-bacterial immune responses in Drosophila Malpighian tubule renal cells. BMC Biol 2018; 16:60. [PMID: 29855367 PMCID: PMC5984326 DOI: 10.1186/s12915-018-0532-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 05/15/2018] [Indexed: 12/03/2022] Open
Abstract
Background Drosophila is a powerful model for the study of factors modulating innate immunity. This study examines the effect of water-loss dehydration on innate immune responsiveness in the Drosophila renal system (Malpighian tubules; MTs), and how this leads to elevated host defense and contributes to immunosenescence. Results A short period of desiccation-elevated peptidoglycan recognition protein-LC (PGRP-LC) expression in MTs, increased antimicrobial peptide (AMP) gene induction, and protected animals from bacterial infection. We show that desiccation increased ecdysone synthesis in MTs, while inhibition of ecdysone synthesis or ecdysone receptor expression, specifically within MTs, prevented induction of PGRP-LC and reduced protection from bacterial infection. Additionally, aged flies are constitutively water-stressed and have elevated levels of ecdysone and PGRP-LC. Conversely, adults aged at high relative humidity show less water loss and have reduced expression of PGRP-LC and AMPs. Conclusions The Drosophila renal system is an important contributor to host defense and can modulate immune responses in an organ autonomous manner, responding to environmental changes such as desiccation. Desiccation primes immune responsiveness by elevating PGRP-LC expression specifically in MTs. In response to desiccation, ecdysone is produced in MTs and acts in a paracrine fashion to increase PGRP-LC expression, immune responsiveness, and improve host defense. This activity of the renal system may contribute to the immunosenescence observed in Drosophila. Electronic supplementary material The online version of this article (10.1186/s12915-018-0532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjing Zheng
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Florentina Rus
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Ana Hernandez
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Ping Kang
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - William Goldman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Neal Silverman
- Department of Medicine, Division of Infectious Diseases, University of Massachusetts, Medical School, Worcester, MA, USA.
| | - Marc Tatar
- Division of Biology and Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
108
|
Gerdol M, Luo YJ, Satoh N, Pallavicini A. Genetic and molecular basis of the immune system in the brachiopod Lingula anatina. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 82:7-30. [PMID: 29278680 DOI: 10.1016/j.dci.2017.12.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy.
| | - Yi-Jyun Luo
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy; Anton Dohrn Zoological Station, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
109
|
Sampath V. Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
110
|
Liu Y, Zhao X, Naeem M, An J. Crystal structure of peptidoglycan recognition protein SA in Apis mellifera (Hymenoptera: Apidae). Protein Sci 2018; 27:893-897. [PMID: 29396863 DOI: 10.1002/pro.3383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/10/2022]
Abstract
Peptidoglycan recognition protein SA (PGRP-SA) is a key pattern recognition receptor in the insect innate immune system. PGRP-SA can bind to bacterial PGN and activate the Toll pathway, which triggers the expression and release of antimicrobial peptides to prevent bacterial infection. Here, we report the first structure of Apis mellifera PGRP-SA from Hymenoptera at 1.86 Å resolution. The overall architecture of Am-PGRP-SA was similar to the Drosophila PGRP-SA; however, the residues involved in PGN binding groove were not conserved, and the binding pocket was narrower. This structure gives insight into PGN binding characteristics in honeybees.
Collapse
Affiliation(s)
- Yanjie Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiaomeng Zhao
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Muhammad Naeem
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| |
Collapse
|
111
|
Lopez W, Page AM, Carlson DJ, Ericson BL, Cserhati MF, Guda C, Carlson KA. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 2018; 4:123-139. [PMID: 29707694 PMCID: PMC5915338 DOI: 10.3934/microbiol.2018.1.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Collapse
Affiliation(s)
- Wilfredo Lopez
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Alexis M Page
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Darby J Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Brad L Ericson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matyas F Cserhati
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kimberly A Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
112
|
Abstract
How does the immune system maintain a balance between preserving a beneficial microbiome and protecting against pathogens while also inducing effective, yet not damaging, responses? In this issue of Cell Host & Microbe, Charroux et al. (2018) reveal that, in Drosophila, this task is performed by three isoforms of PGRP-LB, a peptidoglycan-hydrolyzing amidase.
Collapse
|
113
|
Zhan MY, Yang PJ, Rao XJ. Cloning and analysis of peptidoglycan recognition protein-LC and immune deficiency from the diamondback moth, Plutella xylostella. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21436. [PMID: 29193237 DOI: 10.1002/arch.21436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan (PGN) exists in both Gram-negative and Gram-positive bacteria as a component of the cell wall. PGN is an important target to be recognized by the innate immune system of animals. PGN recognition proteins (PGRP) are responsible for recognizing PGNs. In Drosophila melanogaster, PGRP-LC and IMD (immune deficiency) are critical for activating the Imd pathway. Here, we report the cloning and analysis of PGRP-LC and IMD (PxPGRP-LC and PxIMD) from diamondback moth, Plutella xylostella (L.), the insect pest of cruciferous vegetables. PxPGRP-LC gene consists of six exons encoding a polypeptide of 308 amino acid residues with a transmembrane region and a PGRP domain. PxIMD cDNA encodes a polypeptide of 251 amino acid residues with a death domain. Sequence comparisons indicate that they are characteristic of Drosophila PGRP-LC and IMD homologs. PxPGRP-LC and PxIMD were expressed in various tissues and developmental stages. Their mRNA levels were affected by bacterial challenges. The PGRP domain of PxPGRP-LC lacks key residues for the amidase activity, but it can recognize two types of PGNs. Overexpression of full-length and deletion mutants in Drosophila S2 cells induced expression of some antimicrobial peptide genes. These results indicate that PxPGRP-LC and PxIMD may be involved in the immune signaling of P. xylostella. This study provides a foundation for further studies of the immune system of P. xylostella.
Collapse
Affiliation(s)
- Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
114
|
Wu T, Zhao Y, Wang Z, Song Q, Wang Z, Xu Q, Wang Y, Wang L, Zhang Y, Feng C. β-1,3-Glucan recognition protein 3 activates the prophenoloxidase system in response to bacterial infection in Ostrinia furnacalis Guenée. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:31-43. [PMID: 29032241 DOI: 10.1016/j.dci.2017.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Pattern recognition receptors (PRRs) are biosensor proteins that bind to non-self pathogen associated molecular patterns (PAMPs). β-1,3-glucan recognition proteins (βGRPs) play an essential role in immune recognition and signaling pathway of insect innate immunity. Here, we report the cloning and characterization of cDNA of OfβGRP3 from Ostrinia furnacalis larvae. The OfβGRP3 contains 1455 bp open reading frame, encoding a predicted 484 amino acid residue protein. In hemocytes, the expression levels of OfβGRP3 in Escherichia coli-challenged group were higher than those of Bacillus subtilis-challenged group at 2, 4, 8, 10 and 12 h post injection (HPI). In fat body, OfβGRP3 expression in both B. subtilis and E. coli-challenged group was significantly higher than that in untreated group from 4 to 10 HPI, and then the expression continuously dropped from 12 to 36 HPI. The OfβGRP3 expression in laminarin-injected group was higher than that in lipopolysaccharides (LPS)-injected group in various test tissues from 4 to 24 HPI. The LT50 of E. coli-infected OfβGRP3-RNAi larvae (1.0 days) was significantly lower compared with that of E. coli infected wild-type larvae (3.0 days) (p < 0.01). Only 10.2% Sephadex G50 beads (degree 3) were completely melanized in the larvae inoculated with OfβGRP3 dsRNA, as compared to 48.8% in control larvae (p < 0.01). A notable reduction in the PO activity and IEARase activity in hemolymph was also detected in the OfβGRP3 knockdown larvae. Our study demonstrates that OfβGRP3 is one of PRR members involved the PPO-activating system in O. furnacalis larvae.
Collapse
Affiliation(s)
- Taoyan Wu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Zengxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuwen Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
115
|
Zhan MY, Yang PJ, Rao XJ. Molecular cloning and analysis of PGRP-L1 and IMD from silkworm Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 2018; 215:19-30. [DOI: 10.1016/j.cbpb.2017.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 11/28/2022]
|
116
|
Kutzer MAM, Kurtz J, Armitage SAO. Genotype and diet affect resistance, survival, and fecundity but not fecundity tolerance. J Evol Biol 2017; 31:159-171. [DOI: 10.1111/jeb.13211] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/06/2017] [Accepted: 11/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- M. A. M. Kutzer
- Institute for Evolution and Biodiversity; University of Münster; Münster Germany
| | - J. Kurtz
- Institute for Evolution and Biodiversity; University of Münster; Münster Germany
| | - S. A. O. Armitage
- Institute for Evolution and Biodiversity; University of Münster; Münster Germany
| |
Collapse
|
117
|
Dai LS, Abbas MN, Kausar S, Zhou Y. Transcriptome analysis of hepatopancraes of Procambarus clarkii challenged with polyriboinosinic polyribocytidylic acid (poly I:C). FISH & SHELLFISH IMMUNOLOGY 2017; 71:144-150. [PMID: 29017948 DOI: 10.1016/j.fsi.2017.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Crustacean hepatopancreas regulates metabolic processes, biogenesis and innate immune processes, and the knowledge on its immune genes are crucial to understand antimicrobial mechanisms. In this study, we reported the transcriptomic profile of Procambarus clarkii hepatopancreas after poly I:C administration using high-throughput sequencing. Following de novo assembly 56,716 unigene sequences with an average length of 810 bp was obtained. The unigene sequences were annotated to three ontologies including cellular components, biological processes and molecular functions, further 56,716 unigene sequences were mapped to 25 COG categories. A total of 2497 differentially expressed genes (DEGs) were identified following the comparative analysis between poly I:C treated and control group, and then KEGG enrichment analysis were performed to detect immune related pathways. Quantitative real time polymerase chain reaction showed that the selected DEGs significantly up-regulated following poly I:C administration in comparison to control group. The transcriptomic sequence information will improve the knowledge of this economically important crustacean, and will shed light on its antiviral immune mechanisms.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China.
| | - Muhammad Nadeem Abbas
- Department of Zoology and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saima Kausar
- Department of Zoology and Fisheries, University of Agriculture, Faisalabad 38000, Pakistan
| | - Yang Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, PR China
| |
Collapse
|
118
|
Yang PJ, Zhan MY, Ye C, Yu XQ, Rao XJ. Molecular cloning and characterization of a short peptidoglycan recognition protein from silkworm Bombyx mori. INSECT MOLECULAR BIOLOGY 2017; 26:665-676. [PMID: 28703893 DOI: 10.1111/imb.12330] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Peptidoglycan is the major bacterial component recognized by the insect immune system. Peptidoglycan recognition proteins (PGRPs) are a family of pattern-recognition receptors that recognize peptidoglycans and modulate innate immune responses. Some PGRPs retain N-acetylmuramoyl-L-alanine amidase (Enzyme Commission number: 3.5.1.28) activity to hydrolyse bacterial peptidoglycans. Others have lost the enzymatic activity and work only as immune receptors. They are all important modulators for innate immunity. Here, we report the cloning and functional analysis of PGRP-S4, a short-form PGRP from the domesticated silkworm, Bombyx mori. The PGRP-S4 gene encodes a protein of 199 amino acids with a signal peptide and a PGRP domain. PGRP-S4 was expressed in the fat body, haemocytes and midgut. Its expression level was significantly induced by bacterial challenges in the midgut. The recombinant PGRP-S4 bound bacteria and different peptidoglycans. In addition, it inhibited bacterial growth and hydrolysed an Escherichia coli peptidoglycan in the presence of Zn2+ . Scanning electron microscopy showed that PGRP-S4 disrupted the bacterial cell surface. PGRP-S4 further increased prophenoloxidase activation caused by peptidoglycans. Taken together, our data suggest that B. mori PGRP-S4 has multiple functions in immunity.
Collapse
Affiliation(s)
- P-J Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - M-Y Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - C Ye
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| | - X-Q Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - X-J Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
119
|
Kleino A, Ramia NF, Bozkurt G, Shen Y, Nailwal H, Huang J, Napetschnig J, Gangloff M, Chan FKM, Wu H, Li J, Silverman N. Peptidoglycan-Sensing Receptors Trigger the Formation of Functional Amyloids of the Adaptor Protein Imd to Initiate Drosophila NF-κB Signaling. Immunity 2017; 47:635-647.e6. [PMID: 29045898 DOI: 10.1016/j.immuni.2017.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022]
Abstract
In the Drosophila immune response, bacterial derived diaminopimelic acid-type peptidoglycan binds the receptors PGRP-LC and PGRP-LE, which through interaction with the adaptor protein Imd leads to activation of the NF-κB homolog Relish and robust antimicrobial peptide gene expression. PGRP-LC, PGRP-LE, and Imd each contain a motif with some resemblance to the RIP Homotypic Interaction Motif (RHIM), a domain found in mammalian RIPK proteins forming functional amyloids during necroptosis. Here we found that despite sequence divergence, these Drosophila cryptic RHIMs formed amyloid fibrils in vitro and in cells. Amyloid formation was required for signaling downstream of Imd, and in contrast to the mammalian RHIMs, was not associated with cell death. Furthermore, amyloid formation constituted a regulatable step and could be inhibited by Pirk, an endogenous feedback regulator of this pathway. Thus, diverse sequence motifs are capable of forming amyloidal signaling platforms, and the formation of these platforms may present a regulatory point in multiple biological processes.
Collapse
Affiliation(s)
- Anni Kleino
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nancy F Ramia
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gunes Bozkurt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Yanfang Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Himani Nailwal
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jing Huang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Johanna Napetschnig
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Francis Ka-Ming Chan
- Department of Pathology, Program in Immunology and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
120
|
Functional characterization of a short peptidoglycan recognition protein from Chinese giant salamander ( Andrias davidianus). Oncotarget 2017; 8:99323-99335. [PMID: 29245904 PMCID: PMC5725095 DOI: 10.18632/oncotarget.21470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors (PRRs) involved in immune defense against bacterial infections. In this study, a short PGRP (termed AdPGRP-S1) was cloned and functionally characterized from Chinese giant salamander (Andrias davidianus), the largest extant urodela amphibian species. AdPGRP-S1 was 184 aa in length and shared 38.7%-54.9% sequence identities with other vertebrates’ short PGRPs. It contained one typical PGRP domain at the C-terminal region and several conserved amino acid (aa) residues involved in amidase and PGN binding. AdPGRP-S1 was constitutively expressed in all tissues examined, with the highest expression level seen in spleen and intestine. It has been shown that AdPGRP-S1 could bind and degrade Lys-PGN and Dap-PGN. Further, AdPGRP-S1 had antibacterial activity against the Gram-negative bacteria, Edwardsiella tarda, and was able to trigger the activation of NF-κB signaling. These results demonstrated that AdPGRP-S1 possesses multiple functions in pathogen recognition, mediating ceullular signaling, and initiating antibacterial response. This is the first functional study of a salamander PGRP, providing insight to further understand the functional evolution of verterbates’ PGRPs.
Collapse
|
121
|
Jang JH, Kim H, Cho JH. Molecular cloning and functional characterization of peptidoglycan recognition protein OmPGRP-L2 from the rainbow trout, Oncorhynchus mykiss. Vet Immunol Immunopathol 2017; 192:28-32. [DOI: 10.1016/j.vetimm.2017.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/04/2017] [Accepted: 09/17/2017] [Indexed: 01/08/2023]
|
122
|
Shakeel M, Xu X, Xu J, Zhu X, Li S, Zhou X, Yu J, Xu X, Hu Q, Yu X, Jin F. Identification of immunity-related genes in Plutella xylostella in response to fungal peptide destruxin A: RNA-Seq and DGE analysis. Sci Rep 2017; 7:10966. [PMID: 28887550 PMCID: PMC5591186 DOI: 10.1038/s41598-017-11298-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
Plutella xylostella has become the major lepidopteran pest of Brassica owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects. However, the interaction mechanism of destruxin A with the immune system of P. xylostella at genomic level is still not well understood. Here, we identified 129 immunity-related genes, including pattern recognition receptors, signal modulators, few members of main immune pathways (Toll, Imd, and JAK/STAT), and immune effectors in P. xylostella in response to destruxin A at three different time courses (2 h, 4 h, and 6 h). It is worthy to mention that the immunity-related differentially expressed genes (DEGs) analysis exhibited 30, 78, and 72 up-regulated and 17, 13, and 6 down-regulated genes in P. xylostella after destruxin A injection at 2 h, 4 h, and 6 h, respectively, compared to control. Interestingly, our results revealed that the expression of antimicrobial peptides that play a vital role in insect immune system was up-regulated after the injection of destruxin A. Our findings provide a detailed information on immunity-related DEGs and reveal the potential of P. xylostella to limit the infection of fungal peptide destruxin A by increasing the activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Jin Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | | | | | | | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoqiang Yu
- School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China.
| |
Collapse
|
123
|
Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection. Int J Mol Sci 2017; 18:ijms18071530. [PMID: 28714877 PMCID: PMC5536018 DOI: 10.3390/ijms18071530] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.
Collapse
|
124
|
Shokal U, Eleftherianos I. Evolution and Function of Thioester-Containing Proteins and the Complement System in the Innate Immune Response. Front Immunol 2017; 8:759. [PMID: 28706521 PMCID: PMC5489563 DOI: 10.3389/fimmu.2017.00759] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
The innate immune response is evolutionary conserved among organisms. The complement system forms an important and efficient immune defense mechanism. It consists of plasma proteins that participate in microbial detection, which ultimately results in the production of various molecules with antimicrobial activity. Thioester-containing proteins (TEPs) are a superfamily of secreted effector proteins. In vertebrates, certain TEPs act in the innate immune response by promoting recruitment of immune cells, phagocytosis, and direct lysis of microbial invaders. Insects are excellent models for dissecting the molecular basis of innate immune recognition and response to a wide range of microbial infections. Impressive progress in recent years has generated crucial information on the role of TEPs in the antibacterial and antiparasite response of the tractable model insect Drosophila melanogaster and the mosquito malaria vector Anopheles gambiae. This knowledge is critical for better understanding the evolution of TEPs and their involvement in the regulation of the host innate immune system.
Collapse
Affiliation(s)
- Upasana Shokal
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
125
|
Eom HJ, Liu Y, Kwak GS, Heo M, Song KS, Chung YD, Chon TS, Choi J. Inhalation toxicity of indoor air pollutants in Drosophila melanogaster using integrated transcriptomics and computational behavior analyses. Sci Rep 2017. [PMID: 28621308 PMCID: PMC5472918 DOI: 10.1038/srep46473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We conducted an inhalation toxicity test on the alternative animal model, Drosophila melanogaster, to investigate potential hazards of indoor air pollution. The inhalation toxicity of toluene and formaldehyde was investigated using comprehensive transcriptomics and computational behavior analyses. The ingenuity pathway analysis (IPA) based on microarray data suggests the involvement of pathways related to immune response, stress response, and metabolism in formaldehyde and toluene exposure based on hub molecules. We conducted a toxicity test using mutants of the representative genes in these pathways to explore the toxicological consequences of alterations of these pathways. Furthermore, extensive computational behavior analysis showed that exposure to either toluene or formaldehyde reduced most of the behavioral parameters of both wild-type and mutants. Interestingly, behavioral alteration caused by toluene or formaldehyde exposure was most severe in the p38b mutant, suggesting that the defects in the p38 pathway underlie behavioral alteration. Overall, the results indicate that exposure to toluene and formaldehyde via inhalation causes severe toxicity in Drosophila, by inducing significant alterations in gene expression and behavior, suggesting that Drosophila can be used as a potential alternative model in inhalation toxicity screening.
Collapse
Affiliation(s)
- Hyun-Jeong Eom
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, Korea
| | - Yuedan Liu
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, the Ministry of Environment Protection of PRC, Guangzhou 510065, China
| | - Gyu-Suk Kwak
- Department of Biological Sciences, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea
| | - Muyoung Heo
- Department of Physics, Pusan National University, 2 Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea
| | - Kyung Seuk Song
- Toxicity Evaluation Center, Korea Conformity Laboratories (KCL), 8, Gaetbeol-ro 145beon-gil, Yeonsu-gu, Incheon, 21999, Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, Korea
| | - Tae-Soo Chon
- Department of Biological Sciences, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeoung-gu, Busan 46241, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul 02504, Korea
| |
Collapse
|
126
|
Yang C, Wang L, Jia Z, Yi Q, Xu Q, Wang W, Gong C, Liu C, Song L. Two short peptidoglycan recognition proteins from Crassostrea gigas with similar structure exhibited different PAMP binding activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:9-18. [PMID: 28042081 DOI: 10.1016/j.dci.2016.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/29/2016] [Accepted: 12/29/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan recognition protein (PGRP) is an essential molecule in innate immunity for both invertebrates and vertebrates, owing to its prominent ability in specifically recognizing bacterial peptidoglycan (PGN) and eliminating the invading bacteria. In the present study, the full length cDNA of two PGRP genes, CgPGRPS2 and CgPGRPS4, were cloned from oyster Crassostrea gigas. Their amino acid sequences both contained one signal peptide, one typical PGRP/amidase domain with conserved catalytic residues responsible for amidase activity (55H, 90Y, 164H, 172C in CgPGRPS2, and 98H, 133Y, 207H, 215C in CgPGRPS4), and specific PGN recognition (84R, 85W, 104R, 109V in CgPGRPS2, and 127G, 128W, 147R, 152V in CgPGRPS4), and they shared 55.9% sequence similarity. The mRNA transcripts of CgPGRPS2 and CgPGRPS4 were constitutively expressed in all the examined tissues, including haemocytes, hepatopancreas, mantle, gonad, heart, adductor muscle and gill, with the highest expression level in adductor muscle and hepatopancreas, respectively. Both CgPGRPS2 and CgPGRPS4 proteins were mainly localized in the cytoplasma. The recombinant protein of CgPGRPS2 (rCgPGRPS2) could bind lipopolysaccharide (LPS), PGN and mannan (Man), as well as various microorganisms including Gram-negative bacteria Escherichia coli, Vibrio anguillarum, Gram-positive bacteria Staphylococcus aureus and fungi Yarrowia lipolytica. The recombinant protein of CgPGRPS4 (rCgPGRPS4) exhibited higher binding affinity to PGN, lower binding affinity to LPS, while no binding activity to Man and Y. lipolytica. The results indicated that CgPGRPS2 and CgPGRPS4 could function as pattern recognition receptors (PRR) in the innate immune response of oyster, and they exhibited a certain degree of functional differentiation in recognition of Man.
Collapse
Affiliation(s)
- Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Changhao Gong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Conghui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
127
|
Identification and gene expression of multiple peptidoglycan recognition proteins (PGRPs) in the deep-sea mussel Bathymodiolus azoricus , involvement in symbiosis? Comp Biochem Physiol B Biochem Mol Biol 2017; 207:1-8. [DOI: 10.1016/j.cbpb.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 11/17/2022]
|
128
|
Qi Z, Meng F, Zhang Q, Wang Z, Qiao G, Xu W, Shao R, Chen C. Structural insights into ligand binding of PGRP1 splice variants in Chinese giant salamander (Andrias davidianus) from molecular dynamics and free energy calculations. J Mol Model 2017; 23:135. [PMID: 28341996 DOI: 10.1007/s00894-017-3315-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022]
Abstract
Peptidoglycan (PGN) recognition proteins (PGRPs) are important pattern recognition receptors of the innate immune system. A number of PGRP splicing variants produced by alternative splicing of PGRP genes have been reported. However, several important aspects of interactions between PGRP splice variants and their ligands are still unclear. In the present study, three dimensional models of salamander PGRP1 (adPGRP1) and its splice variant (adPGRP1a) were constructed, and their key amino acids involved in interacting with PGNs were analyzed. The results revealed that adPGRP1a has a typical PGRPs structure containing five β-sheets and four α-helices, while adPGRP1 contained five β-sheets and only one α-helix due to the lack of 51 amino acids at its C-terminus. Molecular docking revealed that van der Waals and Coulombic interactions contributed to interactions in the protein-ligand complex. Further binding energy of adPGRP-PGNs computed by the MM-PBSA method revealed that adPGRP1a and adPGRP1 might selectively bind to different PGNs; the former might selectively bind Dap-type PGNs and the latter both types of PGNs. In addition, the binding energy of each residue of adPGRP1a and adPGRP1 was also calculated, revealing that residues involved in the interaction of protein-ligand complexes were different in adPGRP1a and adPGRP1. These results provided a first insight into the potential basis for interaction between PGRPs generated by alternative splicing and PGN derivatives.
Collapse
Affiliation(s)
- Zhitao Qi
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China. .,Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China.
| | - Fancui Meng
- Tianjin Institute of Pharmaceutical Research, Tianjin, 300193, China
| | - Qihuan Zhang
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Zisheng Wang
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Guo Qiao
- Key Laboratory of Aquaculture and Ecology of Coastal Pool in Jiangsu Province, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Wei Xu
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Rong Shao
- Jiangsu Key Laboratory of Biochemistry and Biotechnology of Marine Wetland, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China.
| | - Chenglung Chen
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan, Republic of China
| |
Collapse
|
129
|
Wang RJ, Lin Z, Jiang H, Li J, Saha TT, Lu Z, Lu Z, Zou Z. Comparative analysis of peptidoglycan recognition proteins in endoparasitoid wasp Microplitis mediator. INSECT SCIENCE 2017; 24:2-16. [PMID: 26549814 DOI: 10.1111/1744-7917.12290] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of innate immune receptors that specifically recognize peptidoglycans (PGNs) on the surface of a number of pathogens. Here, we have identified and characterized six PGRPs from endoparasitoid wasp, Microplitis mediator (MmePGRPs). To understand the roles of PGRPs in parasitoid wasps, we analyzed their evolutionary relationship and orthology, expression profiles during different developmental stages, and transcriptional expression following infection with Gram-positive and -negative bacteria and a fungus. MmePGRP-S1 was significantly induced in response to pathogenic infection. This prompted us to evaluate the effects of RNA interference mediated gene specific knockdown of MmePGRP-S1. The knockdown of MmePGRP-S1 (iMmePGRP-S1) dramatically affected wasps' survival following challenge by Micrococcus luteus, indicating the involvement of this particular PGRP in immune responses against Gram-positive bacteria. This action is likely to be mediated by the Toll pathway, but the mechanism remains to be determined. MmePGRP-S1 does not play a significant role in anti-fungal immunity as indicated by the survival rate of iMmePGRP-S1 wasps. This study provides a comprehensive characterization of PGRPs in the economically important hymenopteran species M. mediator.
Collapse
Affiliation(s)
- Rui-Juan Wang
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| | - Jiancheng Li
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, IPM Center of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Tusar T Saha
- Department of Entomology, University of California, Riverside, CA, USA
| | - Ziyun Lu
- Key Laboratory of Integrated Pest Management on Crops in Northern Region of North China, Ministry of Agriculture, IPM Center of Hebei Province, Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences, Baoding, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing
| |
Collapse
|
130
|
Zhu X, Zhang M, Yao F, Yin Y, Zou X, Hou L. Involvement of PGRP-SC2 from Artemia sinica in the innate immune response against bacteria and expression pattern at different developmental stages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:276-286. [PMID: 27646138 DOI: 10.1016/j.dci.2016.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan-recognition protein-SC2 precursor-like protein (PGRP-SC2) is a vital protein in innate immunity with a vita role in response to bacteria challenge in invertebrates. Here, a 678-bp full-length cDNA of pgrp-sc2 from A. sinica was obtained containing a 558-bp open reading frame encoding 185 amino acids with a calculated molecular mass of 19.6 kDa. The predicted protein contains a PGRP and an Amidase2 domain, indicating that PGRP-SC2 is a PGRP family member and has N-acetylmuramoyl-l-alanine amidase activity. The expression and localization of pgrp-sc2/PGRP-SC2 in A.sinica during embryonic development and bacterial challenge were determined by qPCR, WB and ISH. During different A. sinica embryonic development stages, the expression level of pgrp-sc2/PGRP-SC2 was most highly expressed at 0 and 5 h and after challenge by Gram-positive bacteria, it increased with increasing bacterial concentrations, indicating that it plays a vital role in A. sinica early embryonic development and innate immunity.
Collapse
Affiliation(s)
- Xiaolin Zhu
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Mengchen Zhang
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Yuling Yin
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | - Xiangyang Zou
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China.
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
131
|
Bergman P, Seyedoleslami Esfahani S, Engström Y. Drosophila as a Model for Human Diseases—Focus on Innate Immunity in Barrier Epithelia. Curr Top Dev Biol 2017; 121:29-81. [DOI: 10.1016/bs.ctdb.2016.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
132
|
Arp AP, Hunter WB, Pelz-Stelinski KS. Annotation of the Asian Citrus Psyllid Genome Reveals a Reduced Innate Immune System. Front Physiol 2016; 7:570. [PMID: 27965582 PMCID: PMC5126049 DOI: 10.3389/fphys.2016.00570] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/09/2016] [Indexed: 01/06/2023] Open
Abstract
Citrus production worldwide is currently facing significant losses due to citrus greening disease, also known as Huanglongbing. The citrus greening bacteria, Candidatus Liberibacter asiaticus (CLas), is a persistent propagative pathogen transmitted by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Hemipterans characterized to date lack a number of insect immune genes, including those associated with the Imd pathway targeting Gram-negative bacteria. The D. citri draft genome was used to characterize the immune defense genes present in D. citri. Predicted mRNAs identified by screening the published D. citri annotated draft genome were manually searched using a custom database of immune genes from previously annotated insect genomes. Toll and JAK/STAT pathways, general defense genes Dual oxidase, Nitric oxide synthase, prophenoloxidase, and cellular immune defense genes were present in D. citri. In contrast, D. citri lacked genes for the Imd pathway, most antimicrobial peptides, 1,3-β-glucan recognition proteins (GNBPs), and complete peptidoglycan recognition proteins. These data suggest that D. citri has a reduced immune capability similar to that observed in A. pisum, P. humanus, and R. prolixus. The absence of immune system genes from the D. citri genome may facilitate CLas infections, and is possibly compensated for by their relationship with their microbial endosymbionts.
Collapse
Affiliation(s)
- Alex P Arp
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| | - Wayne B Hunter
- U.S. Horticultural Research Lab, Agricultural Research Service, United State Department of Agriculture Fort Pierce, FL, USA
| | - Kirsten S Pelz-Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida Fort Pierce, FL, USA
| |
Collapse
|
133
|
Wang ZZ, Shi M, Huang YC, Wang XW, Stanley D, Chen XX. A peptidoglycan recognition protein acts in whitefly (Bemisia tabaci) immunity and involves in Begomovirus acquisition. Sci Rep 2016; 6:37806. [PMID: 27892529 PMCID: PMC5124967 DOI: 10.1038/srep37806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are multifunctional pattern recognition proteins. Here, we report that a PGRP gene, BtPGRP, encodes a PGRP from the whitefly Bemisia tabaci (MEAM1) that binds and kills bacteria in vitro. We analyzed BtPGRP transcriptional profiling, and the distribution of the cognate protein within the midgut. Fungal infection and wasp parasitization induced expression of BtPGRP. Silencing BtPGRP with artificial media amended with dsRNA led to reduced expression of a gene encoding an antimicrobial peptide, B. tabaci c-type lysozyme. Begomovirus infection also led to increased expression of BtPGRP. We propose that BtPGRP has a potential Tomato yellow leaf curl virus (TYLCV) binding site because we detected in vitro interaction between BtPGRP and TYLCV by immunocapture PCR, and recorded the co-localization of TYLCV and BtPGRP in midguts. This work addresses a visible gap in understanding whitefly immunity and provides insight into how the whitefly immunity acts in complex mechanisms of Begomovirus transmission among plants.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi-Cun Huang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - David Stanley
- Biological Control of Insects Research Laboratory, Agricultural Research Service, U.S., Department of Agriculture, 1503 S. Providence Road, Columbia MO 65203, USA
| | - Xue-Xin Chen
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
134
|
Odnokoz O, Nakatsuka K, Klichko VI, Nguyen J, Solis LC, Ostling K, Badinloo M, Orr WC, Radyuk SN. Mitochondrial peroxiredoxins are essential in regulating the relationship between Drosophila immunity and aging. Biochim Biophys Acta Mol Basis Dis 2016; 1863:68-80. [PMID: 27770625 DOI: 10.1016/j.bbadis.2016.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/17/2016] [Accepted: 10/18/2016] [Indexed: 11/30/2022]
Abstract
Previously, we have shown that flies under-expressing the two mitochondrial peroxiredoxins (Prxs), dPrx3 and dPrx5, display increases in tissue-specific apoptosis and dramatically shortened life span, associated with a redox crisis, manifested as changes in GSH:GSSG and accumulation of protein mixed disulfides. To identify specific pathways responsible for the observed biological effects, we performed a transcriptome analysis. Functional clustering revealed a prominent group enriched for immunity-related genes, including a considerable number of NF-kB-dependent antimicrobial peptides (AMP) that are up-regulated in the Prx double mutant. Using qRT-PCR analysis we determined that the age-dependent changes in AMP levels in mutant flies were similar to those observed in controls when scaled to percentage of life span. To further clarify the role of Prx-dependent mitochondrial signaling, we expressed different forms of dPrx5, which unlike the uniquely mitochondrial dPrx3 is found in multiple subcellular compartments, including mitochondrion, nucleus and cytosol. Ectopic expression of dPrx5 in mitochondria but not nucleus or cytosol partially extended longevity under normal or oxidative stress conditions while complete restoration of life span occurred when all three forms of dPrx5 were expressed from the wild type dPrx5 transgene. When dPrx5 was expressed in mitochondria or in all three compartments, it substantially delayed the development of hyperactive immunity while expression of cytosolic or nuclear forms had no effect on the immune phenotype. The data suggest a critical role of mitochondria in development of chronic activation of the immune response triggered by impaired redox control.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kyle Nakatsuka
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Vladimir I Klichko
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Jacqueline Nguyen
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Liz Calderon Solis
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Kaitlin Ostling
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Marziyeh Badinloo
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - William C Orr
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Svetlana N Radyuk
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA.
| |
Collapse
|
135
|
Genetic mapping of male pheromone response in the European corn borer identifies candidate genes regulating neurogenesis. Proc Natl Acad Sci U S A 2016; 113:E6401-E6408. [PMID: 27698145 DOI: 10.1073/pnas.1610515113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The sexual pheromone communication system of moths is a model system for studies of the evolution of reproductive isolation. Females emit a blend of volatile components that males detect at a distance. Species differences in female pheromone composition and male response directly reinforce reproductive isolation in nature, because even slight variations in the species-specific pheromone blend are usually rejected by the male. The mechanisms by which a new pheromone signal-response system could evolve are enigmatic, because any deviation from the optimally attractive blend should be selected against. Here we investigate the genetic mechanisms enabling a switch in male response. We used a quantitative trait locus-mapping approach to identify the genetic basis of male response in the two pheromone races of the European corn borer, Ostrinia nubilalis Male response to a 99:1 vs. a 3:97 ratio of the E and Z isomers of the female pheromone is governed by a single, sex-linked locus. We found that the chromosomal region most tightly linked to this locus contains genes involved in neurogenesis but, in accordance with an earlier study, does not contain the odorant receptors expressed in the male antenna that detect the pheromone. This finding implies that differences in the development of neuronal pathways conveying information from the antenna, not differences in pheromone detection by the odorant receptors, are primarily responsible for the behavioral response differences among the males in this system. Comparison with other moth species reveals a previously unexplored mechanism by which male pheromone response can change in evolution.
Collapse
|
136
|
Dukhanina EA, Lukyanova TI, Romanova EA, Guerriero V, Gnuchev NV, Georgiev GP, Yashin DV, Sashchenko LP. A new role for PGRP-S (Tag7) in immune defense: lymphocyte migration is induced by a chemoattractant complex of Tag7 with Mts1. Cell Cycle 2016; 14:3635-43. [PMID: 26654597 DOI: 10.1080/15384101.2015.1104440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PGRP-S (Tag7) is an innate immunity protein involved in the antimicrobial defense systems, both in insects and in mammals. We have previously shown that Tag7 specifically interacts with several proteins, including Hsp70 and the calcium binding protein S100A4 (Mts1), providing a number of novel cellular functions. Here we show that Tag7-Mts1 complex causes chemotactic migration of lymphocytes, with NK cells being a preferred target. Cells of either innate immunity (neutrophils and monocytes) or acquired immunity (CD4(+) and CD8(+) lymphocytes) can produce this complex, which confirms the close connection between components of the 2 branches of immune response.
Collapse
Affiliation(s)
- E A Dukhanina
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia.,b Engelhardt Institute of Molecular Biology; RAS ; Moscow , Russia
| | - T I Lukyanova
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia.,c M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry; RAS ; Moscow , Russia
| | - E A Romanova
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - V Guerriero
- d School of Animal and Comparative Biomedical Sciences; University of Arizona ; Tucson , AZ USA
| | - N V Gnuchev
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - G P Georgiev
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - D V Yashin
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| | - L P Sashchenko
- a Institute of Gene Biology; Russian Academy of Sciences (RAS) ; Moscow , Russia
| |
Collapse
|
137
|
Abstract
The innate immune system recognizes micro-organisms through a series of pattern recognition receptors that are highly conserved in evolution. Peptidoglycan (PGN) is a unique and essential component of the cell wall of virtually all bacteria, is not present in eukaryotes, and is an excellent target for the innate immune system. Indeed, higher eukaryotes, including mammals, have several PGN recognition molecules, including CD14, Toll-like receptor 2 (TLR2), nucleotide oligomerization domain (Nod)-containing proteins, a family of peptidoglycan recognition proteins (PGRPs), and PGN-lytic enzymes (lysozyme and amidase). These molecules induce host responses to micro-organisms, degrade PGN, or have direct antimicrobial effects.
Collapse
Affiliation(s)
- Roman Dziarski
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana, USA,
| | - Dipika Gupta
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana, USA
| |
Collapse
|
138
|
Guan R, Roychowdury A, Ember B, Kumar S, Boons GJ, Mariuzza RA. Crystal structure of a peptidoglycan recognition protein (PGRP) in complex with a muramyl tripeptide from Gram-positive bacteria. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110010901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition receptors of the innate immune system that bind, and in some cases hydrolyse, bacterial peptidoglycans (PGNs). We determined the crystal structure of the C-terminal PGN-binding domain of human PGRP-Iα in complex with a muramyl tripeptide representing the conserved core of lysine-type PGNs. The peptide stem of the ligand is buried at the deep end of a long binding groove, with N-acetylmuramic acid situated in the middle of the groove, whose shallow end could accommodate N-acetylglucosamine. Both peptide and glycan moieties are essential for binding by PGRPs. Conservation of key PGN-contacting residues indicates that all PGRPs employ this basic PGN-binding mode. The structure identifies variable residues that likely mediate discrimination between lysine- and diaminopimelic acid-type PGNs. In addition, we propose a mechanism for PGN hydrolysis by Zn2+-containing catalytic PGRPs.
Collapse
Affiliation(s)
- Rongjin Guan
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA
| | - Abhijit Roychowdury
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Brian Ember
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sanjay Kumar
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Roy A. Mariuzza
- Center for Advanced Research in Biotechnology, W.M. Keck Laboratory for Structural Biology, University of Maryland Biotechnology Institute, Rockville, Maryland, USA,
| |
Collapse
|
139
|
Kaneko T, Golenbock D, Silverman N. Peptidoglycan recognition by the Drosophila Imd pathway. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110060201] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structural requirements for recognition of peptidoglycan (PGN) by PGRP-LC and activation of the Drosophila IMD pathway are not yet clear. In order to examine this question more carefully, the activity of peptidoglycan from different types of bacteria was compared in cell-based and whole animal assays. Drosophila S2* cells, but not adult flies, responded to Lys-type Micrococcus luteus PGN, but with significantly less potency compared to Dap-type Escherichia coli PGN, while intact Lys-type PGN from Staphylococcus aureus was inactive. After treatment with lysostaphin, which digests the cross-bridging peptides, S. aureus PGN weakly stimulated the IMD pathway, similar to M. luteus PGN. Further digestion with mutanolysin, which creates monomeric PGN fragments, abolished the activity of S. aureus PGN. On the other hand, monomeric E. coli PGN, generated by mutanolysin digestion, was still active but required different isoforms of PGRP-LC for recognition. Polymeric PGN required only PGRP-LCx, while monomeric E. coli PGN required both the PGRP-LCa and PGRP-LCx isoforms. These results suggest that the recognition by PGRP-LCx alone requires polymeric PGN, and that polymeric Dap-type PGN is a more potent PGRP-LCx agonist, compared to Lys-type PGN. These results also suggest that the heteromeric PGRP-LCa/LCx receptor complex recognizes monomeric Dap-type, but not Lys-type, PGN.
Collapse
Affiliation(s)
- Takashi Kaneko
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA, Department of Periodontology, Nagasaki University School of Dentistry, Nagasaki, Japan
| | - Douglas Golenbock
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Neal Silverman
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,
| |
Collapse
|
140
|
Mengin-Lecreulx D, Lemaitre B. Structure and metabolism of peptidoglycan and molecular requirements allowing its detection by the Drosophila innate immune system. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Peptidoglycan (murein) is a major essential and specific constituent of the bacterial cell wall. Its main function is to protect cells against the internal osmotic pressure and to maintain the characteristic cell shape. It also serves as a platform for the anchoring of specific proteins and other cell wall components. This giant macromolecule is composed of long glycan chains cross-linked by short peptides. Any alteration of the disaccharide—peptide basic unit results in a global change of peptidoglycan structure and properties. Such global variations are encountered in nature as conserved variations along phyletic lines but have sometimes been acquired as a result of mutations or as a mechanism of resistance against cell-wall targeted antibiotics. During bacterial cell growth and division, the peptidoglycan mesh is constantly broken down by a set of highly specific hydrolases in a maturation process allowing insertion of newly synthesized units in the pre-existing polymerized material. Depending on the bacterial species considered, degradation fragments are either released in the growth medium or efficiently re-utilized for synthesis of new murein in a sequence of events termed the recycling pathway. Peptidoglycan is one of the main pathogen-associated molecular patterns recognized by the host innate immune system. Variations of the structure and metabolism of this cell wall component have been exploited by host defense mechanisms for detection/identification of invading bacterial species. Modification of the peptidoglycan structure could also represent a mechanism allowing bacteria to escape these host defense systems.
Collapse
Affiliation(s)
- Dominique Mengin-Lecreulx
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS, Université Paris-Sud, Paris, France, -psud.fr
| | - Bruno Lemaitre
- Centre de Génétique Moléculaire, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
141
|
Abstract
The multifaceted response of the fruitfly Drosophila melanogaster to infection by a wide range of microbes is complex and remarkably efficient. Its most prominent aspect is the immune-inducible expression of a set of potent antimicrobial peptides. Genetic analysis of the regulation of the genes encoding these peptides has led to the identification of the receptor Toll as an essential component of the fly's host defense system. In addition, these studies have revealed that the response to Gram-negative bacterial infections involves Toll-independent mechanisms, and that the sensing of infection involves two structurally distinct sets of molecules — the PGRPs and the GNBPs/βGRPs.
Collapse
|
142
|
Zhang L, Gao C, Liu F, Song L, Su B, Li C. Characterization and expression analysis of a peptidoglycan recognition protein gene, SmPGRP2 in mucosal tissues of turbot (Scophthalmus maximus L.) following bacterial challenge. FISH & SHELLFISH IMMUNOLOGY 2016; 56:367-373. [PMID: 27461422 DOI: 10.1016/j.fsi.2016.07.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
Peptidoglycan recognition receptor proteins (PGRPs), a group of pattern recognition receptors (PRRs), can recognize peptidoglycan (PGN) of the bacteria cell wall and play an important role in host immune defense against pathogen infection. They are highly structurally conserved through evolution, but with different function in innate immunity between invertebrates and vertebrates. In teleost fish, several PGRPs have been characterized recently. They have both amidase activity and bactericidal activity and are involved in indirectly killing bacteria and regulating multiple signaling pathways. However, the knowledge of PGRPs in mucosal immunity of teleost fish is still limited. In this study, we identified a PGRPs gene (SmPGRP2) of turbot and investigated its expression patterns in mucosal tissues after challenge with Gram-positive bacteria Streptococcus iniae and Gram-negative bacteria Vibrio anguillarum. Phylogenetic analysis showed the strongest relationship of turbot PGRP to halibut, which was consistent with their phylogenetic relationships. In addition, SmPGRP2 was ubiquitously expressed in turbot tissues, and constitutive expression levels were higher in classical immune tissues (including liver, spleen, and head-kidney) than mucosal tissues (intestine, gill and skin). After bacterial challenge, the expression of SmPGRP2 was induced and showed a general trend of up-regulation in mucosal tissues, except in intestine following V. anguillarum infection. These different expression patterns varied depending on both pathogen and tissue type, suggesting its distinct roles in the host immune response to bacterial pathogen.
Collapse
Affiliation(s)
- Linan Zhang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chengbin Gao
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Fengqiao Liu
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lin Song
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baofeng Su
- Ministry of Agriculture Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
143
|
Martinelli C, Reichhart JM. Evolution and integration of innate immune systems from fruit flies to man: lessons and questions. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110041001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite broad differences in morphology, ecology and behavior, the fruit fly Drosophila melanogaster and humans show a remarkably high degree of conservation for many molecular, cellular, and developmental aspects of their biology. During the last decade, similarities have also been discovered in some of the mechanisms regulating their innate immune system. These parallels regard mainly the Toll-like receptor family and the intracellular signaling pathways involved in the control of the immune response. However, if the overall similarities are important, the detailed pathogen recognition mechanisms differ significantly between fly and humans, highlighting a complicated evolutionary history of the metazoan innate defenses. In this review, we will discuss the main similarities and differences between the two types of organisms. We hope that this current knowledge will be used as a starting point for a more comprehensive view of innate immunity within the broad variety of metazoan phyla.
Collapse
Affiliation(s)
- Cosimo Martinelli
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC) 15, Strasbourg, France
| | - Jean-Marc Reichhart
- UPR 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire (IBMC) 15, Strasbourg, France, -strasbg.fr
| |
Collapse
|
144
|
Qi L, Fang Q, Zhao L, Xia H, Zhou Y, Xiao J, Li K, Ye G. De Novo Assembly and Developmental Transcriptome Analysis of the Small White Butterfly Pieris rapae. PLoS One 2016; 11:e0159258. [PMID: 27428371 PMCID: PMC4948883 DOI: 10.1371/journal.pone.0159258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The small white butterfly Pieris rapae is one of the most destructive pests of Brassicaceae. Yet little is understood about its genes involved in development. To facilitate research on P. rapae, we sequenced the transcriptome of P. rapae during six developmental stages, including the egg, three larval stages, the pupa, and the adult. In total, 240 million high-quality reads were obtained. De novo assembly generated 96,069 unigenes with an average length of 1353 nt. Of these, 31,629 unigenes had homologs as determined by a blastx search against the NR database with a cut-off e-value of 10−5. Clusters of Orthologous Groups of proteins (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to functionally annotate those genes. Then, 849 genes involved in seven canonical development signaling pathway were identified, including dozens of key genes such as Hippo, Notch, and JAK2. A total of 21,883 differentially expressed (cut-off of 2-fold) unigenes were detected across the developmental stages, most of which were found between the egg and first larval stages. Interestingly, only 34 differentially expressed unigenes, most of which are cuticle protein related genes, were detected with a cut-off of 210-fold. Furthermore, we identified 32 heat shock protein (Hsp) genes that were expressed with complete open reading frames. Based on phylogenetic trees of the Hsp genes, we found that Hsp genes with close evolutionary relationships had similar expression pattern. Additionally, partial pattern recognition receptors genes were found to be developmental regulated. This study provides comprehensive sequence resources for P. rapae and numerous differential expressed genes, and these findings will lay the foundation for future functional genomics studies on this species.
Collapse
Affiliation(s)
- Lixing Qi
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Qi Fang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Zhao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Hao Xia
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Yuxun Zhou
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Junhua Xiao
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Kai Li
- College of Chemistry, Chemical Engineering, and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
145
|
Gan Z, Chen S, Hou J, Huo H, Zhang X, Ruan B, Laghari ZA, Li L, Lu Y, Nie P. Molecular and functional characterization of peptidoglycan-recognition protein SC2 (PGRP-SC2) from Nile tilapia (Oreochromis niloticus) involved in the immune response to Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2016; 54:1-10. [PMID: 27033804 DOI: 10.1016/j.fsi.2016.03.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
PGRP-SC2, the member of PGRP family, plays an important role in regulation of innate immune response. In this paper, a PGRP-SC2 gene of Nile tilapia, Oreochromis niloticus (designated as On-PGRP-SC2) was cloned and its expression pattern under the infection of Streptococcus agalactiae was investigated. Sequence analysis showed main structural features required for amidase activity were detected in the deduced amino acid sequence of On-PGRP-SC2. In healthy tilapia, the On-PGRP-SC2 transcripts could be detected in all the examined tissues, with the most abundant expression in the muscle. When infected with S. agalactiae, there was a clear time-dependent expression pattern of On-PGRP-SC2 in the spleen, head kidney and brain. The assays for the amidase activity suggested that recombinant On-PGRP-SC2 protein had a Zn(2+)-dependent PGN-degrading activity. Moreover, our works showed that recombinant On-PGRP-SC2 protein could significantly reduce bacterial load in target organs attacked by S. agalactiae. These findings indicated that On-PGRP-SC2 may play important roles in the immune response to S. agalactiae in Nile tilapia.
Collapse
Affiliation(s)
- Zhen Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huijun Huo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolin Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baiye Ruan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524025, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
146
|
Tanaka H, Sagisaka A. INVOLVEMENT OF PEPTIDOGLYCAN RECOGNITION PROTEIN L6 IN ACTIVATION OF IMMUNE DEFICIENCY PATHWAY IN THE IMMUNE RESPONSIVE SILKWORM CELLS. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2016; 92:143-156. [PMID: 26991439 DOI: 10.1002/arch.21326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 06/05/2023]
Abstract
The immune deficiency (Imd) signaling pathway is activated by Gram-negative bacteria for producing antimicrobial peptides (AMPs). In Drosophila melanogaster, the activation of this pathway is initiated by the recognition of Gram-negative bacteria by peptidoglycan (PGN) recognition proteins (PGRPs), PGRP-LC and PGRP-LE. In this study, we found that the Imd pathway is involved in enhancing the promoter activity of AMP gene in response to Gram-negative bacteria or diaminopimelic (DAP) type PGNs derived from Gram-negative bacteria in an immune responsive silkworm cell line, Bm-NIAS-aff3. Using gene knockdown experiments, we further demonstrated that silkworm PGRP L6 (BmPGRP-L6) is involved in the activation of E. coli or E. coli-PGN mediated AMP promoter activation. Domain analysis revealed that BmPGRP-L6 contained a conserved PGRP domain, transmembrane domain, and RIP homotypic interaction motif like motif but lacked signal peptide sequences. BmPGRP-L6 overexpression enhances AMP promoter activity through the Imd pathway. BmPGRP-L6 binds to DAP-type PGNs, although it also binds to lysine-type PGNs that activate another immune signal pathway, the Toll pathway in Drosophila. These results indicate that BmPGRP-L6 is a key PGRP for activating the Imd pathway in immune responsive silkworm cells.
Collapse
Affiliation(s)
- Hiromitsu Tanaka
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Aki Sagisaka
- Insect-Microbe Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| |
Collapse
|
147
|
Kutzer MAM, Armitage SAO. The effect of diet and time after bacterial infection on fecundity, resistance, and tolerance in Drosophila melanogaster. Ecol Evol 2016; 6:4229-42. [PMID: 27386071 PMCID: PMC4884575 DOI: 10.1002/ece3.2185] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/20/2016] [Accepted: 04/26/2016] [Indexed: 02/02/2023] Open
Abstract
Mounting and maintaining an effective immune response in the face of infection can be costly. The outcome of infection depends on two host immune strategies: resistance and tolerance. Resistance limits pathogen load, while tolerance reduces the fitness impact of an infection. While resistance strategies are well studied, tolerance has received less attention, but is now considered to play a vital role in host–pathogen interactions in animals. A major challenge in ecoimmunology is to understand how some hosts maintain their fitness when infected while others succumb to infection, as well as how extrinsic, environmental factors, such as diet, affect defense. We tested whether dietary restriction through yeast (protein) limitation affects resistance, tolerance, and fecundity in Drosophila melanogaster. We predicted that protein restriction would reveal costs of infection. Because infectious diseases are not always lethal, we tested resistance and tolerance using two bacteria with low lethality: Escherichia coli and Lactococcus lactis. We then assayed fecundity and characterized bacterial infection pathology in individual flies at two acute phase time points after infection. As expected, our four fecundity measures all showed a negative effect of a low‐protein diet, but contrary to predictions, diet did not affect resistance to either bacteria species. We found evidence for diet‐induced and time‐dependent variation in host tolerance to E. coli, but not to L. lactis. Furthermore, the two bacteria species exhibited remarkably different infection profiles, and persisted within the flies for at least 7 days postinfection. Our results show that acute phase infections do not necessarily lead to fecundity costs despite high bacterial loads. The influence of intrinsic variables such as genotype are the prevailing factors that have been studied in relation to variation in host tolerance, but here we show that extrinsic factors should also be considered for their role in influencing tolerance strategies.
Collapse
Affiliation(s)
- Megan A M Kutzer
- Institute for Evolution and Biodiversity University of Münster Hüfferstrasse 1 48149 Münster Germany
| | - Sophie A O Armitage
- Institute for Evolution and Biodiversity University of Münster Hüfferstrasse 1 48149 Münster Germany
| |
Collapse
|
148
|
Vanha-Aho LM, Valanne S, Rämet M. Cytokines in Drosophila immunity. Immunol Lett 2015; 170:42-51. [PMID: 26730849 DOI: 10.1016/j.imlet.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
Cytokines are a large and diverse group of small proteins that can affect many biological processes, but most commonly cytokines are known as mediators of the immune response. In the event of an infection, cytokines are produced in response to an immune stimulus, and they function as key regulators of the immune response. Cytokines come in many shapes and sizes, and although they vary greatly in structure, their functions have been well conserved in evolution. The immune signaling pathways that respond to cytokines are remarkably conserved from fly to man. Therefore, Drosophila melanogaster, provides an excellent platform for studying the biology and function of cytokines. In this review, we will describe the cytokines and cytokine-like molecules found in the fly and discuss their roles in host immunity.
Collapse
Affiliation(s)
- Leena-Maija Vanha-Aho
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland.
| | - Susanna Valanne
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, 33014 University of Tampere, Finland; PEDEGO Research Unit, and Medical Research Center Oulu, University of Oulu and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
149
|
Sun QL, Sun L. A short-type peptidoglycan recognition protein from tongue sole (Cynoglossus semilaevis) promotes phagocytosis and defense against bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2015; 47:313-320. [PMID: 26364742 DOI: 10.1016/j.fsi.2015.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/25/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are members of the innate immune system that interact with bacteria by binding to bacterial peptidoglycan. In this study, we examined the expression and function of a short type of PGRP, CsPGRP-SC2, from tongue sole (Cynoglossus semilaevis). CsPGRP-SC2 contains 164 amino acid residues and shares 54.5%-65.3% overall sequence identities with other teleost PGRPs. CsPGRP-SC2 possesses an amidase domain with a conserved zinc binding site. CsPGRP-SC2 expression occurred in multiple tissues and was upregulated by bacterial and viral infection. Purified recombinant CsPGRP-SC2 (rCsPGRP-SC2) was able to bind and agglutinate Gram-positive bacteria in a Zn(2+)-dependent manner. rCsPGRP-SC2 enhanced the uptake of the bound bacteria by host phagocytes and reduced bacterial dissemination and colonization in host tissues. These results indicate that CsPGRP-SC2 is an innate immune factor that participates in host defense against bacterial infection.
Collapse
Affiliation(s)
- Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
150
|
Costechareyre D, Capo F, Fabre A, Chaduli D, Kellenberger C, Roussel A, Charroux B, Royet J. Tissue-Specific Regulation of Drosophila NF-x03BA;B Pathway Activation by Peptidoglycan Recognition Protein SC. J Innate Immun 2015; 8:67-80. [PMID: 26513145 DOI: 10.1159/000437368] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/03/2015] [Indexed: 01/22/2023] Open
Abstract
In Drosophila, peptidoglycan (PGN) is detected by PGN recognition proteins (PGRPs) that act as pattern recognition receptors. Some PGRPs such as PGRP-LB or PGRP-SCs are able to cleave PGN, therefore reducing the amount of immune elicitors and dampening immune deficiency (IMD) pathway activation. The precise role of PGRP-SC is less well defined because the PGRP-SC genes (PGRP-SC1a, PGRP-SC1b and PGRP-SC2) lie very close on the chromosome and have been studied using a deletion encompassing the three genes. By generating PGRP-SC-specific mutants, we reevaluated the roles of PGRP-LB, PGRP-SC1 and PGRP-SC2, respectively, during immune responses. We showed that these genes are expressed in different gut domains and that they follow distinct transcriptional regulation. Loss-of-function mutant analysis indicates that PGRP-LB is playing a major role in IMD pathway activation and bacterial load regulation in the gut, although PGRP-SCs are expressed at high levels in this organ. We also demonstrated that PGRP-SC2 is the main negative regulator of IMD pathway activation in the fat body. Accordingly, we showed that mutants for either PGRP-LB or PGRP-SC2 displayed a distinct susceptibility to bacteria depending on the infection route. Lastly, we demonstrated that PGRP-SC1 and PGRP-SC2 are required in vivo for full Toll pathway activation by Gram-positive bacteria.
Collapse
Affiliation(s)
- Denis Costechareyre
- Institut de Biologie du Dx00E9;veloppement de Marseille, UMR 7288, CNRS, Aix Marseille Universitx00E9;, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|