101
|
Glodowski DR, Chen CCH, Schaefer H, Grant BD, Rongo C. RAB-10 regulates glutamate receptor recycling in a cholesterol-dependent endocytosis pathway. Mol Biol Cell 2007; 18:4387-96. [PMID: 17761527 PMCID: PMC2043545 DOI: 10.1091/mbc.e07-05-0486] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regulated endocytosis of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) is critical for synaptic plasticity. However, the specific combination of clathrin-dependent and -independent mechanisms that mediate AMPAR trafficking in vivo have not been fully characterized. Here, we examine the trafficking of the AMPAR subunit GLR-1 in Caenorhabditis elegans. GLR-1 is localized on synaptic membranes, where it regulates reversals of locomotion in a simple behavioral circuit. Animals lacking RAB-10, a small GTPase required for endocytic recycling of intestinal cargo, are similar in phenotype to animals lacking LIN-10, a postsynaptic density 95/disc-large/zona occludens-domain containing protein: GLR-1 accumulates in large accretions and animals display a decreased frequency of reversals. Mutations in unc-11 (AP180) or itsn-1 (Intersectin 1), which reduce clathrin-dependent endocytosis, suppress the lin-10 but not rab-10 mutant phenotype, suggesting that LIN-10 functions after clathrin-mediated endocytosis. By contrast, cholesterol depletion, which impairs lipid raft formation and clathrin-independent endocytosis, suppresses the rab-10 but not the lin-10 phenotype, suggesting that RAB-10 functions after clathrin-independent endocytosis. Animals lacking both genes display additive GLR-1 trafficking defects. We propose that RAB-10 and LIN-10 recycle AMPARs from intracellular endosomal compartments to synapses along distinct pathways, each with distinct sensitivities to cholesterol and the clathrin-mediated endocytosis machinery.
Collapse
Affiliation(s)
| | | | | | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | | |
Collapse
|
102
|
Hom RA, Vora M, Regner M, Subach OM, Cho W, Verkhusha VV, Stahelin RV, Kutateladze TG. pH-dependent binding of the Epsin ENTH domain and the AP180 ANTH domain to PI(4,5)P2-containing bilayers. J Mol Biol 2007; 373:412-23. [PMID: 17825837 PMCID: PMC2144917 DOI: 10.1016/j.jmb.2007.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
Abstract
Epsin and AP180 are essential components of the endocytotic machinery, which controls internalization of protein receptors and other macromolecules at the cell surface. Epsin and AP180 are recruited to the plasma membrane by their structurally and functionally related N-terminal ENTH and ANTH domains that specifically recognize PtdIns(4,5)P2. Here, we show that membrane anchoring of the ENTH and ANTH domains is regulated by the acidic environment. Lowering the pH enhances PtdIns(4,5)P2 affinity of the ENTH and ANTH domains reinforcing their association with lipid vesicles and monolayers. The pH dependency is due to the conserved histidine residues of the ENTH and ANTH domains, protonation of which is necessary for the strong PtdIns(4,5)P2 recognition, as revealed by liposome binding, surface plasmon resonance, NMR, monolayer surface tension and mutagenesis experiments. The pH sensitivity of the ENTH and ANTH domains is reminiscent to the pH dependency of the FYVE domain suggesting a common regulatory mechanism of membrane anchoring by a subset of the PI-binding domains.
Collapse
Affiliation(s)
- Robert A Hom
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Khanna R, Li Q, Schlichter LC, Stanley EF. The transmitter release-site CaV2.2 channel cluster is linked to an endocytosis coat protein complex. Eur J Neurosci 2007; 26:560-74. [PMID: 17686037 DOI: 10.1111/j.1460-9568.2007.05681.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Synaptic vesicles (SVs) are triggered to fuse with the surface membrane at the presynaptic transmitter release site (TRSs) core by Ca2+ influx through nearby attached CaV2.2 channels [see accompanying paper: Khanna et al. (2007)Eur. J. Neurosci., 26, 547-559] and are then recovered by endocytosis. In this study we test the hypothesis that the TRS core is linked to an endocytosis-related protein complex. This was tested by immunostaining analysis of the chick ciliary ganglion calyx presynaptic terminal and biochemical analysis of synaptosome lysate, using CaV2.2 as a marker for the TRS. We noted that CaV2.2 clusters abut heavy-chain (H)-clathrin patches at the transmitter release face. Quantitative coimmunostaining analysis (ICA/ICQ method) demonstrated a strong covariance of release-face CaV2.2 staining with that for the AP180 and intersectin endocytosis adaptor proteins, and a moderate covariance with H- or light-chain (L)-clathrin and dynamin coat proteins, consistent with a multimolecular complex. This was supported by coprecipitation of these proteins with CaV2.2 from brain synaptosome lysate. Interestingly, the channel neither colocalized nor coprecipitated with the endocytosis cargo-capturing adaptor AP2, even though this protein both colocalized and coprecipitated with H-clathrin. Fractional recovery analysis of the immunoprecipitated CaV2.2 complex by exposure to high NaCl (approximately 1 m) indicated that AP180 and S-intersectin adaptors are tightly bound to CaV2.2 while L-intersectin, H- and L-clathrin and dynamin form a less tightly linked subcomplex. Our results are consistent with two distinct clathrin endocytosis complexes: an AP2-containing, remote, non-TRS complex and a specialised, AP2-lacking, TRS-associated subcomplex linked via a molecular bridge. The most probable role of this subcomplex is to facilitate SV recovery after transmitter release.
Collapse
Affiliation(s)
- Rajesh Khanna
- Genetics and Development Division, MP14-320, Toronto Western Research Institute, University Health Network, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8
| | | | | | | |
Collapse
|
104
|
Predescu SA, Predescu DN, Malik AB. Molecular determinants of endothelial transcytosis and their role in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2007; 293:L823-42. [PMID: 17644753 DOI: 10.1152/ajplung.00436.2006] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Caveolae transcytosis with its diverse mechanisms-fluid phase, adsorptive, and receptor-mediated-plays an important role in the continuous exchange of molecules across the endothelium. We will discuss key features of endothelial transcytosis and caveolae that have been studied recently and have increased our understanding of caveolae function in transcytosis at the molecular level. During transcytosis, caveolae "pinch off" from the plasma membrane to form discrete vesicular carriers that shuttle to the opposite front of endothelial cells, fuse with the plasma membrane, and discharge their cargo into the perivascular space. Endothelial transcytosis exhibits distinct properties, the most important being rapid and efficient coupling of endocytosis to exocytosis on opposite plasma membrane. We address herein the membrane fusion-fission reactions that underlie transcytosis. Caveolae move across the endothelial cells with their cargo predominantly in the fluid phase through an active process that bypasses the lysosomes. Endothelial transcytosis is a constitutive process of vesicular transport. Recent studies show that transcytosis can be upregulated in response to pathological stimuli. Transcytosis via caveolae is an important route for the regulation of endothelial barrier function and may participate in different vascular diseases.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois, College of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
105
|
Bertelsen V, Breen K, Sandvig K, Stang E, Madshus IH. The Cbl-interacting protein TULA inhibits dynamin-dependent endocytosis. Exp Cell Res 2007; 313:1696-709. [PMID: 17382318 DOI: 10.1016/j.yexcr.2007.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 11/22/2022]
Abstract
The Cbl- and ubiquitin-interacting protein T-cell ubiquitin ligand (TULA) has been demonstrated to inhibit endocytosis and downregulation of ligand-activated EGF receptor (EGFR) by impairing Cbl-induced ubiquitination. We presently report that TULA additionally inhibited clathrin-dependent endocytosis in general, as both uptake of transferrin (Tf) and low-density lipoprotein (LDL) was inhibited. Additionally, endocytosis of the raft proteins CD59 and major histocompatibility complex class I (MHC-I), which we demonstrate were mainly endocytosed clathrin-independently, but dynamin-dependently, was blocked in cells overexpressing TULA. By contrast, the uptake of ricin, which is mainly endocytosed clathrin- and dynamin-independently, was not affected by overexpressed TULA. Consistently, TULA and dynamin co-immunoprecipitated and colocalized intracellularly, and upon overexpression of dynamin the TULA-mediated inhibitory effect on endocytosis of Tf, LDL, CD59 and MHC-I was counteracted. Overexpressed dynamin did not restore ubiquitination of the EGFR, and consistently dynamin did not rescue endocytosis of the EGFR in cells overexpressing TULA. We conclude that TULA inhibits both clathrin-dependent and clathrin-independent endocytic pathways by functionally sequestering dynamin via the SH3 domain of TULA binding proline-rich sequences in dynamin.
Collapse
Affiliation(s)
- Vibeke Bertelsen
- Institute of Pathology, Faculty Division Rikshospitalet, University of Oslo, Rikshospitalet-Radiumhospitalet Medical Centre, 0027 Oslo, Norway
| | | | | | | | | |
Collapse
|
106
|
He G, Wang HR, Huang SK, Huang CL. Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest 2007; 117:1078-87. [PMID: 17380208 PMCID: PMC1821066 DOI: 10.1172/jci30087] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/30/2007] [Indexed: 11/17/2022] Open
Abstract
With-no-lysine (WNK) kinases are a novel family of protein kinases characterized by an atypical placement of the catalytic lysine. Mutations of 2 family members, WNK1 and WNK4, cause pseudohypoaldosteronism type 2 (PHA2), an autosomal-dominant disease characterized by hypertension and hyperkalemia. WNK1 and WNK4 stimulate clathrin-dependent endocytosis of renal outer medullar potassium 1 (ROMK1), and PHA2-causing mutations of WNK4 increase the endocytosis. How WNKs stimulate endocytosis of ROMK1 and how mutations of WNK4 increase the endocytosis are unknown. Intersectin (ITSN) is a multimodular endocytic scaffold protein. Here we show that WNK1 and WNK4 interacted with ITSN and that the interactions were crucial for stimulation of endocytosis of ROMK1 by WNKs. The stimulation of endocytosis of ROMK1 by WNK1 and WNK4 required specific proline-rich motifs of WNKs, but did not require their kinase activity. WNK4 interacted with ROMK1 as well as with ITSN. Disease-causing WNK4 mutations enhanced interactions of WNK4 with ITSN and ROMK1, leading to increased endocytosis of ROMK1. These results provide a molecular mechanism for stimulation of endocytosis of ROMK1 by WNK kinases.
Collapse
Affiliation(s)
- Guocheng He
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8856, USA
| | | | | | | |
Collapse
|
107
|
Khanna R, Li Q, Stanley EF. 'Fractional recovery' analysis of a presynaptic synaptotagmin 1-anchored endocytic protein complex. PLoS One 2006; 1:e67. [PMID: 17183698 PMCID: PMC1762330 DOI: 10.1371/journal.pone.0000067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Accepted: 10/30/2006] [Indexed: 11/18/2022] Open
Abstract
Background The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochemistry at the chick ciliary ganglion giant calyx-type synapse. Methodology/Principle Findings The first step in FR analysis was to immunoprecipitate (IP) the complex with an antibody against one protein component (the IP-protein). The immobilized complex was then exposed to a high salt (1150 mM) stress-test that caused shedding of co-immunoprecipitated proteins (co-IP-proteins). A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot) was calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized), and an AP2 adaptor, H-/L-clathrin coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method) at an isolated calyx-type presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with STG on intracellular synaptic vesicles. Conclusions/Significance We hypothesize that the SAE serves as a recognition site and also as a seed complex for clathrin-mediated synaptic vesicle recovery. The combination of FR analysis with quantitative immunocytochemistry provides a novel and effective strategy for the identification and characterization of biologically-relevant multi-molecular complexes.
Collapse
|
108
|
Allaire PD, Ritter B, Thomas S, Burman JL, Denisov AY, Legendre-Guillemin V, Harper SQ, Davidson BL, Gehring K, McPherson PS. Connecdenn, a novel DENN domain-containing protein of neuronal clathrin-coated vesicles functioning in synaptic vesicle endocytosis. J Neurosci 2006; 26:13202-12. [PMID: 17182770 PMCID: PMC6674997 DOI: 10.1523/jneurosci.4608-06.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 11/07/2006] [Accepted: 11/07/2006] [Indexed: 11/21/2022] Open
Abstract
Clathrin-coated vesicles (CCVs) are responsible for the endocytosis of multiple cargo, including synaptic vesicle membranes. We now describe a new CCV protein, termed connecdenn, that contains an N-terminal DENN (differentially expressed in neoplastic versus normal cells) domain, a poorly characterized protein module found in multiple proteins of unrelated function and a C-terminal peptide motif domain harboring three distinct motifs for binding the alpha-ear of the clathrin adaptor protein 2 (AP-2). Connecdenn coimmunoprecipitates and partially colocalizes with AP-2, and nuclear magnetic resonance and peptide competition studies reveal that all three alpha-ear-binding motifs contribute to AP-2 interactions. In addition, connecdenn contains multiple Src homology 3 (SH3) domain-binding motifs and coimmunoprecipitates with the synaptic SH3 domain proteins intersectin and endophilin A1. Interestingly, connecdenn is enriched on neuronal CCVs and is present in the presynaptic compartment of neurons. Moreover, connecdenn has a uniquely stable association with CCV membranes because it resists extraction with Tris and high-salt buffers, unlike most other CCV proteins, but it is not detected on purified synaptic vesicles. Together, these observations suggest that connecdenn functions on the endocytic limb of the synaptic vesicle cycle. Accordingly, disruption of connecdenn interactions with its binding partners through overexpression of the C-terminal peptide motif domain or knock down of connecdenn through lentiviral delivery of small hairpin RNA both lead to defects in synaptic vesicle endocytosis in cultured hippocampal neurons. Thus, we identified connecdenn as a component of the endocytic machinery functioning in synaptic vesicle endocytosis, providing the first evidence of a role for a DENN domain-containing protein in endocytosis.
Collapse
Affiliation(s)
- Patrick D. Allaire
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Sebastien Thomas
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Jonathon L. Burman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Alexei Yu. Denisov
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, Quebec, Canada, H3G 1Y6, and
| | - Valerie Legendre-Guillemin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| | - Scott Q. Harper
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - Beverly L. Davidson
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, Iowa 52242
| | - Kalle Gehring
- Department of Biochemistry and Montreal Joint Centre for Structural Biology, McGill University, Montreal, Quebec, Canada, H3G 1Y6, and
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada, H3A 2B4
| |
Collapse
|
109
|
Keating DJ, Chen C, Pritchard MA. Alzheimer's disease and endocytic dysfunction: clues from the Down syndrome-related proteins, DSCR1 and ITSN1. Ageing Res Rev 2006; 5:388-401. [PMID: 16442855 DOI: 10.1016/j.arr.2005.11.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 11/19/2005] [Accepted: 11/28/2005] [Indexed: 10/25/2022]
Abstract
Down syndrome (DS) is a genetically-based disorder which results in multiple conditions for sufferers. Amongst these is a common early incidence of Alzheimer's disease (AD) which usually affects DS individuals by their mid 40s. This fact provides a clue that one or more of the genes located on chromosome 21 may be involved in the onset of AD. Current evidence suggests that endosomal disorders may underlie the earliest pathology of AD, preceding the classical pathological markers of beta-amyloid plaque deposition and neurofibrillary tangles. Therefore, any genes involved in endocytosis and vesicle trafficking which are over-expressed in DS are novel candidates in the pathogenesis of AD. Intersectin-1 (ITSN1) and Down syndrome candidate region 1 (DSCR1) are two such genes. Extensive in vitro data and data from Drosophila indicates that the over-expression of either of these genes or their products results in inhibition or ablation of endocytosis in neuronal as well as non-neuronal cells. This review discusses in detail the known and potential roles of ITSN1 and DSCR1 in DS, AD, endocytosis and vesicle trafficking.
Collapse
Affiliation(s)
- Damien J Keating
- Prince Henry's Institute of Medical Research, Clayton, Vic., Australia
| | | | | |
Collapse
|
110
|
Maurer ME, Cooper JA. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J Cell Sci 2006; 119:4235-46. [PMID: 16984970 DOI: 10.1242/jcs.03217] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clathrin-mediated endocytosis requires cargo-specific adaptor proteins that recognize specific receptors and recruit them into coated pits. ARH [also called low-density lipoprotein receptor (LDLR) adaptor protein] serves as an adaptor for LDLR endocytosis in liver. However, ARH is dispensable for LDL uptake by some other cell types. Here, we show that the adaptor Dab2 plays a major role in LDLR internalization in HeLa cells and fibroblasts. Dab2 mediates internalization of LDLRs but not transferrin receptors independently of ARH and the classic clathrin adaptor AP-2. If Dab2 is absent, ARH can mediate LDLR endocytosis, but its action requires AP-2. Furthermore, the rate of LDLR endocytosis is decreased when Dab2 is absent and Dab2, but not ARH, catalyzes the efficient clustering of LDLR into coated pits. Dab2 activity requires its binding to clathrin, LDLR and phospholipids. Dab2 is also involved in moving LDLRs off filopodia. We suggest that Dab2 is a cargo-specific endocytic adaptor protein, stably associating with phospholipids and clathrin to sort LDLR to nascent-coated pits, whereas ARH might accelerate later steps in LDLR endocytosis in cooperation with AP-2.
Collapse
Affiliation(s)
- Meghan E Maurer
- Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, Seattle, WA 98109, USA
| | | |
Collapse
|
111
|
Malacombe M, Bader MF, Gasman S. Exocytosis in neuroendocrine cells: new tasks for actin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1175-83. [PMID: 17034880 DOI: 10.1016/j.bbamcr.2006.09.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 11/19/2022]
Abstract
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.
Collapse
Affiliation(s)
- Magali Malacombe
- Département Neurotransmission et Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique et Université Louis Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg, France
| | | | | |
Collapse
|
112
|
Malacombe M, Ceridono M, Calco V, Chasserot-Golaz S, McPherson PS, Bader MF, Gasman S. Intersectin-1L nucleotide exchange factor regulates secretory granule exocytosis by activating Cdc42. EMBO J 2006; 25:3494-503. [PMID: 16874303 PMCID: PMC1538555 DOI: 10.1038/sj.emboj.7601247] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 06/29/2006] [Indexed: 11/09/2022] Open
Abstract
Rho GTPases are key regulators of the actin cytoskeleton in membrane trafficking events. We previously reported that Cdc42 facilitates exocytosis in neuroendocrine cells by stimulating actin assembly at docking sites for secretory granules. These findings raise the question of the mechanism activating Cdc42 in exocytosis. The neuronal guanine nucleotide exchange factor, intersectin-1L, which specifically activates Cdc42 and is at an interface between membrane trafficking and actin dynamics, appears as an ideal candidate to fulfill this function. Using PC12 and chromaffin cells, we now show the presence of intersectin-1 at exocytotic sites. Moreover, through an RNA interference strategy coupled with expression of various constructs encoding the guanine nucleotide exchange domain, we demonstrate that intersectin-1L is an essential component of the exocytotic machinery. Silencing of intersectin-1 prevents secretagogue-induced activation of Cdc42 revealing intersectin-1L as the factor integrating Cdc42 activation to the exocytotic pathway. Our results extend the current role of intersectin-1L in endocytosis to a function in exocytosis and support the idea that intersectin-1L is an adaptor that coordinates exo-endocytotic membrane trafficking in secretory cells.
Collapse
Affiliation(s)
- Magali Malacombe
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Mara Ceridono
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Valérie Calco
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Sylvette Chasserot-Golaz
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Marie-France Bader
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
| | - Stéphane Gasman
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, Strasbourg, France
- Département Neurotransmission & Sécrétion Neuroendocrine, Institut des Neurosciences Cellulaires et Intégratives (UMR 7168/LC2), Centre National de la Recherche Scientifique & Université Louis Pasteur, 5 rue Blaise Pascal, 67084 Strasbourg, France. Tel.: +33 388456712; Fax: +33 388601664; E-mail:
| |
Collapse
|
113
|
Kaksonen M, Toret CP, Drubin DG. Harnessing actin dynamics for clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 2006; 7:404-14. [PMID: 16723976 DOI: 10.1038/nrm1940] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Actin polymerization often occurs at the plasma membrane to drive the protrusion of lamellipodia and filopodia at the leading edge of migrating cells. A role for actin polymerization in another cellular process that involves the reshaping of the plasma membrane--namely endocytosis--has recently been established. Live-cell imaging studies are shedding light on the order and timing of the molecular events and mechanisms of actin function during endocytosis.
Collapse
Affiliation(s)
- Marko Kaksonen
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | |
Collapse
|
114
|
Abstract
Signal transduction down the Ras/MAPK pathway, including that critical to T cell activation, proliferation, and differentiation, has been generally considered to occur at the plasma membrane. It is now clear that the plasma membrane does not represent the only platform for Ras/MAPK signaling. Moreover, the plasma membrane itself is no longer considered a uniform structure but rather a patchwork of microdomains that can compartmentalize signaling. Signaling on internal membranes was first recognized on endosomes. Genetically encoded fluorescent probes for signaling events such as GTP/GDP exchange on Ras have revealed signaling on a variety of intracellular membranes, including the Golgi apparatus. In fibroblasts, Ras is activated on the plasma membrane and Golgi with distinct kinetics. The pathway by which Golgi-associated Ras becomes activated involves PLCgamma and RasGRP1 and may also require retrograde trafficking of Ras from the plasma membrane to the Golgi as a consequence of depalmitoylation. Thus, the Ras/MAPK pathway represents a clear example of compartmentalized signaling.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, New York University Medical Center, New York, NY 10016-6402, USA.
| | | |
Collapse
|
115
|
Elhamdani A, Azizi F, Solomaha E, Palfrey HC, Artalejo CR. Two mechanistically distinct forms of endocytosis in adrenal chromaffin cells: Differential effects of SH3 domains and amphiphysin antagonism. FEBS Lett 2006; 580:3263-9. [PMID: 16696976 DOI: 10.1016/j.febslet.2006.04.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 04/14/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
We previously identified two forms of endocytosis using capacitance measurements in chromaffin cells: rapid endocytosis (RE), dynamin-1 dependent but clathrin-independent and slow endocytosis (SE), dynamin-2 and clathrin-dependent. Various recombinant SH3 domains that interact with the proline-rich domain of dynamin were introduced into single cells via the patch pipette. GST-SH3 domains of amphiphysin-1, intersectin-IC, and endophilin-I inhibited SE but had no effect on RE. Grb2-SH3 (N-terminal) or a mutant of amphiphysin-1-SH3 was inactive on either process. These data confirm that dynamin-1 dependent RE is independent of clathrin and show that amphiphysin is exclusively associated with clathrin and dynamin-2-dependent SE.
Collapse
Affiliation(s)
- Abdeladim Elhamdani
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
116
|
Myung JK, Lubec G. Use of Solution-IEF-Fractionation Leads to Separation of 2673 Mouse Brain Proteins Including 255 Hydrophobic Structures. J Proteome Res 2006; 5:1267-75. [PMID: 16674118 DOI: 10.1021/pr060015h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Analyzing complex protein mixtures on a single gel does not allow separation of many extracted proteins. Herein, we tried a prefractionation approach and mouse brain proteins were separated on a narrow pH range ZOOM-IEF Fractionator (MicroSol-IEF device) and run on two-dimensional gel electrophoresis. A total number of 2673 protein spots including 255 hydrophobic structures were successfully analyzed by mass spectrometry. This nonsophisticated approach to increase protein identification of a brain protein extract is a step forward in neurochemistry.
Collapse
Affiliation(s)
- Jae-Kyung Myung
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
117
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1745:273-86. [PMID: 16046009 DOI: 10.1016/j.bbamcr.2005.06.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 01/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, Queensland 4072, Australia
| | | |
Collapse
|
118
|
Affiliation(s)
- Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada H3A 2B4
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University, Montreal, QC, Canada H3A 2B4
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
119
|
Nishimura T, Yamaguchi T, Tokunaga A, Hara A, Hamaguchi T, Kato K, Iwamatsu A, Okano H, Kaibuchi K. Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. Mol Biol Cell 2006; 17:1273-85. [PMID: 16394100 PMCID: PMC1382316 DOI: 10.1091/mbc.e05-07-0700] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/15/2005] [Accepted: 12/27/2005] [Indexed: 12/22/2022] Open
Abstract
Numb has been implicated in cortical neurogenesis during nervous system development, as a result of its asymmetric partitioning and antagonizing Notch signaling. Recent studies have revealed that Numb functions in clathrin-dependent endocytosis by binding to the AP-2 complex. Numb is also expressed in postmitotic neurons and plays a role in axonal growth. However, the functions of Numb in later stages of neuronal development remain unknown. Here, we report that Numb specifically localizes to dendritic spines in cultured hippocampal neurons and is implicated in dendritic spine morphogenesis, partially through the direct interaction with intersectin, a Cdc42 guanine nucleotide exchange factor (GEF). Intersectin functions as a multidomain adaptor for proteins involved in endocytosis and cytoskeletal regulation. Numb enhanced the GEF activity of intersectin toward Cdc42 in vivo. Expression of Numb or intersectin caused the elongation of spine neck, whereas knockdown of Numb and Numb-like decreased the protrusion density and its length. Furthermore, Numb formed a complex with EphB2 receptor-type tyrosine kinase and NMDA-type glutamate receptors. Knockdown of Numb suppressed the ephrin-B1-induced spine development and maturation. These results highlight a role of Numb for dendritic spine development and synaptic functions with intersectin and EphB2.
Collapse
Affiliation(s)
- Takashi Nishimura
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Kirkham M, Parton RG. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1746:349-63. [PMID: 16440447 DOI: 10.1016/j.bbamcr.2005.11.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added.
Collapse
Affiliation(s)
- Matthew Kirkham
- Institute for Molecular Bioscience, University of Queensland, 4072, Australia
| | | |
Collapse
|
121
|
Wang G, Moniri NH, Ozawa K, Stamler JS, Daaka Y. Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci U S A 2006; 103:1295-300. [PMID: 16432212 PMCID: PMC1360548 DOI: 10.1073/pnas.0508354103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The GTPase dynamin regulates endocytic vesicle budding from the plasma membrane, but the molecular mechanisms involved remain incompletely understood. We report that dynamin, which interacts with NO synthase, is S-nitrosylated at a single cysteine residue (C607) after stimulation of the beta(2) adrenergic receptor. S-nitrosylation increases dynamin self-assembly and GTPase activity and facilitates its redistribution to the membrane. A mutant protein bearing a C607A substitution does not self-assemble properly or increase its enzymatic activity in response to NO. In NO-generating cells, expression of dynamin C607A, like the GTPase-deficient dominant-negative K44A dynamin, inhibits both beta(2) adrenergic receptor internalization and bacterial invasion. Furthermore, exogenous or endogenously produced NO enhances internalization of both beta(2) adrenergic and epidermal growth factor receptors. Thus, NO regulates endocytic vesicle budding by S-nitrosylation of dynamin. Collectively, our data suggest a general NO-dependent mechanism by which the trafficking of receptors may be regulated and raise the idea that pathogenic microbes and viruses may induce S-nitrosylation of dynamin to facilitate cellular entry.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Surgery, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
122
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
123
|
Savdie C, Ferguson SSG, Vincent JP, Beaudet A, Stroh T. Cell-type-specific pathways of neurotensin endocytosis. Cell Tissue Res 2005; 324:69-85. [PMID: 16374621 DOI: 10.1007/s00441-005-0102-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 10/18/2005] [Indexed: 12/01/2022]
Abstract
The neurotensin receptor subtype 1 (NTS1) is a G-protein-coupled receptor (GPCR) mediating a large number of central and peripheral effects of neurotensin. Upon stimulation, NTS1 is rapidly internalized and targeted to lysosomes. This process depends on the interaction of the phosphorylated receptor with beta-arrestin. Little is known about other accessory endocytic proteins potentially involved. Here, we investigated the involvement of dynamin, amphiphysin, and intersectin in the internalization of NTS1 receptor-ligand complexes in transfected COS-7 and HEK 293 cells, by using the transferrin receptor as an internal control for the constitutive endocytic pathway. We found that NTS1 endocytosis was not only arrestin-dependent, but also dynamin-dependent in both COS-7 and HEK 293 cells, whereas internalization of the transferrin receptor was independent of arrestin but required dynamin. Overexpression of the SH3 domain of amphiphysin II had no effect on receptor internalization in either cell type. By contrast, overexpression of full-length intersectin or of its SH3 domain (but not of its EH domain) inhibited NTS1 internalization in COS-7 but not in HEK 293 cells. This difference between COS-7 and HEK 293 cells was not attributable to differences in endogenous intersectin levels between the two cell lines. Indeed, the same constructs inhibited transferrin endocytosis equally well in COS-7 and HEK 293 cells. However, immunogold electron microscopy revealed that internalized NTS1 receptors were associated with clathrin-coated pits in COS-7 cells but with smooth vesicles in HEK 293 cells, suggesting that NTS1 internalization proceeds via different endocytic pathways in these two cell types.
Collapse
Affiliation(s)
- Cheryl Savdie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
124
|
Icking A, Matt S, Opitz N, Wiesenthal A, Müller-Esterl W, Schilling K. NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. J Cell Sci 2005; 118:5059-69. [PMID: 16234328 DOI: 10.1242/jcs.02620] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Intracellular trafficking of endothelial nitric oxide synthase (eNOS) between different compartments is incompletely understood. Recently, we described a novel eNOS-interacting protein, NOSTRIN, which upon overexpression drives eNOS away from the plasma membrane towards intracellular compartments. Sequence similarity of NOSTRIN and pacsins/syndapins suggested a role for NOSTRIN in endocytosis. Accordingly, we show here that NOSTRIN interacts with the large GTPase dynamin and the actin nucleation promoting factor N-WASP by means of its SH3 domain, which also represents the docking site for eNOS. Via a coiled-coil region in the C-terminal portion of the protein, NOSTRIN oligomerizes, mainly forming trimers, which would allow simultaneous interaction with multiple binding partners of the SH3 domain. Consistent with this notion, expression of dynamin-2-GFP in CHO cells stably expressing eNOS (CHO-eNOS) results in recruitment of eNOS to dynamin-positive structures, only when NOSTRIN is present as well. Similarly, when N-WASP-GFP and NOSTRIN are co-expressed in CHO-eNOS cells, both proteins strongly co-localize with eNOS and are recruited to structures running along actin filaments. If, however, the actin cytoskeleton is depolymerized by cytochalasin D, NOSTRIN and eNOS are associated with extended structures in the cell periphery, possibly being unable to leave the plasma membrane. Together, these results indicate that NOSTRIN may facilitate endocytosis of eNOS by coordinating the function of dynamin and N-WASP.
Collapse
Affiliation(s)
- Ann Icking
- Institute for Biochemistry II, University of Frankfurt Medical School, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
125
|
Holstein SEH, Oliviusson P. Sequence analysis of Arabidopsis thaliana E/ANTH-domain-containing proteins: membrane tethers of the clathrin-dependent vesicle budding machinery. PROTOPLASMA 2005; 226:13-21. [PMID: 16231097 DOI: 10.1007/s00709-005-0105-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Accepted: 03/30/2005] [Indexed: 05/04/2023]
Abstract
The epsin N-terminal homology (ENTH) domain is a conserved protein module present in cytosolic proteins which are required in clathrin-mediated vesicle budding processes. A highly similar, yet unique module is the AP180 N-terminal homology (ANTH) domain, which is present in a set of proteins that also support clathrin-dependent endocytosis. Both ENTH and ANTH (E/ANTH) domains bind to phospholipids and proteins, in order to support the nucleation of clathrin coats on the plasma membrane or the trans-Golgi-network membrane. Therefore, E/ANTH proteins might be considered as universal tethering components of the clathrin-mediated vesicle budding machinery. Since the E/ANTH protein family appears to be crucial in the first steps of clathrin-coated vesicle budding, we performed data base searches of the Arabidopsis thaliana genome. Sequence analysis revealed three proteins containing the ENTH signature motif and eight proteins containing the ANTH signature motif. Another six proteins were found that do not contain either motif but seem to have the same domain structure and might therefore be seen as VHS-domain-containing plant proteins. Functional analysis of plant E/ANTH proteins are rather scarce, since only one ANTH homolog from A. thaliana, At-AP180, has been characterized so far. At-AP180 displays conserved functions as a clathrin assembly protein and as an alpha-adaptin binding partner, and in addition shows features at the molecular level that seem to be plant-specific.
Collapse
Affiliation(s)
- Susanne E H Holstein
- Heidelberg Institute for Plant Sciences, University of Heidelberg, Heidelberg, Federal Republic of Germany
| | | |
Collapse
|
126
|
Montesinos ML, Castellano-Muñoz M, García-Junco-Clemente P, Fernández-Chacón R. Recycling and EH domain proteins at the synapse. ACTA ACUST UNITED AC 2005; 49:416-28. [PMID: 16054223 DOI: 10.1016/j.brainresrev.2005.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Revised: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022]
Abstract
In neurons, a network of endocytic proteins accomplishes highly regulated processes such as synaptic vesicle cycling and the timely internalization of intracellular signaling molecules. In this review, we discuss recent advances on molecular networks created through interactions between proteins bearing the Eps15 homology (EH) domain and partner proteins containing the Asn-Pro-Phe (NPF) motif, which participate in important aspects of neuronal function as the synaptic vesicle cycle, the internalization of nerve growth factor (NGF), the determination of neuronal cell fate, the development of synapses and the trafficking of postsynaptic receptors. We discuss novel functional findings on the role of intersectin and synaptojanin and then we focus on the features of an emerging family of EH domain proteins termed EHDs (EH domain proteins), which are important for endocytic recycling of membrane proteins.
Collapse
Affiliation(s)
- María Luz Montesinos
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Avda. Sánchez-Pizjuán 4, E-41009 Sevilla, Spain.
| | | | | | | |
Collapse
|
127
|
Abstract
Ubiquitin-binding domains (UBDs) are a collection of modular protein domains that non-covalently bind to ubiquitin. These recently discovered motifs interpret and transmit information conferred by protein ubiquitylation to control various cellular events. Detailed molecular structures are known for a number of UBDs, but to understand their mechanism of action, we also need to know how binding specificity is determined, how ubiquitin binding is regulated, and the function of UBDs in the context of full-length proteins. Such knowledge will be key to our understanding of how ubiquitin regulates cellular proteins and processes.
Collapse
Affiliation(s)
- Linda Hicke
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA.
| | | | | |
Collapse
|
128
|
Solomaha E, Szeto FL, Yousef MA, Palfrey HC. Kinetics of Src Homology 3 Domain Association with the Proline-rich Domain of Dynamins. J Biol Chem 2005; 280:23147-56. [PMID: 15834155 DOI: 10.1074/jbc.m501745200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dynamin function is mediated in part through association of its proline-rich domain (PRD) with the Src homology 3 (SH3) domains of several putative binding proteins. To assess the specificity and kinetics of this process, we undertook surface plasmon resonance studies of the interaction between isolated PRDs of dynamin-1 and -2 and several purified SH3 domains. Glutathione S-transferase-linked SH3 domains bound with high affinity (K(D) approximately 10 nm to 1 microm) to both dynamin-1 and -2. The simplest interaction appeared to take place with the amphiphysin-SH3 domain; this bound to a single high affinity site (K(D) approximately 10 nm) in the C terminus of dynamin-1 PRD, as predicted by previous studies. Binding to the dynamin-2 PRD was also monophasic but with a slightly lower affinity (K(D) approximately 25 nm). Endophilin-SH3 binding to both dynamin-1 and -2 PRDs was biphasic, with one high affinity site (K(D) approximately 14 nm) in the N terminus of the PRD and another lower affinity site (K(D) approximately 60 nm) in the C terminus of dynamin-1. The N-terminal site in dynamin-2 PRD had a 10-fold lower affinity for endophilin-SH3. Preloading of dynamin-1 PRD with the amphiphysin-SH3 domain partially occluded binding of the endophilin-SH3 domain, indicating overlap between the binding sites in the C terminus, but endophilin was still able to interact with the high affinity N-terminal site. This shows that more than one SH3 domain can simultaneously bind to the PRD and suggests that competition probably occurs in vivo between different SH3-containing proteins for the limited number of PXXP motifs. Endophilin-SH3 binding to the high affinity site was disrupted when dynamin-1 PRD was phosphorylated with Cdk5, indicating that this site overlaps the phosphorylation sites, but amphiphysin-SH3 binding was unaffected. Other SH3 domains showed similarly complex binding characteristics, and substantial differences were noted between the PRDs from dynamin-1 and -2. For example, SH3 domains from c-Src, Grb2, and intersectin bound only to the C-terminal half of dynamin-2 PRD but to both the N- and C-terminal portions of dynamin-1 PRD. Thus, differential binding of SH3 domain-containing proteins to dynamin-1 and -2 may contribute to the distinct functions performed by these isoforms.
Collapse
Affiliation(s)
- Elena Solomaha
- Department of Neurobiology, Pharamacology, and Physiology, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
129
|
Miliaras NB, Park JH, Wendland B. The function of the endocytic scaffold protein Pan1p depends on multiple domains. Traffic 2005; 5:963-78. [PMID: 15522098 DOI: 10.1111/j.1600-0854.2004.00238.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pan1p is an essential protein of the yeast Saccharomyces cerevisiae that is required for the internalization step of endocytosis and organization of the actin cytoskeleton. Pan1p, which binds several other endocytic proteins, is composed of multiple protein-protein interaction domains including two Eps15 Homology (EH) domains, a coiled-coil domain, an acidic Arp2/3-activating region, and a proline-rich domain. In this study, we have induced high-level expression of various domains of Pan1p in wild-type cells to assess the dominant consequences on viability, endocytosis, and actin organization. We found that the most severe phenotypes, with blocked endocytosis and aggregated actin, required expression of nearly full length Pan1p, and also required the endocytic regulatory protein kinase Prk1p. The central coiled-coil domain was the smallest fragment whose overexpression caused any dominant effects; these effects were more pronounced by inclusion of the second EH domain. Co-overexpressing nonoverlapping amino- and carboxy-terminal fragments did not mimic the effects of the intact protein, whereas fragments that overlapped within the coiled-coil region could. Yeast two-hybrid and in vivo coimmunoprecipitation analyses suggest that Pan1 may form dimers or higher order oligomers. Collectively, our data support a view of Pan1p as a dimeric/oligomeric scaffold whose functions require both the amino- and carboxy-termini, linked by the central region.
Collapse
Affiliation(s)
- Nicholas B Miliaras
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | |
Collapse
|
130
|
Ethell IM, Pasquale EB. Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 2005; 75:161-205. [PMID: 15882774 DOI: 10.1016/j.pneurobio.2005.02.003] [Citation(s) in RCA: 264] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/28/2005] [Accepted: 02/22/2005] [Indexed: 12/19/2022]
Abstract
Dendritic spines are small protrusions that cover the surface of dendrites and bear the postsynaptic component of excitatory synapses. Having an enlarged head connected to the dendrite by a narrow neck, dendritic spines provide a postsynaptic biochemical compartment that separates the synaptic space from the dendritic shaft and allows each spine to function as a partially independent unit. Spines develop around the time of synaptogenesis and are dynamic structures that continue to undergo remodeling over time. Changes in spine morphology and density influence the properties of neural circuits. Our knowledge of the structure and function of dendritic spines has progressed significantly since their discovery over a century ago, but many uncertainties still remain. For example, several different models have been put forth outlining the sequence of events that lead to the genesis of a spine. Although spines are small and apparently simple organelles with a cytoskeleton mainly composed of actin filaments, regulation of their morphology and physiology appears to be quite sophisticated. A multitude of molecules have been implicated in dendritic spine development and remodeling, suggesting that intricate networks of interconnected signaling pathways converge to regulate actin dynamics in spines. This complexity is not surprising, given the likely importance of dendritic spines in higher brain functions. In this review, we discuss the molecules that are currently known to mediate the exquisite sensitivity of spines to perturbations in their environment and we outline how these molecules interface with each other to mediate cascades of signals flowing from the spine surface to the actin cytoskeleton.
Collapse
Affiliation(s)
- Iryna M Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | |
Collapse
|
131
|
Tsyba L, Skrypkina I, Rynditch A, Nikolaienko O, Ferenets G, Fortna A, Gardiner K. Alternative splicing of mammalian Intersectin 1: domain associations and tissue specificities. Genomics 2005; 84:106-13. [PMID: 15203208 DOI: 10.1016/j.ygeno.2004.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 02/11/2004] [Indexed: 11/18/2022]
Abstract
The Intersectin 1 (ITSN1) protein functions in clathrin-mediated endocytosis and in MAP kinase signaling. The complex domain structure comprises two EH and five SH3 domains in the short isoform, plus RhoGEF, pleckstrin, and putative calcium-interaction domains in the long isoform. Alternative splicing of exon 20, affecting the SH3A domain, has been shown in rat and that of exons 25 + 26, affecting the SH3C domain, has been shown in human and rat. Here we report 7 novel splice variants of the human and mouse ITSN1 genes and demonstrate conservation of alternative splicing affecting SH3A and SH3C in mouse. The novel variants encode transcripts with altered EH domain spacing and RhoGEF domain structure and possible targets of nonsense-mediated decay. Eight and 16 protein variants of the short and long ITSN1 isoforms, respectively, are predicted. These isoforms likely serve to modulate the many complex protein interactions and functions of ITSN1.
Collapse
Affiliation(s)
- Lyudmyla Tsyba
- Institute of Molecular Biology and Genetics, 150 Zabolotnogo, Kyiv 03143, Ukraine
| | | | | | | | | | | | | |
Collapse
|
132
|
Chen H, De Camilli P. The association of epsin with ubiquitinated cargo along the endocytic pathway is negatively regulated by its interaction with clathrin. Proc Natl Acad Sci U S A 2005; 102:2766-71. [PMID: 15701696 PMCID: PMC549477 DOI: 10.1073/pnas.0409719102] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Monoubiquitination of plasma membrane proteins is a mechanism to control their endocytic trafficking by promoting their interaction with cytosolic adaptor proteins that contain ubiquitin (Ub)-binding domains. Epsin, which contains Ub interaction motifs (UIMs), as well as binding sites for the clathrin coat and clathrin accessory factors, is thought to function as one of such adaptors. The importance of clathrin in the internalization of ubiquitinated cargo, however, has been questioned. Here, we show that a GFP-Ub chimera directly targeted to the plasma membrane via a lipid-based interaction is efficiently taken up by endocytosis and delivered to the same endosomes that accumulate internalized EGF. Internalization of the chimera requires integrity of the UIM binding interface of Ub, but does not require clathrin. Surprisingly, WT epsin showed little colocalization with this chimera, whereas UIM-containing epsin constructs that lack the clathrin and AP2 binding region, strikingly colocalized with this chimera on endocytic vacuoles. In addition, extensive colocalization of WT epsin with the chimera on endocytic structures could be observed in cells where clathrin levels were drastically reduced by RNA interference. Our results reveal an important regulatory mechanism in epsin function. The mutually exclusive colocalization of epsin with membrane-bound Ub or clathrin may play a role in controlling the endocytic route taken by ubiquitinated cargo.
Collapse
Affiliation(s)
- Hong Chen
- Department of Cell Biology and Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
133
|
Abstract
The Drosophila dynamin-associated protein Dap160, homolog of the vertebrate Intersectins, is thought likely to act as a molecular scaffold in the synaptic periactive zone. New mutant analyses have revealed separable roles for Dap160 in the regulation of vesicular endocytosis and synaptic growth.
Collapse
Affiliation(s)
- Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37232, USA.
| |
Collapse
|
134
|
Sauvonnet N, Dujeancourt A, Dautry-Varsat A. Cortactin and dynamin are required for the clathrin-independent endocytosis of gammac cytokine receptor. J Cell Biol 2005; 168:155-63. [PMID: 15623579 PMCID: PMC2171671 DOI: 10.1083/jcb.200406174] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/22/2004] [Indexed: 01/03/2023] Open
Abstract
Endocytosis is critical for many cellular functions. We show that endocytosis of the common gammac cytokine receptor is clathrin independent by using a dominant-negative mutant of Eps15 or RNA interference to knock down clathrin heavy chain. This pathway is synaptojanin independent and requires the GTPase dynamin. In addition, this process requires actin polymerization. To further characterize the function of dynamin in clathrin-independent endocytosis, in particular its connection with the actin cytoskeleton, we focused on dynamin-binding proteins that interact with F-actin. We compared the involvement of these proteins in the clathrin-dependent and -independent pathways. Thus, we observed that intersectin, syndapin, and mAbp1, which are necessary for the uptake of transferrin (Tf), a marker of the clathrin route, are not required for gammac receptor endocytosis. Strikingly, cortactin is needed for both gammac and Tf internalizations. These results reveal the ubiquitous action of cortactin in internalization processes and suggest its role as a linker between actin dynamics and clathrin-dependent and -independent endocytosis.
Collapse
Affiliation(s)
- Nathalie Sauvonnet
- Unité de Biologie des Interactions Cellulaires, Institut Pasteur, Centre National de la Recherche Scientifique, URA 2582, 75724 Paris, Cedex 15, France
| | | | | |
Collapse
|
135
|
Scholle MD, Collart FR, Kay BK. In vivo biotinylated proteins as targets for phage-display selection experiments. Protein Expr Purif 2004; 37:243-52. [PMID: 15294305 DOI: 10.1016/j.pep.2004.05.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 05/07/2004] [Indexed: 10/26/2022]
Abstract
Screening phage-displayed combinatorial libraries represents an attractive method for identifying affinity reagents to target proteins. Two critical components of a successful selection experiment are having a pure target protein and its immobilization in a native conformation. To achieve both of these requirements in a single step, we have devised cytoplasmic expression vectors for expression of proteins that are tagged at the amino- or carboxy-terminus (pMCSG16 and 15) via the AviTag, which is biotinylated in vivo with concurrent expression of the BirA biotin ligase. To facilitate implementation in high-throughput applications, the engineered vectors, pMCSG15 and pMCSG16, also contain a ligase-independent cloning site (LIC), which permits up to 100% cloning efficiency. The expressed protein can be purified from bacterial cell lysates with immobilized metal affinity chromatography or streptavidin-coated magnetic beads, and the beads used directly to select phage from combinatorial libraries. From selections using the N-terminally biotinylated version of one target protein, a peptide ligand (Kd= 9 microM) was recovered that bound in a format-dependent manner. To demonstrate the utility of pMCSG16, a set of 192 open reading frames were cloned, and protein was expressed and immobilized for use in high-throughput selections of phage-display libraries.
Collapse
Affiliation(s)
- Michael D Scholle
- Combinatorial Biology, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | |
Collapse
|
136
|
Marie B, Sweeney ST, Poskanzer KE, Roos J, Kelly RB, Davis GW. Dap160/intersectin scaffolds the periactive zone to achieve high-fidelity endocytosis and normal synaptic growth. Neuron 2004; 43:207-19. [PMID: 15260957 DOI: 10.1016/j.neuron.2004.07.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 05/21/2004] [Accepted: 06/16/2004] [Indexed: 11/19/2022]
Abstract
Dap160/Intersectin is a multidomain adaptor protein that colocalizes with endocytic machinery in the periactive zone at the Drosophila NMJ. We have generated severe loss-of-function mutations that eliminate Dap160 protein from the NMJ. dap160 mutant synapses have decreased levels of essential endocytic proteins, including dynamin, endophilin, synaptojanin, and AP180, while other markers of the active zone and periactive zone are generally unaltered. Functional analyses demonstrate that dap160 mutant synapses are unable to sustain high-frequency transmitter release, show impaired FM4-64 loading, and show a dramatic increase in presynaptic quantal size consistent with defects in synaptic vesicle recycling. The dap160 mutant synapse is grossly malformed with abundant, highly ramified, small synaptic boutons. We present a model in which Dap160 scaffolds both endocytic machinery and essential synaptic signaling systems to the periactive zone to coordinately control structural and functional synapse development.
Collapse
Affiliation(s)
- Bruno Marie
- Department of Biochemistry and Biophysics, 1550 4th Street, GDBS Fourth Floor North, University of California, San Francisco, 94143, USA
| | | | | | | | | | | |
Collapse
|
137
|
Choi JH, Park JB, Bae SS, Yun S, Kim HS, Hong WP, Kim IS, Kim JH, Han MY, Ryu SH, Patterson RL, Snyder SH, Suh PG. Phospholipase C-gamma1 is a guanine nucleotide exchange factor for dynamin-1 and enhances dynamin-1-dependent epidermal growth factor receptor endocytosis. J Cell Sci 2004; 117:3785-95. [PMID: 15252117 DOI: 10.1242/jcs.01220] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1. The GEF activity of PLC-gamma1 is mediated by the direct interaction of its SH3 domain with dynamin-1. EGF-dependent activation of ERK and serum response element (SRE) are both up-regulated in PC12 cells stably overexpressing PLC-gamma1, but knockdown of PLC-gamma1 by siRNA significantly reduces ERK activation. These results establish a new role for PLC-gamma1 in the regulation of endocytosis and suggest that endocytosis of activated EGF receptors may mediate PLC-gamma1-dependent proliferation.
Collapse
Affiliation(s)
- Jang Hyun Choi
- Division of Molecular and Life Science, Pohang University of Science and Technology, San 31, Hyojadong, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
138
|
Koh TW, Verstreken P, Bellen HJ. Dap160/Intersectin Acts as a Stabilizing Scaffold Required for Synaptic Development and Vesicle Endocytosis. Neuron 2004; 43:193-205. [PMID: 15260956 DOI: 10.1016/j.neuron.2004.06.029] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Revised: 05/21/2004] [Accepted: 06/16/2004] [Indexed: 11/24/2022]
Abstract
We describe the isolation of mutations in dynamin-associated protein 160 kDa (dap160), the Drosophila homolog of intersectin, a putative adaptor for proteins involved in endocytosis, cytoskeletal regulation, and signaling. We show that partial loss-of-function mutants display temperature-sensitive (ts) paralysis, whereas null mutants show ts defects in endocytosis. Loss-of-function mutants exhibit bouton overgrowth at larval neuromuscular junctions (NMJs), but evoked neurotransmission is normal. Mutant NMJs show a mild endocytic defect at 22 degrees C, which is strongly enhanced at 34 degrees C. The levels of dynamin, synaptojanin and endophilin are severely reduced in dap160 mutant NMJs, suggesting that Dap160 serves to stabilize an endocytic macromolecular complex. Electron microscopy reveals fewer vesicles, aberrant large vesicles, and an accumulation of endocytic intermediates at active and periactive zones in mutant terminals. Our data suggest that Dap160, like dynamin, is involved in synaptic vesicle retrieval at active and periactive zones.
Collapse
Affiliation(s)
- Tong-Wey Koh
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
139
|
Abstract
Dynamin, the large guanosine triphosphatase, is generally considered to have a key role in deforming membranes to create tubules or vesicles. Dynamin, particularly dynamin2 isoforms, also are localized with actin filaments, often at locations where cellular membranes undergo remodeling. Perturbing dynamin function interferes with endocytic traffic and actin function. Thus, dynamin may regulate actin filaments coordinately with its activities that remodel membranes. This review will highlight recent observations that provide clues to mechanisms whereby dynamin might coordinate membrane remodeling and actin filament dynamics during endocytic traffic, cell morphogenesis and cell migration.
Collapse
Affiliation(s)
- Dorothy A Schafer
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| |
Collapse
|
140
|
Kowanetz K, Husnjak K, Höller D, Kowanetz M, Soubeyran P, Hirsch D, Schmidt MHH, Pavelic K, De Camilli P, Randazzo PA, Dikic I. CIN85 associates with multiple effectors controlling intracellular trafficking of epidermal growth factor receptors. Mol Biol Cell 2004; 15:3155-66. [PMID: 15090612 PMCID: PMC452573 DOI: 10.1091/mbc.e03-09-0683] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CIN85 is a multidomain adaptor protein involved in Cbl-mediated down-regulation of epidermal growth factor (EGF) receptors. CIN85 src homology 3 domains specifically bind to a proline-arginine (PxxxPR) motif in Cbl, and this association seems to be important for EGF receptor endocytosis. Here, we report identification of novel CIN85 effectors, all containing one or more PxxxPR motifs, that are indispensable for their mutual interactions. These effectors include phosphatidyl-inositol phosphatases SHIP-1 and synaptojanin 2B1, Arf GTPase-activating proteins ASAP1 and ARAP3, adaptor proteins Hip1R and STAP1, and a Rho exchange factor, p115Rho GEF. Acting as a molecular scaffold, CIN85 clusters its effectors and recruits them to high-molecular-weight complexes in cytosolic extracts of cells. Further characterization of CIN85 binding to ASAP1 revealed that formation of the complex is independent on cell stimulation. Overexpression of ASAP1 increased EGF receptor recycling, whereas ASAP1 containing mutated PxxxPR motif failed to promote this event. We propose that CIN85 functions as a scaffold molecule that binds to numerous endocytic accessory proteins, thus controlling distinct steps in trafficking of EGF receptors along the endocytic and recycling pathways.
Collapse
Affiliation(s)
- Katarzyna Kowanetz
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Yam JWP, Jin DY, So CW, Chan LC. Identification and characterization of EBP, a novel EEN binding protein that inhibits Ras signaling and is recruited into the nucleus by the MLL-EEN fusion protein. Blood 2004; 103:1445-53. [PMID: 14551139 DOI: 10.1182/blood-2003-07-2452] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
AbstractThe chimeric MLL-EEN fusion protein is created as a result of chromosomal translocation t(11;19)(q23;p13). EEN, an Src homology 3 (SH3) domain–containing protein in the endophilin family, has been implicated in endocytosis, although little is known about its role in leukemogenesis mediated by the MLL-EEN fusion protein. In this study, we have identified and characterized EBP, a novel EEN binding protein that interacts with the SH3 domain of EEN through a proline-rich motif PPERP. EBP is a ubiquitous protein that is normally expressed in the cytoplasm but is recruited to the nucleus by MLL-EEN with a punctate localization pattern characteristic of the MLL chimeric proteins. EBP interacts simultaneously with EEN and Sos, a guanine-nucleotide exchange factor for Ras. Coexpressoin of EBP with EEN leads to suppression of Ras-induced cellular transformation and Ras-mediated activation of Elk-1. Taken together, our findings suggest a new mechanism for MLL-EEN–mediated leukemogenesis in which MLL-EEN interferes with the Ras-suppressing activities of EBP through direct interaction.
Collapse
|
142
|
Abstract
Internalization of receptors, lipids, pathogens, and other cargo at the plasma membrane involves several different pathways and requires coordinated interactions between a variety of protein and lipid molecules. The actin cytoskeleton is an integral part of the cell cortex, and there is growing evidence that F-actin plays a direct role in these endocytic events. Genetic studies in yeast have firmly established a functional connection between actin and endocytosis. Identification of several proteins that may function at the interface between actin and the endocytic machinery has provided further evidence for this association in both yeast and mammalian cells. Several of these proteins are directly involved in regulating actin assembly and could thus harness forces produced during actin polymerization to facilitate specific steps in the endocytic process. Recent microscopy studies in mammalian cells provide powerful evidence that localized recruitment and polymerization of actin occurs at endocytic sites. In this review, we focus on progress made in elucidating the functions of the actin cytoskeleton in endocytosis.
Collapse
Affiliation(s)
- Asa E Y Engqvist-Goldstein
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | |
Collapse
|
143
|
Legendre-Guillemin V, Wasiak S, Hussain NK, Angers A, McPherson PS. ENTH/ANTH proteins and clathrin-mediated membrane budding. J Cell Sci 2004; 117:9-18. [PMID: 14657269 DOI: 10.1242/jcs.00928] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The epsin N-terminal homology (ENTH) domain is an evolutionarily conserved protein module found primarily in proteins that participate in clathrin-mediated endocytosis. Structural analyses and ligand-binding studies have shown that a set of proteins previously designated as harboring an ENTH domain in fact contain a highly similar, yet unique module referred to as an AP180 N-terminal homology (ANTH) domain. ENTH and ANTH (E/ANTH) domains bind both inositol phospholipids and proteins and contribute to the nucleation and formation of clathrin coats on membranes. ENTH domains also function in the development of membrane curvature through lipid remodeling during the formation of clathrin-coated vesicles. E/ANTH-bearing proteins have recently been shown to function with adaptor protein-1 and GGA adaptors at the trans-Golgi network, which suggests that E/ANTH domains are universal components of the machinery for clathrin-mediated membrane budding.
Collapse
Affiliation(s)
- Valerie Legendre-Guillemin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
144
|
Abstract
Exogenously and endogenously originated signals are propagated within the cell by functional and physical networks of proteins, leading to numerous biological outcomes. Many protein-protein interactions take place between binding domains and short peptide motifs. Frequently, these interactions are inducible by upstream signaling events, in which case one of the two binding surfaces may be created by a posttranslational modification. Here, we discuss two protein networks. One, the EH-network, is based on the Eps15 homology (EH) domain, which binds to peptides containing the sequence Asp-Pro-Phe (NPF). The other, which we define as the monoubiquitin (mUb) network, relies on monoubiquitination, which is emerging as an important posttranslational modification that regulates protein function. Both networks were initially implicated in the control of plasma membrane receptor endocytosis and in the regulation of intracellular trafficking routes. The ramifications of these two networks, however, appear to extend into many other aspects of cell physiology as well, such as transcriptional regulation, actin cytoskeleton remodeling, and DNA repair. The focus of this review is to integrate available knowledge of the EH- and mUb networks with predictions of genetic and physical interactions stemming from functional genomics approaches.
Collapse
Affiliation(s)
- Simona Polo
- Istituto FIRC di Oncologia Molecolare, Via Adamello 16, 20139 Milan, Italy
| | | | | | | |
Collapse
|
145
|
Predescu SA, Predescu DN, Timblin BK, Stan RV, Malik AB. Intersectin regulates fission and internalization of caveolae in endothelial cells. Mol Biol Cell 2003; 14:4997-5010. [PMID: 12960435 PMCID: PMC284801 DOI: 10.1091/mbc.e03-01-0041] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intersectin, a multiple Eps15 homology and Src homology 3 (SH3) domain-containing protein, is a component of the endocytic machinery in neurons and nonneuronal cells. However, its role in endocytosis via caveolae in endothelial cells (ECs) is unclear. We demonstrate herein by coimmunoprecipitation, velocity sedimentation on glycerol gradients, and cross-linking that intersectin is present in ECs in a membrane-associated protein complex containing dynamin and SNAP-23. Electron microscopy (EM) immunogold labeling studies indicated that intersectin associated preferentially with the caveolar necks, and it remained associated with caveolae after their fission from the plasmalemma. A cell-free system depleted of intersectin failed to support caveolae fission from the plasma membrane. A biotin assay used to quantify caveolae internalization and extensive EM morphological analysis of ECs overexpressing wt-intersectin indicated a wide range of morphological changes (i.e., large caveolae clusters marginated at cell periphery and pleiomorphic caveolar necks) as well as impaired caveolae internalization. Biochemical evaluation of caveolae-mediated uptake by ELISA showed a 68.4% inhibition by reference to control. We also showed that intersectin interaction with dynamin was important in regulating the fission and internalization of caveolae. Taken together, the results indicate the crucial role of intersectin in the mechanism of caveolae fission in endothelial cells.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
146
|
Mohney RP, Das M, Bivona TG, Hanes R, Adams AG, Philips MR, O'Bryan JP. Intersectin activates Ras but stimulates transcription through an independent pathway involving JNK. J Biol Chem 2003; 278:47038-45. [PMID: 12970366 DOI: 10.1074/jbc.m303895200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intersectin (ITSN) is a molecular scaffold involved in regulating endocytosis and mitogenic signaling. We previously demonstrated that ITSN transformed rodent fibroblasts, accelerated hormone-induced maturation of Xenopus oocytes, and activated the Elk-1 transcription factor through an MEK- and Erk-independent mechanism. We now demonstrate that ITSN complexes with the Ras guanine nucleotide exchange factor Sos1 leading to increased RasGTP levels. Using fluorescence resonant energy transfer analysis, we demonstrate that ITSN complexes with Ras in living cells leading to Ras activation on intracellular vesicles. These vesicles contain epidermal growth factor receptor but are distinct from transferrin-positive vesicles. However, Ras is not required for ITSN stimulation of transcription. Rather, we demonstrate that ITSN signals through JNK to activate Elk-1. Although ITSN activation of Elk-1 was Ras-independent, ITSN cooperates with Ras to synergistically activate JNK. These findings indicate that ITSN activates multiple intracellular signaling pathways and suggest that this adaptor protein may coordinately regulate the activity of these pathways in vivo.
Collapse
Affiliation(s)
- Robert P Mohney
- Laboratory of Signal Transduction, National Institute of Environmental Health Services, NIH/DHHS, Building 101, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
147
|
Koshiba S, Kigawa T, Kikuchi A, Yokoyama S. Solution structure of the epsin N-terminal homology (ENTH) domain of human epsin. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:1-8. [PMID: 12836669 DOI: 10.1023/a:1011397007366] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epsin is a protein that binds to the Eps15 homology (EH) domains, and is involved in clathrin-mediated endocytosis. The epsin N-terminal homology (ENTH) domain (about 140 amino acid residues) is well conserved in eukaryotes and is considered to be important for actin cytoskeleton organization in endocytosis. In this study, we have determined the solution structure of the ENTH domain (residues 1-144) of human epsin by multidimensional nuclear magnetic resonance spectroscopy. In the ENTH-domain structure, seven alpha-helices form a superhelical fold, consisting of two antiparallel two-helix HEAT motifs and one three-helix ARM motif, with a continuous hydrophobic core in the center. We conclude that the seven-helix superhelical fold defines the ENTH domain, and that the previously-reported eight-helix fold of a longer fragment of rat epsin 1 is divided into the authentic ENTH domain and a C-terminal flanking alpha-helix.
Collapse
Affiliation(s)
- Seizo Koshiba
- Genomic Sciences Center, RIKEN Yokohama Institute, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
148
|
Hussain NK, Yamabhai M, Bhakar AL, Metzler M, Ferguson SSG, Hayden MR, McPherson PS, Kay BK. A role for epsin N-terminal homology/AP180 N-terminal homology (ENTH/ANTH) domains in tubulin binding. J Biol Chem 2003; 278:28823-30. [PMID: 12750376 DOI: 10.1074/jbc.m300995200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The epsin N-terminal homology (ENTH) domain is a protein module of approximately 150 amino acids found at the N terminus of a variety of proteins identified in yeast, plants, nematode, frog, and mammals. ENTH domains comprise multiple alpha-helices folded upon each other to form a compact globular structure that has been implicated in interactions with lipids and proteins. In characterizing this evolutionarily conserved domain, we isolated and identified tubulin as an ENTH domain-binding partner. The interaction, which is direct and has a dissociation constant of approximately 1 microm, was observed with ENTH domains of proteins present in various species. Tubulin is co-immunoprecipitated from rat brain extracts with the ENTH domain-containing proteins, epsins 1 and 2, and punctate epsin staining is observed along the microtubule cytoskeleton of dissociated cortical neurons. Consistent with a role in microtubule processes, the over-expression of epsin ENTH domain in PC12 cells stimulates neurite outgrowth. These data demonstrate an evolutionarily conserved property of ENTH domains to interact with tubulin and microtubules.
Collapse
Affiliation(s)
- Natasha K Hussain
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
149
|
TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicles in the growth cone. J Neurosci 2003. [PMID: 12684468 DOI: 10.1523/jneurosci.23-07-02815.2003] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The TUC (TOAD-64/Ulip/CRMP) proteins are homologs of UNC-33, a protein that is required for axon extension and guidance in Caenorhabditis elegans. The TUC proteins are expressed in newly born neurons in the developing nervous system and have been implicated in semaphorin signaling and neuronal polarity. Here, we identify several new variants of the TUC family, each of which is expressed during distinct periods of neural development. We cloned and characterized TUC-4b, a variant of TUC-4a that includes a unique N-terminal extension. The functional relevance of this N-terminal domain is demonstrated by the finding that overexpression of TUC-4b, but not TUC-4a, results in increased neurite length and branching. Furthermore, whereas TUC-4a is expressed throughout life, TUC-4b is expressed exclusively during embryonic development. TUC-4b is localized to SV2 (synaptic vesicle protein 2)-positive vesicles in the central domain of the growth cone, suggesting a potential role in growth cone vesicle transport. Furthermore, TUC-4b interacts with the SH3A (Src homology 3A) domain of intersectin, an endocytic-exocytic adaptor protein. Together, these data suggest that TUC-4b can regulate neurite extension and branching through a mechanism that may involve membrane transport in the growth cone.
Collapse
|
150
|
Pruitt WM, Karnoub AE, Rakauskas AC, Guipponi M, Antonarakis SE, Kurakin A, Kay BK, Sondek J, Siderovski DP, Der CJ. Role of the pleckstrin homology domain in intersectin-L Dbl homology domain activation of Cdc42 and signaling. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1640:61-8. [PMID: 12676355 DOI: 10.1016/s0167-4889(03)00002-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intersectin-long (ITSN-L) contains the invariant Dbl homology (DH) and pleckstrin homology (PH) domain structure characteristic of the majority of Dbl family proteins. This strict domain topography suggests that the PH domain serves an essential, conserved function in the regulation of the intrinsic guanine nucleotide exchange activity of the DH domain. We evaluated the role of the PH domain in regulating the DH domain function of ITSN-L. Surprisingly, we found that the PH domain was dispensable for guanine nucleotide exchange activity on Cdc42 in vitro, yet the PH domain enhanced the ability of the DH domain to activate Cdc42 signaling in vivo. PH domains can interact with phosphoinositide substrates and products of phosphatidylinositol 3-kinase (PI3K). However, PI3K activation did not modulate ITSN-L DH domain function in vivo.
Collapse
Affiliation(s)
- Wendy M Pruitt
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|