101
|
Chin KT, Kang G, Qu J, Gardner LB, Coetzee WA, Zito E, Fishman GI, Ron D. The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load. FASEB J 2011; 25:2583-91. [PMID: 21507899 PMCID: PMC3136342 DOI: 10.1096/fj.11-184622] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/07/2011] [Indexed: 12/16/2022]
Abstract
Two related ER oxidation 1 (ERO1) proteins, ERO1α and ERO1β, dynamically regulate the redox environment in the mammalian endoplasmic reticulum (ER). Redox changes in cysteine residues on intralumenal loops of calcium release and reuptake channels have been implicated in altered calcium release and reuptake. These findings led us to hypothesize that altered ERO1 activity may affect cardiac functions that are dependent on intracellular calcium flux. We established mouse lines with loss of function insertion mutations in Ero1l and Ero1lb encoding ERO1α and ERO1β. The peak amplitude of calcium transients in homozygous Ero1α mutant adult cardiomyocytes was reduced to 42.0 ± 2.2% (n=10, P ≤ 0.01) of values recorded in wild-type cardiomyocytes. Decreased ERO1 activity blunted cardiomyocyte inotropic response to adrenergic stimulation and sensitized mice to adrenergic blockade. Whereas all 12 wild-type mice survived challenge with 4 mg/kg esmolol, 6 of 8 compound Ero1l and Ero1lb mutant mice succumbed to this level of β adrenergic blockade (P ≤ 0.01). In addition, mice lacking ERO1α were partially protected against progressive heart failure in a transaortic constriction model [at 10 wk postprocedure, fractional shortening was 0.31 ± 0.02 in the mutant (n=20) vs. 0.23 ± 0.03 in the wild type (n=18); P ≤ 0.01]. These findings establish a role for ERO1 in calcium homeostasis and suggest that modifying the lumenal redox environment may affect the progression of heart failure.
Collapse
Affiliation(s)
- King-Tung Chin
- Kimmel Center for Biology and Medicine, Skirball Institute
| | | | | | | | - William A. Coetzee
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA; and
| | - Ester Zito
- Kimmel Center for Biology and Medicine, Skirball Institute
| | | | - David Ron
- Kimmel Center for Biology and Medicine, Skirball Institute
- Department of Cell Biology
- Institute of Metabolic Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
102
|
Bulleid NJ, Ellgaard L. Multiple ways to make disulfides. Trends Biochem Sci 2011; 36:485-92. [PMID: 21778060 DOI: 10.1016/j.tibs.2011.05.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/13/2011] [Accepted: 05/24/2011] [Indexed: 12/16/2022]
Abstract
Our concept of how disulfides form in proteins entering the secretory pathway has changed dramatically in recent years. The discovery of endoplasmic reticulum (ER) oxidoreductin 1 (ERO1) was followed by the demonstration that this enzyme couples oxygen reduction to de novo formation of disulfides. However, mammals deficient in ERO1 survive and form disulfides, which suggests the presence of alternative pathways. It has recently been shown that peroxiredoxin 4 is involved in peroxide removal and disulfide formation. Other less well-characterized pathways involving quiescin sulfhydryl oxidase, ER-localized protein disulfide isomerase peroxidases and vitamin K epoxide reductase might all contribute to disulfide formation. Here we discuss these various pathways for disulfide formation in the mammalian ER and highlight the central role played by glutathione in regulating this process.
Collapse
Affiliation(s)
- Neil J Bulleid
- Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
103
|
Khoo C, Yang J, Rajpal G, Wang Y, Liu J, Arvan P, Stoffers DA. Endoplasmic reticulum oxidoreductin-1-like β (ERO1lβ) regulates susceptibility to endoplasmic reticulum stress and is induced by insulin flux in β-cells. Endocrinology 2011; 152:2599-608. [PMID: 21540283 PMCID: PMC3115612 DOI: 10.1210/en.2010-1420] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hyperglycemia increases insulin flux through the endoplasmic reticulum (ER) of pancreatic β-cells, and the unfolded protein response pathway is required to enhance insulin processing. Pancreatic and duodenal homeobox 1 (PDX1), a key pancreatic transcription factor, regulates insulin along with targets involved in insulin processing and secretion. Here we find that PDX1 is a direct transcriptional regulator of ER oxidoreductin-1-like β (Ero1lβ), which maintains the oxidative environment of the ER to facilitate disulfide bond formation. PDX1 deficiency reduced Ero1lβ transcript levels in mouse islets and mouse insulinoma (MIN6) cells; moreover, PDX1 occupied the Ero1lβ promoter in β-cells. ERO1lβ levels were induced by high glucose concentrations and by the reducing agent dithiothreitol, indicating potential roles in adaptation to increased oxidative protein folding load in the β-cell ER. In MIN6 cells, small interfering RNA-mediated silencing of Ero1lβ decreased insulin content and increased susceptibility to ER stress-induced apoptosis. These findings demonstrate roles for the PDX1 target ERO1lβ in maintaining insulin content and regulating cell survival during ER stress.
Collapse
Affiliation(s)
- Cynthia Khoo
- Institute for Diabetes, Obesity, and Metabolism and Department of Medicine, University of Pennsylvania School of Medicine, Clinical Research Building 726, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Ushioda R, Nagata K. The endoplasmic reticulum-associated degradation and disulfide reductase ERdj5. Methods Enzymol 2011; 490:235-58. [PMID: 21266254 DOI: 10.1016/b978-0-12-385114-7.00014-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The endoplasmic reticulum (ER) is an organelle where secretory or membrane proteins are correctly folded with the aid of various molecular chaperones and oxidoreductases. Only correctly folded and assembled proteins are enabled to reach their final destinations, which are called as ER quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the ERQC mechanisms for maintaining the ER homeostasis and facilitates the elimination of misfolded or malfolded proteins accumulated in the ER. ERAD is mainly consisting of three processes: recognition of misfolded proteins for degradation in the ER, retrotranslocation of (possibly) unfolded substrates from the ER to the cytosol through dislocation channel, and their degradation in the cytosol via ubiquitin-protesome system. After briefly mentioned on productive folding of nascent polypeptides in the ER, we here overview the above three processes in ERAD system by highlighting on novel ERAD factors such as EDEM and ERdj5 in mammals and yeasts.
Collapse
Affiliation(s)
- Ryo Ushioda
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | | |
Collapse
|
105
|
Feige MJ, Hendershot LM. Disulfide bonds in ER protein folding and homeostasis. Curr Opin Cell Biol 2011; 23:167-75. [PMID: 21144725 PMCID: PMC3078216 DOI: 10.1016/j.ceb.2010.10.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 01/23/2023]
Abstract
Proteins that are expressed outside the cell must be synthesized, folded, and assembled in a way that ensures they can function in their designate location. Accordingly, these proteins are primarily synthesized in the endoplasmic reticulum (ER), which has developed a chemical environment more similar to that outside the cell. This organelle is equipped with a variety of molecular chaperones and folding enzymes that both assist the folding process, while at the same time exerting tight quality control measures that are largely absent outside the cell. A major post-translational modification of ER-synthesized proteins is disulfide bridge formation, which is catalyzed by the family of protein disulfide isomerases. As this covalent modification provides unique structural advantages to extracellular proteins, multiple pathways to disulfide bond formation have evolved. However, the advantages that disulfide bonds impart to these proteins come at a high cost to the cell. Very recent reports have shed light on how the cell can deal with or even exploit the side reactions of disulfide bond formation to maintain homeostasis of the ER and its folding machinery.
Collapse
Affiliation(s)
- Matthias J. Feige
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Linda M. Hendershot
- Department of Genetics and Tumor Cell Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
106
|
The endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation. Biochem J 2011; 434:113-21. [PMID: 21091435 DOI: 10.1042/bj20101357] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In eukaryotes, disulfide bonds are formed in the endoplasmic reticulum, facilitated by the Ero1 (endoplasmic reticulum oxidoreductin 1) oxidase/PDI (protein disulfide-isomerase) system. Mammals have two ERO1 genes, encoding Ero1α and Ero1β proteins. Ero1β is constitutively expressed in professional secretory tissues and induced during the unfolded protein response. In the present work, we show that recombinant human Ero1β is twice as active as Ero1α in enzymatic assays. Ero1β oxidizes PDI more efficiently than other PDI family members and drives oxidative protein folding preferentially via the active site in the á domain of PDI. Our results reveal that Ero1β oxidase activity is regulated by long-range disulfide bonds and that Cys130 plays a critical role in feedback regulation. Compared with Ero1α, however, Ero1β is loosely regulated, consistent with its role as a more active oxidase when massive oxidative power is required.
Collapse
|
107
|
Oxidation-driven protein import into mitochondria: Insights and blind spots. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:981-9. [DOI: 10.1016/j.bbamem.2010.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 11/21/2022]
|
108
|
Margittai E, Sitia R. Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic 2011; 12:1-8. [PMID: 20716108 DOI: 10.1111/j.1600-0854.2010.01108.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The endoplasmic reticulum (ER) is central for many essential cellular activities, such as folding, assembly and quality control of secretory and membrane proteins, disulfide bond formation, glycosylation, lipid biosynthesis, Ca(2+) storage and signaling. In addition, this multifunctional organelle integrates many adaptive and/or maladaptive signaling cues reporting on metabolism, proteostasis, Ca(2+) and redox homeostasis. We are beginning to understand how these functions and pathways are integrated with one another to regulate homeostasis at cell, tissue and organism levels. The mechanisms underlying the introduction of the proper set of disulfide bonds into secretory proteins (oxidative folding) are strictly related to redox homeostasis, ER stress sensing and signaling and provide a good example of the integration systems operative in the early secretory compartment.
Collapse
Affiliation(s)
- Eva Margittai
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|
109
|
Protein Quality Control, Retention, and Degradation at the Endoplasmic Reticulum. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 292:197-280. [DOI: 10.1016/b978-0-12-386033-0.00005-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
110
|
Chemical stress on protein disulfide isomerases and inhibition of their functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 290:121-66. [PMID: 21875564 DOI: 10.1016/b978-0-12-386037-8.00003-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein disulfide isomerase (PDI) is a folding assistant in the endoplasmic reticulum (ER) of eukaryotic cells. PDI has multiple roles, acting as a chaperone, a binding partner of other proteins, and a hormone reservoir as well as a disulfide isomerase in the formation of disulfide bonds. PDI only interacts covalently with the cysteines of its substrates, but also binds a variety of peptides/proteins and small chemical ligands such as thyroid hormone. Oxidative stress and nitrosative stress can cause damage to chaperones, protein misfolding, and neurodegenerative disease, by affecting the functional integrity of PDI. There are 20 putative PDI-family members in the ER of human cells, but their functional differentiation is far from complete. This review discusses recent advances in our understanding of the mammalian PDI family of enzymes and focuses on their functional properties and interaction with substrates and small chemical ligands.
Collapse
|
111
|
Zito E, Melo EP, Yang Y, Wahlander Å, Neubert TA, Ron D. Oxidative protein folding by an endoplasmic reticulum-localized peroxiredoxin. Mol Cell 2010; 40:787-97. [PMID: 21145486 PMCID: PMC3026605 DOI: 10.1016/j.molcel.2010.11.010] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 08/11/2010] [Accepted: 09/13/2010] [Indexed: 12/16/2022]
Abstract
Endoplasmic reticulum (ER) oxidation 1 (ERO1) transfers disulfides to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Surprisingly, ERO1-deficient mammalian cells exhibit only a modest delay in disulfide bond formation. To identify ERO1-independent pathways to disulfide bond formation, we purified PDI oxidants with a trapping mutant of PDI. Peroxiredoxin IV (PRDX4) stood out in this list, as the related cytosolic peroxiredoxins are known to form disulfides in the presence of hydroperoxides. Mouse embryo fibroblasts lacking ERO1 were intolerant of PRDX4 knockdown. Introduction of wild-type mammalian PRDX4 into the ER rescued the temperature-sensitive phenotype of an ero1 yeast mutation. In the presence of an H(2)O(2)-generating system, purified PRDX4 oxidized PDI and reconstituted oxidative folding of RNase A. These observations implicate ER-localized PRDX4 in a previously unanticipated, parallel, ERO1-independent pathway that couples hydroperoxide production to oxidative protein folding in mammalian cells.
Collapse
Affiliation(s)
- Ester Zito
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
| | - Eduardo Pinho Melo
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
- Institute for Biotechnology and Bioengineering, Centre for Molecular and Structural Biomedicine, Universidade do Algarve, Portugal
| | - Yun Yang
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
| | - Åsa Wahlander
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
| | - Thomas A. Neubert
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
- Department of Pharmacology, New York University School of Medicine, New York, New York 10016 USA
| | - David Ron
- Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, New York 10016 USA
- Department of Cell Biology, New York University School of Medicine, New York, New York 10016 USA
- Department of Medicine, New York University School of Medicine, New York, New York 10016 USA
- Institute of Metabolic Sciences, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
112
|
Hunting for Alternative Disulfide Bond Formation Pathways: Endoplasmic Reticulum Janitor Turns Professor and Teaches a Lesson. Mol Cell 2010; 40:685-6. [DOI: 10.1016/j.molcel.2010.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
113
|
Abstract
Cell survival and death are complex matters. Too much survival may lead to cancer and too much cell death may result in tissue degeneration. In this chapter, we will first of all focus on the cellular survival mechanisms that promote correct folding and maintenance of protein function. These mechanisms include protein quality control (PQC) systems comprising molecular chaperones and intracellular proteases in the cytosol, endoplasmatic reticulum (ER) and in the mitochondria. In addition to the PQC systems, mechanisms elicited by misfolded proteins, known as unfolded protein responses (UPRs), including induction/activation of antioxidant systems are also present in the three compartments of the cell. Second, we will discuss the mechanisms by which misfolded proteins lead to the generation of oxidative stress in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These species are produced mainly from superoxide (O2-) generated in the mitochondrial respiratory chain and from nitrogen oxide (NO) produced by the mitochondrial nitrogen oxide synthetase (mtNOS). Third, the effects of oxidative stress will be discussed, both with respect to mitochondrial dynamics, i.e., fission and fusion, and the related elimination of dysfunctional mitochondria by cellular cleaning systems, i.e., mitophagy or mitoptosis, and related to the generation and cellular effects of oxidatively modified proteins, which closes a vicious cycle of protein misfolding and oxidative stress.
Collapse
|
114
|
Mohan C, Lee GM. Effect of inducible co-overexpression of protein disulfide isomerase and endoplasmic reticulum oxidoreductase on the specific antibody productivity of recombinant Chinese hamster ovary cells. Biotechnol Bioeng 2010; 107:337-46. [PMID: 20506311 DOI: 10.1002/bit.22781] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To enhance specific antibody (Ab) productivity (q(Ab)) of recombinant Chinese hamster ovary (rCHO) cells, post-translational limitations in the endoplasmic reticulum during antibody production should be relieved. Previously, we reported that overexpression of protein disulfide isomerase (PDI), which catalyzes disulfide bond exchanges and assists in protein folding of newly synthesized proteins, enhanced q(Ab) of rCHO cells by about 27% (Mohan et al., 2007, Biotechnol Bioeng 98:611-615) . Since the rate limiting step in disulfide bond formation is found to be the regeneration of oxidized PDI, the oxidation state of PDI, as well as the amount of PDI, might be important. Endoplasmic reticulum oxidoreductase (ERO1L) maintains PDI in an oxidized state so that disulfide bond formation occurs. Here, PDI and its helper protein, ERO1L were overexpressed in rCHO cells producing an Ab in an attempt to ease the bottleneck in disulfide bond formation, and hence, Ab folding and secretion. Transient expression of ERO1L alone and with PDI resulted in enhanced q(Ab) by 37% and 55%, respectively. In contrast, under stable inducible co-overexpression of PDI and ERO1L, the q(Ab) was unaffected or negatively affected by varying degrees, depending on the individual expression levels of these genes. In stable clones with altered oxidation state of PDI due to co-overexpression of PDI and ERO1L, secretion of Ab was hindered and PDI-associated retention of Ab was seen in the cells. Under transient gene expression, secretion of Ab was not compromised. The data presented here suggests a possible mechanism of PDI/ERO1L interaction with the target Ab and shows how the expression levels of these proteins could affect the q(Ab) of this Ab-producing rCHO cell line.
Collapse
Affiliation(s)
- Chaya Mohan
- Department of Biological Sciences, Graduate School of Nanoscience & Technology, KAIST, Kusong-Dong, Yusong-Gu, South Korea
| | | |
Collapse
|
115
|
Pedone E, Limauro D, D’Ambrosio K, De Simone G, Bartolucci S. Multiple catalytically active thioredoxin folds: a winning strategy for many functions. Cell Mol Life Sci 2010; 67:3797-814. [PMID: 20625793 PMCID: PMC11115506 DOI: 10.1007/s00018-010-0449-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 10/19/2022]
Abstract
The Thioredoxin (Trx) fold is a versatile protein scaffold consisting of a four-stranded β-sheet surrounded by three α-helices. Various insertions are possible on this structural theme originating different proteins, which show a variety of functions and specificities. During evolution, the assembly of different Trx fold domains has been used many times to build new multi-domain proteins able to perform a large number of catalytic functions. To clarify the interaction mode of the different Trx domains within a multi-domain structure and how their combination can affect catalytic performances, in this review, we report on a structural and functional analysis of the most representative proteins containing more than one catalytically active Trx domain: the eukaryotic protein disulfide isomerases (PDIs), the thermophilic protein disulfide oxidoreductases (PDOs) and the hybrid peroxiredoxins (Prxs).
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Katia D’Ambrosio
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Giuseppina De Simone
- Istituto di Biostrutture e Bioimmagini-CNR, via Mezzocannone 16, 80134 Naples, Italy
| | - Simonetta Bartolucci
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli “Federico II”, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| |
Collapse
|
116
|
Thomas SE, Dalton LE, Daly ML, Malzer E, Marciniak SJ. Diabetes as a disease of endoplasmic reticulum stress. Diabetes Metab Res Rev 2010; 26:611-21. [PMID: 20922715 DOI: 10.1002/dmrr.1132] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 08/17/2010] [Accepted: 09/06/2010] [Indexed: 01/19/2023]
Abstract
Endoplasmic reticulum (ER) stress is an integral part of life for all professional secretory cells, but it has been studied to greatest depth in the pancreatic β-cell. This reflects both the crucial role played by ER stress in the pathogenesis of diabetes and also the exquisite vulnerability of these cells to ER dysfunction. The adaptive cellular response to ER stress, the unfolded protein response, comprises mechanisms to both regulate new protein translation and a transcriptional program to allow adaptation to the stress. The core of this response is a triad of stress-sensing proteins: protein kinase R-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6. All three regulate portions of the transcriptional unfolded protein response, while PERK also attenuates protein synthesis during ER stress and IRE1 interacts directly with the c-Jun amino-terminal kinase stress kinase pathway. In this review we shall discuss these processes in detail, with emphasis given to their impact on diabetes and how recent findings indicate that ER stress may be responsible for the loss of β-cell mass in the disease.
Collapse
Affiliation(s)
- Sally E Thomas
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
117
|
Inaba K, Masui S, Iida H, Vavassori S, Sitia R, Suzuki M. Crystal structures of human Ero1α reveal the mechanisms of regulated and targeted oxidation of PDI. EMBO J 2010; 29:3330-43. [PMID: 20834232 PMCID: PMC2957217 DOI: 10.1038/emboj.2010.222] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 08/17/2010] [Indexed: 12/16/2022] Open
Abstract
In the endoplasmic reticulum (ER) of eukaryotic cells, Ero1 flavoenzymes promote oxidative protein folding through protein disulphide isomerase (PDI), generating reactive oxygen species (hydrogen peroxide) as byproducts. Therefore, Ero1 activity must be strictly regulated to avoid futile oxidation cycles in the ER. Although regulatory mechanisms restraining Ero1α activity ensure that not all PDIs are oxidized, its specificity towards PDI could allow other resident oxidoreductases to remain reduced and competent to carry out isomerization and reduction of protein substrates. In this study, crystal structures of human Ero1α were solved in its hyperactive and inactive forms. Our findings reveal that human Ero1α modulates its oxidative activity by properly positioning regulatory cysteines within an intrinsically flexible loop, and by fine-tuning the electron shuttle ability of the loop through disulphide rearrangements. Specific PDI targeting is guaranteed by electrostatic and hydrophobic interactions of Ero1α with the PDI b'-domain through its substrate-binding pocket. These results reveal the molecular basis of the regulation and specificity of protein disulphide formation in human cells.
Collapse
Affiliation(s)
- Kenji Inaba
- Division of Protein Chemistry, Post-Genome Science Center, Medical Institute of Bioregulation, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
118
|
Appenzeller-Herzog C, Riemer J, Zito E, Chin KT, Ron D, Spiess M, Ellgaard L. Disulphide production by Ero1α-PDI relay is rapid and effectively regulated. EMBO J 2010; 29:3318-29. [PMID: 20802462 PMCID: PMC2957208 DOI: 10.1038/emboj.2010.203] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022] Open
Abstract
The molecular networks that control endoplasmic reticulum (ER) redox conditions in mammalian cells are incompletely understood. Here, we show that after reductive challenge the ER steady-state disulphide content is restored on a time scale of seconds. Both the oxidase Ero1α and the oxidoreductase protein disulphide isomerase (PDI) strongly contribute to the rapid recovery kinetics, but experiments in ERO1-deficient cells indicate the existence of parallel pathways for disulphide generation. We find PDI to be the main substrate of Ero1α, and mixed-disulphide complexes of Ero1 primarily form with PDI, to a lesser extent with the PDI-family members ERp57 and ERp72, but are not detectable with another homologue TMX3. We also show for the first time that the oxidation level of PDIs and glutathione is precisely regulated. Apparently, this is achieved neither through ER import of thiols nor by transport of disulphides to the Golgi apparatus. Instead, our data suggest that a dynamic equilibrium between Ero1- and glutathione disulphide-mediated oxidation of PDIs constitutes an important element of ER redox homeostasis.
Collapse
Affiliation(s)
- Christian Appenzeller-Herzog
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Biozentrum, University of Basel, Basel, Switzerland
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jan Riemer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ester Zito
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - King-Tung Chin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - David Ron
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | | | - Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
119
|
Kodali VK, Thorpe C. Oxidative protein folding and the Quiescin-sulfhydryl oxidase family of flavoproteins. Antioxid Redox Signal 2010; 13:1217-30. [PMID: 20136510 PMCID: PMC2959182 DOI: 10.1089/ars.2010.3098] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Flavin-linked sulfhydryl oxidases participate in the net generation of disulfide bonds during oxidative protein folding in the endoplasmic reticulum. Members of the Quiescin-sulfhydryl oxidase (QSOX) family catalyze the facile direct introduction of disulfide bonds into unfolded reduced proteins with the reduction of molecular oxygen to generate hydrogen peroxide. Current progress in dissecting the mechanism of QSOX enzymes is reviewed, with emphasis on the CxxC motifs in the thioredoxin and Erv/ALR domains and the involvement of the flavin prosthetic group. The tissue distribution and intra- and extracellular location of QSOX enzymes are discussed, and suggestions for the physiological role of these enzymes are presented. The review compares the substrate specificity and catalytic efficiency of the QSOX enzymes with members of the Ero1 family of flavin-dependent sulfhydryl oxidases: enzymes believed to play key roles in disulfide generation in yeast and higher eukaryotes. Finally, limitations of our current understanding of disulfide generation in metazoans are identified and questions posed for the future.
Collapse
Affiliation(s)
- Vamsi K Kodali
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19711, USA
| | | |
Collapse
|
120
|
Tavender TJ, Bulleid NJ. Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum. Antioxid Redox Signal 2010; 13:1177-87. [PMID: 20486761 DOI: 10.1089/ars.2010.3230] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Formation of disulfide bonds in the endoplasmic reticulum (ER) is catalyzed by the ER oxidoreductin (Ero1) family of sulfhydryl oxidases. Ero1 oxidizes protein disulfide isomerase (PDI), which, in turn, introduces disulfides into ER client proteins. To maintain an oxidized state, Ero1 couples disulfide transfer to PDI with reduction of molecular oxygen, forming hydrogen peroxide. Thus, Ero1 activity constitutes a potential source of ER-derived oxidative stress. Intricate feedback mechanisms have evolved to prevent Ero1 hyperactivity. Central to these mechanisms are noncatalytic cysteines, which form regulatory disulfides and influence catalytic activity of Ero1 in relation to local redox conditions. Here we focus on the distinct regulatory disulfides modulating Ero1 activities in the yeast and mammalian ER. In addition to considering effects on the Ero1 catalytic cycle, we consider the implications of these mechanisms with regard to function of Ero1 isoforms and the roles of Ero1 during responses to ER stress.
Collapse
Affiliation(s)
- Timothy J Tavender
- Faculty of Biomedical and Life Sciences, The University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
121
|
Enyedi B, Várnai P, Geiszt M. Redox state of the endoplasmic reticulum is controlled by Ero1L-alpha and intraluminal calcium. Antioxid Redox Signal 2010; 13:721-9. [PMID: 20095866 DOI: 10.1089/ars.2009.2880] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Formation of intra- and intermolecular disulfide bonds is an essential step in the synthesis of secretory proteins. In eukaryotic cells, this process occurs in the endoplasmic reticulum (ER) and requires an oxidative environment with the action of several chaperones and folding catalysts. During protein folding, Ero1p oxidizes protein disulfide isomerase (PDI), which then directly catalyzes the formation of disulfide bonds in folding proteins. Recent cell-free studies suggest that the terminal electron acceptor in the pathway is molecular oxygen, with the resulting formation of hydrogen peroxide (H(2)O(2)). We report for the first time the measurement of ER H(2)O(2) level in live cells. By targeting a fluorescent protein-based H(2)O(2) sensor to various intracellular compartments, we show that the ER has the highest level of H(2)O(2), and this high concentration is well confined to the lumen of the organelle. Manipulation of the Ero1-Lalpha level--either by overexpression or by siRNA-mediated inhibition--caused parallel changes in luminal H(2)O(2), proving that the activity of Ero1-Lalpha results in H(2)O(2) formation in the ER. We also found that calcium mobilization from intracellular stores induces a decrease in ER H(2)O(2) level, suggesting a complex interplay between redox and calcium signaling in the mammalian ER.
Collapse
Affiliation(s)
- Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, Hungary
| | | | | |
Collapse
|
122
|
Gilady SY, Bui M, Lynes EM, Benson MD, Watts R, Vance JE, Simmen T. Ero1alpha requires oxidizing and normoxic conditions to localize to the mitochondria-associated membrane (MAM). Cell Stress Chaperones 2010; 15:619-29. [PMID: 20186508 PMCID: PMC3006622 DOI: 10.1007/s12192-010-0174-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/21/2010] [Accepted: 01/25/2010] [Indexed: 10/19/2022] Open
Abstract
Protein secretion from the endoplasmic reticulum (ER) requires the enzymatic activity of chaperones and oxidoreductases that fold polypeptides and form disulfide bonds within newly synthesized proteins. The best-characterized ER redox relay depends on the transfer of oxidizing equivalents from molecular oxygen through ER oxidoreductin 1 (Ero1) and protein disulfide isomerase to nascent polypeptides. The formation of disulfide bonds is, however, not the sole function of ER oxidoreductases, which are also important regulators of ER calcium homeostasis. Given the role of human Ero1alpha in the regulation of the calcium release by inositol 1,4,5-trisphosphate receptors during the onset of apoptosis, we hypothesized that Ero1alpha may have a redox-sensitive localization to specific domains of the ER. Our results show that within the ER, Ero1alpha is almost exclusively found on the mitochondria-associated membrane (MAM). The localization of Ero1alpha on the MAM is dependent on oxidizing conditions within the ER. Chemical reduction of the ER environment, but not ER stress in general leads to release of Ero1alpha from the MAM. In addition, the correct localization of Ero1alpha to the MAM also requires normoxic conditions, but not ongoing oxidative phosphorylation.
Collapse
Affiliation(s)
- Susanna Y. Gilady
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G2H7 Canada
| | - Michael Bui
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G2H7 Canada
| | - Emily M. Lynes
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G2H7 Canada
| | - Matthew D. Benson
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G2H7 Canada
| | - Russell Watts
- Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, AB Canada T6G 2S2
| | - Jean E. Vance
- Group on the Molecular and Cell Biology of Lipids, Department of Medicine, University of Alberta, Edmonton, AB Canada T6G 2S2
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G2H7 Canada
| |
Collapse
|
123
|
Harvey AR, Ward M, Archer DB. Identification and characterisation of eroA and ervA, encoding two putative thiol oxidases from Aspergillus niger. Gene 2010; 461:32-41. [PMID: 20438816 DOI: 10.1016/j.gene.2010.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 04/15/2010] [Accepted: 04/22/2010] [Indexed: 12/17/2022]
Abstract
The oxidative folding of proteins in the secretory pathway involves the formation and isomerisation of disulphide bonds and is catalysed by foldases in the lumen of the endoplasmic reticulum (ER). The transfer of reducing equivalents, from disulphide bond formation, to oxygen involves the participation of thiol oxidases. Here, we describe the identification and functional characterisation of the eroA and ervA genes from Aspergillus niger, encoding functional orthologues of S. cerevisiae ERO1 and ERV2, respectively. The eroA gene encodes a product of 600 amino acids, EroA, and the ervA gene encodes a product of 215 amino acids, ErvA, both of which share common motifs and features with their S. cerevisiae orthologues. In contrast to Ero1p in S. cerevisiae, A. niger EroA appears to be retained in the ER lumen by a C-terminal retention motif. Real-time PCR analysis indicated that eroA is transcriptionally up-regulated in response to ER stress, whereas ervA is slightly down-regulated in response to DTT stress yet up-regulated in response to expression of a heterologous protein. Gene disruption studies indicated that, unlike ervA, eroA is essential for viability. When expressed in the thermosensitive S. cerevisiae ero1-1 strain, both eroA and ervA were able to complement the temperature and DTT sensitive phenotype, although a truncated eroA, missing the putative HEEL ER-retention signal was unable to complement as well as the full-length eroA gene.
Collapse
Affiliation(s)
- Anna R Harvey
- School of Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | |
Collapse
|
124
|
Simmen T, Lynes EM, Gesson K, Thomas G. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1798:1465-73. [PMID: 20430008 PMCID: PMC2885528 DOI: 10.1016/j.bbamem.2010.04.009] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 12/18/2022]
Abstract
The production of secretory proteins at the ER (endoplasmic reticulum) depends on a ready supply of energy and metabolites as well as the close monitoring of the chemical conditions that favor oxidative protein folding. ER oxidoreductases and chaperones fold nascent proteins into their export-competent three-dimensional structure. Interference with these protein folding enzymes leads to the accumulation of unfolded proteins within the ER lumen, causing an acute organellar stress that triggers the UPR (unfolded protein response). The UPR increases the transcription of ER chaperones commensurate with the load of newly synthesized proteins and can protect the cell from ER stress. Persistant stress, however, can force the UPR to commit cells to undergo apoptotic cell death, which requires the emptying of ER calcium stores. Conversely, a continuous ebb and flow of calcium occurs between the ER and mitochondria during resting conditions on a domain of the ER that forms close contacts with mitochondria, the MAM (mitochondria-associated membrane). On the MAM, ER folding chaperones such as calnexin and calreticulin and oxidoreductases such as ERp44, ERp57 and Ero1alpha regulate calcium flux from the ER through reversible, calcium and redox-dependent interactions with IP3Rs (inositol 1,4,5-trisphophate receptors) and with SERCAs (sarcoplasmic/endoplasmic reticulum calcium ATPases). During apoptosis progression and depending on the identity of the ER chaperone and oxidoreductase, these interactions increase or decrease, suggesting that the extent of MAM targeting of ER chaperones and oxidoreductases could shift the readout of ER-mitochondria calcium exchange from housekeeping to apoptotic. However, little is known about the cytosolic factors that mediate the on/off interactions between ER chaperones and oxidoreductases with ER calcium channels and pumps. One candidate regulator is the multi-functional molecule PACS-2 (phosphofurin acidic cluster sorting protein-2). Recent studies suggest that PACS-2 mediates localization of a mobile pool of calnexin to the MAM in addition to regulating homeostatic ER calcium signaling as well as MAM integrity. Together, these findings suggest that cytosolic, membrane and lumenal proteins combine to form a two-way switch that determines the rate of protein secretion by providing ions and metabolites and that appears to participate in the pro-apoptotic ER-mitochondria calcium transfer.
Collapse
Affiliation(s)
- Thomas Simmen
- Faculty of Medicine and Dentistry, School of Molecular and Systems Medicine, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
125
|
Hartley T, Siva M, Lai E, Teodoro T, Zhang L, Volchuk A. Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin. BMC Cell Biol 2010; 11:59. [PMID: 20659334 PMCID: PMC2921384 DOI: 10.1186/1471-2121-11-59] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 07/26/2010] [Indexed: 12/03/2022] Open
Abstract
Background Cells respond to endoplasmic reticulum stress (ER) stress by activating the unfolded protein response. To study the ER stress response in pancreatic β-cells we developed a model system that allows for pathophysiological ER stress based on the Akita mouse. This mouse strain expresses a mutant insulin 2 gene (C96Y), which prevents normal proinsulin folding causing ER stress and eventual β-cell apoptosis. A double-stable pancreatic β-cell line (pTet-ON INS-1) with inducible expression of insulin 2 (C96Y) fused to EGFP was generated to study the ER stress response. Results Expression of Ins 2 (C96Y)-EGFP resulted in activation of the ER stress pathways (PERK, IRE1 and ATF6) and caused dilation of the ER. To identify gene expression changes resulting from mutant insulin expression we performed microarray expression profiling and real time PCR experiments. We observed an induction of various ER chaperone, co-chaperone and ER-associated degradation genes after 24 h and an increase in pro-apoptotic genes (Chop and Trib3) following 48 h of mutant insulin expression. The latter changes occurred at a time when general apoptosis was detected in the cell population, although the relative amount of cell death was low. Inhibiting the proteasome or depleting Herp protein expression increased mutant insulin levels and enhanced cell apoptosis, indicating that ER-associated degradation is maintaining cell survival. Conclusions The inducible mutant insulin expressing cell model has allowed for the identification of the ER stress response in β-cells and the repertoire of genes/proteins induced is unique to this cell type. ER-associated degradation is essential in maintaining cell survival in cells expressing mutant insulin. This cell model will be useful for the molecular characterization of ER stress-induced genes.
Collapse
Affiliation(s)
- Taila Hartley
- Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, 101 College Street, TMDT 10-706, Toronto M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
126
|
Blais JD, Chin KT, Zito E, Zhang Y, Heldman N, Harding HP, Fass D, Thorpe C, Ron D. A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. J Biol Chem 2010; 285:20993-1003. [PMID: 20442408 PMCID: PMC2898301 DOI: 10.1074/jbc.m110.126599] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/28/2010] [Indexed: 01/29/2023] Open
Abstract
Endoplasmic reticulum oxidation 1 (ERO1) is a conserved eukaryotic flavin adenine nucleotide-containing enzyme that promotes disulfide bond formation by accepting electrons from reduced protein disulfide isomerase (PDI) and passing them on to molecular oxygen. Although disulfide bond formation is an essential process, recent experiments suggest a surprisingly broad tolerance to genetic manipulations that attenuate the rate of disulfide bond formation and that a hyperoxidizing ER may place stressed cells at a disadvantage. In this study, we report on the development of a high throughput in vitro assay for mammalian ERO1alpha activity and its application to identify small molecule inhibitors. The inhibitor EN460 (IC(50), 1.9 mum) interacts selectively with the reduced, active form of ERO1alpha and prevents its reoxidation. Despite rapid and promiscuous reactivity with thiolates, EN460 exhibits selectivity for ERO1. This selectivity is explained by the rapid reversibility of the reaction of EN460 with unstructured thiols, in contrast to the formation of a stable bond with ERO1alpha followed by displacement of bound flavin adenine dinucleotide from the active site of the enzyme. Modest concentrations of EN460 and a functionally related inhibitor, QM295, promote signaling in the unfolded protein response and precondition cells against severe ER stress. Together, these observations point to the feasibility of targeting the enzymatic activity of ERO1alpha with small molecule inhibitors.
Collapse
Affiliation(s)
- Jaime D. Blais
- From the Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, New York 10016
| | - King-Tung Chin
- From the Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, New York 10016
| | - Ester Zito
- From the Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, New York 10016
| | - Yuhong Zhang
- From the Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, New York 10016
| | - Nimrod Heldman
- the Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Heather P. Harding
- From the Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, New York 10016
- the Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Deborah Fass
- the Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel, and
| | - Colin Thorpe
- the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - David Ron
- From the Kimmel Center for Biology and Medicine of the Skirball Institute and the Departments of Cell Biology and Medicine, New York University School of Medicine, New York, New York 10016
- the Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
127
|
Margittai É, Bánhegyi G. Oxidative folding in the endoplasmic reticulum: Towards a multiple oxidant hypothesis? FEBS Lett 2010; 584:2995-8. [DOI: 10.1016/j.febslet.2010.05.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 01/27/2023]
|
128
|
Abstract
The oxidoreductase ERO1 (endoplasmic reticulum [ER] oxidoreductin 1) is thought to be crucial for disulfide bond formation in the ER. In this issue, Zito et al. (2010. J. Cell Biol. doi:10.1083/jcb.200911086) examine the division of labor between the two mammalian isoforms of ERO1 (ERO1-α and -β) in oxidative folding. Their analysis reveals a selective role for ERO1-β in insulin production and a surprisingly minor contribution for either ERO1 isoform on immunoglobulin folding and secretion.
Collapse
Affiliation(s)
- Carolyn S Sevier
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
129
|
Zito E, Chin KT, Blais J, Harding HP, Ron D. ERO1-beta, a pancreas-specific disulfide oxidase, promotes insulin biogenesis and glucose homeostasis. J Cell Biol 2010; 188:821-32. [PMID: 20308425 PMCID: PMC2845084 DOI: 10.1083/jcb.200911086] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/25/2010] [Indexed: 12/22/2022] Open
Abstract
Mammals have two genes encoding homologues of the endoplasmic reticulum (ER) disulfide oxidase ERO1 (ER oxidoreductin 1). ERO1-beta is greatly enriched in the endocrine pancreas. We report in this study that homozygosity for a disrupting allele of Ero1lb selectively compromises oxidative folding of proinsulin and promotes glucose intolerance in mutant mice. Surprisingly, concomitant disruption of Ero1l, encoding the other ERO1 isoform, ERO1-alpha, does not exacerbate the ERO1-beta deficiency phenotype. Although immunoglobulin-producing cells normally express both isoforms of ERO1, disulfide bond formation and immunoglobulin secretion proceed at nearly normal pace in the double mutant. Moreover, although the more reducing environment of their ER protects cultured ERO1-beta knockdown Min6 cells from the toxicity of a misfolding-prone mutant Ins2(Akita), the diabetic phenotype and islet destruction promoted by Ins2(Akita) are enhanced in ERO1-beta compound mutant mice. These findings point to an unexpectedly selective function for ERO1-beta in oxidative protein folding in insulin-producing cells that is required for glucose homeostasis in vivo.
Collapse
Affiliation(s)
- Ester Zito
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - King-Tung Chin
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Jaime Blais
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - Heather P. Harding
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - David Ron
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, and Department of Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
130
|
Hayes NVL, Smales CM, Klappa P. Protein disulfide isomerase does not control recombinant IgG4 productivity in mammalian cell lines. Biotechnol Bioeng 2010; 105:770-9. [PMID: 19882737 DOI: 10.1002/bit.22587] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Post-translational limitations in the endoplasmic reticulum during recombinant monoclonal antibody production are an important factor in lowering the capacity for synthesis and secretion of correctly folded proteins. Mammalian protein disulfide isomerase (PDI) has previously been shown to have a role in the formation of disulfide bonds in immunoglobulins. Several attempts have been made to improve the rate of recombinant protein production by overexpressing PDI but the results from these studies have been inconclusive. Here we examine the effect of (a) transiently silencing PDI mRNA and (b) increasing the intracellular levels of members of the PDI family (PDI, ERp72, and PDIp) on the mRNA levels, assembly and secretion of an IgG4 isotype. Although transiently silencing PDI in NS0/2N2 cells suggests that PDI is involved in disulfide bond formation of this subclass of antibody, our results show that PDI does not control the overall IgG4 productivity. Furthermore, overexpression of members of the PDI family in a Chinese hamster ovary (CHO) cell line does not improve productivity and hence we conclude that the catalysis of disulfide bond formation is not rate limiting for IgG4 production.
Collapse
Affiliation(s)
- N V L Hayes
- Protein Science Group, School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
131
|
Moore P, Bernardi KM, Tsai B. The Ero1alpha-PDI redox cycle regulates retro-translocation of cholera toxin. Mol Biol Cell 2010; 21:1305-13. [PMID: 20130085 PMCID: PMC2847533 DOI: 10.1091/mbc.e09-09-0826] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cholera toxin (CT) is transported from the plasma membrane of host cells to the endoplasmic reticulum (ER) where the catalytic CTA1 subunit retro-translocates to the cytosol to induce toxicity. Our previous analyses demonstrated that the ER oxidoreductase protein disulfide isomerase (PDI) acts as a redox-dependent chaperone to unfold CTA1, a reaction postulated to initiate toxin retro-translocation. In its reduced state, PDI binds and unfolds CTA1; subsequent oxidation of PDI by Ero1alpha enables toxin release. Whether this in vitro model describes events in cells that control CTA1 retro-translocation is unknown. Here we show that down-regulation of Ero1alpha decreases retro-translocation of CTA1 by increasing reduced PDI and blocking efficient toxin release. Overexpression of Ero1alpha also attenuates CTA1 retro-translocation, an effect due to increased PDI oxidation, which prevents PDI from engaging the toxin effectively. Interestingly, Ero1alpha down-regulation increases interaction between PDI and Derlin-1, an ER membrane protein that is a component of the retro-translocation complex. These findings demonstrate that an appropriate Ero1alpha-PDI ratio is critical for regulating the binding-release cycle of CTA1 by PDI during retro-translocation, and implicate PDI's redox state in targeting it to the retro-translocon.
Collapse
Affiliation(s)
- Paul Moore
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
132
|
Otero JH, Lizák B, Hendershot LM. Life and death of a BiP substrate. Semin Cell Dev Biol 2009; 21:472-8. [PMID: 20026282 DOI: 10.1016/j.semcdb.2009.12.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 12/10/2009] [Indexed: 02/08/2023]
Abstract
BiP is the mammalian endoplasmic reticulum (ER) Hsp70 orthologue that plays a major role in all functions of this organelle including the seemingly opposing functions of aiding the maturation of unfolded nascent proteins and identifying and targeting chronically unfolded proteins for degradation. The recent identification of mammalian BiP co-factors combined with delineation of the ER degradation machinery and data suggesting that the ER is subdivided into unique regions helps explain how these different functions can occur in the same organelle and raises some unresolved issues.
Collapse
Affiliation(s)
- Joel H Otero
- Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, United States
| | | | | |
Collapse
|
133
|
A di-arginine motif contributes to the ER localization of the type I transmembrane ER oxidoreductase TMX4. Biochem J 2009; 425:195-205. [PMID: 19811453 DOI: 10.1042/bj20091064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The thiol-disulfide oxidoreductases of the PDI (protein disulfide isomerase) family assist in disulfide-bond formation in the ER (endoplasmic reticulum). In the present study, we have shown that the previously uncharacterized PDI family member TMX4 (thioredoxin-like transmembrane 4) is an N-glycosylated type I membrane protein that localizes to the ER. We also demonstrate that TMX4 contains a single ER-luminal thioredoxin-like domain, which, in contrast with similar domains in other PDIs, is mainly oxidized in living cells. The TMX4 transcript displays a wide tissue distribution, and is strongly expressed in melanoma cells. Unlike many type I membrane proteins, TMX4 lacks a typical C-terminal di-lysine retrieval signal. Instead, the cytoplasmic tail has a conserved di-arginine motif of the RXR type. We show that mutation of the RQR sequence in TMX4 to KQK interferes with ER localization of the protein. Moreover, whereas the cytoplasmic region of TMX4 confers ER localization to a reporter protein, the KQK mutant of the same protein redistributes to the cell surface. Overall, features not commonly found in other PDIs characterize TMX4 and suggest unique functional properties of the protein.
Collapse
|
134
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 518] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
135
|
Pdx1 (MODY4) regulates pancreatic beta cell susceptibility to ER stress. Proc Natl Acad Sci U S A 2009; 106:19090-5. [PMID: 19855005 DOI: 10.1073/pnas.0904849106] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) results from pancreatic beta cell failure in the setting of insulin resistance. Heterozygous mutations in the gene encoding the beta cell transcription factor pancreatic duodenal homeobox 1 (Pdx1) are associated with both T2DM and maturity onset diabetes of the young (MODY4), and low levels of Pdx1 accompany beta cell dysfunction in experimental models of glucotoxicity and diabetes. Here, we find that Pdx1 is required for compensatory beta cell mass expansion in response to diet-induced insulin resistance through its roles in promoting beta cell survival and compensatory hypertrophy. Pdx1-deficient beta cells show evidence of endoplasmic reticulum (ER) stress both in the complex metabolic milieu of high-fat feeding as well as in the setting of acutely reduced Pdx1 expression in the Min6 mouse insulinoma cell line. Further, Pdx1 deficiency enhances beta cell susceptibility to ER stress-associated apoptosis. The results of high throughput expression microarray and chromatin occupancy analyses reveal that Pdx1 regulates a broad array of genes involved in diverse functions of the ER, including proper disulfide bond formation, protein folding, and the unfolded protein response. These findings suggest that Pdx1 deficiency leads to a failure of beta cell compensation for insulin resistance at least in part by impairing critical functions of the ER.
Collapse
|
136
|
Matsuo Y, Masutani H, Son A, Kizaka-Kondoh S, Yodoi J. Physical and functional interaction of transmembrane thioredoxin-related protein with major histocompatibility complex class I heavy chain: redox-based protein quality control and its potential relevance to immune responses. Mol Biol Cell 2009; 20:4552-62. [PMID: 19741092 DOI: 10.1091/mbc.e09-05-0439] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the endoplasmic reticulum (ER), a variety of oxidoreductases classified in the thioredoxin superfamily have been found to catalyze the formation and rearrangement of disulfide bonds. However, the precise function and specificity of the individual thioredoxin family proteins remain to be elucidated. Here, we characterize a transmembrane thioredoxin-related protein (TMX), a membrane-bound oxidoreductase in the ER. TMX exists in a predominantly reduced form and associates with the molecular chaperon calnexin, which can mediate substrate binding. To determine the target molecules for TMX, we apply a substrate-trapping approach based on the reaction mechanism of thiol-disulfide exchange, identifying major histocompatibility complex (MHC) class I heavy chain (HC) as a candidate substrate. Unlike the classical ER oxidoreductases such as protein disulfide isomerase and ERp57, TMX seems not to be essential for normal assembly of MHC class I molecules. However, we show that TMX-class I HC interaction is enhanced during tunicamycin-induced ER stress, and TMX prevents the ER-to-cytosol retrotranslocation of misfolded class I HC targeted for proteasomal degradation. These results suggest a specific role for TMX and its mechanism of action in redox-based ER quality control.
Collapse
Affiliation(s)
- Yoshiyuki Matsuo
- Department of Biological Responses, Institute for Virus Research, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | |
Collapse
|
137
|
Shimizu Y, Hendershot LM. Oxidative folding: cellular strategies for dealing with the resultant equimolar production of reactive oxygen species. Antioxid Redox Signal 2009; 11:2317-31. [PMID: 19243234 PMCID: PMC2819804 DOI: 10.1089/ars.2009.2501] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
All eukaryotic cells possess an endoplasmic reticulum (ER), which is the site for synthesizing proteins that populate the cell surface or extracellular space. The environment of the ER is oxidizing, which supports the formation of intra- and interchain disulfide bonds that serve to stabilize the folding and assembly of nascent proteins. Recent experimental data reveal that the formation of disulfide bonds does not occur spontaneously but results from the enzymatic transfer of disulfide bonds through a number of intermediate proteins, with molecular oxygen serving as the terminal electron acceptor. Thus, each disulfide bond that forms during oxidative folding should produce a single reactive oxygen species (ROS). Dedicated secretory tissues like the pancreas and plasma cells have been estimated to form up to 3-6 million disulfide bonds per minute, which would be expected to result in the production of the same number of molecules of ROS. Although the methods used to deal with this amount of oxidative stress are not well understood, recent research suggests that different types of cells use distinct strategies and that the unfolded protein response (UPR) is a critical component of the defense.
Collapse
Affiliation(s)
- Yuichiro Shimizu
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
138
|
ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm. Proc Natl Acad Sci U S A 2009; 106:14156-61. [PMID: 19666483 DOI: 10.1073/pnas.0904429106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The developing endosperm of rice (Oryza sativa, Os) synthesizes a large amount of storage proteins on the rough (r)ER. The major storage proteins, glutelins and prolamins, contain either intra or intermolecular disulfide bonds, and oxidative protein folding is necessary for the sorting of the proteins to the protein bodies. Here, we investigated an electron transfer pathway for the formation of protein disulfide bonds in the rER of the rice endosperm, focusing on the roles of the thiol-disulfide oxidoreductase, OsEro1. Confocal microscopic analysis revealed that N-glycosylated OsEro1 is localized to the rER membrane in the subaleurone cells, and that targeting of OsEro1 to the rER membrane depends on the N-terminal region from Met-1 to Ser-55. The RNAi knockdown of OsERO1 inhibited the formation of native disulfide bonds in the glutelin precursors (proglutelins) and promoted aggregation of the proglutelins through nonnative intermolecular disulfide bonds in the rER. Inhibition of the formation of native disulfide bonds was also observed in the seeds of the esp2 mutant, which lacks protein disulfide isomerase-like (PDIL)1;1, but shows enhanced OsEro1 expression. We detected the generation of H(2)O(2) in the rER of the WT subaleurone cells, whereas the rER-derived H(2)O(2) levels decreased markedly in EM49 homozygous mutant seeds, which have fewer sulfhydryl groups than the WT seeds. Together, we propose that the formation of native disulfide bonds in proglutelins depends on an electron transfer pathway involving OsEro1 and OsPDIL.
Collapse
|
139
|
Doroudgar S, Thuerauf DJ, Marcinko MC, Belmont PJ, Glembotski CC. Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. J Biol Chem 2009; 284:29735-45. [PMID: 19622751 DOI: 10.1074/jbc.m109.018036] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Stresses that perturb the folding of nascent endoplasmic reticulum (ER) proteins activate the ER stress response. Upon ER stress, ER-associated ATF6 is cleaved; the resulting active cytosolic fragment of ATF6 translocates to the nucleus, binds to ER stress response elements (ERSEs), and induces genes, including the ER-targeted chaperone, GRP78. Recent studies showed that nutrient and oxygen starvation during tissue ischemia induce certain ER stress response genes, including GRP78; however, the role of ATF6 in mediating this induction has not been examined. In the current study, simulating ischemia (sI) in a primary cardiac myocyte model system caused a reduction in the level of ER-associated ATF6 with a coordinate increase of ATF6 in nuclear fractions. An ERSE in the GRP78 gene not previously shown to be required for induction by other ER stresses was found to bind ATF6 and to be critical for maximal ischemia-mediated GRP78 promoter induction. Activation of ATF6 and the GRP78 promoter, as well as grp78 mRNA accumulation during sI, were reversed upon simulated reperfusion (sI/R). Moreover, dominant-negative ATF6, or ATF6-targeted miRNA blocked sI-mediated grp78 induction, and the latter increased cardiac myocyte death upon simulated reperfusion, demonstrating critical roles for endogenous ATF6 in ischemia-mediated ER stress activation and cell survival. This is the first study to show that ATF6 is activated by ischemia but inactivated upon reperfusion, suggesting that it may play a role in the induction of ER stress response genes during ischemia that could have a preconditioning effect on cell survival during reperfusion.
Collapse
Affiliation(s)
- Shirin Doroudgar
- San Diego State University Heart Institute and the Department of Biology, San Diego State University, San Diego, California 92182, USA
| | | | | | | | | |
Collapse
|
140
|
Kim Y, Kang K, Kim I, Lee YJ, Oh C, Ryoo J, Jeong E, Ahn K. Molecular mechanisms of MHC class I-antigen processing: redox considerations. Antioxid Redox Signal 2009; 11:907-36. [PMID: 19178136 DOI: 10.1089/ars.2008.2316] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Major histocompatibility complex (MHC) class I molecules present antigenic peptides to the cell surface for screening by CD8(+) T cells. A number of ER-resident chaperones assist the assembly of peptides onto MHC class I molecules, a process that can be divided into several steps. Early folding of the MHC class I heavy chain is followed by its association with beta(2)-microglobulin (beta(2)m). The MHC class I heavy chain-beta(2)m heterodimer is incorporated into the peptide-loading complex, leading to peptide loading, release of the peptide-filled MHC class I molecules from the peptide-loading complex, and exit of the complete MHC class I complex from the ER. Because proper antigen presentation is vital for normal immune responses, the assembly of MHC class I molecules requires tight regulation. Emerging evidence indicates that thiol-based redox regulation plays critical roles in MHC class I-restricted antigen processing and presentation, establishing an unexpected link between redox biology and antigen processing. We review the influences of redox regulation on antigen processing and presentation. Because redox signaling pathways are a rich source of validated drug targets, newly discovered redox biology-mediated mechanisms of antigen processing may facilitate the development of more selective and therapeutic drugs or vaccines against immune diseases.
Collapse
Affiliation(s)
- Youngkyun Kim
- National Creative Research Center for Antigen Presentation, Department of Biological Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
Peptide binding to MHC class I molecules is a component of a folding and assembly process that occurs in the endoplasmic reticulum (ER) and uses both cellular chaperones and dedicated factors. The involvement of glycoprotein quality-control chaperones and cellular oxidoreductases in peptide binding has led to models that are gradually being refined. Some aspects of the peptide loading process (e.g., the biosynthesis and degradation of MHC class I complexes) conform to models of glycoprotein quality control, but other aspects (e.g., the formation of a stable disulfide-linked dimer between tapasin and ERp57) deviate from models of chaperone and oxidoreductase function. Here we review what is known about the intersection of glycoprotein folding, oxidative reactions, and MHC class I peptide loading, emphasizing events that occur in the ER and within the MHC class I peptide loading complex.
Collapse
Affiliation(s)
- David R Peaper
- Howard Hughes Medical Institute, Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
142
|
Baker KM, Chakravarthi S, Langton KP, Sheppard AM, Lu H, Bulleid NJ. Low reduction potential of Ero1alpha regulatory disulphides ensures tight control of substrate oxidation. EMBO J 2008; 27:2988-97. [PMID: 18971943 PMCID: PMC2579255 DOI: 10.1038/emboj.2008.230] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 10/09/2008] [Indexed: 11/08/2022] Open
Abstract
Formation of disulphide bonds within the mammalian endoplasmic reticulum (ER) requires the combined activities of Ero1alpha and protein disulphide isomerase (PDI). As Ero1alpha produces hydrogen peroxide during oxidation, regulation of its activity is critical in preventing ER-generated oxidative stress. Here, we have expressed and purified recombinant human Ero1alpha and shown that it has activity towards thioredoxin and PDI. The activity towards PDI required the inclusion of glutathione to ensure sustained oxidation. By carrying out site-directed mutagenesis of cysteine residues, we show that Ero1alpha is regulated by non-catalytic disulphides. The midpoint reduction potential (E degrees') of the regulatory disulphides was calculated to be approximately -275 mV making them stable in the redox conditions prevalent in the ER. The stable regulatory disulphides were only partially reduced by PDI (E degrees' approximately -180 mV), suggesting either that this is a mechanism for preventing excessive Ero1alpha activity and oxidation of PDI or that additional factors are required for Ero1alpha activation within the mammalian ER.
Collapse
Affiliation(s)
- Karl M Baker
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Kevin P Langton
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | | - Hui Lu
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Neil J Bulleid
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
143
|
Rancy PC, Thorpe C. Oxidative protein folding in vitro: a study of the cooperation between quiescin-sulfhydryl oxidase and protein disulfide isomerase. Biochemistry 2008; 47:12047-56. [PMID: 18937500 PMCID: PMC2892342 DOI: 10.1021/bi801604x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The flavin-dependent quiescin-sulfhydryl oxidase (QSOX) inserts disulfide bridges into unfolded reduced proteins with the reduction of molecular oxygen to form hydrogen peroxide. This work investigates how QSOX and protein disulfide isomerase (PDI) cooperate in vitro to generate native pairings in two unfolded reduced proteins: ribonuclease A (RNase, four disulfide bonds and 105 disulfide isomers of the fully oxidized protein) and avian riboflavin binding protein (RfBP, nine disulfide bonds and more than 34 million corresponding disulfide pairings). Experiments combining avian or human QSOX with up to 200 muM avian or human reduced PDI show that the isomerase is not a significant substrate of QSOX. Both reduced RNase and RfBP can be efficiently refolded in an aerobic solution containing micromolar concentrations of reduced PDI and nanomolar levels of QSOX without any added oxidized PDI or glutathione redox buffer. Refolding of RfBP is followed continuously using the complete quenching of the fluorescence of free riboflavin that occurs on binding to apo-RfBP. The rate of refolding is half-maximal at 30 muM reduced PDI when the reduced client protein (1 muM) is used in the presence of 30 nM QSOX. The use of high concentrations of PDI, in considerable excess over the folding protein client, reflects the concentration prevailing in the lumen of the endoplasmic reticulum and allows the redox poise of these in vitro experiments to be set with oxidized and reduced PDI. In the absence of either QSOX or redox buffer, the fastest refolding of RfBP is accomplished with excess reduced PDI and just enough oxidized PDI to generate nine disulfides in the protein client. These in vitro experiments are discussed in terms of current models for oxidative folding in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Pumtiwitt C. Rancy
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
144
|
Wang L, Li SJ, Sidhu A, Zhu L, Liang Y, Freedman RB, Wang CC. Reconstitution of human Ero1-Lalpha/protein-disulfide isomerase oxidative folding pathway in vitro. Position-dependent differences in role between the a and a' domains of protein-disulfide isomerase. J Biol Chem 2008; 284:199-206. [PMID: 19001419 DOI: 10.1074/jbc.m806645200] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-disulfide isomerase (PDI), a critical enzyme responsible for oxidative protein folding in the eukaryotic endoplasmic reticulum, is composed of four thioredoxin domains a, b, b', a', and a linker x between b' and a'. Ero1-Lalpha, an oxidase for human PDI (hPDI), has been determined to have one molecular flavin adenine dinucleotide (FAD) as its prosthetic group. Oxygen consumption assays with purified recombinant Ero1-Lalpha revealed that it utilizes oxygen as a terminal electron acceptor producing one disulfide bond and one molecule of hydrogen peroxide per dioxygen molecule consumed. Exogenous FAD is not required for recombinant Ero1-Lalpha activity. By monitoring the reactivation of denatured and reduced RNase A, we reconstituted the Ero1-Lalpha/hPDI oxidative folding system in vitro and determined the enzymatic activities of hPDI in this system. Mutagenesis studies suggested that the a' domain of hPDI is much more active than the a domain in Ero1-Lalpha-mediated oxidative folding. A domain swapping study revealed that one catalytic thioredoxin domain to the C-terminal of bb'x, whether a or a', is essential in Ero1-Lalpha-mediated oxidative folding. These data, combined with a pull-down assay and isothermal titration calorimetry measurements, enabled the minimal element for binding with Ero1-Lalpha to be mapped to the b'xa' fragment of hPDI.
Collapse
Affiliation(s)
- Lei Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Sheng-Jian Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ateesh Sidhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Li Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yi Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Robert B Freedman
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the Graduate School of the Chinese Academy of Sciences, Beijing 100049, China, the Department of Biological Sciences, Warwick University, Coventry CV4 7AL, United Kingdom, and the State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
145
|
Tien AC, Rajan A, Schulze KL, Ryoo HD, Acar M, Steller H, Bellen HJ. Ero1L, a thiol oxidase, is required for Notch signaling through cysteine bridge formation of the Lin12-Notch repeats in Drosophila melanogaster. ACTA ACUST UNITED AC 2008; 182:1113-25. [PMID: 18809725 PMCID: PMC2542473 DOI: 10.1083/jcb.200805001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch-mediated cell–cell communication regulates numerous developmental processes and cell fate decisions. Through a mosaic genetic screen in Drosophila melanogaster, we identified a role in Notch signaling for a conserved thiol oxidase, endoplasmic reticulum (ER) oxidoreductin 1–like (Ero1L). Although Ero1L is reported to play a widespread role in protein folding in yeast, in flies Ero1L mutant clones show specific defects in lateral inhibition and inductive signaling, two characteristic processes regulated by Notch signaling. Ero1L mutant cells accumulate high levels of Notch protein in the ER and induce the unfolded protein response, suggesting that Notch is misfolded and fails to be exported from the ER. Biochemical assays demonstrate that Ero1L is required for formation of disulfide bonds of three Lin12-Notch repeats (LNRs) present in the extracellular domain of Notch. These LNRs are unique to the Notch family of proteins. Therefore, we have uncovered an unexpected requirement for Ero1L in the maturation of the Notch receptor.
Collapse
Affiliation(s)
- An-Chi Tien
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
146
|
Appenzeller-Herzog C, Riemer J, Christensen B, Sørensen ES, Ellgaard L. A novel disulphide switch mechanism in Ero1alpha balances ER oxidation in human cells. EMBO J 2008; 27:2977-87. [PMID: 18833192 DOI: 10.1038/emboj.2008.202] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Accepted: 09/12/2008] [Indexed: 11/10/2022] Open
Abstract
Oxidative maturation of secretory and membrane proteins in the endoplasmic reticulum (ER) is powered by Ero1 oxidases. To prevent cellular hyperoxidation, Ero1 activity can be regulated by intramolecular disulphide switches. Here, we determine the redox-driven shutdown mechanism of Ero1alpha, the housekeeping Ero1 enzyme in human cells. We show that functional silencing of Ero1alpha in cells arises from the formation of a disulphide bond-identified by mass spectrometry--between the active-site Cys(94) (connected to Cys(99) in the active enzyme) and Cys(131). Competition between substrate thiols and Cys(131) creates a feedback loop where activation of Ero1alpha is linked to the availability of its substrate, reduced protein disulphide isomerase (PDI). Overexpression of Ero1alpha-Cys131Ala or the isoform Ero1beta, which does not have an equivalent disulphide switch, leads to augmented ER oxidation. These data reveal a novel regulatory feedback system where PDI emerges as a central regulator of ER redox homoeostasis.
Collapse
|
147
|
Christis C, Lubsen NH, Braakman I. Protein folding includes oligomerization - examples from the endoplasmic reticulum and cytosol. FEBS J 2008; 275:4700-27. [DOI: 10.1111/j.1742-4658.2008.06590.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
148
|
Masciarelli S, Sitia R. Building and operating an antibody factory: redox control during B to plasma cell terminal differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:578-88. [PMID: 18241675 DOI: 10.1016/j.bbamcr.2008.01.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 12/20/2007] [Accepted: 01/04/2008] [Indexed: 01/24/2023]
Abstract
When small B lymphocytes bind their cognate antigens in the context of suitable signals, a dramatic differentiation program is activated that leads to the formation of plasma cells. These are short-lived specialized elements, each capable of secreting several thousands antibodies per second. The massive increase in Ig synthesis and transport entails a dramatic architectural and functional metamorphosis that involves the development of the endoplasmic reticulum (ER) and secretory organelles. Massive Ig secretion poses novel metabolic requirements, particularly for what concerns aminoacid import, ATP synthesis and redox homeostasis. Ig H and L chains enter the ER in the reduced state, to be rapidly oxidised mainly via protein driven relays based on the resident enzymes PDI and Ero1. How do plasma cells cope with the ensuing metabolic and redox stresses? In this essay, we discuss the physiological implications that increased Ig production could have in the control of plasma cell generation, function and lifespan, with emphasis on the potential role of ROS generation in mitochondria and ER.
Collapse
Affiliation(s)
- Silvia Masciarelli
- Department of Biology and Technology (DiBiT), San Raffaele Scientific Institute and Università Vita-Salute San Raffaele, Via Olgettina 58, 20132 Milano, Italy.
| | | |
Collapse
|
149
|
Pennuto M, Tinelli E, Malaguti M, Del Carro U, D'Antonio M, Ron D, Quattrini A, Feltri ML, Wrabetz L. Ablation of the UPR-mediator CHOP restores motor function and reduces demyelination in Charcot-Marie-Tooth 1B mice. Neuron 2008; 57:393-405. [PMID: 18255032 PMCID: PMC2267889 DOI: 10.1016/j.neuron.2007.12.021] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 10/30/2007] [Accepted: 12/06/2007] [Indexed: 10/22/2022]
Abstract
Deletion of serine 63 from P0 glycoprotein (P0S63del) causes Charcot-Marie-Tooth 1B neuropathy in humans, and P0S63del produces a similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum and fails to be incorporated into myelin. Here we report that P0S63del is misfolded and Schwann cells mount a consequential canonical unfolded protein response (UPR), including expression of the transcription factor CHOP, previously associated with apoptosis in ER-stressed cells. UPR activation and CHOP expression respond dynamically to P0S63del levels and are reversible but are associated with only limited apoptosis of Schwann cells. Nonetheless, Chop ablation in S63del mice completely rescues their motor deficit and reduces active demyelination 2-fold. This indicates that signaling through the CHOP arm of the UPR provokes demyelination in inherited neuropathy. S63del mice also provide an opportunity to explore how cells can dysfunction yet survive in prolonged ER stress-important for neurodegeneration related to misfolded proteins.
Collapse
Affiliation(s)
- Maria Pennuto
- DIBIT, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes, contributing to pancreatic beta-cell loss and insulin resistance. Components of the unfolded protein response (UPR) play a dual role in beta-cells, acting as beneficial regulators under physiological conditions or as triggers of beta-cell dysfunction and apoptosis under situations of chronic stress. Novel findings suggest that "what makes a beta-cell a beta-cell", i.e., its enormous capacity to synthesize and secrete insulin, is also its Achilles heel, rendering it vulnerable to chronic high glucose and fatty acid exposure, agents that contribute to beta-cell failure in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response and which defenses are triggered by beta-cells against these challenges. ER stress may also link obesity and insulin resistance in type 2 diabetes. High fat feeding and obesity induce ER stress in liver, which suppresses insulin signaling via c-Jun N-terminal kinase activation. In vitro data suggest that ER stress may also contribute to cytokine-induced beta-cell death. Thus, the cytokines IL-1beta and interferon-gamma, putative mediators of beta-cell loss in type 1 diabetes, induce severe ER stress through, respectively, NO-mediated depletion of ER calcium and inhibition of ER chaperones, thus hampering beta-cell defenses and amplifying the proapoptotic pathways. A better understanding of the pathways regulating ER stress in beta-cells may be instrumental for the design of novel therapies to prevent beta-cell loss in diabetes.
Collapse
Affiliation(s)
- Décio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808-CP-618, 1070 Brussels, Belgium.
| | | | | |
Collapse
|