101
|
Prakhya KS, Luo Y, Adkins J, Hu X, Wang QJ, Whiteheart SW. A sensitive and adaptable method to measure platelet-fibrin clot contraction kinetics. Res Pract Thromb Haemost 2022; 6:e12755. [PMID: 35873218 PMCID: PMC9301529 DOI: 10.1002/rth2.12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/29/2022] [Accepted: 06/05/2022] [Indexed: 11/09/2022] Open
Abstract
Background Platelet-fibrin clot contraction is critical for wound closure and maintenance of vessel patency, yet a molecular understanding of the process has lagged because of a lack of flexible quantitative assay systems capable of assaying multiple samples simultaneously. Objectives We devised a sensitive and inexpensive method to assess clot contraction kinetics under multiple conditions. Methods Clot contraction was measured using time-lapse digital photography, automated image processing with customized software, and detailed kinetic analysis using available commercial programs. Results Our system was responsive to alterations in platelet counts and calcium, fibrinogen, and thrombin concentrations, and our analysis detected and defined three phases of platelet-fibrin clot formation: initiation, contraction, and stabilization. Lag time, average contraction velocity, contraction extent, and area under the curve were readily calculated from the data. Using pharmacological agents (blebbistatin and eptifibatide), we confirmed the importance of myosin IIA and the interactions of integrin αIIbβ3-fibrinogen/fibrin in clot contraction. As further proof of our system's utility, we showed how 2-deoxyglucose affects contraction, demonstrating the importance of platelet bioenergetics, specifically glycolysis. Conclusions Our system is an adaptable platform for assessing the effects of multiple conditions and interventions on clot contraction kinetics in a regular laboratory setting, using readily available materials. The automated image processing software we developed will be made freely available for noncommercial uses. This assay system can be used to directly compare and define the effects of different treatments or genetic manipulations on platelet function and should provide a robust tool for future hemostasis/thrombosis research and therapeutic development.
Collapse
Affiliation(s)
| | - Ya Luo
- GliasoftMilpitasCaliforniaUSA
| | - John Adkins
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
102
|
Bálint M, Zsidó BZ, van der Spoel D, Hetényi C. Binding Networks Identify Targetable Protein Pockets for Mechanism-Based Drug Design. Int J Mol Sci 2022; 23:ijms23137313. [PMID: 35806314 PMCID: PMC9267029 DOI: 10.3390/ijms23137313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
The human genome codes only a few thousand druggable proteins, mainly receptors and enzymes. While this pool of available drug targets is limited, there is an untapped potential for discovering new drug-binding mechanisms and modes. For example, enzymes with long binding cavities offer numerous prerequisite binding sites that may be visited by an inhibitor during migration from a bulk solution to the destination site. Drug design can use these prerequisite sites as new structural targets. However, identifying these ephemeral sites is challenging. Here, we introduce a new method called NetBinder for the systematic identification and classification of prerequisite binding sites at atomic resolution. NetBinder is based on atomistic simulations of the full inhibitor binding process and provides a networking framework on which to select the most important binding modes and uncover the entire binding mechanism, including previously undiscovered events. NetBinder was validated by a study of the binding mechanism of blebbistatin (a potent inhibitor) to myosin 2 (a promising target for cancer chemotherapy). Myosin 2 is a good test enzyme because, like other potential targets, it has a long internal binding cavity that provides blebbistatin with numerous potential prerequisite binding sites. The mechanism proposed by NetBinder of myosin 2 structural changes during blebbistatin binding shows excellent agreement with experimentally determined binding sites and structural changes. While NetBinder was tested on myosin 2, it may easily be adopted to other proteins with long internal cavities, such as G-protein-coupled receptors or ion channels, the most popular current drug targets. NetBinder provides a new paradigm for drug design by a network-based elucidation of binding mechanisms at an atomic resolution.
Collapse
Affiliation(s)
- Mónika Bálint
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - Balázs Zoltán Zsidó
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-75124 Uppsala, Sweden;
| | - Csaba Hetényi
- Pharmacoinformatics Unit, Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12., 7624 Pécs, Hungary; (M.B.); (B.Z.Z.)
- Correspondence:
| |
Collapse
|
103
|
Sehring IM, Mohammadi HF, Haffner-Luntzer M, Ignatius A, Huber-Lang M, Weidinger G. Zebrafish fin regeneration involves generic and regeneration-specific osteoblast injury responses. eLife 2022; 11:77614. [PMID: 35748539 PMCID: PMC9259016 DOI: 10.7554/elife.77614] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Successful regeneration requires the coordinated execution of multiple cellular responses to injury. In amputated zebrafish fins, mature osteoblasts dedifferentiate, migrate towards the injury and form proliferative osteogenic blastema cells. We show that osteoblast migration is preceded by cell elongation and alignment along the proximodistal axis, which require actomyosin, but not microtubule turnover. Surprisingly, osteoblast dedifferentiation and migration can be uncoupled. Using pharmacological and genetic interventions, we found that NF-ĸB and retinoic acid signalling regulate dedifferentiation without affecting migration, while the complement system and actomyosin dynamics affect migration but not dedifferentiation. Furthermore, by removing bone at two locations within a fin ray, we established an injury model containing two injury sites. We found that osteoblasts dedifferentiate at and migrate towards both sites, while accumulation of osteogenic progenitor cells and regenerative bone formation only occur at the distal-facing injury. Together, these data indicate that osteoblast dedifferentiation and migration represent generic injury responses that are differentially regulated and can occur independently of each other and of regenerative growth. We conclude that successful fin bone regeneration appears to involve the coordinated execution of generic and regeneration-specific responses of osteoblasts to injury.
Collapse
Affiliation(s)
| | | | | | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Hospital Ulm, Ulm, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University Hospital Ulm, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| |
Collapse
|
104
|
Can Blebbistatin block the hypertrophy status in the zebrafish exvivo cardiac model? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166471. [PMID: 35750268 DOI: 10.1016/j.bbadis.2022.166471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022]
Abstract
Ex-vivo simple models are powered tools to study cardiac hypertrophy. It is possible to control the activation of critical genes and thus test the effects of drug therapies before the in vivo tests. A zebrafish cardiac hypertrophy developed by 500 μM phenylephrine (PE) treatment in ex vivo culture has been demonstrated to activate the essential expression of the embryonal genes. These genes are the same as those described in several previous pieces of research on hypertrophic pathology in humans. The efficacy of the chemical drug Blebbistatin (BL) on hypertrophy induced ex vivo cultured hearts is studied in this research. BL can inhibit the myosins and the calcium wave in counteracting the hypertrophy status caused by PE. Samples treated with PE, BL and PE simultaneously, or pre/post-treatment with BL, have been analysed for the embryonal gene activation concerning the hypertrophy status. The qRTPCR has shown an inhibitory effect of BL treatments on the microRNAs downregulation with the consequent low expression of essential embryonal genes. In particular, BL seems to be effective in blocking the hyperplasia of the epicardium but less effective in myocardium hypertrophy. The model can make it possible to obtain knowledge on the transduction pathways activated by BL and investigate the potential use of this drug in treating cardiac hypertrophy in humans.
Collapse
|
105
|
Zhou R, Han B, Nowak R, Lu Y, Heller E, Xia C, Chishti AH, Fowler VM, Zhuang X. Proteomic and functional analyses of the periodic membrane skeleton in neurons. Nat Commun 2022; 13:3196. [PMID: 35680881 PMCID: PMC9184744 DOI: 10.1038/s41467-022-30720-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 05/09/2022] [Indexed: 12/29/2022] Open
Abstract
Actin, spectrin, and associated molecules form a membrane-associated periodic skeleton (MPS) in neurons. The molecular composition and functions of the MPS remain incompletely understood. Here, using co-immunoprecipitation and mass spectrometry, we identified hundreds of potential candidate MPS-interacting proteins that span diverse functional categories. We examined representative proteins in several of these categories using super-resolution imaging, including previously unknown MPS structural components, as well as motor proteins, cell adhesion molecules, ion channels, and signaling proteins, and observed periodic distributions characteristic of the MPS along the neurites for ~20 proteins. Genetic perturbations of the MPS and its interacting proteins further suggested functional roles of the MPS in axon-axon and axon-dendrite interactions and in axon diameter regulation, and implicated the involvement of MPS interactions with cell adhesion molecules and non-muscle myosin in these roles. These results provide insights into the interactome of the MPS and suggest previously unknown functions of the MPS in neurons.
Collapse
Affiliation(s)
- Ruobo Zhou
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Boran Han
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Roberta Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92307, USA
| | - Yunzhe Lu
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Evan Heller
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Chenglong Xia
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Velia M Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92307, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, 19716, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
106
|
Matozo T, Kogachi L, de Alencar BC. Myosin motors on the pathway of viral infections. Cytoskeleton (Hoboken) 2022; 79:41-63. [PMID: 35842902 DOI: 10.1002/cm.21718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/07/2022] [Indexed: 01/30/2023]
Abstract
Molecular motors are microscopic machines that use energy from adenosine triphosphate (ATP) hydrolysis to generate movement. While kinesins and dynein are molecular motors associated with microtubule tracks, myosins bind to and move on actin filaments. Mammalian cells express several myosin motors. They power cellular processes such as endo- and exocytosis, intracellular trafficking, transcription, migration, and cytokinesis. As viruses navigate through cells, they may take advantage or be hindered by host components and machinery, including the cytoskeleton. This review delves into myosins' cell roles and compares them to their reported functions in viral infections. In most cases, the previously described myosin functions align with their reported role in viral infections, although not in all cases. This opens the possibility that knowledge obtained from studying myosins in viral infections might shed light on new physiological roles for myosins in cells. However, given the high number of myosins expressed and the variety of viruses investigated in the different studies, it is challenging to infer whether the interactions found are specific to a single virus or can be applied to other viruses with the same characteristics. We conclude that the participation of myosins in viral cycles is still a largely unexplored area, especially concerning unconventional myosins.
Collapse
Affiliation(s)
- Tais Matozo
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leticia Kogachi
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Bruna Cunha de Alencar
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
107
|
Hivare P, Gadhavi J, Bhatia D, Gupta S. α-Synuclein fibrils explore actin mediated macropinocytosis for cellular entry into model neuroblastoma neurons. Traffic 2022; 23:391-410. [PMID: 35604355 DOI: 10.1111/tra.12859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
Alpha-Synuclein (α-Syn), an intrinsically disordered protein (IDP), is associated with neurodegenerative disorders, including Parkinson's disease (PD) or other α-synucleinopathies. Recent investigations propose the transmission of α-Syn protein fibrils, in a prion-like manner, by entering proximal cells to seed further fibrillization in PD. Despite the recent advances, the mechanisms by which extracellular protein aggregates internalize into the cells remain poorly understood. Using a simple cell-based model of human neuroblastoma-derived differentiated neurons, we present the cellular internalization of α-Syn PFF to check cellular uptake and recycling kinetics along with the standard endocytic markers Transferrin (Tf) marking clathrin-mediated endocytosis (CME) and Galectin3 (Gal3) marking clathrin-independent endocytosis (CIE). Specific inhibition of endocytic pathways using chemical inhibitors reveals no significant involvement of CME, CIE, and caveolae-mediated endocytosis (CvME). A substantial reduction in cellular uptake was observed after perturbation of actin polymerization and treatment with macropinosomes inhibitor. Our results show that α-Syn PFF mainly internalizes into the SH-SY5Y cells and differentiated neurons via the macropinocytosis pathway. The elucidation of the molecular and cellular mechanism involved in the α-Syn PFF internalization will help improve the understanding of α-synucleinopathies including PD, and further design specific inhibitors for the same.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Joshna Gadhavi
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India.,Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
108
|
Liu L, Wu J, Chen B, Gao J, Li T, Ye Y, Tian H, Wang S, Wang F, Jiang J, Ou J, Tong F, Peng F, Tu Y. Magnetically Actuated Biohybrid Microswimmers for Precise Photothermal Muscle Contraction. ACS NANO 2022; 16:6515-6526. [PMID: 35290021 DOI: 10.1021/acsnano.2c00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Various strategies have been designed for myotube contraction and skeletal muscle stimulation in recent years, aiming in the field of skeletal muscle tissue engineering and bionics. However, most of the current approaches lack controllability and adaptability for precise stimulation, especially at the microlevel. Herein, wireless and precise activation of muscle by using magnetic biohybrid microswimmers in combination with near-infrared (NIR) laser irradiation is successfully demonstrated. Biohybrid microswimmers are fabricated by dip-coating superparamagnetic Fe3O4 nanoparticles onto the chlorella microalgae, thus endowing robust navigation in various biological media due to magnetic actuation. Under the guidance of a rotating magnetic field, the engineered microswimmer can achieve precise motion toward a single C2C12-derived myotube. Upon NIR irradiation, the photothermal effect from the incorporated Fe3O4 nanoparticles results in local temperature increments of approximately 5 °C in the targeted myotube, which could efficiently trigger the contraction of myotube. The mechanism underlying this phenomenon is a Ca2+-independent case involving direct actin-myosin interactions. In vivo muscle fiber contraction and histological test further demonstrate the effectiveness and biosafety of our design. The as-developed biohybrid microswimmer-based strategy is possible to provide a renovation for tissue engineering and bionics.
Collapse
Affiliation(s)
- Lu Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Juanyan Wu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Junbin Gao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Ting Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yicheng Ye
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Hao Tian
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Lishui 323020, China
| | - Fei Wang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Jiamiao Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Juanfeng Ou
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Tong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou 510515, China
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
109
|
Simultaneous triple-parametric optical mapping of transmembrane potential, intracellular calcium and NADH for cardiac physiology assessment. Commun Biol 2022; 5:319. [PMID: 35388167 PMCID: PMC8987030 DOI: 10.1038/s42003-022-03279-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/15/2022] [Indexed: 11/08/2022] Open
Abstract
Investigation of the complex relationships and dependencies of multiple cellular processes that govern cardiac physiology and pathophysiology requires simultaneous dynamic assessment of multiple parameters. In this study, we introduce triple-parametric optical mapping to simultaneously image metabolism, electrical excitation, and calcium signaling from the same field of view and demonstrate its application in the field of drug testing and cardiovascular research. We applied this metabolism-excitation-contraction coupling (MECC) methodology to test the effects of blebbistatin, 4-aminopyridine and verapamil on cardiac physiology. While blebbistatin and 4-aminopyridine alter multiple aspects of cardiac function suggesting off-target effects, the effects of verapamil were on-target and it altered only one of ten tested parameters. Triple-parametric optical mapping was also applied during ischemia and reperfusion; and we identified that metabolic changes precede the effects of ischemia on cardiac electrophysiology.
Collapse
|
110
|
Weißenbruch K, Fladung M, Grewe J, Baulesch L, Schwarz US, Bastmeyer M. Nonmuscle myosin IIA dynamically guides regulatory light chain phosphorylation and assembly of nonmuscle myosin IIB. Eur J Cell Biol 2022; 101:151213. [DOI: 10.1016/j.ejcb.2022.151213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 01/27/2023] Open
|
111
|
Shiota T, Nagata R, Kikuchi S, Nanaura H, Matsubayashi M, Nakanishi M, Kobashigawa S, Isozumi N, Kiriyama T, Nagayama K, Sugie K, Yamashiro Y, Mori E. C9orf72-Derived Proline:Arginine Poly-Dipeptides Modulate Cytoskeleton and Mechanical Stress Response. Front Cell Dev Biol 2022; 10:750829. [PMID: 35399536 PMCID: PMC8983821 DOI: 10.3389/fcell.2022.750829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in C9orf72 have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response. PR poly-dipeptides increased the junctions and branches of the IF network and increased cell stiffness. They also changed the distribution of actin filaments and increased the size of FA and intracellular calcium concentration. PR poly-dipeptides or an inhibitor of IF organization prevented cell detachment. Furthermore, PR poly-dipeptides induced upregulation of mechanical stress response factors and led to a maladaptive response to cyclic stretch. These results suggest that the effects of PR poly-dipeptides on mechanical properties and mechanical stress response may serve as a pathogenesis of C9orf72-related neurodegeneration.
Collapse
Affiliation(s)
- Tomo Shiota
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Riko Nagata
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Sotaro Kikuchi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Hitoki Nanaura
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Masaya Matsubayashi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Mari Nakanishi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Shinko Kobashigawa
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Noriyoshi Isozumi
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
| | - Takao Kiriyama
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Kazuaki Nagayama
- Micro-Nano Biomechanics Laboratory, Department of Mechanical Systems Engineering, Ibaraki University, Hitachi, Japan
| | - Kazuma Sugie
- Department of Neurology, Nara Medical University, Kashihara, Japan
| | - Yoshito Yamashiro
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, Tsukuba, Japan
- *Correspondence: Yoshito Yamashiro, ; Eiichiro Mori,
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Japan
- V-iCliniX Laboratory, Nara Medical University, Kashihara, Japan
- *Correspondence: Yoshito Yamashiro, ; Eiichiro Mori,
| |
Collapse
|
112
|
Nasser M, Ghosh G. Engineering tumor constructs to study matrix-dependent angiogenic signaling of breast cancer cells. Biotechnol Prog 2022; 38:e3250. [PMID: 35312222 PMCID: PMC9233024 DOI: 10.1002/btpr.3250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the leading cause of cancer deaths among females globally. The crosstalk between tumor microenvironment and neoplastic cells is the key for promoting tumor growth, stimulating tumor angiogenesis, and metastasis to distant organs. Thus, it is highly important to investigate tumor cell-matrix interactions to facilitate screening of different anti-cancer agents, individually or in combination. We, herein report, the development of an in vitro three-dimensional (3D) breast cancer model to investigate the effect of stromal crosslinking and consequent, stiffening on the angiogenic activity of cancer cells. Crosslinking of collagen gels was altered via non-enzymatic glycation and highly aggressive breast cancer cells, MDA-MB-231, were encapsulated in these gels. Cells encapsulated in glycated/stiffer matrices displayed an increased expression of pro-angiogenesis-related signals. Inhibition of mechanotransduction pathways on the angiogenic activity of aggressive tumor cells in stiff matrices was investigated using Y-27632, blebbistatin, and cytochalasin D. Rho-associated kinase (ROCK) inhibitor, Y-27632, diminished the pro-angiogenic signaling, thereby suggesting the potential dependence of breast cancer cells on the Rho/ROCK pathway in regulating tumor angiogenesis. Our findings highlight the potential of the developed model to be used as a tool to investigate matrix-associated tumor angiogenesis and screen different therapeutic agents towards inhibiting it.
Collapse
Affiliation(s)
- Malak Nasser
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Gargi Ghosh
- Bioengineering Program, Department of Mechanical Engineering, University of Michigan-Dearborn, Dearborn, Michigan, USA
| |
Collapse
|
113
|
Tsai CL, Huang CY, Lu YC, Pai LM, Horák D, Ma YH. Cyclic Strain Mitigates Nanoparticle Internalization by Vascular Smooth Muscle Cells. Int J Nanomedicine 2022; 17:969-981. [PMID: 35280334 PMCID: PMC8909538 DOI: 10.2147/ijn.s337942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 01/27/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Chia-Liang Tsai
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Ching-Yun Huang
- Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Yi-Ching Lu
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
| | - Li-Mei Pai
- Department of Biochemistry & Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, Republic of China
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague 6, 162 06, Czech Republic
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, Chang Gung University, Taoyuan, 33302, Taiwan, Republic of China
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, 33305, Taiwan, Republic of China
- Correspondence: Yunn-Hwa Ma, Department of Physiology and Pharmacology, Chang Gung University, Guishan, Taoyuan, 33302, Taiwan, Republic of China, Email
| |
Collapse
|
114
|
Pal K, Tu Y, Wang X. Single-Molecule Force Imaging Reveals That Podosome Formation Requires No Extracellular Integrin-Ligand Tensions or Interactions. ACS NANO 2022; 16:2481-2493. [PMID: 35073043 PMCID: PMC9129048 DOI: 10.1021/acsnano.1c09105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Podosomes are integrin-mediated cell adhesion units involved in many cellular and physiological processes. Integrins likely transmit tensions critical for podosome functions, but such force remains poorly characterized. DNA-based tension sensors are powerful in visualizing integrin tensions but subject to degradation by podosomes which ubiquitously recruit DNase. Here, using a DNase-resistant tension sensor based on a DNA/PNA (peptide nucleic acid) duplex, we imaged podosomal integrin tensions (PIT) in the adhesion rings of podosomes on solid substrates with single molecular tension sensitivity. PIT was shown to be generated by both actomyosin contractility and actin polymerization in podosomes. Importantly, by monitoring PIT and podosome structure in parallel, we showed that extracellular integrin-ligand tensions, despite being critical for the formation of focal adhesions, are dispensable for podosome formation, as PIT reduction or elimination has an insignificant impact on structure formation and FAK (focal adhesion kinase) phosphorylation in podosomes. We further verified that even integrin-ligand interaction is dispensable for podosome formation, as macrophages form podosomes normally on passivated surfaces that block integrin-ligand interaction but support macrophage adhesion through electrostatic adsorption or Fc receptor-immunoglobin G interaction. In contrast, focal adhesions are unable to form on these passivated surfaces.
Collapse
Affiliation(s)
- Kaushik Pal
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Ying Tu
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
| | - Xuefeng Wang
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA
- Molecular, Cellular, and Developmental Biology interdepartmental program, Ames, IA 50011, USA
- To whom correspondence may be addressed. Xuefeng Wang, Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
115
|
Esposito D, Pant I, Shen Y, Qiao RF, Yang X, Bai Y, Jin J, Poulikakos PI, Aaronson SA. ROCK1 mechano-signaling dependency of human malignancies driven by TEAD/YAP activation. Nat Commun 2022; 13:703. [PMID: 35121738 PMCID: PMC8817028 DOI: 10.1038/s41467-022-28319-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/19/2022] [Indexed: 12/14/2022] Open
Abstract
Rho family mechano-signaling through the actin cytoskeleton positively regulates physiological TEAD/YAP transcription, while the evolutionarily conserved Hippo tumor suppressor pathway antagonizes this transcription through YAP cytoplasmic localization/degradation. The mechanisms responsible for oncogenic dysregulation of these pathways, their prevalence in tumors, as well as how such dysregulation can be therapeutically targeted are not resolved. We demonstrate that p53 DNA contact mutants in human tumors, indirectly hyperactivate RhoA/ROCK1/actomyosin signaling, which is both necessary and sufficient to drive oncogenic TEAD/YAP transcription. Moreover, we demonstrate that recurrent lesions in the Hippo pathway depend on physiological levels of ROCK1/actomyosin signaling for oncogenic TEAD/YAP transcription. Finally, we show that ROCK inhibitors selectively antagonize proliferation and motility of human tumors with either mechanism. Thus, we identify a cancer driver paradigm and a precision medicine approach for selective targeting of human malignancies driven by TEAD/YAP transcription through mechanisms that either upregulate or depend on homeostatic RhoA mechano-signaling.
Collapse
Affiliation(s)
- Davide Esposito
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ila Pant
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yao Shen
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rui F Qiao
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaobao Yang
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Yiyang Bai
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Dermatology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
116
|
Kugler EC, Frost J, Silva V, Plant K, Chhabria K, Chico TJA, Armitage PA. Zebrafish vascular quantification: a tool for quantification of three-dimensional zebrafish cerebrovascular architecture by automated image analysis. Development 2022; 149:273928. [PMID: 35005771 PMCID: PMC8918806 DOI: 10.1242/dev.199720] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Zebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification (ZVQ). It provides the first landmark- or object-based vascular inter-sample registration of the zebrafish cerebral vasculature, producing population average maps allowing rapid assessment of intra- and inter-group vascular anatomy. ZVQ also extracts a range of quantitative vascular parameters from a user-specified region of interest, including volume, surface area, density, branching points, length, radius and complexity. Application of ZVQ to 13 experimental conditions, including embryonic development, pharmacological manipulations and morpholino-induced gene knockdown, shows that ZVQ is robust, allows extraction of biologically relevant information and quantification of vascular alteration, and can provide novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface and workflow documentation are provided. Together, ZVQ provides the first open-source quantitative approach to assess the 3D cerebrovascular architecture in zebrafish. Summary: An image analysis workflow pipeline for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification or ZVQ.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - James Frost
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,Hull York Medical School, John Hughlings Jackson Building, University Road, University of York, Heslington, York YO10 5DD, UK
| | - Vishmi Silva
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Karishma Chhabria
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Tim J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| | - Paul A Armitage
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.,Insigneo Institute for in silico Medicine, The Pam Liversidge Building, Sheffield S1 3JD, UK
| |
Collapse
|
117
|
Yousafzai MS, Yadav V, Amiri S, Errami Y, Amiri S, Murrell M. Active Regulation of Pressure and Volume Defines an Energetic Constraint on the Size of Cell Aggregates. PHYSICAL REVIEW LETTERS 2022; 128:048103. [PMID: 35148133 DOI: 10.1103/physrevlett.128.048103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
We explore the relationship between the nonequilibrium generation of myosin-induced active stress within the F-actin cytoskeleton and the pressure-volume relationship of cellular aggregates as models of simple tissues. We find that due to active stress, aggregate surface tension depends upon its size. As a result, both pressure and cell number density depend on size and violate equilibrium assumptions. However, the relationship between them resembles an equilibrium equation of state with an effective temperature. This suggests that bulk and surface properties of aggregates balance to yield a constant average work performed by each cell on their environment in regulating tissue size. These results describe basic physical principles that govern the size of cell aggregates.
Collapse
Affiliation(s)
- M S Yousafzai
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - V Yadav
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - S Amiri
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Department of Mechanical Engineering and Material Science, Yale University, 10 Hillhouse Avenue, New Haven, Connecticut 06511, USA
| | - Y Errami
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Department of Genetics, Yale School of Medicine, Sterling Hall of Medicine, 333 Cedar Street, New Haven, Connecticut 06510, USA
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - S Amiri
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
| | - M Murrell
- Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Center for Cancer Systems Biology, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, USA
- Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut 06511, USA
| |
Collapse
|
118
|
Grandy C, Port F, Pfeil J, Gottschalk KE. Influence of ROCK Pathway Manipulation on the Actin Cytoskeleton Height. Cells 2022; 11:cells11030430. [PMID: 35159239 PMCID: PMC8834639 DOI: 10.3390/cells11030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The actin cytoskeleton with its dynamic properties serves as the driving force for the movement and division of cells and gives the cell shape and structure. Disorders in the actin cytoskeleton occur in many diseases. Deeper understanding of its regulation is essential in order to better understand these biochemical processes. In our study, we use metal-induced energy transfer (MIET) as a tool to quantitatively examine the rarely considered third dimension of the actin cytoskeleton with nanometer accuracy. In particular, we investigate the influence of different drugs acting on the ROCK pathway on the three-dimensional actin organization. We find that cells treated with inhibitors have a lower actin height to the substrate while treatment with a stimulator for the ROCK pathway increases the actin height to the substrate, while the height of the membrane remains unchanged. This reveals the precise tuning of adhesion and cytoskeleton tension, which leads to a rich three-dimensional structural behaviour of the actin cytoskeleton. This finetuning is differentially affected by either inhibition or stimulation. The high axial resolution shows the importance of the precise finetuning of the actin cytoskeleton and the disturbed regulation of the ROCK pathway has a significant impact on the actin behavior in the z dimension.
Collapse
Affiliation(s)
- Carolin Grandy
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | - Fabian Port
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | - Jonas Pfeil
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
119
|
Danastas K, Larsen A, Jobson S, Guo G, Cunningham AL, Miranda-Saksena M. Herpes simplex virus-1 utilizes the host actin cytoskeleton for its release from axonal growth cones. PLoS Pathog 2022; 18:e1010264. [PMID: 35073379 PMCID: PMC8812851 DOI: 10.1371/journal.ppat.1010264] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/03/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has evolved mechanisms to exploit the host cytoskeleton during entry, replication and exit from cells. In this study, we determined the role of actin and the molecular motor proteins, myosin II and myosin V, in the transport and release of HSV-1 from axon termini, or growth cones. Using compartmentalized neuronal devices, we showed that inhibition of actin polymerization, but not actin branching, significantly reduced the release of HSV-1 from axons. Furthermore, we showed that inhibition of myosin V, but not myosin II, also significantly reduced the release of HSV-1 from axons. Using confocal and electron microscopy, we determined that viral components are transported along axons to growth cones, despite actin or myosin inhibition. Overall, our study supports the role of actin in virus release from axonal growth cones and suggests myosin V as a likely candidate involved in this process. Herpes simplex virus type 1 (HSV-1) is a ubiquitous human pathogen causing cold sores and genital herpes. HSV-1 infects sensory neurons of the peripheral nervous system where it establishes a lifelong infection and cannot be cured. Reactivation is common, with the virus transported back along sensory nerves, forming new lesions, or is shed asymptomatically. Antiviral resistance is emerging to current antivirals that target viral replication, indicating the need to identify new targets for future treatment. The host cell cytoskeleton plays an important role during transport of the virus. HSV-1 is transported along axons via microtubules; however, how the virus is released from axon termini, where actin predominates, is unknown. Here we show that an intact actin cytoskeleton is required for efficient virus release from axon termini. Furthermore, we show that myosin V, an actin based molecular motor that drives transport, is essential in virus release from axon termini. Together, this study defines the mechanisms behind HSV-1 release from axon termini which will guide future directions in identifying possible therapeutic targets for HSV-1.
Collapse
Affiliation(s)
- Kevin Danastas
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Ava Larsen
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Sophie Jobson
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Gerry Guo
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- * E-mail: (ALC); (MM-S)
| | - Monica Miranda-Saksena
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, Australia
- * E-mail: (ALC); (MM-S)
| |
Collapse
|
120
|
Lyu Y, Thai PN, Ren L, Timofeyev V, Jian Z, Park S, Ginsburg KS, Overton J, Bossuyt J, Bers DM, Yamoah EN, Chen-Izu Y, Chiamvimonvat N, Zhang XD. Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. iScience 2022; 25:103624. [PMID: 35005560 PMCID: PMC8718820 DOI: 10.1016/j.isci.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and β-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
121
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
122
|
Scandling BW, Gou J, Thomas J, Xuan J, Xue C, Gooch KJ. A Mechanistic Motor-Clutch Model That Explains Cell Shape Dynamics to Cyclic Stretch. Mol Biol Cell 2022; 33:ar27. [PMID: 35020463 PMCID: PMC9250388 DOI: 10.1091/mbc.e20-01-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Many cells in the body experience cyclic mechanical loading, which can impact cellular processes and morphology. In vitro studies often report that cells reorient in response to cyclic stretch of their substrate. To explore cellular mechanisms involved in this reorientation, a computational model was developed by adapting previous computational models of the actin–myosin–integrin motor-clutch system developed by others. The computational model predicts that under most conditions, actin bundles align perpendicular to the direction of applied cyclic stretch, but under specific conditions, such as low substrate stiffness, actin bundles align parallel to the direction of stretch. The model also predicts that stretch frequency impacts the rate of reorientation and that proper myosin function is critical in the reorientation response. These computational predictions are consistent with reports from the literature and new experimental results presented here. The model suggests that the impact of different stretching conditions (stretch type, amplitude, frequency, substrate stiffness, etc.) on the direction of cell alignment can largely be understood by considering their impact on cell–substrate detachment events, specifically whether detachments preferentially occur during stretching or relaxing of the substrate.
Collapse
Affiliation(s)
- Benjamin W Scandling
- Department of Biomedical Engineering, The Ohio State University.,The Frick Center for Heart Failure and Arrhythmia, Davis Heart Lung Research Institute, The Ohio State University
| | - Jia Gou
- Department of Mathematics, University of Minnesota.,Current Affiliation: Department of Mathematics, University of California, Riverside
| | - Jessica Thomas
- Department of Biomedical Engineering, The Ohio State University
| | - Jacqueline Xuan
- Department of Biomedical Engineering, The Ohio State University
| | - Chuan Xue
- School of Mathematics, University of Minnesota
| | - Keith J Gooch
- Department of Biomedical Engineering, The Ohio State University.,The Frick Center for Heart Failure and Arrhythmia, Davis Heart Lung Research Institute, The Ohio State University
| |
Collapse
|
123
|
Yu-Kemp HC, Szymanski RA, Cortes DB, Gadda NC, Lillich ML, Maddox AS, Peifer M. Micron-scale supramolecular myosin arrays help mediate cytoskeletal assembly at mature adherens junctions. J Cell Biol 2022; 221:212872. [PMID: 34812842 PMCID: PMC8614156 DOI: 10.1083/jcb.202103074] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/28/2021] [Accepted: 10/14/2021] [Indexed: 01/19/2023] Open
Abstract
Epithelial cells assemble specialized actomyosin structures at E-Cadherin–based cell–cell junctions, and the force exerted drives cell shape change during morphogenesis. The mechanisms that build this supramolecular actomyosin structure remain unclear. We used ZO-knockdown MDCK cells, which assemble a robust, polarized, and highly organized actomyosin cytoskeleton at the zonula adherens, combining genetic and pharmacologic approaches with superresolution microscopy to define molecular machines required. To our surprise, inhibiting individual actin assembly pathways (Arp2/3, formins, or Ena/VASP) did not prevent or delay assembly of this polarized actomyosin structure. Instead, as junctions matured, micron-scale supramolecular myosin arrays assembled, with aligned stacks of myosin filaments adjacent to the apical membrane, overlying disorganized actin filaments. This suggested that myosin arrays might bundle actin at mature junctions. Consistent with this idea, inhibiting ROCK or myosin ATPase disrupted myosin localization/organization and prevented actin bundling and polarization. We obtained similar results in Caco-2 cells. These results suggest a novel role for myosin self-assembly, helping drive actin organization to facilitate cell shape change.
Collapse
Affiliation(s)
- Hui-Chia Yu-Kemp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Rachel A Szymanski
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Nicole C Gadda
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Madeline L Lillich
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amy S Maddox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
124
|
The effective use of blebbistatin to study the action potential of cardiac pacemaker cells of zebrafish (Danio rerio) during incremental warming. Curr Res Physiol 2022; 5:48-54. [PMID: 35128467 PMCID: PMC8803472 DOI: 10.1016/j.crphys.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Blebbistatin potently inhibits actin-myosin interaction, preventing contractile activity of excitable cells including cardiac myocytes, despite electrical excitation of an action potential (AP). We collected intracellular microelectrode recordings of pacemaker cells located in the sinoatrial region (SAR) of the zebrafish heart at room temperature and during acute warming to investigate whether or not blebbistatin inhibition of contraction significantly alters pacemaker cell electrophysiology. Changes were evaluated based on 16 variables that characterized the AP waveform. None of these AP variables nor the spontaneous heart rate were significantly modified with the application of 10 μM blebbistatin when recordings were made at room temperature. Compared with the control group, the blebbistatin-treated group showed minor changes in the rate of spontaneous diastolic depolarization (P = 0.027) and the 50% and 80% repolarization (P = 0.008 and 0.010, respectively) in the 26°C–29°C temperature bin, but not at higher temperatures. These findings suggest that blebbistatin is an effective excitation-contraction uncoupler that does not appreciably affect APs generated in pacemaking cells of the SAR and can, therefore, be used in zebrafish cardiac studies. Blebbistatin uncouples excitation-contraction in zebrafish cardiomyocytes. Blebbistatin does not modify the pacemaker action potential variables. Temperature does not modify the effect of blebbistatin. First validation of the use of blebbistatin in adult fish. Methodology of intracellular microelectrode recording of zebrafish pacemaker cells.
Collapse
|
125
|
Dobrokhotov O, Sunagawa M, Torii T, Mii S, Kawauchi K, Enomoto A, Sokabe M, Hirata H. Anti-Malignant Effect of Tensile Loading to Adherens Junctions in Cutaneous Squamous Cell Carcinoma Cells. Front Cell Dev Biol 2021; 9:728383. [PMID: 34858971 PMCID: PMC8632149 DOI: 10.3389/fcell.2021.728383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Actomyosin contractility regulates various cellular processes including proliferation and differentiation while dysregulation of actomyosin activity contributes to cancer development and progression. Previously, we have reported that actomyosin-generated tension at adherens junctions is required for cell density-dependent inhibition of proliferation of normal skin keratinocytes. However, it remains unclear how actomyosin contractility affects the hyperproliferation ability of cutaneous squamous cell carcinoma (cSCC) cells. In this study, we find that actomyosin activity is impaired in cSCC cells both in vitro and in vivo. External application of tensile loads to adherens junctions by sustained mechanical stretch attenuates the proliferation of cSCC cells, which depends on intact adherens junctions. Forced activation of actomyosin of cSCC cells also inhibits their proliferation in a cell-cell contact-dependent manner. Furthermore, the cell cycle arrest induced by tensile loading to adherens junctions is accompanied by epidermal differentiation in cSCC cells. Our results show that the degree of malignant properties of cSCC cells can be reduced by applying tensile loads to adherens junctions, which implies that the mechanical status of adherens junctions may serve as a novel therapeutic target for cSCC.
Collapse
Affiliation(s)
- Oleg Dobrokhotov
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Sunagawa
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Shinji Mii
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Hirata
- Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
126
|
Swift LM, Kay MW, Ripplinger CM, Posnack NG. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. Am J Physiol Heart Circ Physiol 2021; 321:H1005-H1013. [PMID: 34623183 DOI: 10.1152/ajpheart.00477.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Collapse
Affiliation(s)
- Luther M Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | | | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
127
|
Radnai L, Surman M, Hafenbreidel M, Young EJ, Stremel RF, Lin L, Bdiri B, Pasetto P, Jin X, Geedy M, Partridge JR, Patel A, Conlon M, Sellers JR, Cameron MD, Rumbaugh G, Griffin PR, Kamenecka TM, Miller CA. Discovery of Selective Inhibitors for In Vitro and In Vivo Interrogation of Skeletal Myosin II. ACS Chem Biol 2021; 16:2164-2173. [PMID: 34558887 DOI: 10.1021/acschembio.1c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Myosin IIs, actin-based motors that utilize the chemical energy of adenosine 5'-triphosphate (ATP) to generate force, have potential as therapeutic targets. Their heavy chains differentiate the family into muscle (skeletal [SkMII], cardiac, smooth) and nonmuscle myosin IIs. Despite the therapeutic potential for muscle disorders, SkMII-specific inhibitors have not been reported and characterized. Here, we present the discovery, synthesis, and characterization of "skeletostatins," novel derivatives of the pan-myosin II inhibitor blebbistatin, with selectivity 40- to 170-fold for SkMII over all other myosin II family members. In addition, the skeletostatins bear improved potency, solubility, and photostability, without cytotoxicity. Based on its optimal in vitro profile, MT-134's in vivo tolerability, efficacy, and pharmacokinetics were determined. MT-134 was well-tolerated in mice, impaired motor performance, and had excellent exposure in muscles. Skeletostatins are useful probes for basic research and a strong starting point for drug development.
Collapse
Affiliation(s)
- Laszlo Radnai
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Matthew Surman
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Erica J. Young
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Rebecca F. Stremel
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Bilel Bdiri
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Paolo Pasetto
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - Xiaomin Jin
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - Mackenzie Geedy
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - Joni-Rae Partridge
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - Aagam Patel
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - Michael Conlon
- Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12212, United States
| | - James R. Sellers
- Laboratory of Molecular Physiology, NHLBI, National Institutes of Health, 50 South Drive, B50/3529, Bethesda, Maryland 20892-8015, United States
| | - Michael D. Cameron
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Courtney A. Miller
- Department of Molecular Medicine, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
128
|
Two Classes of Myosin Inhibitors, Para-nitroblebbistatin and Mavacamten, Stabilize β-Cardiac Myosin in Different Structural and Functional States. J Mol Biol 2021; 433:167295. [PMID: 34627791 DOI: 10.1016/j.jmb.2021.167295] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 11/20/2022]
Abstract
In addition to a conventional relaxed state, a fraction of myosins in the cardiac muscle exists in a low-energy consuming super-relaxed (SRX) state, which is kept as a reserve pool that may be engaged under sustained increased cardiac demand. The conventional relaxed and the super-relaxed states are widely assumed to correspond to a structure where myosin heads are in an open configuration, free to interact with actin, and a closed configuration, inhibiting binding to actin, respectively. Disruption of the myosin SRX population is an emerging model in different heart diseases, such as hypertrophic cardiomyopathy, which results in excessive muscle contraction, and stabilizing them using myosin inhibitors is budding as an attractive therapeutic strategy. Here we examined the structure-function relationships of two myosin ATPase inhibitors, mavacamten and para-nitroblebbistatin, and found that binding of mavacamten at a site different than para-nitroblebbistatin populates myosin into the SRX state. Para-nitroblebbistatin, binding to a distal pocket to the myosin lever arm near the nucleotide-binding site, does not affect the usual myosin SRX state but instead appears to render myosin into a new, perhaps much more inhibited, 'ultra-relaxed' state. X-ray scattering-based rigid body modeling shows that both mavacamten and para-nitroblebbistatin induce novel conformations in human β-cardiac heavy meromyosin that diverge significantly from the hypothetical open and closed states, and furthermore, mavacamten treatment causes greater compaction than para-nitroblebbistatin. Taken together, we conclude that mavacamten and para-nitroblebbistatin stabilize myosin in different structural states, and such states may give rise to different functional energy-sparing states.
Collapse
|
129
|
Castle EL, Robinson CA, Douglas P, Rinker KD, Corcoran JA. Viral Manipulation of a Mechanoresponsive Signaling Axis Disassembles Processing Bodies. Mol Cell Biol 2021; 41:e0039921. [PMID: 34516278 PMCID: PMC8547432 DOI: 10.1128/mcb.00399-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 12/23/2022] Open
Abstract
Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA decay that are targeted for disassembly by many viruses. Kaposi's sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi's sarcoma, and a PB-regulating virus. The virus encodes kaposin B (KapB), which induces actin stress fibers (SFs) and cell spindling as well as PB disassembly. We now show that KapB-mediated PB disassembly requires actin rearrangements, RhoA effectors, and the mechanoresponsive transcription activator, YAP. Moreover, ectopic expression of active YAP or exposure of ECs to mechanical forces caused PB disassembly in the absence of KapB. We propose that the viral protein KapB activates a mechanoresponsive signaling axis and links changes in cell shape and cytoskeletal structures to enhanced inflammatory molecule expression using PB disassembly. Our work implies that cytoskeletal changes in other pathologies may similarly impact the inflammatory environment.
Collapse
Affiliation(s)
- Elizabeth L. Castle
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolyn-Ann Robinson
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pauline Douglas
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kristina D. Rinker
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical and Petroleum Engineering and Centre for Bioengineering Research and Education, University of Calgary, Calgary, Alberta, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A. Corcoran
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
130
|
Chin IL, Hool L, Choi YS. Interrogating cardiac muscle cell mechanobiology on stiffness gradient hydrogels. Biomater Sci 2021; 9:6795-6806. [PMID: 34542112 DOI: 10.1039/d1bm01061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Extracellular matrix (ECM) remodeling is a major facet of cardiac development and disease, yet our understanding of cardiomyocyte mechanotransduction remains limited. To enhance our understanding of cardiomyocyte mechanosensation, we studied stiffness-driven changes to cell morphology and mechanomarker expression in H9C2 cells and neonatal rat cardiomyocytes (NRCMs). Linear stiffness gradient polyacrylamide hydrogels (2-33 kPa) coated with ECM proteins including Collagen I (Col), Fibronectin (Fn) or Laminin (Ln) were used to represent necrotic, healthy, and infarcted cardiac tissue on a continuous stiffness gradient. Cell size, cell shape and nuclear size were found to be mechanosensitive in H9C2 cells, as was the expression or nuclear translocalization of the mechanomarkers Lamin-A, YAP, and MRTF-A. Minor differences were observed between the different ECM coatings, with the same overarching stiffness-dependent trends being observed across Col, Fn and Ln coated hydrogels. Inhibition of mechanotransduction in H9C2 cells using blebbistatin or Y27632 resulted in disruptions to cell shape, nuclear shape, and nuclear size, however, trends in cell size and mechanomarker expression were not significantly attenuated. Mechanosensation in NRCMs was much less marked, with no significant changes in cell morphology being detected, although YAP did become increasingly nuclear localized with increasing stiffness. In α-actinin positive cells, striations formed with regular structure and frequency at all stiffnesses for Col and Fn coated hydrogels, but not Ln coated gels. In this study, we used our stiffness gradient hydrogels to comprehensively map the relationship between ECM stiffness and cardiac cell phenotype and found that less mature H9C2 cardiac cells are more sensitive to ECM changes than the more developed neonatal cardiomyocytes.
Collapse
Affiliation(s)
- Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| | - Livia Hool
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia. .,Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
131
|
Lilienberg J, Hegyi Z, Szabó E, Hathy E, Málnási-Csizmadia A, Réthelyi JM, Apáti Á, Homolya L. Pharmacological Modulation of Neurite Outgrowth in Human Neural Progenitor Cells by Inhibiting Non-muscle Myosin II. Front Cell Dev Biol 2021; 9:719636. [PMID: 34604221 PMCID: PMC8484915 DOI: 10.3389/fcell.2021.719636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022] Open
Abstract
Studies on neural development and neuronal regeneration after injury are mainly based on animal models. The establishment of pluripotent stem cell (PSC) technology, however, opened new perspectives for better understanding these processes in human models by providing unlimited cell source for hard-to-obtain human tissues. Here, we aimed at identifying the molecular factors that confine and modulate an early step of neural regeneration, the formation of neurites in human neural progenitor cells (NPCs). Enhanced green fluorescent protein (eGFP) was stably expressed in NPCs differentiated from human embryonic and induced PSC lines, and the neurite outgrowth was investigated under normal and injury-related conditions using a high-content screening system. We found that inhibitors of the non-muscle myosin II (NMII), blebbistatin and its novel, non-toxic derivatives, initiated extensive neurite outgrowth in human NPCs. The extracellular matrix components strongly influenced the rate of neurite formation but NMII inhibitors were able to override the inhibitory effect of a restrictive environment. Non-additive stimulatory effect on neurite generation was also detected by the inhibition of Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), the upstream regulator of NMII. In contrast, inhibition of c-Jun N-terminal kinases (JNKs) had only a negligible effect, suggesting that the ROCK1 signal is dominantly manifested by actomyosin activity. In addition to providing a reliable cell-based in vitro model for identifying intrinsic mechanisms and environmental factors responsible for impeded axonal regeneration in humans, our results demonstrate that NMII and ROCK1 are important pharmacological targets for the augmentation of neural regeneration at the progenitor level. These studies may open novel perspectives for development of more effective pharmacological treatments and cell therapies for various neurodegenerative disorders.
Collapse
Affiliation(s)
- Julianna Lilienberg
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Hegyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Edit Hathy
- Molecular Psychiatry and in vitro Disease Modelling Research Group, National Brain Research Project, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - András Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Eötvös Loránd University, Budapest, Hungary.,Motorpharma, Ltd., Budapest, Hungary
| | - János M Réthelyi
- Molecular Psychiatry and in vitro Disease Modelling Research Group, National Brain Research Project, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Ágota Apáti
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
132
|
Keloid fibroblasts have elevated and dysfunctional mechanotransduction signaling that is independent of TGF-β. J Dermatol Sci 2021; 104:11-20. [PMID: 34538705 DOI: 10.1016/j.jdermsci.2021.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fibroblasts found in keloid tissues are known to present an altered sensitivity to microenvironmental stimuli. However, the impact of changes in extracellular matrix stiffness on phenotypes of normal fibroblasts (NFs) and keloid fibroblasts (KFs) is poorly understood. OBJECTIVES Investigation the impact of matrix stiffness on NFs and KFs mainly via detecting yes-associated protein (YAP) expression. METHODS We used fibronectin-coated polyacrylamide hydrogel substrates with a range from physiological to pathological stiffness values with or without TGF-β (fibrogenic inducer). Atomic force microscopy was used to measure the stiffness of fibroblasts. Cellular mechanoresponses were screened by immunocytochemistry, Western blot and Luminex assay. RESULTS KFs are stiffer than NFs with greater expression of α-SMA. In NFs, YAP nuclear translocation was induced by increasing matrix stiffness as well as by stimulation with TGF-β. In contrast, KFs showed higher baseline levels of nuclear YAP that was not responsive to matrix stiffness or TGF-β. TGF-β1 induced p-SMAD3 in both KFs and NFs, demonstrating the pathway was functional and not hyperactivated in KFs. Moreover, blebbistatin suppressed α-SMA expression and cellular stiffness in KFs, linking the elevated YAP signaling to keloid phenotype. CONCLUSIONS These data suggest that whilst normal skin fibroblasts respond to matrix stiffness in vitro, keloid fibroblasts have elevated activation of mechanotransduction signaling insensitive to the microenvironment. This elevated signaling appears linked to the expression of α-SMA, suggesting a direct link to disease pathogenesis. These findings suggest changes to keloid fibroblast phenotype related to mechanotransduction contribute to disease and may be a useful therapeutic target.
Collapse
|
133
|
Stewart TJ, Murthy V, Dugan SP, Baker JE. Velocity of myosin-based actin sliding depends on attachment and detachment kinetics and reaches a maximum when myosin-binding sites on actin saturate. J Biol Chem 2021; 297:101178. [PMID: 34508779 PMCID: PMC8560993 DOI: 10.1016/j.jbc.2021.101178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/22/2022] Open
Abstract
Molecular motors such as kinesin and myosin often work in groups to generate the directed movements and forces critical for many biological processes. Although much is known about how individual motors generate force and movement, surprisingly, little is known about the mechanisms underlying the macroscopic mechanics generated by multiple motors. For example, the observation that a saturating number, N, of myosin heads move an actin filament at a rate that is influenced by actin–myosin attachment and detachment kinetics is accounted for neither experimentally nor theoretically. To better understand the emergent mechanics of actin–myosin mechanochemistry, we use an in vitro motility assay to measure and correlate the N-dependence of actin sliding velocities, actin-activated ATPase activity, force generation against a mechanical load, and the calcium sensitivity of thin filament velocities. Our results show that both velocity and ATPase activity are strain dependent and that velocity becomes maximized with the saturation of myosin-binding sites on actin at a value that is 40% dependent on attachment kinetics and 60% dependent on detachment kinetics. These results support a chemical thermodynamic model for ensemble motor mechanochemistry and imply molecularly explicit mechanisms within this framework, challenging the assumption of independent force generation.
Collapse
Affiliation(s)
- Travis J Stewart
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Vidya Murthy
- Department of Biomedical Engineering, University of Nevada, Reno, Nevada, USA
| | - Sam P Dugan
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Josh E Baker
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
134
|
Kim J. A possible molecular mechanism for mechanotransduction at cellular focal adhesion complexes. BIOPHYSICAL REPORTS 2021; 1:100006. [PMID: 36425310 PMCID: PMC9680735 DOI: 10.1016/j.bpr.2021.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/13/2021] [Indexed: 06/16/2023]
Abstract
Mechanotransduction at focal adhesion complexes is key for various cellular events. Theoretical analyses were performed to predict a potential role of lipid membranes in modulating mechanotransduction at focal adhesions. Calculations suggested that the size of nanostructural constraints and mechanical pulling applied on lipid membranes affect the generation of cellular traction forces and signaling transduction at focal adhesions. This work provides predictions on how lipid membranes contribute to mechanotransduction at cellular focal adhesions.
Collapse
Affiliation(s)
- Jichul Kim
- Independent Researcher, Changwon, Republic of Korea
| |
Collapse
|
135
|
Zhao X, Chen Y, Tan M, Zhao L, Zhai Y, Sun Y, Gong Y, Feng X, Du J, Fan Y. Extracellular Matrix Stiffness Regulates DNA Methylation by PKCα-Dependent Nuclear Transport of DNMT3L. Adv Healthc Mater 2021; 10:e2100821. [PMID: 34174172 DOI: 10.1002/adhm.202100821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Extracellular matrix (ECM) stiffness has profound effects on the regulation of cell functions. DNA methylation is an important epigenetic modification governing gene expression. However, the effects of ECM stiffness on DNA methylation remain elusive. Here, it is reported that DNA methylation is sensitive to ECM stiffness, with a global hypermethylation under stiff ECM condition in mouse embryonic stem cells (mESCs) and embryonic fibroblasts compared with soft ECM. Stiff ECM enhances DNA methylation of both promoters and gene bodies, especially the 5' promoter regions of pluripotent genes. The enhanced DNA methylation is functionally required for the loss of pluripotent gene expression in mESCs grown on stiff ECM. Further experiments reveal that the nuclear transport of DNA methyltransferase 3-like (DNMT3L) is promoted by stiff ECM in a protein kinase C α (PKCα)-dependent manner and DNMT3L can be binding to Nanog promoter regions during cell-ECM interactions. These findings unveil DNA methylation as a novel target for the mechanical sensing mechanism of ECM stiffness, which provides a conserved mechanism for gene expression regulation during cell-ECM interactions.
Collapse
Affiliation(s)
- Xin‐Bin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yun‐Ping Chen
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Min Tan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Lan Zhao
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Yuan‐Yuan Zhai
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Yan‐Ling Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yan Gong
- School of Materials Science and Engineering Beijing Institute of Fashion Technology Beijing 100029 China
| | - Xi‐Qiao Feng
- Institute of Biomechanics and Medical Engineering Department of Engineering Mechanics Tsinghua University Beijing 100084 China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| | - Yu‐Bo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering Beihang University Beijing 100083 China
| |
Collapse
|
136
|
Aghaizu ND, Warre-Cornish KM, Robinson MR, Waldron PV, Maswood RN, Smith AJ, Ali RR, Pearson RA. Repeated nuclear translocations underlie photoreceptor positioning and lamination of the outer nuclear layer in the mammalian retina. Cell Rep 2021; 36:109461. [PMID: 34348137 PMCID: PMC8356022 DOI: 10.1016/j.celrep.2021.109461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/19/2019] [Accepted: 07/09/2021] [Indexed: 12/28/2022] Open
Abstract
In development, almost all stratified neurons must migrate from their birthplace to the appropriate neural layer. Photoreceptors reside in the most apical layer of the retina, near their place of birth. Whether photoreceptors require migratory events for fine-positioning and/or retention within this layer is not well understood. Here, we show that photoreceptor nuclei of the developing mouse retina cyclically exhibit rapid, dynein-1-dependent translocation toward the apical surface, before moving more slowly in the basal direction, likely due to passive displacement by neighboring retinal nuclei. Attenuating dynein 1 function in rod photoreceptors results in their ectopic basal displacement into the outer plexiform layer and inner nuclear layer. Synapse formation is also compromised in these displaced cells. We propose that repeated, apically directed nuclear translocation events are necessary to ensure retention of post-mitotic photoreceptors within the emerging outer nuclear layer during retinogenesis, which is critical for correct neuronal lamination.
Collapse
Affiliation(s)
- Nozie D Aghaizu
- University College London Institute of Ophthalmology, London EC1V 9EL, UK.
| | | | - Martha R Robinson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Paul V Waldron
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Ryea N Maswood
- University College London Institute of Ophthalmology, London EC1V 9EL, UK
| | - Alexander J Smith
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Robin R Ali
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK
| | - Rachael A Pearson
- University College London Institute of Ophthalmology, London EC1V 9EL, UK; Centre for Cell and Gene Therapy, King's College London, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|
137
|
Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory. Cells 2021; 10:cells10071795. [PMID: 34359964 PMCID: PMC8305626 DOI: 10.3390/cells10071795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Evidence indicates that long-term memory formation creates long-lasting changes in neuronal morphology within a specific neuronal network that forms the memory trace. Dendritic spines, which include most of the excitatory synapses in excitatory neurons, are formed or eliminated by learning. These changes may be long-lasting and correlate with memory strength. Moreover, learning-induced changes in the morphology of existing spines can also contribute to the formation of the neuronal network that underlies memory. Altering spines morphology after memory consolidation can erase memory. These observations strongly suggest that learning-induced spines modifications can constitute the changes in synaptic connectivity within the neuronal network that form memory and that stabilization of this network maintains long-term memory. The formation and elimination of spines and other finer morphological changes in spines are mediated by the actin cytoskeleton. The actin cytoskeleton forms networks within the spine that support its structure. Therefore, it is believed that the actin cytoskeleton mediates spine morphogenesis induced by learning. Any long-lasting changes in the spine morphology induced by learning require the preservation of the spine actin cytoskeleton network to support and stabilize the spine new structure. However, the actin cytoskeleton is highly dynamic, and the turnover of actin and its regulatory proteins that determine and support the actin cytoskeleton network structure is relatively fast. Molecular models, suggested here, describe ways to overcome the dynamic nature of the actin cytoskeleton and the fast protein turnover and to support an enduring actin cytoskeleton network within the spines, spines stability and long-term memory. These models are based on long-lasting changes in actin regulatory proteins concentrations within the spine or the formation of a long-lasting scaffold and the ability for its recurring rebuilding within the spine. The persistence of the actin cytoskeleton network within the spine is suggested to support long-lasting spine structure and the maintenance of long-term memory.
Collapse
|
138
|
Narasimhan BN, Horrocks MS, Malmström J. Hydrogels with Tunable Physical Cues and Their Emerging Roles in Studies of Cellular Mechanotransduction. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Badri Narayanan Narasimhan
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Matthew S. Horrocks
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering University of Auckland Private Bag 92019 Auckland 1142 New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology Victoria University of Wellington PO Box 600 Wellington 6140 New Zealand
| |
Collapse
|
139
|
Stătescu C, Enachi Ș, Ureche C, Țăpoi L, Anghel L, Șalaru D, Pleșoianu C, Bostan M, Marcu D, Ovanez Balasanian M, Sascău RA. Pushing the Limits of Medical Management in HCM: A Review of Current Pharmacological Therapy Options. Int J Mol Sci 2021; 22:ijms22137218. [PMID: 34281272 PMCID: PMC8268685 DOI: 10.3390/ijms22137218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common monogenic cardiac disease with a highly variable phenotypic expression, ranging from asymptomatic to drug refractory heart failure (HF) presentation. Pharmacological therapy is the first line of treatment, but options are currently limited to nonspecific medication like betablockers or calcium channel inhibitors, with frequent suboptimal results. While being the gold standard practice for the management of drug refractory HCM patients, septal reduction therapy (SRT) remains an invasive procedure with associated surgical risks and it requires the expertise of the operating centre, thus limiting its accessibility. It is therefore with high interest that researchers look for pharmacological alternatives that could provide higher rates of success. With new data gathering these past years as well as the development of a new drug class showing promising results, this review provides an up-to-date focused synthesis of existing medical treatment options and future directions for HCM pharmacological treatment.
Collapse
Affiliation(s)
- Cristian Stătescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ștefana Enachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Correspondence: ; Tel.: +40-749-630-641
| | - Carina Ureche
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Țăpoi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
| | - Larisa Anghel
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Delia Șalaru
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Carmen Pleșoianu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mădălina Bostan
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragoș Marcu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mircea Ovanez Balasanian
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Radu Andy Sascău
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I.M. Georgescu”, Carol I Boulevard No. 50, 700503 Iași, Romania; (C.S.); (C.U.); (L.Ț.); (L.A.); (D.Ș.); (C.P.); (M.B.); (D.M.); (M.O.B.); (R.A.S.)
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
140
|
Balch HB, McGuire AF, Horng J, Tsai HZ, Qi KK, Duh YS, Forrester PR, Crommie MF, Cui B, Wang F. Graphene Electric Field Sensor Enables Single Shot Label-Free Imaging of Bioelectric Potentials. NANO LETTERS 2021; 21:4944-4949. [PMID: 34102057 PMCID: PMC8510444 DOI: 10.1021/acs.nanolett.1c00543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The measurement of electrical activity across systems of excitable cells underlies current progress in neuroscience, cardiac pharmacology, and neurotechnology. However, bioelectricity spans orders of magnitude in intensity, space, and time, posing substantial technological challenges. The development of methods permitting network-scale recordings with high spatial resolution remains key to studies of electrogenic cells, emergent networks, and bioelectric computation. Here, we demonstrate single-shot and label-free imaging of extracellular potentials with high resolution across a wide field-of-view. The critically coupled waveguide-amplified graphene electric field (CAGE) sensor leverages the field-sensitive optical transitions in graphene to convert electric potentials into the optical regime. As a proof-of-concept, we use the CAGE sensor to detect native electrical activity from cardiac action potentials with tens-of-microns resolution, simultaneously map the propagation of these potentials at tissue-scale, and monitor their modification by pharmacological agents. This platform is robust, scalable, and compatible with existing microscopy techniques for multimodal correlative imaging.
Collapse
Affiliation(s)
- Halleh B Balch
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Allister F McGuire
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jason Horng
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hsin-Zon Tsai
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Kevin K Qi
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Yi-Shiou Duh
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Patrick R Forrester
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Michael F Crommie
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Feng Wang
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
141
|
Saleem U, van Meer BJ, Katili PA, Mohd Yusof NAN, Mannhardt I, Garcia AK, Tertoolen L, de Korte T, Vlaming MLH, McGlynn K, Nebel J, Bahinski A, Harris K, Rossman E, Xu X, Burton FL, Smith GL, Clements P, Mummery CL, Eschenhagen T, Hansen A, Denning C. Blinded, Multicenter Evaluation of Drug-induced Changes in Contractility Using Human-induced Pluripotent Stem Cell-derived Cardiomyocytes. Toxicol Sci 2021; 176:103-123. [PMID: 32421822 PMCID: PMC7357169 DOI: 10.1093/toxsci/kfaa058] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Animal models are 78% accurate in determining whether drugs will alter contractility of the human heart. To evaluate the suitability of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for predictive safety pharmacology, we quantified changes in contractility, voltage, and/or Ca2+ handling in 2D monolayers or 3D engineered heart tissues (EHTs). Protocols were unified via a drug training set, allowing subsequent blinded multicenter evaluation of drugs with known positive, negative, or neutral inotropic effects. Accuracy ranged from 44% to 85% across the platform-cell configurations, indicating the need to refine test conditions. This was achieved by adopting approaches to reduce signal-to-noise ratio, reduce spontaneous beat rate to ≤ 1 Hz or enable chronic testing, improving accuracy to 85% for monolayers and 93% for EHTs. Contraction amplitude was a good predictor of negative inotropes across all the platform-cell configurations and of positive inotropes in the 3D EHTs. Although contraction- and relaxation-time provided confirmatory readouts forpositive inotropes in 3D EHTs, these parameters typically served as the primary source of predictivity in 2D. The reliance of these “secondary” parameters to inotropy in the 2D systems was not automatically intuitive and may be a quirk of hiPSC-CMs, hence require adaptations in interpreting the data from this model system. Of the platform-cell configurations, responses in EHTs aligned most closely to the free therapeutic plasma concentration. This study adds to the notion that hiPSC-CMs could add value to drug safety evaluation.
Collapse
Affiliation(s)
- Umber Saleem
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, and DZHK (German Center for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Berend J van Meer
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD, Leiden, The Netherlands
| | - Puspita A Katili
- Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Nurul A N Mohd Yusof
- Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, and DZHK (German Center for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Ana Krotenberg Garcia
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD, Leiden, The Netherlands
| | - Leon Tertoolen
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD, Leiden, The Netherlands
| | - Tessa de Korte
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD, Leiden, The Netherlands.,Ncardia, 2333 BD, Leiden, The Netherlands
| | | | - Karen McGlynn
- Clyde Biosciences Ltd, Biocity Scotland, Newhouse, Lanarkshire ML1 5HU, UK
| | - Jessica Nebel
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, and DZHK (German Center for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | | | | | - Eric Rossman
- GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - Xiaoping Xu
- GlaxoSmithKline, Collegeville, Pennsylvania 19426
| | - Francis L Burton
- Clyde Biosciences Ltd, Biocity Scotland, Newhouse, Lanarkshire ML1 5HU, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Godfrey L Smith
- Clyde Biosciences Ltd, Biocity Scotland, Newhouse, Lanarkshire ML1 5HU, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Peter Clements
- GlaxoSmithKline, David Jack Centre for R&D, Ware, Hertfordshire SG12 0DP, UK
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZD, Leiden, The Netherlands.,Department Applied Stem Cell Technologies, University of Twente, 7500 EA Enschede, The Netherlands
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, and DZHK (German Center for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, 20246 Hamburg, and DZHK (German Center for Cardiovascular Research), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Chris Denning
- Department of Stem Cell Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
142
|
Narasimhan M, Gallei M, Tan S, Johnson A, Verstraeten I, Li L, Rodriguez L, Han H, Himschoot E, Wang R, Vanneste S, Sánchez-Simarro J, Aniento F, Adamowski M, Friml J. Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking. PLANT PHYSIOLOGY 2021; 186:1122-1142. [PMID: 33734402 PMCID: PMC8195513 DOI: 10.1093/plphys/kiab134] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/23/2021] [Indexed: 05/08/2023]
Abstract
The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere with Brefeldin A-mediated intracellular PIN2 accumulation and also with general aggregation of endomembrane compartments. NAA treatment decreased the internalization of the endocytic tracer dye, FM4-64; however, NAA treatment also affected the number, distribution, and compartment identity of the early endosome/trans-Golgi network, rendering the FM4-64 endocytic assays at high NAA concentrations unreliable. To circumvent these nonspecific effects of NAA and IAA affecting the endomembrane system, we opted for alternative approaches visualizing the endocytic events directly at the plasma membrane (PM). Using total internal reflection fluorescence microscopy, we saw no significant effects of IAA or NAA treatments on the incidence and dynamics of clathrin foci, implying that these treatments do not affect the overall endocytosis rate. However, both NAA and IAA at low concentrations rapidly and specifically promoted endocytosis of photo-converted PIN2 from the PM. These analyses identify a specific effect of NAA and IAA on PIN2 endocytosis, thus, contributing to its polarity maintenance and furthermore illustrate that high auxin levels have nonspecific effects on trafficking and endomembrane compartments.
Collapse
Affiliation(s)
| | - Michelle Gallei
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Shutang Tan
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Alexander Johnson
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Inge Verstraeten
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lanxin Li
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Lesia Rodriguez
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Huibin Han
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Ellie Himschoot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Ren Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Judit Sánchez-Simarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain
| | - Maciek Adamowski
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST), Klosterneuburg 3400, Austria
| |
Collapse
|
143
|
Foo YY, Motakis E, Tiang Z, Shen S, Lai JKH, Chan WX, Wiputra H, Chen N, Chen CK, Winkler C, Foo RSY, Yap CH. Effects of extended pharmacological disruption of zebrafish embryonic heart biomechanical environment on cardiac function, morphology, and gene expression. Dev Dyn 2021; 250:1759-1777. [PMID: 34056790 DOI: 10.1002/dvdy.378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Biomechanical stimuli are known to be important to cardiac development, but the mechanisms are not fully understood. Here, we pharmacologically disrupted the biomechanical environment of wild-type zebrafish embryonic hearts for an extended duration and investigated the consequent effects on cardiac function, morphological development, and gene expression. RESULTS Myocardial contractility was significantly diminished or abolished in zebrafish embryonic hearts treated for 72 hours from 2 dpf with 2,3-butanedione monoxime (BDM). Image-based flow simulations showed that flow wall shear stresses were abolished or significantly reduced with high oscillatory shear indices. At 5 dpf, after removal of BDM, treated embryonic hearts were maldeveloped, having disrupted cardiac looping, smaller ventricles, and poor cardiac function (lower ejected flow, bulboventricular regurgitation, lower contractility, and slower heart rate). RNA sequencing of cardiomyocytes of treated hearts revealed 922 significantly up-regulated genes and 1,698 significantly down-regulated genes. RNA analysis and subsequent qPCR and histology validation suggested that biomechanical disruption led to an up-regulation of inflammatory and apoptotic genes and down-regulation of ECM remodeling and ECM-receptor interaction genes. Biomechanics disruption also prevented the formation of ventricular trabeculation along with notch1 and erbb4a down-regulation. CONCLUSIONS Extended disruption of biomechanical stimuli caused maldevelopment, and potential genes responsible for this are identified.
Collapse
Affiliation(s)
- Yoke Yin Foo
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Efthymios Motakis
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zenia Tiang
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shuhao Shen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jason Kuan Han Lai
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Hadi Wiputra
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nanguang Chen
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Cardiology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Roger Sik Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
144
|
Karpicheva OE. Hallmark Features of the Tropomyosin
Regulatory Function in Several Variants of Congenital Myopathy. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
145
|
Nishimura Y, Shi S, Zhang F, Liu R, Takagi Y, Bershadsky AD, Viasnoff V, Sellers JR. The formin inhibitor SMIFH2 inhibits members of the myosin superfamily. J Cell Sci 2021; 134:237818. [PMID: 33589498 PMCID: PMC8121067 DOI: 10.1242/jcs.253708] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
The small molecular inhibitor of formin FH2 domains, SMIFH2, is widely used in cell biological studies. It inhibits formin-driven actin polymerization in vitro, but not polymerization of pure actin. It is active against several types of formin from different species. Here, we found that SMIFH2 inhibits retrograde flow of myosin 2 filaments and contraction of stress fibers. We further checked the effect of SMIFH2 on non-muscle myosin 2A and skeletal muscle myosin 2 in vitro, and found that SMIFH2 inhibits activity of myosin ATPase and the ability to translocate actin filaments in the gliding actin in vitro motility assay. Inhibition of non-muscle myosin 2A in vitro required a higher concentration of SMIFH2 compared with that needed to inhibit retrograde flow and stress fiber contraction in cells. We also found that SMIFH2 inhibits several other non-muscle myosin types, including bovine myosin 10, Drosophila myosin 7a and Drosophila myosin 5, more efficiently than it inhibits formins. These off-target inhibitions demand additional careful analysis in each case when solely SMIFH2 is used to probe formin functions. This article has an associated First Person interview with Yukako Nishimura, joint first author of the paper.
Collapse
Affiliation(s)
- Yukako Nishimura
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Shidong Shi
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| | - Fang Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yasuharu Takagi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexander D Bershadsky
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Virgile Viasnoff
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.,CNRS UMI 3639 BMC, Singapore 117411, Singapore.,Department of Biological Sciences, National university of Singapore, Singapore 117558, Singapore
| | - James R Sellers
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
146
|
Shi X, Wen Z, Wang Y, Liu YJ, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol 2021; 9:665919. [PMID: 33928090 PMCID: PMC8076160 DOI: 10.3389/fcell.2021.665919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton and membrane-associated caveolae contribute to active processes, such as cell morphogenesis and motility. How these two systems interact and control directional cell migration is an outstanding question but remains understudied. Here we identified a negative feedback between contractile actin assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-1 vesicles display actin-associated motilities by sliding along actin filaments or/and coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1 phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile stress fibers and prominent lamellipodia. As a result, cells displayed depolarized morphology and compromised directional migration. Collectively, we propose a model in which feedback-driven regulation between actin and CAV-1 instructs persistent cell migration.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Wang
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
147
|
Che B, Zhao W, Liu Y, Sun D, Jing G, Bai J, Feng X, Zhang C. Dynamic intracellular mechanical cues facilitate collective signaling responses. iScience 2021; 24:102396. [PMID: 33997681 PMCID: PMC8091894 DOI: 10.1016/j.isci.2021.102396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 04/02/2021] [Indexed: 12/02/2022] Open
Abstract
Collective behavior emerges in diverse life machineries, e.g., the immune responses to dynamic stimulations. The essential questions that arise here are that whether and how cells in vivo collectively respond to stimulation frequencies higher than their intrinsic natural values, e.g., the acute inflammation conditions. In this work, we systematically studied morphological and signaling responses of population fibroblasts in an interconnected cell monolayer and uncovered that, besides the natural NF-κB oscillation frequency of 1/90 min−1, collective signaling response emerges in the cell monolayer at 1/20 min−1 TNF-α input periodicity as well. Using a customized microfluidic device, we independently induced dynamic chemical stimulation and cytoskeleton reorganization on the stand-alone cells to exclude the effect of cell-cell communication. Our results reveal that, at this particular frequency, chemical stimulation is translated into dynamic intracellular mechanical cues through RAC1-medicated induction of dynamic cell-cell connections and cytoskeleton reorganizations, which synergize with chemical input to facilitate collective signaling responses. Dynamic intracellular mechanical cues facilitate collective cellular responses The dynamic chemical stimulations are translated into intracellular mechanical cues The synergy between dynamic mechanical and chemical signal plays crucial roles
Collapse
Affiliation(s)
- Bingchen Che
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Yanan Liu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Dan Sun
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Guangyin Jing
- School of Physics, Northwest University, Xi'an 710069, China
| | - Jintao Bai
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| | - Xiqiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
148
|
Dipalo M, Rastogi SK, Matino L, Garg R, Bliley J, Iachetta G, Melle G, Shrestha R, Shen S, Santoro F, Feinberg AW, Barbaglia A, Cohen-Karni T, De Angelis F. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes. SCIENCE ADVANCES 2021; 7:7/15/eabd5175. [PMID: 33827809 PMCID: PMC8026128 DOI: 10.1126/sciadv.abd5175] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/17/2021] [Indexed: 05/19/2023]
Abstract
Graphene with its unique electrical properties is a promising candidate for carbon-based biosensors such as microelectrodes and field effect transistors. Recently, graphene biosensors were successfully used for extracellular recording of action potentials in electrogenic cells; however, intracellular recordings remain beyond their current capabilities because of the lack of an efficient cell poration method. Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio. We exploit the generation of hot carriers by ultrafast pulsed laser for porating the cell membrane and creating an intimate contact between the 3DFG electrodes and the intracellular domain. This approach enables us to detect the effects of drugs on the action potential shape of human-derived cardiomyocytes. The 3DFG electrodes combined with laser poration may be used for all-carbon intracellular microelectrode arrays to allow monitoring of the cellular electrophysiological state.
Collapse
Affiliation(s)
| | - Sahil K Rastogi
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Laura Matino
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples 80125, Italy
- Dipartimento di Ingegneria Chimica, dei Materiali e delle Produzioni Industriali, DICMAPI, Università 'Federico II', Naples 80125, Italy
| | - Raghav Garg
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jacqueline Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | - Ramesh Shrestha
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Sheng Shen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Francesca Santoro
- Tissue Electronics, Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Tzahi Cohen-Karni
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
149
|
Lavrenyuk K, Conway D, Dahl KN. Imaging methods in mechanosensing: a historical perspective and visions for the future. Mol Biol Cell 2021; 32:842-854. [PMID: 33788578 PMCID: PMC8108522 DOI: 10.1091/mbc.e20-10-0671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Over the past three decades, as mechanobiology has become a distinct area of study, researchers have developed novel imaging tools to discover the pathways of biomechanical signaling. Early work with substrate engineering and particle tracking demonstrated the importance of cell–extracellular matrix interactions on the cell cycle as well as the mechanical flux of the intracellular environment. Most recently, tension sensor approaches allowed directly measuring tension in cell–cell and cell–substrate interactions. We retrospectively analyze how these various optical techniques progressed the field and suggest our vision forward for a unified theory of cell mechanics, mapping cellular mechanosensing, and novel biomedical applications for mechanobiology.
Collapse
Affiliation(s)
- Kirill Lavrenyuk
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| | - Daniel Conway
- Virginia Commonwealth University, College of Engineering, Richmond, VA 23284
| | - Kris Noel Dahl
- Carnegie Mellon University, College of Engineering, Pittsburgh, PA 15213
| |
Collapse
|
150
|
Colonization of distant organs by tumor cells generating circulating homotypic clusters adaptive to fluid shear stress. Sci Rep 2021; 11:6150. [PMID: 33731803 PMCID: PMC7969766 DOI: 10.1038/s41598-021-85743-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Once disseminated tumor cells (DTCs) arrive at a metastatic organ, they remain there, latent, and become seeds of metastasis. However, the clonal composition of DTCs in a latent state remains unclear. Here, we applied high-resolution DNA barcode tracking to a mouse model that recapitulated the metastatic dormancy of head and neck squamous cell carcinoma (HNSCC). We found that clones abundantly circulated peripheral blood dominated DTCs. Through analyses of multiple barcoded clonal lines, we identified specific subclonal population that preferentially generated homotypic circulating tumor cell (CTC) clusters and dominated DTCs. Despite no notable features under static conditions, this population significantly generated stable cell aggregates that were resistant to anoikis under fluid shear stress (FSS) conditions in an E-cadherin-dependent manner. Our data from various cancer cell lines indicated that the ability of aggregate-constituting cells to regulate cortical actin-myosin dynamics governed the aggregates' stability in FSS. The CTC cluster-originating cells were characterized by the expression of a subset of E-cadherin binding factors enriched with actin cytoskeleton regulators. Furthermore, this expression signature was associated with locoregional and metastatic recurrence in HNSCC patients. These results reveal a biological selection of tumor cells capable of generating FSS-adaptive CTC clusters, which leads to distant colonization.
Collapse
|