101
|
Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, Fat I, Guigni B, Jurczak MJ, Birkenfeld AL, Kahn M, Perler BK, Puchowicz MA, Manchem VP, Bhanot S, Still CD, Gerhard GS, Petersen KF, Cline GW, Shulman GI, Samuel VT. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes 2013; 62:2183-94. [PMID: 23423574 PMCID: PMC3712050 DOI: 10.2337/db12-1311] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat-fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes.
Collapse
Affiliation(s)
- Naoki Kumashiro
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sara A. Beddow
- Veterans Affairs Medical Center, West Haven, Connecticut
| | - Daniel F. Vatner
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Sachin K. Majumdar
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer L. Cantley
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | - Ioana Fat
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Blas Guigni
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Michael J. Jurczak
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andreas L. Birkenfeld
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Bryce K. Perler
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | | | | | | | | | - Glenn S. Gerhard
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gary W. Cline
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gerald I. Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Varman T. Samuel
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
- Veterans Affairs Medical Center, West Haven, Connecticut
- Corresponding author: Varman T. Samuel,
| |
Collapse
|
102
|
Menezes AL, Pereira MP, Buzelle SL, Dos Santos MP, de França SA, Baviera AM, Andrade CMB, Garófalo MAR, Kettelhut IDC, Chaves VE, Kawashita NH. A low-protein, high-carbohydrate diet increases de novo fatty acid synthesis from glycerol and glycerokinase content in the liver of growing rats. Nutr Res 2013; 33:494-502. [PMID: 23746566 DOI: 10.1016/j.nutres.2013.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 10/26/2022]
Abstract
We had previously shown that adipose tissue increased in rats fed a low-protein, high-carbohydrate (LPHC) diet (6% protein, 74% carbohydrate) without a simultaneous increase in the de novo fatty acids (FA) synthesis. In addition, impairment in insulin signaling in adipose tissues was observed in these rats. For this study, we hypothesized that the insulin signaling pathway is preserved in the livers from these rats, which contributes to an increase in liver lipogenesis and, consequently, an increase in the weight of the adipose tissue. We also hypothesized that glycerol from triacylglycerol is an important substrate for FA synthesis. Our results showed that administration of the LPHC diet induced an increase in the in vivo rate of total FA synthesis (150%) as well as FA synthesis from glucose (270%) in the liver. There were also increased rates of [U-¹⁴C]glycerol incorporation into glyceride-FA (15-fold), accompanied by increased glycerokinase content (30%) compared with livers of rats fed the control diet. The LPHC diet did not change the glycerol-3-phosphate generation from either glucose or glyceroneogenesis. There was an increase in the insulin sensitivity in liver from LPHC-fed rats, as evidenced by increases in IR(β) (35%) levels and serine/threonine protein kinase (AKT) levels (75%), and basal (95%) and insulin-stimulated AKT phosphorylation (105%) levels. The LPHC diet also induced an increase in the liver sterol regulatory element-binding protein-1c content (50%). In summary, these data confirmed the hypothesis that lipogenesis and insulin signaling are increased in the livers of LPHC-fed rats and that glycerol is important not only for FA esterification but also for FA synthesis.
Collapse
Affiliation(s)
- Andreza Lúcia Menezes
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso 78060-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Trans-10, cis 12-Conjugated Linoleic Acid-Induced Milk Fat Depression Is Associated with Inhibition of PPARγ Signaling and Inflammation in Murine Mammary Tissue. J Lipids 2013; 2013:890343. [PMID: 23762566 PMCID: PMC3666273 DOI: 10.1155/2013/890343] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/18/2013] [Indexed: 12/19/2022] Open
Abstract
Exogenous trans-10, cis-12-CLA (CLA) reduces lipid synthesis in murine adipose and mammary (MG) tissues. However, genomewide alterations in MG and liver (LIV) associated with dietary CLA during lactation remain unknown. We fed mice (n = 5/diet) control or control + trans-10, cis-12-CLA (37 mg/day) between d 6 and d 10 postpartum. The 35,302 annotated murine exonic evidence-based oligo (MEEBO) microarray and quantitative RT-PCR were used for transcript profiling. Milk fat concentration was 44% lower on d 10 versus d 6 due to CLA. The CLA diet resulted in differential expression of 1,496 genes. Bioinformatics analyses underscored that a major effect of CLA on MG encompassed alterations in cellular signaling pathways and phospholipid species biosynthesis. Dietary CLA induced genes related to ER stress (Xbp1), apoptosis (Bcl2), and inflammation (Orm1, Saa2, and Cp). It also induced marked inhibition of PPAR γ signaling, including downregulation of Pparg and Srebf1 and several lipogenic target genes (Scd, Fasn, and Gpam). In LIV, CLA induced hepatic steatosis probably through perturbations in the mitochondrial functions and induction of ER stress. Overall, results from this study underscored the role of PPAR γ signaling on mammary lipogenic target regulation. The proinflammatory effect due to CLA could be related to inhibition of PPAR γ signaling.
Collapse
|
104
|
Jin ES, Sherry AD, Malloy CR. Metabolism of glycerol, glucose, and lactate in the citric acid cycle prior to incorporation into hepatic acylglycerols. J Biol Chem 2013; 288:14488-14496. [PMID: 23572519 DOI: 10.1074/jbc.m113.461947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During hepatic lipogenesis, the glycerol backbone of acylglycerols originates from one of three sources: glucose, glycerol, or substrates passing through the citric acid cycle via glyceroneogenesis. The relative contribution of each substrate source to glycerol in rat liver acylglycerols was determined using (13)C-enriched substrates and NMR. Animals received a fixed mixture of glucose, glycerol, and lactate; one group received [U-(13)C6]glucose, another received [U-(13)C3]glycerol, and the third received [U-(13)C3]lactate. After 3 h, the livers were harvested to extract fats, and the glycerol moiety from hydrolyzed acylglycerols was analyzed by (13)C NMR. In either fed or fasted animals, glucose and glycerol provided the majority of the glycerol backbone carbons, whereas the contribution of lactate was small. In fed animals, glucose contributed >50% of the total newly synthesized glycerol backbone, and 35% of this contribution occurred after glucose had passed through the citric acid cycle. By comparison, the glycerol contribution was ~40%, and of this, 17% of the exogenous glycerol passed first through the cycle. In fasted animals, exogenous glycerol became the major contributor to acylglycerols. The contribution from exogenous lactate did increase in fasted animals, but its overall contribution remained small. The contributions of glucose and glycerol that had passed through the citric acid cycle first increased in fasted animals from 35 to 71% for glucose and from 17 to 24% for glycerol. Thus, a substantial fraction from both substrate sources passed through the cycle prior to incorporation into the glycerol moiety of acylglycerols in the liver.
Collapse
Affiliation(s)
- Eunsook S Jin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390.
| | - A Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080
| | - Craig R Malloy
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390; Veterans Affairs North Texas Health Care System, Dallas, Texas 75216
| |
Collapse
|
105
|
Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA, Roddy T, Castro-Perez J, Cohen JC, Hobbs HH. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest 2013; 122:4130-44. [PMID: 23023705 DOI: 10.1172/jci65179] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
A genetic variant in PNPLA3 (PNPLA3(I148M)), a triacylglycerol (TAG) hydrolase, is a major risk factor for nonalcoholic fatty liver disease (NAFLD); however, the mechanism underlying this association is not known. To develop an animal model of PNPLA3-induced fatty liver disease, we generated transgenic mice that overexpress similar amounts of wild-type PNPLA3 (PNPLA3(WT)) or mutant PNPLA3 (PNPLA3(I148M)) either in liver or adipose tissue. Overexpression of the transgenes in adipose tissue did not affect liver fat content. Expression of PNPLA3(I148M), but not PNPLA3(WT), in liver recapitulated the fatty liver phenotype as well as other metabolic features associated with this allele in humans. Metabolic studies provided evidence for 3 distinct alterations in hepatic TAG metabolism in PNPLA3(I148M) transgenic mice: increased formation of fatty acids and TAG, impaired hydrolysis of TAG, and relative depletion of TAG long-chain polyunsaturated fatty acids. These findings suggest that PNPLA3 plays a role in remodeling TAG in lipid droplets, as they accumulate in response to food intake, and that the increase in hepatic TAG levels associated with the I148M substitution results from multiple changes in hepatic TAG metabolism. The development of an animal model that recapitulates the metabolic phenotype of the allele in humans provides a new platform in which to elucidate the role of PNLPA3(I148M) in NAFLD.
Collapse
Affiliation(s)
- John Zhong Li
- Department of Molecular Genetics, Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9046, USA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Frasson D, Boschini RP, Chaves VE, dos Santos MESM, Paula Gomes SD, Valentim RR, Garófalo MAR, Navegantes LCC, Migliorini RH, Kettelhut IDC. The sympathetic nervous system regulates the three glycerol-3P generation pathways in white adipose tissue of fasted, diabetic and high-protein diet-fed rats. Metabolism 2012; 61:1473-85. [PMID: 22592131 DOI: 10.1016/j.metabol.2012.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[(14)C]-pyruvate into glycerol-TAG. The denervation provokes a reduction (~70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a ~35% decrease in GyK activity of control rats and a further ~35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low.
Collapse
Affiliation(s)
- Danúbia Frasson
- Department of Biochemistry-Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Chaves VE, Frasson D, Garófalo MAR, Navegantes LCC, Migliorini RH, Kettelhut IC. Increased Glyceride–Glycerol Synthesis in Liver and Brown Adipose Tissue of Rat: In-Vivo Contribution of Glycolysis and Glyceroneogenesis. Lipids 2012; 47:773-80. [DOI: 10.1007/s11745-012-3683-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
108
|
Champagne CD, Houser DS, Fowler MA, Costa DP, Crocker DE. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals. Am J Physiol Regul Integr Comp Physiol 2012; 303:R340-52. [PMID: 22673783 DOI: 10.1152/ajpregu.00042.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.
Collapse
Affiliation(s)
- Cory D Champagne
- Department of Ecology & Evolutionary Biology, University of California, Santa Cruz, USA.
| | | | | | | | | |
Collapse
|
109
|
Shetty S, Ramos-Roman MA, Cho YR, Brown J, Plutzky J, Muise ES, Horton JD, Scherer PE, Parks EJ. Enhanced fatty acid flux triggered by adiponectin overexpression. Endocrinology 2012; 153:113-22. [PMID: 22045665 PMCID: PMC3249680 DOI: 10.1210/en.2011-1339] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/30/2011] [Indexed: 12/30/2022]
Abstract
Adiponectin overexpression in mice increases insulin sensitivity independent of adiposity. Here, we combined stable isotope infusion and in vivo measurements of lipid flux with transcriptomic analysis to characterize fatty acid metabolism in transgenic mice that overexpress adiponectin via the aP2-promoter (ADNTg). Compared with controls, fasted ADNTg mice demonstrated a 31% reduction in plasma free fatty acid concentrations (P = 0.008), a doubling of ketones (P = 0.028), and a 68% increase in free fatty acid turnover in plasma (15.1 ± 1.5 vs. 25.3 ± 6.8 mg/kg · min, P = 0.011). ADNTg mice had 2-fold more brown adipose tissue mass, and triglyceride synthesis and turnover were 5-fold greater in this organ (P = 0.046). Epididymal white adipose tissue was slightly reduced, possibly due to the approximately 1.5-fold increase in the expression of genes involved in oxidation (peroxisome proliferator-activated receptor α, peroxisome proliferator-activated receptor-γ coactivator 1α, and uncoupling protein 3). In ADNTg liver, lipogenic gene expression was reduced, but there was an unexpected increase in the expression of retinoid pathway genes (hepatic retinol binding protein 1 and retinoic acid receptor beta and adipose Cyp26A1) and liver retinyl ester content (64% higher, P < 0.02). Combined, these data support a physiological link between adiponectin signaling and increased efficiency of triglyceride synthesis and hydrolysis, a process that can be controlled by retinoids. Interactions between adiponectin and retinoids may underlie adiponectin's effects on intermediary metabolism.
Collapse
Affiliation(s)
- Shoba Shetty
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9052, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Miranda DA, Koves TR, Gross DA, Chadt A, Al-Hasani H, Cline GW, Schwartz GJ, Muoio DM, Silver DL. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2. J Biol Chem 2011; 286:42188-42199. [PMID: 22002063 DOI: 10.1074/jbc.m111.297127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Triacylglyceride stored in cytosolic lipid droplets (LDs) constitutes a major energy reservoir in most eukaryotes. The regulated turnover of triacylglyceride in LDs provides fatty acids for mitochondrial β-oxidation and ATP generation in physiological states of high demand for energy. The mechanisms for the formation of LDs in conditions of energy excess are not entirely understood. Fat storage-inducing transmembrane protein 2 (FIT2/FITM2) is the anciently conserved member of the fat storage-inducing transmembrane family of proteins implicated to be important in the formation of LDs, but its role in energy metabolism has not been tested. Here, we report that expression of FIT2 in mouse skeletal muscle had profound effects on muscle energy metabolism. Mice with skeletal muscle-specific overexpression of FIT2 (CKF2) had significantly increased intramyocellular triacylglyceride and complete protection from high fat diet-induced weight gain due to increased energy expenditure. Mass spectrometry-based metabolite profiling suggested that CKF2 skeletal muscle had increased oxidation of branched chain amino acids but decreased oxidation of fatty acids. Glucose was primarily utilized in CKF2 muscle for synthesis of the glycerol backbone of triacylglyceride and not for glycogen production. CKF2 muscle was ATP-deficient and had activated AMP kinase. Together, these studies indicate that FIT2 expression in skeletal muscle plays an unexpected function in regulating muscle energy metabolism and indicates an important role for lipid droplet formation in this process.
Collapse
Affiliation(s)
- Diego A Miranda
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Timothy R Koves
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, North Carolina 27704
| | - David A Gross
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, 40225 Dusseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, 40225 Dusseldorf, Germany
| | - Gary W Cline
- Diabetes Endocrinology Research Center, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Gary J Schwartz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, North Carolina 27704
| | - David L Silver
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461.
| |
Collapse
|
111
|
Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, Xiong Y, Guan KL, Zhao S. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 2011; 43:33-44. [PMID: 21726808 DOI: 10.1016/j.molcel.2011.04.028] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 04/01/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
Protein acetylation has emerged as a major mechanism in regulating cellular metabolism. Whereas most glycolytic steps are reversible, the reaction catalyzed by pyruvate kinase is irreversible, and the reverse reaction requires phosphoenolpyruvate carboxykinase (PEPCK1) to commit for gluconeogenesis. Here, we show that acetylation regulates the stability of the gluconeogenic rate-limiting enzyme PEPCK1, thereby modulating cellular response to glucose. High glucose destabilizes PEPCK1 by stimulating its acetylation. PEPCK1 is acetylated by the P300 acetyltransferase, and this acetylation stimulates the interaction between PEPCK1 and UBR5, a HECT domain containing E3 ubiquitin ligase, therefore promoting PEPCK1 ubiquitinylation and degradation. Conversely, SIRT2 deacetylates and stabilizes PEPCK1. These observations represent an example that acetylation targets a metabolic enzyme to a specific E3 ligase in response to metabolic condition changes. Given that increased levels of PEPCK are linked with type II diabetes, this study also identifies potential therapeutic targets for diabetes.
Collapse
Affiliation(s)
- Wenqing Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Medical College, Fudan University, Shanghai 20032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Buzelle SL, Santos MP, Baviera AM, Lopes CF, Garófalo MAR, Navegantes LCC, Kettelhut IC, Chaves VE, Kawashita NH. A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats. Can J Physiol Pharmacol 2011; 88:1157-65. [PMID: 21164562 DOI: 10.1139/y10-096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity - i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P - was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.
Collapse
Affiliation(s)
- Samyra L Buzelle
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Feingold KR, Moser A, Shigenaga JK, Grunfeld C. Inflammation inhibits the expression of phosphoenolpyruvate carboxykinase in liver and adipose tissue. Innate Immun 2011; 18:231-40. [PMID: 21450790 DOI: 10.1177/1753425911398678] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inhibition of adipocyte triglyceride biosynthesis is required for fatty acid mobilization during inflammation. Triglyceride biosynthesis requires glycerol 3-phosphate and phosphoenolpyruvate carboxykinase (PEPCK) plays a key role. We demonstrate that LPS, zymosan, and TNF-α decrease PEPCK in liver and fat. Turpentine decreases PEPCK in liver, but not in fat. The LPS-induced decrease in PEPCK does not occur in TLR4 deficient animals, indicating that this receptor is required. The LPS-induced decrease in hepatic PEPCK does not occur in TNF receptor/IL-1 receptor knockout mice, but occurs in fat, indicating that TNF-α/IL-1 is essential for the decrease in liver but not fat. In 3T3-L1 adipocytes TNF-α, IL-1, IL-6, and IFNγ inhibit PEPCK indicating that there are multiple pathways by which PEPCK is decreased in adipocytes. The binding of PPARγ and RXRα to the PPARγ response element in the PEPCK promoter is markedly decreased in adipose tissue nuclear extracts from LPS treated animals. Lipopolysaccharide and zymosan reduce PPARγ and RXRα expression in fat, suggesting that a decrease in PPARγ and RXRα accounts for the decrease in PEPCK. Thus, there are multiple cytokine pathways by which inflammation inhibits PEPCK expression in adipose tissue which could contribute to the increased mobilization of fatty acids during inflammation.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
114
|
Kim J, Saidel GM, Kalhan SC. Regulation of Adipose Tissue Metabolism in Humans: Analysis of Responses to the Hyperinsulinemic-Euglycemic Clamp Experiment. Cell Mol Bioeng 2011; 4:281-301. [PMID: 23646067 DOI: 10.1007/s12195-011-0162-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The suppression of lipolysis is one of the key metabolic responses of the adipose tissue during hyperinsulinemia. The failure to respond and resulting increase in plasma fatty acids could contribute to the development of insulin resistance and perturbations in the fuel homeostasis in the whole body. In this study, a mechanistic, computational model of adipose tissue metabolism in vivo has been enhanced to simulate the physiological responses during hyperinsulinemic-euglycemic clamp experiment in humans. The model incorporates metabolic intermediates and pathways that are important in the fed state. In addition, it takes into account the heterogeneity of triose phosphate pools (glycolytic vs. glyceroneogenic), within the adipose tissue. The model can simulate not only steady-state responses at different insulin levels, but also concentration dynamics of major metabolites in the adipose tissue venous blood in accord with the in vivo data. Simulations indicate that (1) regulation of lipoprotein lipase (LPL) reaction is important when the intracellular lipolysis is suppressed by insulin; (2) intracellular diglyceride levels can affect the regulatory mechanisms; and (3) glyceroneogenesis is the dominant pathway for glycerol-3-phosphate synthesis even in the presence of increased glucose uptake by the adipose tissue. Reduced redox and increased phosphorylation states provide a favorable milieu for glyceroneogenesis in response to insulin. A parameter sensitivity analysis predicts that insulin-stimulated glucose uptake would be more severely affected by impairment of GLUT4 translocation and glycolysis than by impairment of glycogen synthesis and pyruvate oxidation. Finally, simulations predict metabolic responses to altered expression of phosphoenolpyruvate carboxykinase (PEP-CK). Specifically, the increase in the rate of re-esterification of fatty acids observed experimentally with the overexpression of PEPCK in the adipose tissue would be accompanied by the up-regulation of acyl Co-A synthase.
Collapse
Affiliation(s)
- Jaeyeon Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA ; Center for Modeling Integrated Metabolic Systems, Case Western Reserve University, Cleveland, OH 44106, USA ; Department of Pathobiology, Lerner Research Institute, NE4-203, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
115
|
Potter JJ, Koteish A, Hamilton J, Liu X, Liu K, Agre P, Mezey E. Effects of acetaldehyde on hepatocyte glycerol uptake and cell size: implication of aquaporin 9. Alcohol Clin Exp Res 2011; 35:939-45. [PMID: 21294757 DOI: 10.1111/j.1530-0277.2010.01424.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The effects of ethanol and acetaldehyde on uptake of glycerol and on cell size of hepatocytes and a role Aquaporin 9 (AQP9), a glycerol transport channel, were evaluated. METHODS The studies were done in primary rat and mouse hepatocytes. The uptake of [(14) C] glycerol was determined with hepatocytes in suspension. For determination of cell size, rat hepatocytes on coated dishes were incubated with a lipophilic fluorochrome that is incorporated into the cell membrane and examined by confocal microscopy. A three-dimensional z scan of the cell was performed, and the middle slice of the z scan was used for area measurements. RESULTS Acute exposure to acetaldehyde, but not to ethanol, causes a rapid increase in the uptake of glycerol and an increase in hepatocyte size, which was inhibited by HgCl(2) , an inhibitor of aquaporins. This was not observed in hepatocytes from AQP9 knockout mice, nor observed by direct application of acetaldehyde to AQP9 expressed in Xenopus Laevis oocytes. Prolonged 24-hour exposure to either acetaldehyde or ethanol did not result in an increase in glycerol uptake by rat hepatocytes. Acetaldehyde decreased AQP9 mRNA and AQP9 protein, while ethanol decreased AQP9 mRNA but not AQP9 protein. Ethanol, but not acetaldehyde, increased the activities of glycerol kinase and phosphoenolpyruvate carboxykinase. CONCLUSIONS The acute effects of acetaldehyde, while mediated by AQP9, are probably influenced by binding of acetaldehyde to hepatocyte membranes and changes in cell permeability. The effects of ethanol in enhancing glucose kinase, and phosphoenolpyruvate carboxykinase leading to increased formation of glycerol-3-phosphate most likely contribute to alcoholic fatty liver.
Collapse
Affiliation(s)
- James J Potter
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Leroyer S, Vatier C, Kadiri S, Quette J, Chapron C, Capeau J, Antoine B. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue. J Lipid Res 2010; 52:207-20. [PMID: 21068005 DOI: 10.1194/jlr.m000869] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation.
Collapse
|
117
|
Wan Z, Thrush AB, Legare M, Frier BC, Sutherland LN, Williams DB, Wright DC. Epinephrine-mediated regulation of PDK4 mRNA in rat adipose tissue. Am J Physiol Cell Physiol 2010; 299:C1162-70. [DOI: 10.1152/ajpcell.00188.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty acid reesterification in adipose tissue is dependent on the generation of glycerol 3-phosphate, and, at least in rodent adipose tissue, this appears to occur primarily through glyceroneogenesis. A key enzyme in this process is pyruvate dehydrogenase kinase 4 (PDK4). PDK4 is induced in white adipose tissue by thiazolidinediones (TZDs) and the inhibition or knockdown of PDK4 inhibits TZD-induced increases in glyceroneogenesis. Since TZDs have many unwanted side effects, we were interested in identifying alternative mechanisms that could regulate PDK4 mRNA expression in white adipose tissue. In this regard we hypothesized that exercise, fasting, and epinephrine would increase PDK4 mRNA levels in rat epididymal adipose tissue. We further postulated that the p38 mitogen-activated protein kinase (MAPK) and 5′-AMP-activated protein kinase (AMPK) signaling pathways would control PDK4 mRNA expression in cultured adipose tissue. Exercise, fasting, and in or ex vivo epinephrine treatment increased PDK4 mRNA levels. These perturbations did not increase the expression of PDK1, -2, or -3. Pyruvate dehydrogenase phosphorylation was increased after an overnight fast and 4 h after the cessation of exercise. In cultured adipose tissue, epinephrine increased p38 and AMPK signaling; however, the direct activation of AMPK by AICAR or metformin led to reductions in PDK4 mRNA levels. The p38 inhibitor SB202190 reduced epinephrine-mediated increases in p38 MAPK activation without altering hormone-sensitive lipase or AMPK phosphorylation or attenuating epinephrine-induced increases in lipolysis. Reductions in p38 MAPK signaling were associated with decreases in PDK4 mRNA expression. The inhibition of peroxisome proliferator-activated receptor-γ (PPARγ) also attenuated the induction of PDK4. Our results are the very first to demonstrate an epinephrine-mediated regulation of PDK4 mRNA levels in white adipose tissue and suggest that p38 MAPK and PPARγ could be involved in this pathway.
Collapse
Affiliation(s)
- Zhongxiao Wan
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - A. Brianne Thrush
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Legare
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bruce C. Frier
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Deon B. Williams
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - David C. Wright
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
118
|
Muñoz S, Franckhauser S, Elias I, Ferré T, Hidalgo A, Monteys AM, Molas M, Cerdán S, Pujol A, Ruberte J, Bosch F. Chronically increased glucose uptake by adipose tissue leads to lactate production and improved insulin sensitivity rather than obesity in the mouse. Diabetologia 2010; 53:2417-30. [PMID: 20623219 DOI: 10.1007/s00125-010-1840-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS In adipocytes, triacylglycerol synthesis depends on the formation of glycerol 3-phosphate, which originates either from glucose, through glycolysis, or from lactate, through glyceroneogenesis. However, glucose is traditionally viewed as the main precursor of the glycerol backbone and thus, enhanced glucose uptake would be expected to result in increased triacylglycerol synthesis and contribute to obesity. METHODS To further explore this issue, we generated a mouse model with chronically increased glucose uptake in adipose tissue by expressing Gck, which encodes the glucokinase enzyme. RESULTS Here we show that the production of high levels of glucokinase led to increased adipose tissue glucose uptake and lactate production, improved glucose tolerance and higher whole-body and skeletal muscle insulin sensitivity. There was no parallel increase in glycerol 3-phosphate synthesis in vivo, fat accumulation or obesity. Moreover, at high glucose concentrations, in cultured fat cells overproducing glucokinase, glycerol 3-phosphate synthesis from pyruvate decreased, while glyceroneogenesis increased in fat cells overproducing hexokinase II. CONCLUSIONS/INTERPRETATIONS These findings indicate that the absence of glucokinase inhibition by glucose 6-phosphate probably led to increased glycolysis and blocked glyceroneogenesis in the mouse model. Furthermore, this study suggests that under physiological conditions, when blood glucose increases, glyceroneogenesis may prevail over glycolysis for triacylglycerol formation because of the inhibition of hexokinase II by glucose 6-phosphate. Together these results point to the indirect pathway (glucose to lactate to glycerol 3-phosphate) being key for fat deposition in adipose tissue.
Collapse
Affiliation(s)
- S Muñoz
- Center of Animal Biotechnology and Gene Therapy, Edifici H, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Herrera E, del Campo S, Marciniak J, Sevillano J, Ramos MP. Enhanced utilization of glycerol for glyceride synthesis in isolated adipocytes from early pregnant rats. J Physiol Biochem 2010; 66:245-53. [PMID: 20652471 DOI: 10.1007/s13105-010-0031-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Adipose tissue normally has low glycerol kinase activity, but its expression is enhanced under conditions of augmented insulin sensitivity and/or obesity. Since these conditions occur during early pregnancy, the comparative utilization of glucose or glycerol by isolated adipocytes from rats at 0, 7, 14, or 20 days of pregnancy was studied. Incubations were carried out in the presence of [U(14)C]-glucose or -glycerol in medium supplemented or not with 5 mM glucose and 100 nM insulin. The conversion of glucose into esterified fatty acids and glyceride glycerol was greatest in adipocytes from 7-day pregnant rats, the effect being further enhanced by insulin. Both the amount of aquoporin 7 and the in vitro conversion of glycerol into glyceride glycerol were greatest in adipocytes of 7-day pregnant rats, the later being unaltered by insulin. In the presence of glucose, the overall glycerol utilization was lower than in its absence and glycerol conversion into glyceride glycerol was further decreased by insulin, the effect only being significant in adipocytes from 7-day pregnant rats. It is proposed that the enhanced utilization of glycerol for glyceride glycerol synthesis in adipose tissue contributes to the net accumulation of fat depots that normally takes place in early pregnancy.
Collapse
Affiliation(s)
- Emilio Herrera
- Faculties of Pharmacy and Medicine, Department of Biology, Universidad CEU San Pablo, Ctra. Boadilla del Monte km 5.300, Madrid, Spain.
| | | | | | | | | |
Collapse
|
120
|
Markan KR, Jurczak MJ, Allison MB, Ye H, Sutanto MM, Cohen RN, Brady MJ. Enhanced glycogen metabolism in adipose tissue decreases triglyceride mobilization. Am J Physiol Endocrinol Metab 2010; 299:E117-25. [PMID: 20424138 PMCID: PMC2904045 DOI: 10.1152/ajpendo.00741.2009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adipose tissue is a primary site for lipid storage containing trace amounts of glycogen. However, refeeding after a prolonged partial fast produces a marked transient spike in adipose glycogen, which dissipates in coordination with the initiation of lipid resynthesis. To further study the potential interplay between glycogen and lipid metabolism in adipose tissue, the aP2-PTG transgenic mouse line was utilized since it contains a 100- to 400-fold elevation of adipocyte glycogen levels that are mobilized upon fasting. To determine the fate of the released glucose 1-phosphate, a series of metabolic measurements were made. Basal and isoproterenol-stimulated lactate production in vitro was significantly increased in adipose tissue from transgenic animals. In parallel, basal and isoproterenol-induced release of nonesterified fatty acids (NEFAs) was significantly reduced in transgenic adipose tissue vs. control. Interestingly, glycerol release was unchanged between the genotypes, suggesting that enhanced triglyceride resynthesis was occurring in the transgenic tissue. Qualitatively similar results for NEFA and glycerol levels between wild-type and transgenic animals were obtained in vivo during fasting. Additionally, the physiological upregulation of the phosphoenolpyruvate carboxykinase cytosolic isoform (PEPCK-C) expression in adipose upon fasting was significantly blunted in transgenic mice. No changes in whole body metabolism were detected through indirect calorimetry. Yet weight loss following a weight gain/loss protocol was significantly impeded in the transgenic animals, indicating a further impairment in triglyceride mobilization. Cumulatively, these results support the notion that the adipocyte possesses a set point for glycogen, which is altered in response to nutritional cues, enabling the coordination of adipose glycogen turnover with lipid metabolism.
Collapse
Affiliation(s)
- Kathleen R Markan
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, 900 East 57th St., Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
121
|
Obstfeld AE, Sugaru E, Thearle M, Francisco AM, Gayet C, Ginsberg HN, Ables EV, Ferrante AW. C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 2010; 59:916-25. [PMID: 20103702 PMCID: PMC2844839 DOI: 10.2337/db09-1403] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Obesity induces a program of systemic inflammation that is implicated in the development of many of its clinical sequelae. Hepatic inflammation is a feature of obesity-induced liver disease, and our previous studies demonstrated reduced hepatic steatosis in obese mice deficient in the C-C chemokine receptor 2 (CCR2) that regulates myeloid cell recruitment. This suggests that a myeloid cell population is recruited to the liver in obesity and contributes to nonalcoholic fatty liver disease. RESEARCH DESIGN AND METHODS We used fluorescence-activated cell sorting to measure hepatic leukocyte populations in genetic and diet forms of murine obesity. We characterized in vivo models that increase and decrease an obesity-regulated CCR2-expressing population of hepatic leukocytes. Finally, using an in vitro co-culture system, we measured the ability of these cells to modulate a hepatocyte program of lipid metabolism. RESULTS We demonstrate that obesity activates hepatocyte expression of C-C chemokine ligand 2 (CCL2/MCP-1) leading to hepatic recruitment of CCR2(+) myeloid cells that promote hepatosteatosis. The quantity of these cells correlates with body mass and in obese mice represents the second largest immune cell population in the liver. Hepatic expression of CCL2 increases their recruitment and in the presence of dietary fat induces hepatosteatosis. These cells activate hepatic transcription of genes responsible for fatty acid esterification and steatosis. CONCLUSIONS Obesity induces hepatic recruitment of a myeloid cell population that promotes hepatocyte lipid storage. These findings demonstrate that recruitment of myeloid cells to metabolic tissues is a common feature of obesity, not limited to adipose tissue.
Collapse
Affiliation(s)
- Amrom E. Obstfeld
- Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Eiji Sugaru
- Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Marie Thearle
- Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Anne-Marie Francisco
- Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Constance Gayet
- Department of Medicine, Columbia University, New York, New York
| | | | - Eleanore V. Ables
- Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
| | - Anthony W. Ferrante
- Department of Medicine, Columbia University, New York, New York
- Naomi Berrie Diabetes Center, Columbia University, New York, New York
- Corresponding author: Anthony W. Ferrante Jr.,
| |
Collapse
|
122
|
Gu L, Zhang GF, Kombu RS, Allen F, Kutz G, Brewer WU, Roe CR, Brunengraber H. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile. Am J Physiol Endocrinol Metab 2010; 298:E362-71. [PMID: 19903863 PMCID: PMC2822475 DOI: 10.1152/ajpendo.00384.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860-E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate +/- glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous R(a) but not oleate endogenous R(a). Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate beta-oxidation and C(5)-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders.
Collapse
Affiliation(s)
- Lei Gu
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106-4954, USA
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Yang J, Kong X, Martins-Santos MES, Aleman G, Chaco E, Liu GE, Wu SY, Samols D, Hakimi P, Chiang CM, Hanson RW. Activation of SIRT1 by resveratrol represses transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) by deacetylating hepatic nuclear factor 4alpha. J Biol Chem 2009; 284:27042-53. [PMID: 19651778 DOI: 10.1074/jbc.m109.047340] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The SIRT1 activators isonicotinamide (IsoNAM), resveratrol, fisetin, and butein repressed transcription of the gene for the cytosolic form of phosphoenolpyruvate carboxykinase (GTP) (PEPCK-C). An evolutionarily conserved binding site for hepatic nuclear factor (HNF) 4alpha (-272/-252) was identified, which was required for transcriptional repression of the PEPCK-C gene promoter caused by these compounds. This site contains an overlapping AP-1 binding site and is adjacent to the C/EBP binding element (-248/-234); the latter is necessary for hepatic transcription of PEPCK-C. AP-1 competed with HNF4alpha for binding to this site and also decreased HNF4alpha stimulation of transcription from the PEPCK-C gene promoter. Chromatin immunoprecipitation experiments demonstrated that HNF4alpha and AP-1, but not C/EBPbeta, reciprocally bound to this site prior to and after treating HepG2 cells with IsoNAM. IsoNAM treatment resulted in deacetylation of HNF4alpha, which decreased its binding affinity to the PEPCK-C gene promoter. In HNF4alpha-null Chinese hamster ovary cells, IsoNAM and resveratrol failed to repress transcription from the PEPCK-C gene promoter; overexpression of HNF4alpha in Chinese hamster ovary cells re-established transcriptional inhibition. Exogenous SIRT1 expression repressed transcription, whereas knockdown of SIRT1 by RNA interference reversed this effect. IsoNAM decreased the level of mRNA for PEPCK-C but had no effect on mRNA for glucose-6-phosphatase in AML12 mouse hepatocytes. We conclude that SIRT1 activation inhibited transcription of the gene for PEPCK-C in part by deacetylation of HNF4alpha. However, SIRT1 deacetylation of other key regulatory proteins that control PEPCK-C gene transcription also likely contributed to the inhibitory effect.
Collapse
Affiliation(s)
- Jianqi Yang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Yang J, Kalhan SC, Hanson RW. What is the metabolic role of phosphoenolpyruvate carboxykinase? J Biol Chem 2009; 284:27025-9. [PMID: 19636077 DOI: 10.1074/jbc.r109.040543] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jianqi Yang
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106-4936, USA
| | | | | |
Collapse
|
125
|
Bederman IR, Foy S, Chandramouli V, Alexander JC, Previs SF. Triglyceride synthesis in epididymal adipose tissue: contribution of glucose and non-glucose carbon sources. J Biol Chem 2008; 284:6101-8. [PMID: 19114707 DOI: 10.1074/jbc.m808668200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The obesity epidemic has generated interest in determining the contribution of various pathways to triglyceride synthesis, including an elucidation of the origin of triglyceride fatty acids and triglyceride glycerol. We hypothesized that a dietary intervention would demonstrate the importance of using glucose versus non-glucose carbon sources to synthesize triglycerides in white adipose tissue. C57BL/6J mice were fed either a low fat, high carbohydrate (HC) diet or a high fat, carbohydrate-free (CF) diet and maintained on 2H2O (to determine total triglyceride dynamics) or infused with [6,6-(2)H]glucose (to quantify the contribution of glucose to triglyceride glycerol). The 2H2O labeling data demonstrate that although de novo lipogenesis contributed approximately 80% versus approximately 5% to the pool of triglyceride palmitate in HC- versus CF-fed mice, the epididymal adipose tissue synthesized approximately 1.5-fold more triglyceride in CF- versus HC-fed mice, i.e. 37+/-5 versus 25+/-3 micromolxday(-1). The [6,6-(2)H]glucose labeling data demonstrate that approximately 69 and approximately 28% of triglyceride glycerol is synthesized from glucose in HC- versus CF-fed mice, respectively. Although these data are consistent with the notion that non-glucose carbon sources (e.g. glyceroneogenesis) can make substantial contributions to the synthesis of triglyceride glycerol (i.e. the absolute synthesis of triglyceride glycerol from non-glucose substrates increased from approximately 8 to approximately 26 micromolxday(-1) in HC- versus CF-fed mice), these observations suggest (i) the importance of nutritional status in affecting flux rates and (ii) the operation of a glycerol-glucose cycle.
Collapse
Affiliation(s)
- Ilya R Bederman
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
126
|
Nye C, Kim J, Kalhan SC, Hanson RW. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrinol Metab 2008; 19:356-61. [PMID: 18929494 DOI: 10.1016/j.tem.2008.08.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 08/11/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
Abstract
The synthesis and breakdown of triglycerides in adipose tissue and muscle is a crucial element of energy metabolism because it ensures that adequate fuel is available during starvation. Triglyceride turnover determines the availability of fatty acids for utilization by mammalian tissues, and any dysfunction in this process can lead to alterations in glucose metabolism, insulin resistance and type 2 diabetes. Our understanding of the reactions involved in triglyceride synthesis is currently being reassessed, primarily because of the recently identified role that re-esterification of fatty acids plays in triglyceride deposition and, thus, in controlling fatty-acid availability. Here, we review recent information on triglyceride synthesis and introduce the pathway of glyceroneogenesis as an important and highly regulated source of glyceride-glycerol in adipose tissue.
Collapse
Affiliation(s)
- Colleen Nye
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106-3549, USA
| | | | | | | |
Collapse
|