101
|
Yang Z, Suzuki R, Daniels SB, Brunquell CB, Sala CJ, Nishiyama A. NG2 glial cells provide a favorable substrate for growing axons. J Neurosci 2006; 26:3829-39. [PMID: 16597737 PMCID: PMC6674118 DOI: 10.1523/jneurosci.4247-05.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NG2 cells (polydendrocytes) comprise an abundant glial population that is widely and uniformly distributed throughout the developing and mature CNS and are identified by the expression of the NG2 proteoglycan at the cell surface. Although recent electrophysiological studies suggest that they are capable of receiving signals from axon terminals, other studies, based on the finding that the NG2 molecule itself induces growth cone collapse, have led to a widely held speculation that NG2 cells themselves also repel and inhibit growing axons. In this study, we have examined the effects of rat NG2 cells on growing hippocampal and neocortical axons in vitro and in vivo. NG2 cells did not repel growing axons but promoted their growth in vitro, and axonal growth cones formed extensive contacts with NG2 cells both in vitro and in the developing corpus callosum. Punctate immunoreactivity for fibronectin and laminin was found to be colocalized with NG2 on the surface of NG2 cells. Altering the level of cell surface NG2 expression had no effect on the growth-promoting effects of NG2 cells on growing axons. Thus, our study indicates that NG2 cells are not inhibitory to growing axons but provide an adhesive substrate for axonal growth cones and promote their growth even in the presence of elevated levels of the NG2 proteoglycan. These findings suggest a novel role for NG2 cells in facilitating axonal growth during development and regeneration.
Collapse
|
102
|
Dehn D, Burbach GJ, Schäfer R, Deller T. NG2 upregulation in the denervated rat fascia dentata following unilateral entorhinal cortex lesion. Glia 2006; 53:491-500. [PMID: 16369932 DOI: 10.1002/glia.20307] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The chondroitin sulfate proteoglycan NG2 is a component of the glial scar following brain injury. Because of its growth inhibiting properties, it has been suggested to impede axonal regeneration. To study whether NG2 could also regulate axonal growth in denervated brain areas, changes in NG2 were studied in the rat fascia dentata following entorhinal deafferentation and were correlated with the post-lesional sprouting response. Laser microdissection was employed to selectively harvest the denervated molecular layer and combined with quantitative RT-PCR to measure changes in NG2 mRNA (6 h, 12 h, 2 days, 4 days, 7 days post-lesion). This revealed increases of NG2 mRNA at day 2 (2.5-fold) and day 4 (2-fold) post-lesion. Immunocytochemistry was used to detect changes in NG2 protein (1 days, 4 days, 7 days, 10 days, 14 days, 30 days, 6 months post-lesion). NG2 staining was increased in the denervated outer molecular layer at day 1 post-lesion, reached a maximum 10 days post-lesion, and returned to control levels thereafter. Electron microscopy revealed NG2 immunoprecipitate on glial surfaces and in the extracellular matrix around neuronal profiles, indicating that NG2 is secreted following denervation. Double labeling of NG2-immunopositive cells with markers for astrocytes, microglia/macrophages, and mature oligodendrocytes suggested that NG2 cells are a distinct glial subpopulation before and after entorhinal deafferentation. BrdU labeling revealed that some of the NG2-positive cells are generated post-lesion. Taken together, our data revealed a layer-specific upregulation of NG2 in the denervated fascia dentata that coincides with the sprouting response. This suggests that NG2 could regulate lesion-induced axonal growth in denervated areas of the brain.
Collapse
Affiliation(s)
- Doris Dehn
- Institute of Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
103
|
Abstract
The superfamily of proteins containing C-type lectin-like domains (CTLDs) is a large group of extracellular Metazoan proteins with diverse functions. The CTLD structure has a characteristic double-loop ('loop-in-a-loop') stabilized by two highly conserved disulfide bridges located at the bases of the loops, as well as a set of conserved hydrophobic and polar interactions. The second loop, called the long loop region, is structurally and evolutionarily flexible, and is involved in Ca2+-dependent carbohydrate binding and interaction with other ligands. This loop is completely absent in a subset of CTLDs, which we refer to as compact CTLDs; these include the Link/PTR domain and bacterial CTLDs. CTLD-containing proteins (CTLDcps) were originally classified into seven groups based on their overall domain structure. Analyses of the superfamily representation in several completely sequenced genomes have added 10 new groups to the classification, and shown that it is applicable only to vertebrate CTLDcps; despite the abundance of CTLDcps in the invertebrate genomes studied, the domain architectures of these proteins do not match those of the vertebrate groups. Ca2+-dependent carbohydrate binding is the most common CTLD function in vertebrates, and apparently the ancestral one, as suggested by the many humoral defense CTLDcps characterized in insects and other invertebrates. However, many CTLDs have evolved to specifically recognize protein, lipid and inorganic ligands, including the vertebrate clade-specific snake venoms, and fish antifreeze and bird egg-shell proteins. Recent studies highlight the functional versatility of this protein superfamily and the CTLD scaffold, and suggest further interesting discoveries have yet to be made.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
104
|
Wegrowski Y, Maquart FX. Chondroitin Sulfate Proteoglycans in Tumor Progression. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:297-321. [PMID: 17239772 DOI: 10.1016/s1054-3589(05)53014-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanusz Wegrowski
- CNRS UMR 6198, Faculty of Medicine, IFR-53, 51095 Reims Cedex, France
| | | |
Collapse
|
105
|
Murfee WL, Skalak TC, Peirce SM. Differential arterial/venous expression of NG2 proteoglycan in perivascular cells along microvessels: identifying a venule-specific phenotype. Microcirculation 2005; 12:151-60. [PMID: 15824037 DOI: 10.1080/10739680590904955] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Similar to other vascular pericyte markers, including smooth muscle (SM) alpha-actin, desmin, and PDGF-beta-receptor, NG2 proteoglycan is not pericyte specific. Therefore, the use of NG2 as a pericyte marker, especially in cell lineage studies, in comparison to other nonspecific pericyte markers requires an understanding of how its expression varies spatially within a microvascular network. The objective of this study was to characterize NG2 expression along vessels within rat microvascular networks and compare this to SM alpha-actin expression. METHODS Mesenteric tissue, subcutaneous tissue, spinotrapezius muscle, and gracilis muscle were harvested from 250-g, female, Sprague-Dawley rats and stained for NG2 and SM alpha-actin. The distribution of NG2 expression was evaluated in mesenteric networks (n = 28) with complementary observations in subcutaneous tissue and skeletal muscle. RESULTS Perivascular cells, including mature smooth muscle cells (SMCs), immature SMCs, and pericytes, expressed NG2. Most importantly, NG2 expression was primarily confined to perivascular cells along arterioles and capillaries, and continuous expression was not observed along venules beyond the immediate postcapillary vessels. The differential expression of NG2 along the arteriolar side of microvascular networks was also observed in rat subcutaneous and skeletal muscle. CONCLUSIONS The results indicate that NG2 is expressed by all perivascular cells along arterioles, and its absence denotes a venule-specific phenotype. These results identify for the first time a marker that differentiates venous smooth muscle and pericytes from other capillary- and arteriole-associated perivascular cells.
Collapse
Affiliation(s)
- Walter L Murfee
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
106
|
Asher RA, Morgenstern DA, Properzi F, Nishiyama A, Levine JM, Fawcett JW. Two separate metalloproteinase activities are responsible for the shedding and processing of the NG2 proteoglycan in vitro. Mol Cell Neurosci 2005; 29:82-96. [PMID: 15866049 DOI: 10.1016/j.mcn.2005.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 11/30/2022] Open
Abstract
A high proportion of NG2 in the adult rat spinal cord is saline-soluble and migrates slightly faster than intact NG2 on SDS-PAGE, suggesting that it represents the shed ectodomain of NG2. In the injured cerebral cortex, much of the overall increase in NG2 is due to the saline-soluble (shed), rather than the detergent-soluble (intact), form. Hydroxamic acid metalloproteinase inhibitors, but not TIMPs, were able to prevent NG2 shedding in oligodendrocyte precursor cells (OPCs) in vitro. The generation of another truncated form of NG2 was, however, sensitive to TIMP-2 and TIMP-3. Two observations suggest that NG2 is involved in PDGF signaling in OPCs: the rate of NG2 shedding increased with cell density and NG2 expression was increased in the absence of PDGF. Ectodomain shedding converts NG2 into a diffusible entity able to interact with the growth cone, and we suggest that this release is likely to enhance its axon growth-inhibitory activity.
Collapse
Affiliation(s)
- Richard A Asher
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, CB2 2PY, UK.
| | | | | | | | | | | |
Collapse
|
107
|
Jiang S, Avraham HK, Park SY, Kim TA, Bu X, Seng S, Avraham S. Process elongation of oligodendrocytes is promoted by the Kelch-related actin-binding protein Mayven. J Neurochem 2005; 92:1191-203. [PMID: 15715669 DOI: 10.1111/j.1471-4159.2004.02946.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rearrangement of the cytoskeleton leading to the extension of cellular processes is essential for the myelination of axons by oligodendrocytes. We observed that the actin-binding protein, Mayven, is expressed during all stages of the oligodendrocyte lineage, and that its expression is up-regulated during oligodendrocyte differentiation. Mayven is localized in the cytoplasm and along the cell processes. Mayven also binds actin, and is involved in the cytoskeletal reorganization in oligodendrocyte precursor cells (O-2A cells) that leads to process elongation. Mayven overexpression resulted in an increase in the process outgrowth of O-2A cells and in the lengths of the processes, while microinjection of Mayven-specific antibodies inhibited process extension in these cells. Furthermore, O-2A cells transduced with recombinant retroviral sense Mayven (pMIG-W-Mayven) showed an increase in the number of oligodendrocyte processes with outgrowth, while recombinant retroviral antisense Mayven (pMIG-W-Mayven-AS) blocked O-2A process extension. Interestingly, co-localization and association of Mayven with Fyn kinase were found in O-2A cells, and these interactions were increased during the outgrowth of oligodendrocyte processes. This association was mediated via the SH3 domain ligand (a.a. 1-45) of Mayven and the SH3 domain of Fyn, suggesting that Mayven may act as a linker to bind Fyn, via its N-terminus. Thus, Mayven plays a role in the dynamics of cytoskeletal rearrangement leading to the process extension of oligodendrocytes.
Collapse
Affiliation(s)
- Shuxian Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachussetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
108
|
Trotter J. NG2-positive cells in CNS function and the pathological role of antibodies against NG2 in demyelinating diseases. J Neurol Sci 2005; 233:37-42. [PMID: 15949494 DOI: 10.1016/j.jns.2005.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
NG2 is expressed by a variety of immature glia in the CNS including oligodendrocyte progenitor cells, paranodal astrocytes and perisynaptic glia. The protein has a large extracellular domain with two LNS/Lam G domains at the N-terminus and a short intracellular tail with a PDZ-recognition domain at the C-terminus. Experiments suggest that the protein plays a role in migration. The PDZ protein GRIP was identified as an intracellular binding partner of NG2 in immature glial cells. A complex is formed between GRIP, NG2 and the AMPA class of glutamate receptors: this may position these glial receptors towards sites of neuronal glutamate release at synapses and during myelination. Identification of neuronal receptors and links to the cytoskeleton of NG2 is of critical importance. Some Multiple Sclerosis patients have autoantibodies to NG2 in the cerebral spinal fluid: such antibodies could interfere with remyelination by lysing oligodendrocyte progenitor cells or blocking their migration but may also cause pathology by disrupting glial-neuronal signalling at synapses and paranodes.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Unit of Molecular Cell Biology, Institute of Zoology, Department of Biology, Johannes Gutenberg University of Mainz, Bentzelweg 3, 55128 Mainz, Germany.
| |
Collapse
|
109
|
Petrou P, Pavlakis E, Dalezios Y, Galanopoulos VK, Chalepakis G. Basement membrane distortions impair lung lobation and capillary organization in the mouse model for fraser syndrome. J Biol Chem 2004; 280:10350-6. [PMID: 15623520 DOI: 10.1074/jbc.m412368200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fras1 is a putative extracellular matrix protein that has been implicated in the structural adhesion of embryonic epidermis to dermis. Moreover, mutations in Fras1/FRAS1 have been associated with the mouse blebbed phenotype and the human rare genetic disorder Fraser syndrome, respectively. Here we report the mapping of Fras1 within the extracellular space and evaluate the effects of Fras1 deficiency on lung development in the mouse. Expression of Fras1 was detected in the mesothelial cells of the visceral pleura and in the conducting airway epithelia. Immunogold histochemistry identified Fras1 as a component of the extracellular matrix localized below the lamina densa of epithelial basement membranes in the embryonic lung. Embryos homozygous for a targeted mutation of Fras1 exhibited fused pulmonary lobes resulting from incomplete separation during development as well as a profound disarrangement of blood capillaries in the terminal air sacs. We demonstrate that loss of Fras1 causes alterations in the molecular composition of basement membranes, concomitant with local disruptions of epithelial-endothelial contacts and extravasation of erythrocytes into the embryonic respiratory lumen. Thus, our findings identify Fras1 as an important structural component of the sub-lamina densa of basement membranes required for lobar septation and the organization of blood capillaries in the peripheral lung.
Collapse
Affiliation(s)
- Petros Petrou
- Department of Biology, University of Crete, Heraklion 71409 Crete, Greece
| | | | | | | | | |
Collapse
|
110
|
Makagiansar IT, Williams S, Dahlin-Huppe K, Fukushi JI, Mustelin T, Stallcup WB. Phosphorylation of NG2 proteoglycan by protein kinase C-alpha regulates polarized membrane distribution and cell motility. J Biol Chem 2004; 279:55262-70. [PMID: 15504744 DOI: 10.1074/jbc.m411045200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC)-alpha phosphorylation of recombinant NG2 cytoplasmic domain and phorbol ester-induced PKC-dependent phosphorylation of full-length NG2 expressed in U251 cells are both blocked by mutation of Thr(2256), identifying this residue as a primary phosphorylation site. In untreated U251/NG2 cells, NG2 is present along with ezrin and alpha(3)beta(1) integrin in apical cell surface protrusions. Phorbol ester treatment causes redistribution of all three components to lamellipodia, accompanied by increased cell motility. U251 cells expressing NG2 with a valine substitution at position 2256 are resistant to phorbol ester treatment: NG2 remains in membrane protrusions and cell motility is unchanged. In contrast, NG2 with a glutamic acid substitution at position 2256 redistributes to lamellipodia even without phorbol ester treatment, rendering transfected U251 cells spontaneously motile. PKC-alpha-mediated NG2 phosphorylation at Thr(2256) is therefore a key step for initiating cell polarization and motility.
Collapse
Affiliation(s)
- Irwan T Makagiansar
- Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
111
|
Smyth I, Du X, Taylor MS, Justice MJ, Beutler B, Jackson IJ. The extracellular matrix gene Frem1 is essential for the normal adhesion of the embryonic epidermis. Proc Natl Acad Sci U S A 2004; 101:13560-5. [PMID: 15345741 PMCID: PMC518794 DOI: 10.1073/pnas.0402760101] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 11/18/2022] Open
Abstract
Fraser syndrome is a rare recessive disorder characterized by cryptophthalmos, syndactyly, renal defects, and a range of other developmental abnormalities. Because of their extensive phenotypic overlap, the mouse blebbing mutants have been considered models of this disorder, and the recent isolation of mutations in Fras1 in both the blebbed mouse and human Fraser patients confirms this hypothesis. Here we report the identification of mutations in an extracellular matrix gene Fras1-related extracellular matrix gene 1 (Frem1) in both the classic head blebs mutant and in an N-ethyl-N-nitrosourea-induced allele. We show that inactivation of the gene results in the formation of in utero epidermal blisters beneath the lamina densa of the basement membrane and also in renal agenesis. Frem1 is expressed widely in the developing embryo in regions of epithelial/mesenchymal interaction and epidermal remodeling. Furthermore, Frem1 appears to act as a dermal mediator of basement membrane adhesion, apparently independently of the other known "blebs" proteins Fras1 and Grip1. Unlike both Fras1 and Grip1 mutants, collagen VI and Fras1 deposition in the basement membrane is normal, indicating that the protein plays an independent role in epidermal differentiation and is required for epidermal adhesion during embryonic development.
Collapse
Affiliation(s)
- Ian Smyth
- Medical Research Council Human Genetics Unit, Crewe Road, Edinburgh EH4 2XU, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
112
|
Yang J, Price MA, Neudauer CL, Wilson C, Ferrone S, Xia H, Iida J, Simpson MA, McCarthy JB. Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. ACTA ACUST UNITED AC 2004; 165:881-91. [PMID: 15210734 PMCID: PMC2172406 DOI: 10.1083/jcb.200403174] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanoma chondroitin sulfate proteoglycan (MCSP) is an early cell surface melanoma progression marker implicated in stimulating tumor cell proliferation, migration, and invasion. Focal adhesion kinase (FAK) plays a pivotal role in integrating growth factor and adhesion-related signaling pathways, facilitating cell spreading and migration. Extracellular signal–regulated kinase (ERK) 1 and 2, implicated in tumor growth and survival, has also been linked to clinical melanoma progression. We have cloned the MCSP core protein and expressed it in the MCSP-negative melanoma cell line WM1552C. Expression of MCSP enhances integrin-mediated cell spreading, FAK phosphorylation, and activation of ERK1/2. MCSP transfectants exhibit extensive MCSP-rich microspikes on adherent cells, where it also colocalizes with α4 integrin. Enhanced activation of FAK and ERK1/2 by MCSP appears to involve independent mechanisms because inhibition of FAK activation had no effect on ERK1/2 phosphorylation. These results indicate that MCSP may facilitate primary melanoma progression by enhancing the activation of key signaling pathways important for tumor invasion and growth.
Collapse
Affiliation(s)
- Jianbo Yang
- University of Minnesota, Department of Laboratory Medicine and Pathology, 312 Church St. SE, Room 7-124 BSBE, Minneapolis, MN 55406, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Chittajallu R, Aguirre A, Gallo V. NG2-positive cells in the mouse white and grey matter display distinct physiological properties. J Physiol 2004; 561:109-22. [PMID: 15358811 PMCID: PMC1665337 DOI: 10.1113/jphysiol.2004.074252] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cells that express the NG2 proteoglycan are the largest proliferative progenitor population in the postnatal central nervous system (CNS). Although this entire population has long been considered to be oligodendrocyte progenitors, numerous NG2(+) cells are present in the cerebral cortex, where relatively little myelination occurs, and also persist long after myelination is complete in the CNS. Several studies have alluded to the presence of distinct NG2(+) cell subtypes based on marker expression, but no experimentally derived hypotheses about the physiological role of these subtypes has been proposed. In the current study, whole-cell patch-clamp data from acutely isolated slices demonstrate that subcortical white matter and cortical NG2(+) cells display distinct membrane properties in addition to possessing differing K(+)- and Na(+)-channel expression profiles. A striking observation is that a subpopulation of cortical, but not white matter NG2(+) cells, elicit depolarization-induced spikes that are akin to immature action potentials. Our data demonstrate that a population of cortical NG2(+) cells display physiological properties that differ from their white matter counterparts.
Collapse
Affiliation(s)
- R Chittajallu
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | |
Collapse
|
114
|
Zelensky AN, Gready JE. C-type lectin-like domains in Fugu rubripes. BMC Genomics 2004; 5:51. [PMID: 15285787 PMCID: PMC514892 DOI: 10.1186/1471-2164-5-51] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Accepted: 08/01/2004] [Indexed: 12/18/2022] Open
Abstract
Background Members of the C-type lectin domain (CTLD) superfamily are metazoan proteins functionally important in glycoprotein metabolism, mechanisms of multicellular integration and immunity. Three genome-level studies on human, C. elegans and D. melanogaster reported previously demonstrated almost complete divergence among invertebrate and mammalian families of CTLD-containing proteins (CTLDcps). Results We have performed an analysis of CTLD family composition in Fugu rubripes using the draft genome sequence. The results show that all but two groups of CTLDcps identified in mammals are also found in fish, and that most of the groups have the same members as in mammals. We failed to detect representatives for CTLD groups V (NK cell receptors) and VII (lithostathine), while the DC-SIGN subgroup of group II is overrepresented in Fugu. Several new CTLD-containing genes, highly conserved between Fugu and human, were discovered using the Fugu genome sequence as a reference, including a CSPG family member and an SCP-domain-containing soluble protein. A distinct group of soluble dual-CTLD proteins has been identified, which may be the first reported CTLDcp group shared by invertebrates and vertebrates. We show that CTLDcp-encoding genes are selectively duplicated in Fugu, in a manner that suggests an ancient large-scale duplication event. We have verified 32 gene structures and predicted 63 new ones, and make our annotations available through a distributed annotation system (DAS) server and their sequences as additional files with this paper. Conclusions The vertebrate CTLDcp family was essentially formed early in vertebrate evolution and is completely different from the invertebrate families. Comparison of fish and mammalian genomes revealed three groups of CTLDcps and several new members of the known groups, which are highly conserved between fish and mammals, but were not identified in the study using only mammalian genomes. Despite limitations of the draft sequence, the Fugu rubripes genome is a powerful instrument for gene discovery and vertebrate evolutionary analysis. The composition of the CTLDcp superfamily in fish and mammals suggests that large-scale duplication events played an important role in the evolution of vertebrates.
Collapse
Affiliation(s)
- Alex N Zelensky
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia
| | - Jill E Gready
- Computational Proteomics and Therapy Design Group, John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra, ACT 2601, Australia
| |
Collapse
|
115
|
Rezajooi K, Pavlides M, Winterbottom J, Stallcup WB, Hamlyn PJ, Lieberman AR, Anderson PN. NG2 proteoglycan expression in the peripheral nervous system: upregulation following injury and comparison with CNS lesions. Mol Cell Neurosci 2004; 25:572-84. [PMID: 15080887 DOI: 10.1016/j.mcn.2003.10.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2003] [Revised: 09/26/2003] [Accepted: 10/07/2003] [Indexed: 11/23/2022] Open
Abstract
The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and thus may be able to inhibit axonal regeneration in the CNS. We have used immunohistochemistry to compare the expression of NG2 in the PNS, where axons regenerate, and the spinal cord, where regeneration fails. NG2 is expressed by satellite cells in dorsal root ganglia (DRG) and in the perineurium and endoneurium of intact sciatic nerves of adult rats. Endoneurial NG2-positive cells were S100-negative. Injury to dorsal roots, ventral rami or sciatic nerves had no effect on NG2 expression in DRG but sciatic nerve section or crush caused an upregulation of NG2 in the damaged nerve. Strongly NG2-positive cells in damaged nerves were S100-negative. The proximal stump of severed nerves was capped by dense NG2, which surrounded bundles of regenerating axons. The distal stump, into which axons regenerated, also contained many NG2-positive/S100-negative cells. Immunoelectron microscopy revealed that most NG2-positive cells in distal stumps had perineurial or fibroblast-like morphologies, with NG2 being concentrated at the poles of the cells in regions exhibiting microvillus-like protrusions or caveolae. Compression and partial transection injuries to the spinal cord also caused an upregulation of NG2, and NG2-positive cells and processes invaded the lesion sites. Transganglionically labelled ascending dorsal column fibres, stimulated to sprout by a conditioning sciatic nerve injury, ended in the borders of lesions among many NG2-positive processes. Thus, NG2 upregulation is a feature of the response to injury in peripheral nerves and in the spinal cord, but it does not appear to limit regeneration in the sciatic nerve.
Collapse
Affiliation(s)
- Kia Rezajooi
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
116
|
Li H, Babiarz J, Woodbury J, Kane-Goldsmith N, Grumet M. Spatiotemporal heterogeneity of CNS radial glial cells and their transition to restricted precursors. Dev Biol 2004; 271:225-38. [PMID: 15223331 DOI: 10.1016/j.ydbio.2004.02.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 02/24/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Radial glia are among the first cells that develop in the embryonic central nervous system. They are progenitors of glia and neurons but their relationship with restricted precursors that are also derived from neuroepithelia is unclear. To clarify this issue, we analyzed expression of cell type specific markers (BLBP for radial glia, 5A5/E-NCAM for neuronal precursors and A2B5 for glial precursors) on cortical radial glia in vivo and their progeny in vitro. Clones of cortical cells initially expressing only BLBP gave rise to cells that were A2B5+ and eventually lost BLBP expression in vitro. BLBP is expressed in the rat neuroepithelium as early as E12.5 when there is little or no staining for A2B5 and 5A5. In E13.5-15.5 forebrain, A2B5 is spatially restricted co-localizing with a subset of the BLBP+ radial glia. Analysis of cells isolated acutely from embryonic cortices confirmed that BLBP expression could appear without, or together with, A2B5 or 5A5. The numbers of BLBP+/5A5+ cells decreased during neurogenesis while the numbers of BLBP+/A2B5+ cells remained high through the beginning of gliogenesis. The combined results demonstrate that spatially restricted subpopulations of radial glia along the dorsal-ventral axis acquire different markers for neuronal or glial precursors during CNS development.
Collapse
Affiliation(s)
- Hedong Li
- Department of Cell Biology and Neuroscience, and W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, NJ 08854-8082, USA
| | | | | | | | | |
Collapse
|
117
|
Fukushi JI, Makagiansar IT, Stallcup WB. NG2 proteoglycan promotes endothelial cell motility and angiogenesis via engagement of galectin-3 and alpha3beta1 integrin. Mol Biol Cell 2004; 15:3580-90. [PMID: 15181153 PMCID: PMC491820 DOI: 10.1091/mbc.e04-03-0236] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The NG2 proteoglycan is expressed by microvascular pericytes in newly formed blood vessels. We have used in vitro and in vivo models to investigate the role of NG2 in cross-talk between pericytes and endothelial cells (EC). Binding of soluble NG2 to the EC surface induces cell motility and multicellular network formation in vitro and stimulates corneal angiogenesis in vivo. Biochemical data demonstrate the involvement of both galectin-3 and alpha3beta1 integrin in the EC response to NG2 and show that NG2, galectin-3, and alpha3beta1 form a complex on the cell surface. Transmembrane signaling via alpha3beta1 is responsible for EC motility and morphogenesis in this system. Galectin-3-dependent oligomerization may potentiate NG2-mediated activation of alpha3beta1. In conjunction with recent studies demonstrating the early involvement of pericytes in angiogenesis, these data suggest that pericyte-derived NG2 is an important factor in promoting EC migration and morphogenesis during the early stages of neovascularization.
Collapse
|
118
|
Sandvig A, Berry M, Barrett LB, Butt A, Logan A. Myelin-, reactive glia-, and scar-derived CNS axon growth inhibitors: expression, receptor signaling, and correlation with axon regeneration. Glia 2004; 46:225-51. [PMID: 15048847 DOI: 10.1002/glia.10315] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Axon regeneration is arrested in the injured central nervous system (CNS) by axon growth-inhibitory ligands expressed in oligodendrocytes/myelin, NG2-glia, and reactive astrocytes in the lesion and degenerating tracts, and by fibroblasts in scar tissue. Growth cone receptors (Rc) bind inhibitory ligands, activating a Rho-family GTPase intracellular signaling pathway that disrupts the actin cytoskeleton inducing growth cone collapse/repulsion. The known inhibitory ligands include the chondroitin sulfate proteoglycans (CSPG) Neurocan, Brevican, Phosphacan, Tenascin, and NG2, as either membrane-bound or secreted molecules; Ephrins expressed on astrocyte/fibroblast membranes; the myelin/oligodendrocyte-derived growth inhibitors Nogo, MAG, and OMgp; and membrane-bound semaphorins (Sema) produced by meningeal fibroblasts invading the scar. No definitive CSPG Rc have been identified, although intracellular signaling through the Rho family of G-proteins is probably common to all the inhibitory ligands. Ephrins bind to signalling Ephs. The ligand-binding Rc for all the myelin inhibitors is NgR and requires p75(NTR) for transmembrane signaling. The neuropilin (NP)/plexin (Plex) Rc complex binds Sema. Strategies for promoting axon growth after CNS injury are thwarted by the plethora of inhibitory ligands and the ligand promiscuity of some of their Rc. There is also paradoxical reciprocal expression of many of the inhibitory ligands/Rc in normal and damaged neurons, and NgR expression is restricted to a limited number of neuronal populations. All these factors, together with an incomplete understanding of the normal functions of many of these molecules in the intact CNS, presently confound interpretive acumen in regenerative studies.
Collapse
Affiliation(s)
- Axel Sandvig
- Laboratory of Regenerative Neurobiology, Institute for Experimental Medical Research, Ullevål University Hospital, Oslo, Norway.
| | | | | | | | | |
Collapse
|
119
|
Ghali L, Wong ST, Tidman N, Quinn A, Philpott MP, Leigh IM. Epidermal and Hair Follicle Progenitor Cells Express Melanoma-Associated Chondroitin Sulfate Proteoglycan Core Protein. J Invest Dermatol 2004; 122:433-42. [PMID: 15009727 DOI: 10.1046/j.0022-202x.2004.22207.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basal keratinocytes in the epidermis and hair follicle are biologically heterogeneous but must include a stable subpopulation of epidermal stem cells. In animal models these can be identified by their retention of radioactive label due to their slow cycle (label-retaining cells) but human studies largely depend on in vitro characterization of colony forming efficiency and clonogenicity. Differential integrin expression has been used to detect cells of increased proliferative potential but further stem cell markers are urgently required for in vivo and in vitro characterization. Using LHM2, a monoclonal antibody reacting with a high molecular weight melanoma-associated proteoglycan core protein, a subset of basal keratinocytes in both the interfollicular epidermis and the hair follicle has been identified. Coexpression of melanoma-associated chondroitin sulfate proteoglycan with keratins 15 and 19 as well as beta 1 and alpha 6 integrins has been examined in adult and fetal human skin from hair bearing, nonhair bearing, and palmoplantar regions. Although melanoma-associated chondroitin sulfate proteoglycan coexpression with a subset of beta 1 integrin bright basal keratinocytes within the epidermis suggests that melanoma-associated chondroitin sulfate proteoglycan colocalizes with epidermal stem cells, melanoma-associated chondroitin sulfate proteoglycan expression within the hair follicle was more complex and multiple subpopulations of basal outer root sheath keratinocytes are described. These data suggest that epithelial compartmentalization of the outer root sheath is more complex than interfollicular epidermis and further supports the hypothesis that more than one hair follicle stem cell compartment may exist.
Collapse
Affiliation(s)
- Lucy Ghali
- Center for Cutaneous Research, Barts, and the London, Queen Mary's School of Medicine and Dentistry, London, UK
| | | | | | | | | | | |
Collapse
|
120
|
Legg J, Jensen UB, Broad S, Leigh I, Watt FM. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 2003; 130:6049-63. [PMID: 14573520 DOI: 10.1242/dev.00837] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human interfollicular epidermis is renewed by stem cells that are clustered in the basal layer in a patterned, non-random distribution. Stem cells can be distinguished from other keratinocytes by high expression of β1 integrins and lack of expression of terminal differentiation markers; they divide infrequently in vivo but form actively growing colonies in culture. In a search for additional stem cell markers, we observed heterogeneous epidermal expression of melanoma chondroitin sulphate proteoglycan (MCSP). MCSP was expressed by those keratinocytes with the highest β1 integrin levels. In interfollicular epidermis, expression was confined to non-cycling cells and,in culture, to self-renewing clones. However, fluorescence-activated cell sorting on the basis of MCSP and β1 integrin expression gave no more enrichment for clonogenic keratinocytes than sorting for β1 integrins alone. To interfere with endogenous MCSP, we retrovirally infected keratinocytes with a chimera of the CD8 extracellular domain and the MCSP cytoplasmic domain. CD8/MCSP did not affect keratinocyte proliferation or differentiation but the cohesiveness of keratinocytes in isolated clones or reconstituted epidermal sheets was greatly reduced. CD8/MCSP caused stem cell progeny to scatter without differentiating. CD8/MCSP did not alter keratinocyte motility but disturbed cadherin-mediated cell-cell adhesion and the cortical actin cytoskeleton, effects that could be mimicked by inhibiting Rho. We conclude that MCSP is a novel marker for epidermal stem cells that contributes to their patterned distribution by promoting stem cell clustering.
Collapse
Affiliation(s)
- James Legg
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | | | | | | | | |
Collapse
|
121
|
Braun KM, Niemann C, Jensen UB, Sundberg JP, Silva-Vargas V, Watt FM. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 2003; 130:5241-55. [PMID: 12954714 DOI: 10.1242/dev.00703] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian epidermis is maintained by stem cells that have the ability to self-renew and generate daughter cells that differentiate along the lineages of the hair follicles, interfollicular epidermis and sebaceous gland. As stem cells divide infrequently in adult mouse epidermis, they can be visualised as DNA label-retaining cells (LRC). With whole-mount labelling, we can examine large areas of interfollicular epidermis and many hair follicles simultaneously, enabling us to evaluate stem cell markers and examine the effects of different stimuli on the LRC population. LRC are not confined to the hair follicle, but also lie in sebaceous glands and interfollicular epidermis. LRC reside throughout the permanent region of the hair follicle, where they express keratin 15 and lie in a region of high alpha6beta4 integrin expression. LRC are not significantly depleted by successive hair growth cycles. They can, nevertheless, be stimulated to divide by treatment with phorbol ester, resulting in near complete loss of LRC within 12 days. Activation of Myc stimulates epidermal proliferation without depleting LRC and induces differentiation of sebocytes within the interfollicular epidermis. Expression of N-terminally truncated Lef1 to block beta-catenin signalling induces transdifferentiation of hair follicles into interfollicular epidermis and sebocytes and causes loss of LRC primarily through proliferation. We conclude that LRC are more sensitive to some proliferative stimuli than others and that changes in lineage can occur with or without recruitment of LRC into cycle.
Collapse
Affiliation(s)
- Kristin M Braun
- Keratinocyte Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | | | | | | | |
Collapse
|
122
|
Shen PJ, Larm JA, Gundlach AL. Expression and plasticity of galanin systems in cortical neurons, oligodendrocyte progenitors and proliferative zones in normal brain and after spreading depression. Eur J Neurosci 2003; 18:1362-76. [PMID: 14511317 DOI: 10.1046/j.1460-9568.2003.02860.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neocortex contains very few galanin neurons but receives a moderate galanin innervation from various subcortical loci. Recent data suggest that galanin helps regulate the tonic neuronal excitability of hippocampus and probably cerebral cortex but relatively little is known about the anatomy and functional regulation of cortical galanin systems. Therefore, we examined, in the rat, the effect of the intense but benign stimulus, cortical spreading depression (CSD), on the expression of galanin and galanin receptors (GalR1 and GalR2) in the neocortex and associated regions, revealing complex, multicellular responses. Thus, following acute, unilateral KCl-induced CSD, a delayed and transient induction (onset after 48 h, lasting approximately 24 h) of galanin mRNA and peptide production occurred across the ipsilateral cerebral cortex in activated oligodendrocyte progenitor cells (OPCs), identified by specific NG2 proteoglycan immunostaining. An increase in GalR1 mRNA, immunoreactivity and receptor binding occurred in neurons within layers II and V of neocortex and in piriform cortex at 7-28 days after CSD, associated with a long-lasting depletion of galanin-positive nerve fibres in these regions. In contrast, GalR2 mRNA expression was largely unaltered after CSD. Additional novel findings in normal, adult brain were the detection of galanin mRNA and immunoreactivity in OPCs within the medial corpus callosum and in immature progenitor cells in the subventricular zone and rostral migratory stream. GalR1 and GalR2 mRNA was also present in these latter regions. These findings and the complex modulation of galanin and galanin receptors in multiple cell types (neurons/OPCs) following acute cortical activation/depression further demonstrate the potential plasticity of neuronal and non-neuronal galanin systems under physiological and pathological conditions and strongly suggest additional functions for this pleiotropic peptide in mammalian brain.
Collapse
Affiliation(s)
- Pei-Juan Shen
- Howard Florey Institute of Experimental Physiology and Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
123
|
Snow DM, Smith JD, Cunningham AT, McFarlin J, Goshorn EC. Neurite elongation on chondroitin sulfate proteoglycans is characterized by axonal fasciculation. Exp Neurol 2003; 182:310-21. [PMID: 12895442 DOI: 10.1016/s0014-4886(03)00034-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the developing or regenerating nervous system, migrating growth cones are exposed to regulatory molecules that positively and/or negatively affect guidance. Chondroitin sulfate proteoglycans (CSPGs) are complex macromolecules that are typically negative regulators of growth cone migration in vivo and in vitro. However, in certain cases, neurites sometimes traverse regions expressing relatively high levels of CSPGs, seemingly a paradox. In our continuing efforts to characterize CSPG inhibition in vitro, we manipulated the ratio of CSPGs to growth-promoting laminin-1 to produce a substratum that supports outgrowth of a subpopulation of dorsal root ganglia (DRG) neurites, while still being inhibitory to other populations of DRG neurons [Exp. Neurol. 109 (1990), 111; J. Neurobiol. 51 (2002), 285]. This model comprises a useful tool in the analysis of mechanisms of growth cone guidance and is particularly useful to analyze how CSPGs can be inhibitory under some conditions, and growth permissive under others. We grew embryonic (E9-10) chicken DRG neurons on nervous system-isolated, substratum-bound CSPGs at a concentration that supports an intermittent pattern of outgrowth, alternating with regions adsorbed with growth-promoting laminin-1 alone, and analyzed outgrowth behaviors qualitatively and quantitatively. A novel finding of the study was that DRG neurites that elongated onto CSPGs were predominantly fasciculated, but immediately returned to a defasciculated state upon contact with laminin-1. Further, cursory inspection suggests that outgrowth onto CSPGs may be initially accomplished by pioneer axons, along which subsequent axons migrate. The outgrowth patterns characterized in vitro may accurately reflect outgrowth in vivo in locations where inhibitory CSPGs and growth-promoting molecules are coexpressed, e.g., in the developing retina where fasciculated outgrowth may be instrumental in the guidance of retinal ganglion cells from the periphery to the optic fissure.
Collapse
Affiliation(s)
- Diane M Snow
- The University of Kentucky, Department of Anatomy and Neurobiology, Lexington, KY 40536-0298, USA.
| | | | | | | | | |
Collapse
|
124
|
Jones LL, Margolis RU, Tuszynski MH. The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol 2003; 182:399-411. [PMID: 12895450 DOI: 10.1016/s0014-4886(03)00087-6] [Citation(s) in RCA: 409] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix (ECM) molecules that are widely expressed throughout the developing and adult CNS. In vitro studies demonstrate their potential to restrict neurite outgrowth, and it is believed that CSPGs also inhibit axonal regeneration after CNS injury in vivo. Previous studies demonstrated that CSPGs are generally upregulated after spinal cord injury, and more recent reports have begun to identify individual proteoglycans that may play dominant roles in limiting axonal regeneration. The current study systematically examined the extended deposition patterns after CNS injury of four putatively inhibitory CSPGs that have not been extensively investigated previously in vivo: neurocan, brevican, phosphacan, and versican. After spinal cord injury, neurocan, brevican, and versican immunolabeling increased within days in injured spinal cord parenchyma surrounding the lesion site and peaked at 2 weeks. Neurocan and versican were persistently elevated for 4 weeks postinjury, and brevican expression persisted for at least 2 months. On the other hand, phosphacan immunolabeling decreased in the same region immediately following injury but later recovered and then peaked after 2 months. Combined glial fibrillary acidic protein (GFAP) immunohistochemistry and in situ hybridization demonstrated that GFAP astrocytes constituted a source of neurocan production after spinal cord injury. Thus, the production of several CSPG family members is differentially affected by spinal cord injury, overall establishing a CSPG-rich matrix that persists for up to 2 months following injury. Optimization of strategies to reduce CSPG expression to enhance regeneration may need to target several different family members over an extended period following injury.
Collapse
Affiliation(s)
- Leonard L Jones
- Department of Neurosciences-0626, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
125
|
Petrini S, Tessa A, Carrozzo R, Verardo M, Pierini R, Rizza T, Bertini E. Human melanoma/NG2 chondroitin sulfate proteoglycan is expressed in the sarcolemma of postnatal human skeletal myofibers. Abnormal expression in merosin-negative and Duchenne muscular dystrophies. Mol Cell Neurosci 2003; 23:219-31. [PMID: 12812755 DOI: 10.1016/s1044-7431(03)00033-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
NG2 is the rat homologue of the human melanoma chondroitin sulfate proteoglycan (MCSP) preferentially expressed in dividing progenitor cells of the glial and mesenchymal lineage but downregulated after differentiation. It has recently been demonstrated that MCSP/NG2 expression is not restricted to mitotic or malignant cells. We show that MCSP/NG2 expression is detectable in the sarcolemma, and in the neuromuscular junction of human postnatal skeletal muscle, and it gradually reduces with advancing age. In human and murine myogenic cell lines, we found no clear differences in MCSP/NG2 expression between myoblasts and myotubes. Reduced levels of the core protein were found in merosin-negative congenital muscular dystrophy (MDC1A). Duchenne muscular dystrophy patients muscles exhibited an overexpression of the MCSP/NG2 core protein. In gamma-sarcoglycanopathy and calpainopathy, MCSP/NG2 upregulation was restricted to regenerating myofibers. We demonstrate that MCSP/NG2 is expressed in differentiated myofibers, and appears to have a role in the pathogenesis of MDC1A and severe dystrophinopathies.
Collapse
MESH Headings
- Adolescent
- Adult
- Aging/genetics
- Aging/metabolism
- Animals
- Antigens/genetics
- Antigens/metabolism
- Calpain/deficiency
- Calpain/genetics
- Cell Differentiation/genetics
- Child
- Child, Preschool
- Chondroitin Sulfate Proteoglycans/genetics
- Chondroitin Sulfate Proteoglycans/metabolism
- Cytoskeletal Proteins/deficiency
- Cytoskeletal Proteins/genetics
- Down-Regulation/genetics
- Gene Expression Regulation, Developmental/genetics
- Humans
- Infant
- Infant, Newborn
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Middle Aged
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Myoblasts/cytology
- Myoblasts/metabolism
- Neuromuscular Junction/cytology
- Neuromuscular Junction/growth & development
- Neuromuscular Junction/metabolism
- Proteoglycans/genetics
- Proteoglycans/metabolism
- Sarcoglycans
- Sarcolemma/metabolism
- Sarcolemma/ultrastructure
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Stefania Petrini
- Unit of Molecular Medicine, Bambino Gesù Hospital IRCCS, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
126
|
Vrontou S, Petrou P, Meyer BI, Galanopoulos VK, Imai K, Yanagi M, Chowdhury K, Scambler PJ, Chalepakis G. Fras1 deficiency results in cryptophthalmos, renal agenesis and blebbed phenotype in mice. Nat Genet 2003; 34:209-14. [PMID: 12766770 DOI: 10.1038/ng1168] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2003] [Accepted: 05/05/2003] [Indexed: 11/09/2022]
Abstract
Loss of tight association between epidermis and dermis underlies several blistering disorders and is frequently caused by impaired function of extracellular matrix (ECM) proteins. Here we describe a new protein in mouse, Fras1, that is specifically detected in a linear fashion underlying the epidermis and the basal surface of other epithelia in embryos. Loss of Fras1 function results in the formation of subepidermal hemorrhagic blisters as well as unilateral or bilateral renal agenesis during mouse embryogenesis. Postnatally, homozygous Fras1 mutants have fusion of the eyelids and digits and unilateral renal agenesis or dysplasia. The defects observed in Fras1-/- mice phenocopy those of the existing bl (blebbed) mouse mutants, which have been considered a model for the human genetic disorder Fraser syndrome. We show that bl/bl homozygous embryos are devoid of Fras1 protein, consistent with the finding that Fras1 is mutated in these mice. In sum, our data suggest that perturbations in the composition of the extracellular space underlying epithelia could account for the onset of the blebbed phenotype in mouse and Fraser syndrome manifestation in human.
Collapse
Affiliation(s)
- Sophia Vrontou
- Institute of Molecular Biology and Biotechnology, FO.R.T.H., Heraklion 71110, Crete, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Li Y, Madigan MC, Lai K, Conway RM, Billson FA, Crouch R, Allen BJ. Human uveal melanoma expresses NG2 immunoreactivity. Br J Ophthalmol 2003; 87:629-32. [PMID: 12714409 PMCID: PMC1771662 DOI: 10.1136/bjo.87.5.629] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2002] [Indexed: 11/04/2022]
Abstract
BACKGROUND/AIMS NG2 is the rat homologue of the human melanoma proteoglycan (HMP), also known as the high molecular weight melanoma associated antigen. Most cutaneous melanomas, as well as glioblastomas, chondrosarcomas, and some leukaemias express NG2 immunoreactivity, recognised using monoclonal antibody (mAb) 9.2.27. This antibody has also been used for molecular targeting in targeted alpha therapy for melanoma. The purpose of this study was to evaluate the expression of NG2 immunoreactivity in human uveal melanoma and normal ocular tissue using mAb 9.2.27. METHODS Enucleated eyes from 26 patients with choroidal or ciliary body melanoma (n=26) were available as paraffin sections, and stained with haematoxylin and eosin to assess for tumour cell type and histopathology. Additional slides were investigated for NG2 immunoreactivity using mAb 9.2.27 and alkaline phosphatase anti-alkaline phosphatase (APAAP) immunostaining. Two independent observers graded immunostaining using a semiquantitative scale from 0 (negative) to 3 (strong). RESULTS Immunostaining for mAb 9.2.27 could not be graded in 7/26 cases with dense pigmentation of the tumour. For the remaining cases, grade 2 (moderate) or more immunostaining was seen in 18/19 tumours (95%). The retina, retinal pigment epithelium (RPE), and choroid displayed weak immunostaining (grade 0.5-1.5) in the majority of melanoma affected eyes. Normal retina and choroid (n=5) appeared negative for mAb 9.2.27. Optic nerve axon bundles in both control and melanoma affected eyes displayed moderate immunostaining. CONCLUSION In the present study, the majority of human uveal melanomas expressed NG2 immunoreactivity, as detected using mAb 9.2.27. This antibody may be a suitable candidate for radioimmunotherapy to target ocular melanoma.
Collapse
Affiliation(s)
- Y Li
- Centre for Experimental Radiation Oncology, Cancer Care Centre, St George Hospital, Gray Street, Kogarah, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
128
|
Stegmüller J, Werner H, Nave KA, Trotter J. The proteoglycan NG2 is complexed with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by the PDZ glutamate receptor interaction protein (GRIP) in glial progenitor cells. Implications for glial-neuronal signaling. J Biol Chem 2003; 278:3590-8. [PMID: 12458226 DOI: 10.1074/jbc.m210010200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteoglycan NG2 is expressed by immature glial cells in the developing and adult central nervous system. Using the COOH-terminal region of NG2 as bait in a yeast two-hybrid screen, we identified the glutamate receptor interaction protein GRIP1, a multi-PDZ domain protein, as an interacting partner. NG2 exhibits a PDZ binding motif at the extreme COOH terminus which binds to the seventh PDZ domain of GRIP1. In addition to the published expression in neurons, GRIP1 is expressed by immature glial cells. GRIP1 is known to bind to the GluRB subunit of the AMPA glutamate receptor expressed by subpopulations of neurons and immature glial cells. In cultures of primary oligodendrocytes, cells coexpress GluRB and NG2. A complex of NG2, GRIP1, and GluRB can be precipitated from transfected mammalian cells and from cultures of primary oligodendrocytes. Furthermore, NG2 and GRIP can be coprecipitated from developing brain tissue. These data suggest that GRIP1 acts as a scaffolding molecule clustering NG2 and AMPA receptors in immature glia. In view of the presence of synaptic contacts between neurons and NG2-positive glial cells in the hippocampus and the close association of NG2-expressing glial cells with axons, we suggest a role for the NG2.AMPA receptor complex in glial-neuronal recognition and signaling.
Collapse
Affiliation(s)
- Judith Stegmüller
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, Germany
| | | | | | | |
Collapse
|
129
|
Abstract
The NG2 chondroitin sulfate proteoglycan, an integral membrane proteoglycan, inhibits axon growth from cerebellar granule neurons and dorsal root ganglia (DRG) neurons in vitro. The extracellular domain of the NG2 core protein contains three subdomains: an N-terminal globular domain (domain 1), a central extended domain that has the sites for glycosaminoglycan (GAG) attachment (domain 2), and a juxtamembrane domain (domain 3). Here, we used domain-specific fusion proteins and antibodies to map the inhibitory activity within the NG2 core protein. Fusion proteins encoding domain 1 (D1-Fc) or domain 3 (D3-Fc) of NG2 inhibited axon growth from cerebellar granule neurons when the proteins were substrate-bound. These proteins also induced growth cone collapse from newborn DRG neurons when added to the culture medium. Domain 2 only inhibited axon growth when the GAG chains were present. Neutralizing antibodies directed against domain 1 or 3 blocked completely the inhibition from substrates coated with D1-Fc or D3-Fc. When the entire extracellular domain of NG2 was used as a substrate, however, both neutralizing antibodies were needed to reverse completely the inhibition. When NG2 was expressed on the surface of HEK293 cells, the neutralizing anti-D1 antibody was sufficient to block the inhibition, whereas the anti-D3 antibody had no effect. These results suggest that domains 1 and 3 of NG2 can inhibit neurite growth independently. These inhibitory domains may be differentially exposed depending on whether NG2 is presented as an integral membrane protein or as a secreted protein associated with the extracellular matrix.
Collapse
|
130
|
Majumdar M, Vuori K, Stallcup WB. Engagement of the NG2 proteoglycan triggers cell spreading via rac and p130cas. Cell Signal 2003; 15:79-84. [PMID: 12401522 DOI: 10.1016/s0898-6568(02)00045-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cells that express the NG2 proteoglycan will spread on surfaces coated with monoclonal antibodies against this membrane-spanning protein. On surfaces coated with the N143 monoclonal antibody, this cell spreading occurs by extension of lamellipodia, suggesting that activation of the small GTPase rac is involved in the observed morphological change. Support for this hypothesis comes from the finding of increased levels of GTP-bound rac in cells spreading on N143-coated surfaces. Furthermore, lamellipodia extension is blocked by transfection of cells with the dominant negative rac construct N17rac, but not by transfection with N17cdc42. Formation of lamellipodia on the N143-coated surfaces is also inhibited by transfection of the dominant negative CasdeltaSD construct. This result implicates p130cas as an additional functional player in NG2-mediated cell spreading.
Collapse
Affiliation(s)
- Mousumi Majumdar
- The Burnham Institute, Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
131
|
Ughrin YM, Chen ZJ, Levine JM. Multiple regions of the NG2 proteoglycan inhibit neurite growth and induce growth cone collapse. J Neurosci 2003; 23:175-86. [PMID: 12514214 PMCID: PMC6742139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
The NG2 chondroitin sulfate proteoglycan, an integral membrane proteoglycan, inhibits axon growth from cerebellar granule neurons and dorsal root ganglia (DRG) neurons in vitro. The extracellular domain of the NG2 core protein contains three subdomains: an N-terminal globular domain (domain 1), a central extended domain that has the sites for glycosaminoglycan (GAG) attachment (domain 2), and a juxtamembrane domain (domain 3). Here, we used domain-specific fusion proteins and antibodies to map the inhibitory activity within the NG2 core protein. Fusion proteins encoding domain 1 (D1-Fc) or domain 3 (D3-Fc) of NG2 inhibited axon growth from cerebellar granule neurons when the proteins were substrate-bound. These proteins also induced growth cone collapse from newborn DRG neurons when added to the culture medium. Domain 2 only inhibited axon growth when the GAG chains were present. Neutralizing antibodies directed against domain 1 or 3 blocked completely the inhibition from substrates coated with D1-Fc or D3-Fc. When the entire extracellular domain of NG2 was used as a substrate, however, both neutralizing antibodies were needed to reverse completely the inhibition. When NG2 was expressed on the surface of HEK293 cells, the neutralizing anti-D1 antibody was sufficient to block the inhibition, whereas the anti-D3 antibody had no effect. These results suggest that domains 1 and 3 of NG2 can inhibit neurite growth independently. These inhibitory domains may be differentially exposed depending on whether NG2 is presented as an integral membrane protein or as a secreted protein associated with the extracellular matrix.
Collapse
Affiliation(s)
- Yvonne M Ughrin
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
132
|
Staub E, Hinzmann B, Rosenthal A. A novel repeat in the melanoma-associated chondroitin sulfate proteoglycan defines a new protein family. FEBS Lett 2002; 527:114-8. [PMID: 12220645 DOI: 10.1016/s0014-5793(02)03195-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human melanoma-associated chondroitin sulfate proteoglycan (MCSP) and its rat ortholog NG2 are thought to play important roles in angiogenesis-dependent processes like wound healing and tumor growth. Based on electron microscopy studies, the highly glycosylated ectodomain of NG2 has been subdivided into the globular N-terminus, a flexible rod-like central region and a C-terminal portion in globular conformation. We identified a novel repeat named CSPG in the central ectodomain of NG2, MCSP and other proteins from fly, worm, human, sea urchin and a cyanobacterium which shows similarity to cadherin repeats. As earlier electron microscopy studies indicate, the folding of the tandem repeats compresses the length of the proposed repeat region by a factor of approximately 10 compared to the fully extended peptide chain. We identified two conserved negatively charged residues which might govern the binding properties of CSPG repeats. The phyletic distribution of CSPG repeats suggests that horizontal gene transfer contributed to their evolutionary history.
Collapse
Affiliation(s)
- Eike Staub
- metaGen Pharmaceuticals GmbH, Oudenarder Str. 16, D-13347, Berlin, Germany.
| | | | | |
Collapse
|
133
|
Chen ZJ, Ughrin Y, Levine JM. Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci 2002; 20:125-39. [PMID: 12056844 DOI: 10.1006/mcne.2002.1102] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glial scar that forms at the site of injury is thought to be a biochemical and physical barrier to successful regeneration, although the molecules responsible for this barrier function are not well understood. Glia scars contain large numbers of oligodendrocyte precursor cells (OPCs) and these cells can produce several different growth-inhibitory chondroitin sulfate proteoglycans (CSPGs), including NG2, neurocan, and phosphacan. Here, we used membrane-based assays to show that the surface of OPCs is both nonpermissive and inhibitory for neurite outgrowth. Inhibition of growth by OPC is reversed by treatment with antibodies against the NG2 CSPG and the expression of NG2 is sufficient to change a growth-permissive cell surface to a nonpermissive surface. These result suggest that the OPCs that accumulate rapidly at sites of CNS injury can contribute to the creation of an environment that inhibits nerve regeneration and that NG2 is a necessary feature of that environment.
Collapse
Affiliation(s)
- Zhi Jiang Chen
- Department of Neurobiology and Behavior, SUNY at Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
134
|
NG2 is a major chondroitin sulfate proteoglycan produced after spinal cord injury and is expressed by macrophages and oligodendrocyte progenitors. J Neurosci 2002. [PMID: 11923444 DOI: 10.1523/jneurosci.22-07-02792.2002] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several extracellular matrix (ECM) molecules have been identified as potent inhibitors of neurite outgrowth in vitro and are believed to limit axonal growth after CNS injury. Recent studies have shown that different members of the chondroitin sulfate proteoglycan (CSPG) class of putatively inhibitory ECM molecules are expressed after a number of CNS injuries. The purpose of this study was to evaluate the relative amounts of individual CSPGs expressed after spinal cord injury (SCI) and identify their cells of origin. Evaluation of total soluble CSPGs 2 weeks after dorsal column lesion in the rat demonstrated that NG2 is highly upregulated and is a major CSPG species. Immunocytochemical analysis further demonstrated that NG2 expression is upregulated within 24 hr of injury, peaks at 1 week, and remains elevated for at least an additional 7 weeks. NG2 expression results from a multicellular response to injury, including both reactive macrophages and oligodendrocyte progenitors; astrocytes were not identified as a major source of NG2. Immunocytochemical analysis of other CSPG family members 7 d after injury showed moderate upregulation of versican, brevican, and neurocan, and downregulation of phosphacan. Axonal tracing experiments demonstrated dense NG2 labeling adjacent to the forward processes of transected corticospinal tract axons in a spatial profile that could restrict axonal growth. Thus, NG2 is a major component of this putatively inhibitory class of ECM molecules expressed at sites of SCI and may restrict axonal regeneration.
Collapse
|
135
|
Chekenya M, Hjelstuen M, Enger PØ, Thorsen F, Jacob AL, Probst B, Haraldseth O, Pilkington G, Butt A, Levine JM, Bjerkvig R. NG2 proteoglycan promotes angiogenesis-dependent tumor growth in CNS by sequestering angiostatin. FASEB J 2002; 16:586-8. [PMID: 11919162 DOI: 10.1096/fj.01-0632fje] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During embryogenesis, the NG2 proteoglycan is expressed on immature capillary vessels, but as the vessels mature they lose this expression. NG2 is up-regulated in high-grade gliomas, but it is not clear to what extent it contributes to malignant progression. Using a combination of high spatial and temporal resolution functional magnetic resonance imaging and histopathological analyses, we show here that overexpression of NG2 increases tumor initiation and growth rates, neovascularization, and cellular proliferation, which predisposes to a poorer survival outcome. By confocal microscopy and cDNA gene array expression profiles, we also show that NG2 tumors express lower levels of hypoxia inducible factor-1a, vascular endothelial growth factor, and endogenous angiostatin in vivo compared with wild-type tumors. Moreover, we demonstrate that NG2-positive cells bind, internalize, and coimmunoprecipitate with angiostatin. These results indicate a unique role for NG2 in regulating the transition from small, poorly vascularized tumors to large, highly vascular gliomas in situ by sequestering angiostatin.
Collapse
Affiliation(s)
- Martha Chekenya
- Department of Anatomy and Cell Biology, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Abstract
The node of Ranvier is a complex macromolecular assembly of ion channels and other proteins that is specialized for the rapid propagation of the action potential. A full understanding of the processes responsible for the assembly and maintenance of the node requires first the identification and characterization of the proteins found there. Here we show that NG2, a structurally unique chondroitin sulfate proteoglycan, is a molecular component of the node of Ranvier in the peripheral nervous system. In adult sciatic nerve, NG2 is (1) associated with thin, elongated fibroblast-like cells, (2) on some but not all basal laminae, and (3) at nodes of Ranvier. At the nodes, NG2 is restricted to the nodal gap and is absent from the paranodal or juxtaparanodal region. In dissociated cell cultures of adult sciatic nerve, perineurial fibroblasts but not Schwann cells express NG2 on their surfaces. Approximately 45% of the total NG2 in peripheral nerves is in a soluble, rather than particulate, subcellular compartment. NG2 is also present in membrane fractions that also contain high levels of voltage-dependent sodium channels, caspr, and neuron-glia related cell adhesion molecule. These medium-density membranes likely correspond to the nodal and paranodal region of the axon-Schwann cell unit. These results suggest a model in which perineurial fibroblasts secrete or shed NG2, which subsequently associates with nodes of Ranvier. The growth-inhibitory and anti-adhesive properties of NG2 may limit the lateral extension of myelinating Schwann cells as nodes mature. NG2 may also participate in the barrier functions of the perineurial linings of the nerve.
Collapse
|
137
|
Martin S, Levine AK, Chen ZJ, Ughrin Y, Levine JM. Deposition of the NG2 proteoglycan at nodes of Ranvier in the peripheral nervous system. J Neurosci 2001; 21:8119-28. [PMID: 11588184 PMCID: PMC6763877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
The node of Ranvier is a complex macromolecular assembly of ion channels and other proteins that is specialized for the rapid propagation of the action potential. A full understanding of the processes responsible for the assembly and maintenance of the node requires first the identification and characterization of the proteins found there. Here we show that NG2, a structurally unique chondroitin sulfate proteoglycan, is a molecular component of the node of Ranvier in the peripheral nervous system. In adult sciatic nerve, NG2 is (1) associated with thin, elongated fibroblast-like cells, (2) on some but not all basal laminae, and (3) at nodes of Ranvier. At the nodes, NG2 is restricted to the nodal gap and is absent from the paranodal or juxtaparanodal region. In dissociated cell cultures of adult sciatic nerve, perineurial fibroblasts but not Schwann cells express NG2 on their surfaces. Approximately 45% of the total NG2 in peripheral nerves is in a soluble, rather than particulate, subcellular compartment. NG2 is also present in membrane fractions that also contain high levels of voltage-dependent sodium channels, caspr, and neuron-glia related cell adhesion molecule. These medium-density membranes likely correspond to the nodal and paranodal region of the axon-Schwann cell unit. These results suggest a model in which perineurial fibroblasts secrete or shed NG2, which subsequently associates with nodes of Ranvier. The growth-inhibitory and anti-adhesive properties of NG2 may limit the lateral extension of myelinating Schwann cells as nodes mature. NG2 may also participate in the barrier functions of the perineurial linings of the nerve.
Collapse
Affiliation(s)
- S Martin
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
138
|
Sugita S, Saito F, Tang J, Satz J, Campbell K, Südhof TC. A stoichiometric complex of neurexins and dystroglycan in brain. J Cell Biol 2001; 154:435-45. [PMID: 11470830 PMCID: PMC2150755 DOI: 10.1083/jcb.200105003] [Citation(s) in RCA: 335] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In nonneuronal cells, the cell surface protein dystroglycan links the intracellular cytoskeleton (via dystrophin or utrophin) to the extracellular matrix (via laminin, agrin, or perlecan). Impairment of this linkage is instrumental in the pathogenesis of muscular dystrophies. In brain, dystroglycan and dystrophin are expressed on neurons and astrocytes, and some muscular dystrophies cause cognitive dysfunction; however, no extracellular binding partner for neuronal dystroglycan is known. Regular components of the extracellular matrix, such as laminin, agrin, and perlecan, are not abundant in brain except in the perivascular space that is contacted by astrocytes but not by neurons, suggesting that other ligands for neuronal dystroglycan must exist. We have now identified alpha- and beta-neurexins, polymorphic neuron-specific cell surface proteins, as neuronal dystroglycan receptors. The extracellular sequences of alpha- and beta-neurexins are largely composed of laminin-neurexin-sex hormone-binding globulin (LNS)/laminin G domains, which are also found in laminin, agrin, and perlecan, that are dystroglycan ligands. Dystroglycan binds specifically to a subset of the LNS domains of neurexins in a tight interaction that requires glycosylation of dystroglycan and is regulated by alternative splicing of neurexins. Neurexins are receptors for the excitatory neurotoxin alpha-latrotoxin; this toxin competes with dystroglycan for binding, suggesting overlapping binding sites on neurexins for dystroglycan and alpha-latrotoxin. Our data indicate that dystroglycan is a physiological ligand for neurexins and that neurexins' tightly regulated interaction could mediate cell adhesion between brain cells.
Collapse
Affiliation(s)
- S Sugita
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
139
|
Stallcup WB, Dahlin-Huppe K. Chondroitin sulfate and cytoplasmic domain-dependent membrane targeting of the NG2 proteoglycan promotes retraction fiber formation and cell polarization. J Cell Sci 2001; 114:2315-25. [PMID: 11493670 DOI: 10.1242/jcs.114.12.2315] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Targeting of the NG2 proteoglycan to cellular retraction fibers was studied by expressing mutant NG2 molecules lacking specific structural elements of the proteoglycan. Both the cytoplasmic domain and the chondroitin sulfate chain of NG2 appear to have roles in sorting NG2 to subcellular microdomains destined to become retraction fibers. Neither of these structural features alone is sufficient to allow optimal targeting of NG2 to retraction fibers, but together they promote efficient localization of the proteoglycan to these sites. This pattern of NG2 sorting seems to be necessary for optimal retraction fiber formation, as cells expressing poorly targeted NG2 mutants are noticeably deficient in their ability to extend retraction fibers. Furthermore, retraction fiber formation correlates strongly with the tendency of cells to assume a polarized morphology with NG2-positive retraction fibers at one pole of the cell and actin-rich lamellipodia at the other. This polarization can be triggered either through engagement of NG2 by the substratum or by exposure to lysophosphatidic acid, a potent activator of the rho GTPase. These results suggest a possible role for NG2 in regulating rho-dependent mechanisms in the trailing processes of motile cells.
Collapse
Affiliation(s)
- W B Stallcup
- The Burnham Institute, La Jolla Cancer Research Center, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
140
|
The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J Neurosci 2001. [PMID: 11157078 DOI: 10.1523/jneurosci.21-03-00920.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The expression of the 330 kDa AN2 glycoprotein was studied in the rodent peripheral nervous system. AN2 is expressed by immature Schwann cells in vitro and in vivo and downregulated as the cells upregulate myelin genes. A subpopulation of nonmyelinating Schwann cells in the adult sciatic nerve retains expression of AN2. In rat sciatic nerve crushes, where Schwann cell numbers increase after initial axonal loss and markers of immature Schwann cells show an upregulation, no increased expression of AN2 was observed. In contrast, AN2 expression was upregulated in nerves from peripheral myelin protein-22-transgenic rats, where immature Schwann cells expand without axonal loss. Furthermore, coculture with neurons upregulated AN2 expression on Schwann cells in vitro. Polyclonal antibodies against AN2 inhibited the migration of an immortalized Schwann cell clone in an in vitro migration assay, and the purified AN2 protein was shown to be neither inhibitory nor permissive for outgrowing dorsal root ganglion neurites. AN2 is thus a novel marker for the Schwann cell lineage. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of purified AN2 from early postnatal mouse brain demonstrated that AN2 is the murine homolog of the rat NG2 proteoglycan.
Collapse
|
141
|
Ferrone S, Wang X. Active specific immunotherapy of malignant melanoma and peptide mimics of the human high-molecular-weight melanoma-associated antigen. Recent Results Cancer Res 2001; 158:231-5. [PMID: 11092050 DOI: 10.1007/978-3-642-59537-0_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
The realization that tumor cells utilize multiple mechanisms to escape from immune recognition and destruction has stimulated interest in developing and applying immunotherapeutic strategies which target both humoral and cellular immunity to malignant cells. As a result, the tumor-associated antigens (TAA) used as targets have to be expressed on the cell surface membrane of malignant cells. Furthermore, since most of the TAA used for active specific immunotherapy are self-antigens, a challenge facing tumor immunologists is to develop strategies which are effective in breaking tolerance to self-antigens. This chapter describes one strategy which relies on the use of peptide mimics of the human high-molecular-weight melanoma-associated antigen (HMW-MAA) as immunogens to implement active specific immunotherapy in patients with malignant melanoma. These mimics, which are isolated from phage display peptide libraries by panning with anti-HMW-MAA monoclonal antibodies, are expected to induce both humoral and cellular anti-HMW-MAA immunity.
Collapse
Affiliation(s)
- S Ferrone
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
142
|
Niehaus A, Shi J, Grzenkowski M, Diers-Fenger M, Archelos J, Hartung HP, Toyka K, Brück W, Trotter J. Patients with active relapsing-remitting multiple sclerosis synthesize antibodies recognizing oligodendrocyte progenitor cell surface protein: Implications for remyelination. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200009)48:3<362::aid-ana11>3.0.co;2-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
143
|
Schneider S, Bosse F, D'Urso D, Muller H, Sereda MW, Nave K, Niehaus A, Kempf T, Schnolzer M, Trotter J. The AN2 protein is a novel marker for the Schwann cell lineage expressed by immature and nonmyelinating Schwann cells. J Neurosci 2001; 21:920-33. [PMID: 11157078 PMCID: PMC6762312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
The expression of the 330 kDa AN2 glycoprotein was studied in the rodent peripheral nervous system. AN2 is expressed by immature Schwann cells in vitro and in vivo and downregulated as the cells upregulate myelin genes. A subpopulation of nonmyelinating Schwann cells in the adult sciatic nerve retains expression of AN2. In rat sciatic nerve crushes, where Schwann cell numbers increase after initial axonal loss and markers of immature Schwann cells show an upregulation, no increased expression of AN2 was observed. In contrast, AN2 expression was upregulated in nerves from peripheral myelin protein-22-transgenic rats, where immature Schwann cells expand without axonal loss. Furthermore, coculture with neurons upregulated AN2 expression on Schwann cells in vitro. Polyclonal antibodies against AN2 inhibited the migration of an immortalized Schwann cell clone in an in vitro migration assay, and the purified AN2 protein was shown to be neither inhibitory nor permissive for outgrowing dorsal root ganglion neurites. AN2 is thus a novel marker for the Schwann cell lineage. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of purified AN2 from early postnatal mouse brain demonstrated that AN2 is the murine homolog of the rat NG2 proteoglycan.
Collapse
Affiliation(s)
- S Schneider
- Department of Neurobiology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Bu J, Akhtar N, Nishiyama A. Transient expression of the NG2 proteoglycan by a subpopulation of activated macrophages in an excitotoxic hippocampal lesion. Glia 2001; 34:296-310. [PMID: 11360302 DOI: 10.1002/glia.1063] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cells that express the NG2 proteoglycan (NG2+ cells) constitute a large glial population in the normal mature rodent brain. They can differentiate into oligodendrocytes but are distinct from mature oligodendrocytes, astrocytes, microglia, and neurons. Changes in NG2+ cells were examined in kainic acid-induced excitotoxic lesions of the hippocampus, and the relationship between NG2+ cells and reactive astrocytes and microglia was investigated between 1 and 90 days after lesioning. Two types of reactive NG2+ cells with altered morphology and increased NG2 immunoreactivity were observed in the lesion. Early changes, consisting of an increase in NG2 immunoreactivity and the number of processes, were apparent 24 h after lesioning and persisted through 3 months. These cells were distinct from reactive astrocytes or activated microglia/macrophages. A second type of reactive NG2+ cells appeared 2 weeks after injection, following an influx of macrophages. They had large, round cell bodies with short processes and expressed the microglia/macrophage antigens OX42 and ED1. Single cells coexpressing NG2 and macrophage/microglial antigens could be isolated from the lesion. The number of NG2+/OX42+ cells gradually declined and disappeared by 3 months after injection. They did not express glial fibrillary acidic protein or the alpha receptor for platelet-derived growth factor, indicating that they are distinct from astrocytes or oligodendrocyte progenitor cells. Cells that coexpressed NG2 and OX42 were never observed in hippocampal slice cultures treated with kainic acid, suggesting that NG2+/OX42+ cells are not derived from endogenous resident brain cells. These findings demonstrate that NG2 expression is transiently upregulated on activated macrophages/microglia that appear during the chronic stage in an excitotoxic lesion in the adult CNS.
Collapse
Affiliation(s)
- J Bu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, USA
| | | | | |
Collapse
|
145
|
Domowicz M, Mangoura D, Schwartz NB. Cell specific-chondroitin sulfate proteoglycan expression during CNS morphogenesis in the chick embryo. Int J Dev Neurosci 2000; 18:629-41. [PMID: 10978841 DOI: 10.1016/s0736-5748(00)00039-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
There is increasing evidence that proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), are integral components in the assembly of the extracellular matrix during early stages of histogenesis. The differential expression of several CSPGs in the developing CNS has raised questions on their origin, phenotype (chemical and structural characteristics), regulation of expression and function. The S103L monoclonal antibody has been an invaluable specific reagent to identify and study a large and abundant CSPG in embryonic chick brain. In the present study we demonstrate that during embryogenesis of the chick CNS, the S103L CSPG (B-aggrecan) is synthesized by neurons of all major neuronal cell types but not by astrocytes, is developmentally regulated, and is associated predominantly with neuronal somata, suggesting that neuronal-specific regulatory mechanisms control the expression of the S103L CSPG in culture. Neurons also exhibit differential expression of glycosaminoglycan type (i.e., KS) and sulfation patterns on different CSPGs when compared to astrocytes, meningial cells or chondrocytes, implying the existence of additional, cell type-specific modes of regulation of the final CSPG phenotype (chemical and structural posttranslational characteristics). A specific temporal pattern of expression of the S103L-CSPG was observed which may contribute to conditions that induce or stabilize specific cell phenotypes during CNS development. In contrast, the other major CSPG in the CNS recognized by the HNK-1 antibody, is synthesized by all cell types of different cell lineages over the entire embryonic period, suggesting a more global cell maintenance function for this CSPG.
Collapse
Affiliation(s)
- M Domowicz
- Departments of Pediatrics, Biochemistry and Molecular Biology, The University of Chicago, 5841 South Maryland, MC 58058, Chicago, IL 60637, USA
| | | | | |
Collapse
|
146
|
Barritt DS, Pearn MT, Zisch AH, Lee SS, Javier RT, Pasquale EB, Stallcup WB. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20001101)79:2%3c213::aid-jcb50%3e3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
147
|
Bandtlow CE, Zimmermann DR. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiol Rev 2000; 80:1267-90. [PMID: 11015614 DOI: 10.1152/physrev.2000.80.4.1267] [Citation(s) in RCA: 490] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Proteoglycans are a heterogeneous class of proteins bearing sulfated glycosaminoglycans. Some of the proteoglycans have distinct core protein structures, and others display similarities and thus may be grouped into families such as the syndecans, the glypicans, or the hyalectans (or lecticans). Proteoglycans can be found in almost all tissues being present in the extracellular matrix, on cellular surfaces, or in intracellular granules. In recent years, brain proteoglycans have attracted growing interest due to their highly regulated spatiotemporal expression during nervous system development and maturation. There is increasing evidence that different proteoglycans act as regulators of cell migration, axonal pathfinding, synaptogenesis, and structural plasticity. This review summarizes the most recent data on structures and functions of brain proteoglycans and focuses on new physiological concepts for their potential roles in the developing central nervous system.
Collapse
Affiliation(s)
- C E Bandtlow
- Brain Research Institute, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland.
| | | |
Collapse
|
148
|
Goretzki L, Lombardo CR, Stallcup WB. Binding of the NG2 proteoglycan to kringle domains modulates the functional properties of angiostatin and plasmin(ogen). J Biol Chem 2000; 275:28625-33. [PMID: 10889192 DOI: 10.1074/jbc.m002290200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions of the developmentally regulated chondroitin sulfate proteoglycan NG2 with human plasminogen and kringle domain-containing plasminogen fragments have been analyzed by solid-phase immunoassays and by surface plasmon resonance. In immunoassays, the core protein of NG2 binds specifically and saturably to plasminogen, which consists of five kringle domains and a serine protease domain, and to angiostatin, which contains plasminogen kringle domains 1-3. Apparent dissociation constants for these interactions range from 12 to 75 nm. Additional evidence for NG2 interaction with kringle domains comes from its binding to plasminogen kringle domain 4 and to miniplasminogen (kringle domain 5 plus the protease domain) with apparent dissociation constants in the 18-71 nm range. Inhibition of plasminogen and angiostatin binding to NG2 by 6-aminohexanoic acid suggests that lysine binding sites are involved in kringle interaction with NG2. The interaction of NG2 with plasminogen and angiostatin has very interesting functional consequences. 1) Soluble NG2 significantly enhances the activation of plasminogen by urokinase type plasminogen activator. 2) The antagonistic effect of angiostatin on endothelial cell proliferation is inhibited by soluble NG2. Both of these effects of NG2 should make the proteoglycan a positive regulator of the cell migration and proliferation required for angiogenesis.
Collapse
Affiliation(s)
- L Goretzki
- The Burnham Institute, La Jolla Cancer Research Center, La Jolla, California 92037, USA
| | | | | |
Collapse
|
149
|
Barritt DS, Pearn MT, Zisch AH, Lee SS, Javier RT, Pasquale EB, Stallcup WB. The multi-PDZ domain protein MUPP1 is a cytoplasmic ligand for the membrane-spanning proteoglycan NG2. J Cell Biochem 2000; 79:213-24. [PMID: 10967549 PMCID: PMC3501957 DOI: 10.1002/1097-4644(20001101)79:2<213::aid-jcb50>3.0.co;2-g] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A yeast two-hybrid screen was employed to identify ligands for the cytoplasmic domain of the NG2 chondroitin sulfate proteoglycan. Two overlapping cDNA clones selected in the screen are identical in sequence to a DNA segment coding for the most amino-terminal of the 13 PDZ domains found in the multi-PDZ-protein MUPP1. Antibodies made against recombinant polypeptides representing these two clones (NIP-2 and NIP-7) are reactive with the same 250-kDa molecule recognized by anti-MUPP1 antibodies, confirming the presence of the NIP-2 and NIP-7 sequences in the MUPP1 protein. NIP-2 and NIP-7 GST fusion proteins effectively recognize NG2 in pull-down assays, demonstrating the ability of these polypeptide segments to interact with the intact proteoglycan. The fusion proteins fail to bind NG2 missing the C-terminal half of the cytoplasmic domain, emphasizing the role of the NG2 C-terminus in the interaction with MUPP1. The existence of an NG2/MUPP1 interaction in situ is demonstrated by the ability of NG2 antibodies to co-immunoprecipitate both NG2 and MUPP1 from detergent extracts of cells expressing the two molecules. MUPP1 may serve as a multivalent scaffold that provides a means of linking NG2 with key structural and/or signaling components in the cytoplasm.
Collapse
Affiliation(s)
- Diana S. Barritt
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037
| | - Michael T. Pearn
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037
| | - Andreas H. Zisch
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037
| | - Siu Sylvia Lee
- Baylor College of Medicine, Division of Molecular Virology, Houston, Texas 77030
| | - Ronald T. Javier
- Baylor College of Medicine, Division of Molecular Virology, Houston, Texas 77030
| | - Elena B. Pasquale
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037
| | - William B. Stallcup
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037
- Correspondence to: William B. Stallcup, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037.
| |
Collapse
|
150
|
Hodor PG, Illies MR, Broadley S, Ettensohn CA. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev Biol 2000; 222:181-94. [PMID: 10885756 DOI: 10.1006/dbio.2000.9696] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The migratory primary mesenchyme cells (PMCs) of the sea urchin embryo are a model experimental system for the analysis of cell-extracellular matrix (ECM) interactions. Although the behavior of PMCs during gastrulation has been analyzed in considerable detail, it has proven difficult to identify specific substrate molecules with which these cells interact. Here, using a new monoclonal antibody (2.5C4) generated by an in vitro immunization procedure, we show that migrating PMCs interact with a distinct class of ECM fiber. The 2.5C4-positive fibers are distributed in a vegetal (high) to animal (low) gradient on the basal surface of the ectoderm. Three observations indicate that PMC filopodia interact directly with the fibers: (1) During gastrulation, 2.5C4-positive fibers gradually become oriented in a prominent circumferential belt that corresponds precisely to the position of the subequatorial PMC ring. (2) This fiber pattern is blocked by microsurgical removal of PMCs but is restored if PMCs are reintroduced into the embryo. (3) Examination of immunostained embryo whole mounts by confocal microscopy reveals a striking association between PMC filopodial roots and foci of fiber bundling. Double-immunostaining experiments using 2.5C4 and antibodies against previously identified matrix constituents show that the protein ECM3 is a component of the fibers. We have determined the complete amino acid sequence of ECM3 and find that this large protein (3103 amino acids) consists of an N-terminal domain similar to the mammalian chondroitin sulfate proteoglycan core protein NG2, a central region composed of five tandem repeats of a domain contained within the regulatory Ca2+-binding loop of Na+-Ca2+ exchange proteins, and a C-terminal region with no homology to known proteins. The general structure of ECM3 is similar in several respects to that of a sponge protein, MAFp4. MAFp4 is a major component of aggregation factor, an ECM complex that mediates the calcium-dependent, species-specific sorting of sponge cells. These studies establish ECM3 as a strong candidate for a PMC substrate molecule and point to several possible mechanisms by which interactions between PMC filopodia and ECM3-containing fibers could provide guidance information to migrating PMCs.
Collapse
Affiliation(s)
- P G Hodor
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|