101
|
Santacreu BJ, Pescio LG, Romero DJ, Corradi GR, Sterin-Speziale N, Favale NO. Sphingosine kinase and sphingosine-1-phosphate regulate epithelial cell architecture by the modulation of de novo sphingolipid synthesis. PLoS One 2019; 14:e0213917. [PMID: 30897151 PMCID: PMC6428330 DOI: 10.1371/journal.pone.0213917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022] Open
Abstract
Sphingolipids regulate several aspects of cell behavior and it has been demonstrated that cells adjust their sphingolipid metabolism in response to metabolic needs. Particularly, sphingosine-1-phosphate (S1P), a final product of sphingolipid metabolism, is a potent bioactive lipid involved in the regulation of various cellular processes, including cell proliferation, cell migration, actin cytoskeletal reorganization and cell adhesion. In previous work in rat renal papillae, we showed that sphingosine kinase (SK) expression and S1P levels are developmentally regulated and control de novo sphingolipid synthesis. The aim of the present study was to evaluate the participation of SK/S1P pathway in the triggering of cell differentiation by external hypertonicity. We found that hypertonicity evoked a sharp decrease in SK expression, thus activating the de novo sphingolipid synthesis pathway. Furthermore, the inhibition of SK activity evoked a relaxation of cell-cell adherens junction (AJ) with accumulation of the AJ complex (E-cadherin/β-catenin/α-catenin) in the Golgi complex, preventing the acquisition of the differentiated cell phenotype. This phenotype alteration was a consequence of a sphingolipid misbalance with an increase in ceramide levels. Moreover, we found that SNAI1 and SNAI2 were located in the cell nucleus with impairment of cell differentiation induced by SK inhibition, a fact that is considered a biochemical marker of epithelial to mesenchymal transition. So, we suggest that the expression and activity of SK1, but not SK2, act as a control system, allowing epithelial cells to synchronize the various branches of sphingolipid metabolism for an adequate cell differentiation program.
Collapse
Affiliation(s)
- Bruno Jaime Santacreu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Daniela Judith Romero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Gerardo Raúl Corradi
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica. Cátedra de Química Biológica Superior, Buenos Aires, Argentina
| | - Norma Sterin-Speziale
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas—Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
- * E-mail: (NOF); (NSS)
| | - Nicolás Octavio Favale
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)—Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
- * E-mail: (NOF); (NSS)
| |
Collapse
|
102
|
Oliveira M, Lira R, Freire T, Luna C, Martins M, Almeida A, Carvalho S, Cortez E, Stumbo AC, Thole A, Carvalho L. Bone marrow mononuclear cell transplantation rescues the glomerular filtration barrier and epithelial cellular junctions in a renovascular hypertension model. Exp Physiol 2019; 104:740-754. [DOI: 10.1113/ep087330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Mariana Oliveira
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rafaelle Lira
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago Freire
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Camila Luna
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcela Martins
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Aline Almeida
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Simone Carvalho
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Erika Cortez
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alessandra Thole
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lais Carvalho
- Laboratory of Stem Cell ResearchHistology and Embryology DepartmentBiology InstituteState University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
103
|
Ferreira JN, Hasan R, Urkasemsin G, Ng KK, Adine C, Muthumariappan S, Souza GR. A magnetic three-dimensional levitated primary cell culture system for the development of secretory salivary gland-like organoids. J Tissue Eng Regen Med 2019; 13:495-508. [PMID: 30666813 DOI: 10.1002/term.2809] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/08/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
Salivary gland (SG) hypofunction and oral dryness can be induced by radiotherapy for head and neck cancers or autoimmune disorders. These are common clinical conditions that involve loss of saliva-secreting epithelial cells. Several oral complications arise with SG hypofunction that interfere with routine daily activities such as chewing, swallowing, and speaking. Hence, there is a need for replacing these saliva-secreting cells. Recently, researchers have proposed to repair SG hypofunction via various cell-based approaches in three-dimensional (3D) scaffold-based systems. However, majority of the scaffolds used cannot be translated clinically due to the presence of non-human-based substrates. Herein, saliva-secreting organoids/mini-glands were developed using a new scaffold/substrate-free culture system named magnetic 3D levitation (M3DL), which assembles and levitates magnetized primary SG-derived cells (SGDCs), allowing them to produce their own extracellular matrices. Primary SGDCs were assembled in M3DL to generate SG-like organoids in well-established SG epithelial differentiation conditions for 7 days. After such culture time, these organoids consistently presented uniform spheres with greater cell viability and pro-mitotic cells, when compared with conventional salisphere cultures. Additionally, organoids formed by M3DL expressed SG-specific markers from different cellular compartments: acinar epithelial including adherens junctions (NKCC1, cholinergic muscarinic receptor type 3, E-cadherin, and EpCAM); ductal epithelial and myoepithelial (cytokeratin 14 and α-smooth muscle actin); and neuronal (β3-tubulin and vesicular acetylcholine transferase). Lastly, intracellular calcium and α-amylase activity assays showed functional organoids with SG-specific secretory activity upon cholinergic stimulation. Thus, the functional organoid produced herein indicate that this M3DL system can be a promising tool to generate SG-like mini-glands for SG secretory repair.
Collapse
Affiliation(s)
- Joao N Ferreira
- Faculty of Dentistry, Excellence Centre in Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.,Faculty of Dentistry, Discipline of Oral and Maxillofacial Surgery, National University of Singapore, Singapore, Singapore
| | - Riasat Hasan
- Faculty of Dentistry, Discipline of Oral and Maxillofacial Surgery, National University of Singapore, Singapore, Singapore
| | - Ganokon Urkasemsin
- Faculty of Veterinary Science, Department of Preclinical and Applied Animal Science, Mahidol University, Nakhon Pathom, Thailand
| | - Kiaw K Ng
- Faculty of Dentistry, Discipline of Oral and Maxillofacial Surgery, National University of Singapore, Singapore, Singapore
| | - Christabella Adine
- Faculty of Dentistry, Discipline of Oral and Maxillofacial Surgery, National University of Singapore, Singapore, Singapore
| | - Sujatha Muthumariappan
- Faculty of Dentistry, Discipline of Oral and Maxillofacial Surgery, National University of Singapore, Singapore, Singapore
| | - Glauco R Souza
- University of Texas Health Sciences Center at Houston, Houston, TX, USA.,Nano3D Biosciences Inc., Houston, TX, USA
| |
Collapse
|
104
|
Groeger S, Meyle J. Oral Mucosal Epithelial Cells. Front Immunol 2019; 10:208. [PMID: 30837987 PMCID: PMC6383680 DOI: 10.3389/fimmu.2019.00208] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/23/2019] [Indexed: 12/14/2022] Open
Abstract
Cellular Phenotype and Apoptosis: The function of epithelial tissues is the protection of the organism from chemical, microbial, and physical challenges which is indispensable for viability. To fulfill this task, oral epithelial cells follow a strongly regulated scheme of differentiation that results in the formation of structural proteins that manage the integrity of epithelial tissues and operate as a barrier. Oral epithelial cells are connected by various transmembrane proteins with specialized structures and functions. Keratin filaments adhere to the plasma membrane by desmosomes building a three-dimensional matrix. Cell-Cell Contacts and Bacterial Influence: It is known that pathogenic oral bacteria are able to affect the expression and configuration of cell-cell junctions. Human keratinocytes up-regulate immune-modulatory receptors upon stimulation with bacterial components. Periodontal pathogens including P. gingivalis are able to inhibit oral epithelial innate immune responses through various mechanisms and to escape from host immune reaction, which supports the persistence of periodontitis and furthermore is able to affect the epithelial barrier function by altering expression and distribution of cell-cell interactions including tight junctions (TJs) and adherens junctions (AJs). In the pathogenesis of periodontitis a highly organized biofilm community shifts from symbiosis to dysbiosis which results in destructive local inflammatory reactions. Cellular Receptors: Cell-surface located toll like receptors (TLRs) and cytoplasmatic nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) belong to the pattern recognition receptors (PRRs). PRRs recognize microbial parts that represent pathogen-associated molecular patterns (PAMPs). A multimeric complex of proteins known as inflammasome, which is a subset of NLRs, assembles after activation and proceeds to pro-inflammatory cytokine release. Cytokine Production and Release: Cytokines and bacterial products may lead to host cell mediated tissue destruction. Keratinocytes are able to produce diverse pro-inflammatory cytokines and chemokines, including interleukin (IL)-1, IL-6, IL-8 and tumor necrosis factor (TNF)-α. Infection by pathogenic bacteria such as Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) can induce a differentiated production of these cytokines. Immuno-modulation, Bacterial Infection, and Cancer Cells: There is a known association between bacterial infection and cancer. Bacterial components are able to up-regulate immune-modulatory receptors on cancer cells. Interactions of bacteria with tumor cells could support malignant transformation an environment with deficient immune regulation. The aim of this review is to present a set of molecular mechanisms of oral epithelial cells and their reactions to a number of toxic influences.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
105
|
M-Ras/Shoc2 signaling modulates E-cadherin turnover and cell-cell adhesion during collective cell migration. Proc Natl Acad Sci U S A 2019; 116:3536-3545. [PMID: 30808747 PMCID: PMC6397545 DOI: 10.1073/pnas.1805919116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective cell migration is required for normal embryonic development and contributes to various biological processes, including wound healing and cancer cell invasion. The M-Ras GTPase and its effector, the Shoc2 scaffold, are proteins mutated in the developmental RASopathy Noonan syndrome, and, here, we report that activated M-Ras recruits Shoc2 to cell surface junctions where M-Ras/Shoc2 signaling contributes to the dynamic regulation of cell-cell junction turnover required for collective cell migration. MCF10A cells expressing the dominant-inhibitory M-RasS27N variant or those lacking Shoc2 exhibited reduced junction turnover and were unable to migrate effectively as a group. Through further depletion/reconstitution studies, we found that M-Ras/Shoc2 signaling contributes to junction turnover by modulating the E-cadherin/p120-catenin interaction and, in turn, the junctional expression of E-cadherin. The regulatory effect of the M-Ras/Shoc2 complex was mediated at least in part through the phosphoregulation of p120-catenin and required downstream ERK cascade activation. Strikingly, cells rescued with the Noonan-associated, myristoylated-Shoc2 mutant (Myr-Shoc2) displayed a gain-of-function (GOF) phenotype, with the cells exhibiting increased junction turnover and reduced E-cadherin/p120-catenin binding and migrating as a faster but less cohesive group. Consistent with these results, Noonan-associated C-Raf mutants that bypass the need for M-Ras/Shoc2 signaling exhibited a similar GOF phenotype when expressed in Shoc2-depleted MCF10A cells. Finally, expression of the Noonan-associated Myr-Shoc2 or C-Raf mutants, but not their WT counterparts, induced gastrulation defects indicative of aberrant cell migration in zebrafish embryos, further demonstrating the function of the M-Ras/Shoc2/ERK cascade signaling axis in the dynamic control of coordinated cell movement.
Collapse
|
106
|
Epithelial Viscoelasticity Is Regulated by Mechanosensitive E-cadherin Turnover. Curr Biol 2019; 29:578-591.e5. [PMID: 30744966 DOI: 10.1016/j.cub.2019.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/14/2018] [Accepted: 01/09/2019] [Indexed: 11/24/2022]
Abstract
Studying how epithelia respond to mechanical stresses is key to understanding tissue shape changes during morphogenesis. Here, we study the viscoelastic properties of the Drosophila wing epithelium during pupal morphogenesis by quantifying mechanical stress and cell shape as a function of time. We find a delay of 8 h between maximal tissue stress and maximal cell elongation, indicating a viscoelastic deformation of the tissue. We show that this viscoelastic behavior emerges from the mechanosensitivity of endocytic E-cadherin turnover. The increase in E-cadherin turnover in response to stress is mediated by mechanosensitive relocalization of the E-cadherin binding protein p120-catenin (p120) from cell junctions to cytoplasm. Mechanosensitivity of E-cadherin turnover is lost in p120 mutant wings, where E-cadherin turnover is constitutively high. In this mutant, the relationship between mechanical stress and stress-dependent cell dynamics is altered. Cells in p120 mutant deform and undergo cell rearrangements oriented along the stress axis more rapidly in response to mechanical stress. These changes imply a lower viscosity of wing epithelium. Taken together, our findings reveal that p120-dependent mechanosensitive E-cadherin turnover regulates viscoelastic behavior of epithelial tissues.
Collapse
|
107
|
Transcriptome profiling of zebrafish optic fissure fusion. Sci Rep 2019; 9:1541. [PMID: 30733552 PMCID: PMC6367446 DOI: 10.1038/s41598-018-38379-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023] Open
Abstract
Incomplete fusion of the optic fissure leads to ocular coloboma, a congenital eye defect that affects up to 7.5 per 10,000 births and accounts for up to 10 percent of childhood blindness. The molecular and cellular mechanisms that facilitate optic fissure fusion remain elusive. We have profiled global gene expression during optic fissure morphogenesis by transcriptome analysis of tissue dissected from the margins of the zebrafish optic fissure and the opposing dorsal retina before (32 hours post fertilisation, hpf), during (48 hpf) and after (56 hpf) optic fissure fusion. Differential expression analysis between optic fissure and dorsal retinal tissue resulted in the detection of several known and novel developmental genes. The expression of selected genes was validated by qRT-PCR analysis and localisation investigated using in situ hybridisation. We discuss significantly overrepresented functional ontology categories in the context of optic fissure morphogenesis and highlight interesting transcripts from hierarchical clustering for subsequent analysis. We have identified netrin1a (ntn1a) as highly differentially expressed across optic fissure fusion, with a resultant ocular coloboma phenotype following morpholino antisense translation-blocking knockdown and downstream disruption of atoh7 expression. To support the identification of candidate genes in human studies, we have generated an online open-access resource for fast and simple quantitative querying of the gene expression data. Our study represents the first comprehensive analysis of the zebrafish optic fissure transcriptome and provides a valuable resource to facilitate our understanding of the complex aetiology of ocular coloboma.
Collapse
|
108
|
Liu J, Wang L, Zhang Y, Li S, Sun F, Wang G, Yang T, Wei D, Guo L, Xiao H. Induction of entosis in prostate cancer cells by nintedanib and its therapeutic implications. Oncol Lett 2019; 17:3151-3162. [PMID: 30867745 PMCID: PMC6396220 DOI: 10.3892/ol.2019.9951] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
Entosis is a homogeneous cell-in-cell phenomenon and a non-apoptotic cell death process. Tyrosine kinase inhibitors have been used in the treatment of prostate cancer and have already demonstrated efficacy in a clinical setting. The present study investigated the role of entosis in prostate cancer treated with the tyrosine kinase inhibitor nintedanib. Prostate cancer cells were treated with nintedanib in vitro and entosis was observed. Mice xenografts were created to evaluate whether nintedanib is able to induce entosis in vivo. The reverse transcription-quantitative polymerase chain reaction, western blotting and immunofluorescence were performed to investigate whether the entosis pathway is induced by nintedanib. It was also investigated whether entosis can contribute to cell survival and progression under nintedanib stress, and nintedanib was revealed to enhance prostate cancer cell entosis. Nintedanib-induced entosis in prostate cancer cells occurred through phosphoinositide 3-kinase/cell division cycle 42 (CDC42) inhibition, followed by the upregulation of epithelial (E-)cadherin and components of the Rho kinase (ROCK) signaling pathway. In addition, nintedanib-resistant cells exhibiting entosis had a higher invasive ability. In addition, in vivo treatment of mice xenografts with nintedanib also increased the expression of E-cadherin and components of the ROCK signaling pathway. Nintedanib can promote entosis during prostate cancer treatment by modulating the CDC42 pathway. Furthermore, prostate cancer cells acquired nintedanib resistance and survived by activating entosis.
Collapse
Affiliation(s)
- Junjiang Liu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Lei Wang
- Department of Urology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Yunxia Zhang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shoubin Li
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Fuzhen Sun
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gang Wang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Tao Yang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Dong Wei
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Liuxiong Guo
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Helong Xiao
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
109
|
Cao J, Schnittler H. Putting VE-cadherin into JAIL for junction remodeling. J Cell Sci 2019; 132:132/1/jcs222893. [DOI: 10.1242/jcs.222893] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ABSTRACT
Junction dynamics of endothelial cells are based on the integration of signal transduction, cytoskeletal remodeling and contraction, which are necessary for the formation and maintenance of monolayer integrity, but also enable repair and regeneration. The VE-cadherin–catenin complex forms the molecular basis of the adherence junctions and cooperates closely with actin filaments. Several groups have recently described small actin-driven protrusions at the cell junctions that are controlled by the Arp2/3 complex, contributing to cell junction regulation. We identified these protrusions as the driving force for VE-cadherin dynamics, as they directly induce new VE-cadherin-mediated adhesion sites, and have accordingly referred to these structures as junction-associated intermittent lamellipodia (JAIL). JAIL extend over only a few microns and thus provide the basis for a subcellular regulation of adhesion. The local (subcellular) VE-cadherin concentration and JAIL formation are directly interdependent, which enables autoregulation. Therefore, this mechanism can contribute a subcellularly regulated adaptation of cell contact dynamics, and is therefore of great importance for monolayer integrity and relative cell migration during wound healing and angiogenesis, as well as for inflammatory responses. In this Review, we discuss the mechanisms and functions underlying these actin-driven protrusions and consider their contribution to the dynamic regulation of endothelial cell junctions.
Collapse
Affiliation(s)
- Jiahui Cao
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster Germany
| |
Collapse
|
110
|
Cytoplasmic localization of GRHL3 upon epidermal differentiation triggers cell shape change for epithelial morphogenesis. Nat Commun 2018; 9:4059. [PMID: 30283008 PMCID: PMC6170465 DOI: 10.1038/s41467-018-06171-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/16/2018] [Indexed: 11/08/2022] Open
Abstract
Epithelial cell shape change is a pivotal driving force for morphogenesis of complex three-dimensional architecture. However, molecular mechanisms triggering shape changes of epithelial cells in the course of growth and differentiation have not been entirely elucidated. Grhl3 plays a crucial role as a downstream transcription factor of Wnt/β-catenin in epidermal differentiation. Here, we show Grhl3 induced large, mature epidermal cells, enriched with actomyosin networks, from embryoid bodies in vitro. Such epidermal cells were apparently formed by the simultaneous activation of canonical and non-canonical Wnt signaling pathways. A nuclear transcription factor, GRHL3 is localized in the cytoplasm and cell membrane during epidermal differentiation. Subsequently, such extranuclear GRHL3 is essential for the membrane-associated expression of VANGL2 and CELSR1. Cytoplasmic GRHL3, thereby, allows epidermal cells to acquire mechanical properties for changes in epithelial cell shape. Thus, we propose that cytoplasmic localization of GRHL3 upon epidermal differentiation directly triggers epithelial morphogenesis.
Collapse
|
111
|
Golla K, Stavropoulos I, Shields DC, Moran N. Peptides derived from cadherin juxtamembrane region inhibit platelet function. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172347. [PMID: 30473799 PMCID: PMC6227957 DOI: 10.1098/rsos.172347] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
The juxtamembrane domains (JMD) of transmembrane proteins are rich in critical peptide sequences that participate in dynamic cell signalling events. Synthetic JMD peptides derived from cadherin cell adhesion proteins have previously been shown to modulate platelet function. In this study, we aimed to develop functional bioactive agents from bioinformatically identified critical peptide sequences. We synthesized overlapping 12-15 amino acid peptides from E- and N-cadherin JMD and assessed their effect on platelet aggregation and platelet ATP secretion. Peptides derived from close to the membrane proximal region inhibit platelet function. Sequential deletion of amino acids from the N- and C-termini of the inhibitory E-cadherin peptides identified the short K756EPLLP763 motif as a critical bioactive sequence. Alanine scanning studies further identified that the di-leucine (LL) motif and positively charged lysine (K) are crucial for peptide activity. Moreover, scrambled peptides failed to show any effect on platelet activity. We conclude that peptides derived from JMD of E-cadherin provide potential lead peptides for the development of anti-thrombotic agents and to enable further understanding of the role of cadherins in platelet function.
Collapse
Affiliation(s)
- Kalyan Golla
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ilias Stavropoulos
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Denis C. Shields
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Niamh Moran
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
112
|
Razzell W, Bustillo ME, Zallen JA. The force-sensitive protein Ajuba regulates cell adhesion during epithelial morphogenesis. J Cell Biol 2018; 217:3715-3730. [PMID: 30006462 PMCID: PMC6168262 DOI: 10.1083/jcb.201801171] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/16/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
The reorganization of cells in response to mechanical forces converts simple epithelial sheets into complex tissues of various shapes and dimensions. Epithelial integrity is maintained throughout tissue remodeling, but the mechanisms that regulate dynamic changes in cell adhesion under tension are not well understood. In Drosophila melanogaster, planar polarized actomyosin forces direct spatially organized cell rearrangements that elongate the body axis. We show that the LIM-domain protein Ajuba is recruited to adherens junctions in a tension-dependent fashion during axis elongation. Ajuba localizes to sites of myosin accumulation at adherens junctions within seconds, and the force-sensitive localization of Ajuba requires its N-terminal domain and two of its three LIM domains. We demonstrate that Ajuba stabilizes adherens junctions in regions of high tension during axis elongation, and that Ajuba activity is required to maintain cell adhesion during cell rearrangement and epithelial closure. These results demonstrate that Ajuba plays an essential role in regulating cell adhesion in response to mechanical forces generated by epithelial morphogenesis.
Collapse
Affiliation(s)
- William Razzell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| | - Maria E Bustillo
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
- Weill Cornell Graduate School of Medical Sciences, New York, NY
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY
| |
Collapse
|
113
|
Sun J, Stathopoulos A. FGF controls epithelial-mesenchymal transitions during gastrulation by regulating cell division and apicobasal polarity. Development 2018; 145:dev.161927. [PMID: 30190277 DOI: 10.1242/dev.161927] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 08/31/2018] [Indexed: 01/06/2023]
Abstract
To support tissue and organ development, cells transition between epithelial and mesenchymal states. Here, we have investigated how mesoderm cells change state in Drosophila embryos and whether fibroblast growth factor (FGF) signaling plays a role. During gastrulation, presumptive mesoderm cells invaginate, undergo an epithelial-to-mesenchymal state transition (EMT) and migrate upon the ectoderm. Our data show that EMT is a prolonged process in which adherens junctions progressively decrease in number throughout the migration of mesoderm cells. FGF influences adherens junction number and promotes mesoderm cell division, which we propose decreases cell-cell attachments to support slow EMT while retaining collective cell movement. We also found that, at the completion of migration, cells form a monolayer and undergo a reverse mesenchymal-to-epithelial transition (MET). FGF activity leads to accumulation of β-integrin Myospheroid basally and cell polarity factor Bazooka apically within mesoderm cells, thereby reestablishing apicobasal cell polarity in an epithelialized state in which cells express both E-Cadherin and N-Cadherin. In summary, FGF plays a dynamic role in supporting mesoderm cell development to ensure collective mesoderm cell movements, as well as proper differentiation of mesoderm cell types.
Collapse
Affiliation(s)
- Jingjing Sun
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
114
|
Ding NH, Zhang L, Xiao Z, Rong ZX, Li Z, He J, Chen L, Ou DM, Liao WH, Sun LQ. NEK4 kinase regulates EMT to promote lung cancer metastasis. J Cell Mol Med 2018; 22:5877-5887. [PMID: 30247800 PMCID: PMC6237562 DOI: 10.1111/jcmm.13857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
Epithelial‐to‐mesenchymal transition (EMT) is a dynamic transitional state from the epithelial to mesenchymal phenotypes. Numerous studies have suggested that EMT and its intermediate states play important roles in tumor invasion and metastasis. To identify novel regulatory molecules of EMT, we screened a siRNA library targeting human 720 kinases in A549 lung adenocarcinoma cells harboring E‐cadherin promoter‐luciferase reporter vectors. NIMA‐related kinase‐4 (NEK4) was identified and characterized as a positive regulator of EMT in the screening. Suppression of NEK4 resulted in the inhibition of cell migration and invasion, accompanying with an increased expression of cell adhesion‐related proteins such as E‐cadherin and ZO1. Furthermore, NEK4 knockdown caused the decreased expression of the transcriptional factor Zeb1 and Smads proteins, which are known to play key roles in EMT regulation. Consistently, overexpression of NEK4 resulted in the decreased expression of E‐cadherin and increased expression of Smad3. Using a mouse model with tail vein injection of NEK4 knockdown stable cell line, we found a lower rate of tumor formation and metastasis of the NEK4‐knockdown cells in vivo. Thus, this study demonstrates NEK4 as a novel kinase involved in regulation of EMT and suggests that NEK4 may be further explored as a potential therapeutic target for lung cancer metastasis.
Collapse
Affiliation(s)
- Nian-Hua Ding
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China.,Department of Radiology, Xiangya Hospital, Changsha, China
| | - Lu Zhang
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhi Xiao
- Deparment of Breast Cancer Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuo-Xian Rong
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Zhi Li
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Lin Chen
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Dan-Min Ou
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| | - Wei-Hua Liao
- Department of Radiology, Xiangya Hospital, Changsha, China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Changsha, China.,Key laboratory of Molecular Radiation Oncology Hunan Province, Changsha, China
| |
Collapse
|
115
|
Sun Z, Toyama Y. Three-dimensional forces beyond actomyosin contraction: lessons from fly epithelial deformation. Curr Opin Genet Dev 2018; 51:96-102. [PMID: 30216753 DOI: 10.1016/j.gde.2018.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Epithelium undergoes complex deformations during morphogenesis. Many of these deformations rely on the remodelling of apical cell junctions by actomyosin-based contractile force and this has been a major research interest for many years. Recent studies have shown that cells can use additional mechanisms that are not directly driven by actomyosin contractility to alter cell shape and movement, in three-dimensional (3D) space and time. In this review, we focus on a number of these mechanisms, including basolateral cellular protrusion, lateral shift of cell polarity, cytoplasmic flow, regulation of cell volume, and force transmission between cell-cell adhesion and cell-extracellular matrix adhesion, and describe how they underlie Drosophila epithelia deformations.
Collapse
Affiliation(s)
- Zijun Sun
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Yusuke Toyama
- Mechanobiology Institute, National University of Singapore, T-Lab, 5A Engineering Drive 1, Singapore 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
116
|
Frank SR, Köllmann CP, Luong P, Galli GG, Zou L, Bernards A, Getz G, Calogero RA, Frödin M, Hansen SH. p190 RhoGAP promotes contact inhibition in epithelial cells by repressing YAP activity. J Cell Biol 2018; 217:3183-3201. [PMID: 29934311 PMCID: PMC6122998 DOI: 10.1083/jcb.201710058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
ARHGAP35 encoding p190A RhoGAP is a cancer-associated gene with a mutation spectrum suggestive of a tumor-suppressor function. In this study, we demonstrate that loss of heterozygosity for ARHGAP35 occurs in human tumors. We sought to identify tumor-suppressor capacities for p190A RhoGAP (p190A) and its paralog p190B in epithelial cells. We reveal an essential role for p190A and p190B to promote contact inhibition of cell proliferation (CIP), a function that relies on RhoGAP activity. Unbiased mRNA sequencing analyses establish that p190A and p190B modulate expression of genes associated with the Hippo pathway. Accordingly, we determine that p190A and p190B induce CIP by repressing YAP-TEAD-regulated gene transcription through activation of LATS kinases and inhibition of the Rho-ROCK pathway. Finally, we demonstrate that loss of a single p190 paralog is sufficient to elicit nuclear translocation of YAP and perturb CIP in epithelial cells cultured in Matrigel. Collectively, our data reveal a novel mechanism consistent with a tumor-suppressor function for ARHGAP35.
Collapse
Affiliation(s)
- Scott R Frank
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Clemens P Köllmann
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Phi Luong
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| | - Giorgio G Galli
- Stem Cell Program, Boston Children's Hospital and Harvard Stem Cell Institute, Boston, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Lihua Zou
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - André Bernards
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA
| | - Gad Getz
- The Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital Center for Cancer Research and Harvard Medical School, Charlestown, MA
| | - Raffaele A Calogero
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Torino, Italy
| | - Morten Frödin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Steen H Hansen
- GI Cell Biology Research Laboratory, Boston Children's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
117
|
Sawant K, Chen Y, Kotian N, Preuss KM, McDonald JA. Rap1 GTPase promotes coordinated collective cell migration in vivo. Mol Biol Cell 2018; 29:2656-2673. [PMID: 30156466 PMCID: PMC6249841 DOI: 10.1091/mbc.e17-12-0752] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During development and in cancer, cells often move together in small to large collectives. To move as a unit, cells within collectives need to stay coupled together and coordinate their motility. How cell collectives remain interconnected and migratory, especially when moving through in vivo environments, is not well understood. The genetically tractable border cell group undergoes a highly polarized and cohesive cluster-type migration in the Drosophila ovary. Here we report that the small GTPase Rap1, through activation by PDZ-GEF, regulates border cell collective migration. We find that Rap1 maintains cell contacts within the cluster, at least in part by promoting the organized distribution of E-cadherin at specific cell-cell junctions. Rap1 also restricts migratory protrusions to the front of the border cell cluster and promotes the extension of protrusions with normal dynamics. Further, Rap1 is required in the outer migratory border cells but not in the central nonmigratory polar cells. Such cell specificity correlates well with the spatial distribution of the inhibitory Rapgap1 protein, which is higher in polar cells than in border cells. We propose that precisely regulated Rap1 activity reinforces connections between cells and polarizes the cluster, thus facilitating the coordinated collective migration of border cells.
Collapse
Affiliation(s)
- Ketki Sawant
- Division of Biology, Kansas State University, Manhattan, KS 66506.,Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - Yujun Chen
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Nirupama Kotian
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | - Kevin M Preuss
- Division of Biology, Kansas State University, Manhattan, KS 66506
| | | |
Collapse
|
118
|
Hehr CL, Halabi R, McFarlane S. Polarity and morphogenesis of the eye epithelium requires the adhesion junction associated adaptor protein Traf4. Cell Adh Migr 2018; 12:489-502. [PMID: 29961393 DOI: 10.1080/19336918.2018.1477900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
During development, neuroepithelial progenitors acquire apico-basal polarity and adhere to one another via apically located tight and adherens junction complexes. This polarized neuroepithelium must continue to integrate cells arising through cell divisions and intercalation, and allow for cell movements, at the same time as undergoing morphogenesis. Cell proliferation, migration and intercalation all occur in the morphing embryonic eye. To understand how eye development might depend on dynamic epithelial adhesion, we investigated the function of a known regulator of junctional plasticity, Tumour necrosis factor receptor-associated factor 4 (Traf4). traf4a mRNA is expressed in the developing eye vesicle over the period of optic cup morphogenesis, and Traf4a loss leads to disrupted evagination and elongation of the eye vesicles, and aberrant organization and apico-basal polarity of the eye epithelium. We propose a model whereby Traf4a regulates apical junction plasticity in nascent eye epithelium, allowing for its polarization and morphogenesis. Symbols and Abbreviations: AB: apico-basal; aPKC: atypical protein kinase-C; CRISPR: clustered regularly-interspaced short palindromic repeats; GFP: green fluorescent protein; hpf: hours post-fertilization; MO: antisense morpholino oligonucleotide; pHH3: phospho histone H3; ss: somite stage; Traf4: Tumour necrosis factor receptor-associated factor 4; ZO-1: zona occludens-1.
Collapse
Affiliation(s)
- Carrie Lynn Hehr
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Rami Halabi
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| | - Sarah McFarlane
- a Department of Cell Biology and Anatomy , University of Calgary, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute , Calgary , AB , Canada
| |
Collapse
|
119
|
Cho Y, Son M, Jeong H, Shin JH. Electric field-induced migration and intercellular stress alignment in a collective epithelial monolayer. Mol Biol Cell 2018; 29:2292-2302. [PMID: 30044714 PMCID: PMC6249807 DOI: 10.1091/mbc.e18-01-0077] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
During wound healing, cells migrate with electrotactic bias as a collective entity. Unlike the case of the electric field (EF)-induced single-cell migration, the sensitivity of electrotactic response of the monolayer depends primarily on the integrity of the cell–cell junctions. Although there exist biochemical clues on how cells sense the EF, a well-defined physical portrait to illustrate how collective cells respond to directional EF remains elusive. Here, we developed an EF stimulating system integrated with a hydrogel-based traction measurement platform to quantify the EF-induced changes in cellular tractions, from which the complete in-plane intercellular stress tensor can be calculated. We chose immortalized human keratinocytes, HaCaT, as our model cells to investigate the role of EF in epithelial migration during wound healing. Immediately after the onset of EF (0.5 V/cm), the HaCaT monolayer migrated toward anode with ordered directedness and enhanced speed as early as 15 min. Cellular traction and intercellular stresses were gradually aligned perpendicular to the direction of the EF until 50 min. The EF-induced reorientation of physical stresses was then followed by the delayed cell-body reorientation in the direction perpendicular to the EF. Once the intercellular stresses were aligned, the reversal of the EF direction redirected the reversed migration of the cells without any apparent disruption of the intercellular stresses. The results suggest that the dislodging of the physical stress alignment along the adjacent cells should not be necessary for changing the direction of the monolayer migration.
Collapse
Affiliation(s)
- Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Minjeong Son
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Hyuntae Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
120
|
Gorelick-Ashkenazi A, Weiss R, Sapozhnikov L, Florentin A, Tarayrah-Ibraheim L, Dweik D, Yacobi-Sharon K, Arama E. Caspases maintain tissue integrity by an apoptosis-independent inhibition of cell migration and invasion. Nat Commun 2018; 9:2806. [PMID: 30022065 PMCID: PMC6052023 DOI: 10.1038/s41467-018-05204-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 05/22/2018] [Indexed: 11/15/2022] Open
Abstract
Maintenance of tissue integrity during development and homeostasis requires the precise coordination of several cell-based processes, including cell death. In animals, the majority of such cell death occurs by apoptosis, a process mediated by caspase proteases. To elucidate the role of caspases in tissue integrity, we investigated the behavior of Drosophila epithelial cells that are severely compromised for caspase activity. We show that these cells acquire migratory and invasive capacities, either within 1–2 days following irradiation or spontaneously during development. Importantly, low levels of effector caspase activity, which are far below the threshold required to induce apoptosis, can potently inhibit this process, as well as a distinct, developmental paradigm of primordial germ cell migration. These findings may have implications for radiation therapy in cancer treatment. Furthermore, given the presence of caspases throughout metazoa, our results could imply that preventing unwanted cell migration constitutes an ancient non-apoptotic function of these proteases. In addition to regulating programmed cell death, caspases also have non-apoptotic roles. Here, the authors show that low level caspase activity prevents cell migration to maintain tissue integrity.
Collapse
Affiliation(s)
| | - Ron Weiss
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Lena Sapozhnikov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anat Florentin
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.,Department of Cellular Biology, University of Georgia, Athens, GA, 30602-2607, USA
| | | | - Dima Dweik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
121
|
Tunable cell-surface mimetics as engineered cell substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2076-2093. [PMID: 29935145 DOI: 10.1016/j.bbamem.2018.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/18/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
Abstract
Most recent breakthroughs in understanding cell adhesion, cell migration, and cellular mechanosensitivity have been made possible by the development of engineered cell substrates of well-defined surface properties. Traditionally, these substrates mimic the extracellular matrix (ECM) environment by the use of ligand-functionalized polymeric gels of adjustable stiffness. However, such ECM mimetics are limited in their ability to replicate the rich dynamics found at cell-cell contacts. This review focuses on the application of cell surface mimetics, which are better suited for the analysis of cell adhesion, cell migration, and cellular mechanosensitivity across cell-cell interfaces. Functionalized supported lipid bilayer systems were first introduced as biomembrane-mimicking substrates to study processes of adhesion maturation during adhesion of functionalized vesicles (cell-free assay) and plated cells. However, while able to capture adhesion processes, the fluid lipid bilayer of such a relatively simple planar model membrane prevents adhering cells from transducing contractile forces to the underlying solid, making studies of cell migration and cellular mechanosensitivity largely impractical. Therefore, the main focus of this review is on polymer-tethered lipid bilayer architectures as biomembrane-mimicking cell substrate. Unlike supported lipid bilayers, these polymer-lipid composite materials enable the free assembly of linkers into linker clusters at cellular contacts without hindering cell spreading and migration and allow the controlled regulation of mechanical properties, enabling studies of cellular mechanosensitivity. The various polymer-tethered lipid bilayer architectures and their complementary properties as cell substrates are discussed.
Collapse
|
122
|
Allam AH, Charnley M, Russell SM. Context-Specific Mechanisms of Cell Polarity Regulation. J Mol Biol 2018; 430:3457-3471. [PMID: 29886017 DOI: 10.1016/j.jmb.2018.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022]
Abstract
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.
Collapse
Affiliation(s)
- Amr H Allam
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia.
| | - Mirren Charnley
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Biointerface Engineering Group, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, Australia.
| | - Sarah M Russell
- Centre for Micro-Photonics, Faculty of Science, Engineering & Technology, Swinburne University of Technology, Hawthorn, Australia; Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Parkville, Australia; Department of Pathology, The University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Australia.
| |
Collapse
|
123
|
Alonso EN, Ferronato MJ, Fermento ME, Gandini NA, Romero AL, Guevara JA, Facchinetti MM, Curino AC. Antitumoral and antimetastatic activity of Maitake D-Fraction in triple-negative breast cancer cells. Oncotarget 2018; 9:23396-23412. [PMID: 29805742 PMCID: PMC5955106 DOI: 10.18632/oncotarget.25174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor prognosis, high local recurrence rate and high rate of metastasis compared with other breast cancer subtypes. In addition, TNBC lacks a targeted therapy. This scenario highlights the need for novel compounds with high potential for TNBC treatment. In this regard, natural products are important sources of anticancer drugs. D-Fraction, a proteoglucan extracted from the edible and medicinal mushroom Grifola frondosa (Maitake), is a dietary supplement that has been shown to exert both immunostimulatory and immune-independent antitumoral effects on some cancer types. However, its antitumoral potential in TNBC is unknown. Therefore, we employed TNBC cells to investigate if D-Fraction is able to attenuate their aggressive phenotype. We found that D-Fraction decreases MDA-MB-231 cell viability through apoptosis induction and reduces their metastatic potential. D-Fraction increases cell-cell adhesion by increasing E-cadherin protein levels and β-catenin membrane localization, and increases cell-substrate adhesion. D-Fraction also decreases cell motility by affecting actin cytoskeleton rearrangements, and proteolytic activity of MMP-2 and MMP-9. Furthermore, D-Fraction decreases the invasive capacity of MDA-MB-231 cells. In concordance, D-Fraction retards tumor growth and reduces lung metastases in a xenograft model. Altogether, these results suggest the potential therapeutic role of D-Fraction in aggressive TNBC.
Collapse
Affiliation(s)
- Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Norberto Ariel Gandini
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | | | - Josefina Alejandra Guevara
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS)–CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| |
Collapse
|
124
|
Abstract
The Hippo signal transduction pathway is an important regulator of organ growth and cell differentiation, and its deregulation contributes to the development of cancer. The activity of the Hippo pathway is strongly dependent on cell junctions, cellular architecture, and the mechanical properties of the microenvironment. In this review, we discuss recent advances in our understanding of how cell junctions transduce signals from the microenvironment and control the activity of the Hippo pathway. We also discuss how these mechanisms may control organ growth during development and regeneration, and how defects in them deregulate Hippo signaling in cancer cells.
Collapse
Affiliation(s)
- Ruchan Karaman
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| | - Georg Halder
- VIB Center for Cancer Biology, University of Leuven, 3000 Leuven, Belgium.,Department of Oncology, University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
125
|
Abdulkareem AA, Shelton RM, Landini G, Cooper PR, Milward MR. Potential role of periodontal pathogens in compromising epithelial barrier function by inducing epithelial-mesenchymal transition. J Periodontal Res 2018; 53:565-574. [PMID: 29704258 DOI: 10.1111/jre.12546] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Epithelial-mesenchymal transition (EMT) is a process by which epithelial cells acquire a mesenchymal-like phenotype and this may be induced by exposure to gram-negative bacteria. It has been proposed that EMT is responsible for compromising epithelial barrier function in the pathogenesis of several diseases. However, the possible role of EMT in the pathogenesis of periodontitis has not previously been investigated. The aim of this study therefore was to investigate whether gram-negative, anaerobic periodontal pathogens could trigger EMT in primary oral keratinocytes in vitro. MATERIAL AND METHODS Primary oral keratinocytes were harvested from labial mandibular mucosa of Wistar Han rats. Cells were exposed to heat-killed Fusobacterium nucleatum and Porphyromonas gingivalis (100 bacteria/epithelial cell) and to 20 μg/mL of Escherichia coli lipopolysaccharide over an 8-day period. Exposure to bacteria did not significantly change epithelial cell number or vitality in comparison with unstimulated controls at the majority of time-points examined. Expression of EMT marker genes was determined by semiquantitative RT-PCR at 1, 5, and 8 days following stimulation. The expression of EMT markers was also assessed by immunofluorescence (E-cadherin and vimentin) and using immunocytochemistry to determine Snail activation. The loss of epithelial monolayer coherence, in response to bacterial challenge, was determined by measuring trans-epithelial electrical resistance. The induction of a migratory phenotype was investigated using scratch-wound and transwell migration assays. RESULTS Exposure of primary epithelial cell cultures to periodontal pathogens was associated with a significant decrease in transcription (~3-fold) of E-cadherin and the upregulation of N-cadherin, vimentin, Snail, matrix metalloproteinase-2 (~3-5 fold) and toll-like receptor 4. Bacterial stimulation (for 8 days) also resulted in an increased percentage of vimentin-positive cells (an increase of 20% after stimulation with P. gingivalis and an increase of 30% after stimulation with F. nucleatum, compared with controls). Furthermore, periodontal pathogens significantly increased the activation of Snail (60%) and cultures exhibited a decrease in electrical impedance (P < .001) in comparison with unexposed controls. The migratory ability of the cells increased significantly in response to bacterial stimulation, as shown by both the number of migrated cells and scratch-wound closure rates. CONCLUSION Prolonged exposure of primary rat oral keratinocyte cultures to periodontal pathogens generated EMT-like features, which introduces the possibility that this process may be involved in loss of epithelial integrity during periodontitis.
Collapse
Affiliation(s)
- A A Abdulkareem
- Department of Periodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - R M Shelton
- Biomaterials, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - G Landini
- Oral Pathology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - P R Cooper
- Oral Biology & Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| | - M R Milward
- Periodontology, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, UK
| |
Collapse
|
126
|
Malinova TS, Huveneers S. Sensing of Cytoskeletal Forces by Asymmetric Adherens Junctions. Trends Cell Biol 2018; 28:328-341. [DOI: 10.1016/j.tcb.2017.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
|
127
|
Coelho NM, McCulloch CA. Mechanical signaling through the discoidin domain receptor 1 plays a central role in tissue fibrosis. Cell Adh Migr 2018; 12:348-362. [PMID: 29513135 PMCID: PMC6363045 DOI: 10.1080/19336918.2018.1448353] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
The preservation of tissue and organ architecture and function depends on tightly regulated interactions of cells with the extracellular matrix (ECM). These interactions are maintained in a dynamic equilibrium that balances intracellular, myosin-generated tension with extracellular resistance conferred by the mechanical properties of the extracellular matrix. Disturbances of this equilibrium can lead to the development of fibrotic lesions that are associated with a wide repertoire of high prevalence diseases including obstructive cardiovascular diseases, muscular dystrophy and cancer. Mechanotransduction is the process by which mechanical cues are converted into biochemical signals. At the core of mechanotransduction are sensory systems, which are frequently located at sites of cell-ECM and cell-cell contacts. As integrins (cell-ECM junctions) and cadherins (cell-cell contacts) have been extensively studied, we focus here on the properties of the discoidin domain receptor 1 (DDR1), a tyrosine kinase that mediates cell adhesion to collagen. DDR1 expression is positively associated with fibrotic lesions of heart, kidney, liver, lung and perivascular tissues. As the most common end-point of all fibrotic disorders is dysregulated collagen remodeling, we consider here the mechanical signaling functions of DDR1 in processing of fibrillar collagen that lead to tissue fibrosis.
Collapse
Affiliation(s)
- Nuno M. Coelho
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
128
|
Grobe H, Wüstenhagen A, Baarlink C, Grosse R, Grikscheit K. A Rac1-FMNL2 signaling module affects cell-cell contact formation independent of Cdc42 and membrane protrusions. PLoS One 2018; 13:e0194716. [PMID: 29579104 PMCID: PMC5868805 DOI: 10.1371/journal.pone.0194716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/08/2018] [Indexed: 11/29/2022] Open
Abstract
De novo formation of epithelial cell-cell contacts relies on actin-based protrusions as well as tightly controlled turnover of junctional actin once cells encounter each other and adhesion complexes assemble. The specific contributions of individual actin regulators on either protrusion formation or junctional actin turnover remain largely unexplored. Based on our previous findings of Formin-like 2 (FMNL2)-mediated control of junctional actin dynamics, we investigated its potential role in membrane protrusions and impact on newly forming epithelial contacts. CRISPR/Cas9-mediated loss of FMNL2 in human MCF10A cells combined with optogenetic control of Rac1 activity confirmed its critical function in the establishment of intercellular contacts. While lamellipodial protrusion rates remained unaffected, FMNL2 knockout cells were characterized by impaired filopodia formation similar to depletion of the Rho GTPase Cdc42. Silencing of Cdc42, however, failed to affect FMNL2-mediated contact formation. Hence, we propose a cell-cell contact-specific and Rac1-mediated function of FMNL2 entirely independent of Cdc42. Consistent with this, direct visualizations of native epithelial junction formation revealed a striking and specifically Rac1- and not Cdc42-dependent recruitment of FMNL2 to newly forming junctions as well as established cell-cell contacts within epithelial sheets.
Collapse
Affiliation(s)
- Hanna Grobe
- Institute of Pharmacology, Biochemical-Pharmacological Center, Philipps-University of Marburg, Marburg, Germany
| | - Andrea Wüstenhagen
- Institute of Pharmacology, Biochemical-Pharmacological Center, Philipps-University of Marburg, Marburg, Germany
| | - Christian Baarlink
- Institute of Pharmacology, Biochemical-Pharmacological Center, Philipps-University of Marburg, Marburg, Germany
| | - Robert Grosse
- Institute of Pharmacology, Biochemical-Pharmacological Center, Philipps-University of Marburg, Marburg, Germany
| | - Katharina Grikscheit
- Institute of Pharmacology, Biochemical-Pharmacological Center, Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
129
|
Lu Y, An J, Liu Y, Ren L, Zhang L. MMP9 is involved in HO-1-mediated upregulation of apical junctional complex in Caco-2 cells under oxygen-glucose deprivation. Biochem Biophys Res Commun 2018; 498:125-131. [PMID: 29425821 DOI: 10.1016/j.bbrc.2018.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Ischemia reperfusion injury is a critical factor in the recovery process after intestine trauma and the functional restoration of intestinal reconstruction. This study was the first to explore the expression of apical junctional complex (AJC) induced by heme oxygenase-1 (HO-1) in Caco-2 cells in oxygen-glucose deprivation (OGD) models. Here we showed that HO-1 was upregulated after OGD. Notably, activation of HO-1 largely enhanced the expression of AJC proteins including Claudin-4, E-cadherin and β-catenin in Caco-2 cells, but decreased the expression of matrix metalloproteinase 9 (MMP9). Knockdown of HO-1 attenuated the OGD-induced overexpression of AJC proteins but promoted the expression of MMP9. Interestingly, inhibition of MMP9 further enhanced AJC expression. These results suggest that HO-1 is involved in OGD-evoked upregulation of AJC proteins, which is partly mediated by MMP9 pathway. High expression of HO-1 may play an important role in the pathophysiological process of ischemia reperfusion injury and has potential clinical value for the treatment of intestine related diseases.
Collapse
Affiliation(s)
- Yongqu Lu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jie An
- Department of Pharmacology, Shandong University School of Medicine, Jinan, 250012, Shandong, China
| | - Yulin Liu
- Department of Gastrointestinal Surgery, QianFoShan Hospital Affiliated to Shandong University, Jinan, 250014, Shandong, China
| | - Lehao Ren
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Li Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.
| |
Collapse
|
130
|
Golenkina S, Chaturvedi V, Saint R, Murray MJ. Frazzled can act through distinct molecular pathways in epithelial cells to regulate motility, apical constriction, and localisation of E-Cadherin. PLoS One 2018; 13:e0194003. [PMID: 29518139 PMCID: PMC5843272 DOI: 10.1371/journal.pone.0194003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 01/11/2023] Open
Abstract
Netrin receptors of the DCC/NEO/UNC-40/Frazzled family have well established roles in cell migration and axon guidance but can also regulate epithelial features such as adhesion, polarity and adherens junction (AJ) stability. Previously, we have shown that overexpression of Drosophila Frazzled (Fra) in the peripodial epithelium (PE) inhibits wing disc eversion and also generates cellular protrusions typical of motile cells. Here, we tested whether the molecular pathways by which Fra inhibits eversion are distinct from those driving motility. We show that in disc proper (DP) epithelial cells Fra, in addition to inducing F-Actin rich protrusions, can affect localization of AJ components and columnar cell shape. We then show that these phenotypes have different requirements for the three conserved Fra cytoplasmic P-motifs and for downstream genes. The formation of protrusions required the P3 motif of Fra, as well as integrins (mys and mew), the Rac pathway (Rac1, wave and, arpc3) and myosin regulatory light chain (Sqh). In contrast, apico-basal cell shape change, which was accompanied by increased myosin phosphorylation, was critically dependent upon the P1 motif and was promoted by RhoGef2 but inhibited by Rac1. Fra also caused a loss of AJ proteins (DE-Cad and Arm) from basolateral regions of epithelial cells. This phenotype required all 3 P-motifs, and was dependent upon the polarity factor par6. par6 was not required for protrusions or cell shape change, but was required to block eversion suggesting that control of AJ components may underlie the ability of Fra to promote epithelial stability. The results imply that multiple molecular pathways act downstream of Fra in epithelial cells.
Collapse
Affiliation(s)
- Sofia Golenkina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Saint
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J. Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
131
|
Kowalska M, Rupik W. Development of the duct system during exocrine pancreas differentiation in the grass snakeNatrix natrix(Lepidosauria, Serpentes). J Morphol 2018; 279:724-746. [DOI: 10.1002/jmor.20806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology; University of Silesia; Katowice Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology; University of Silesia; Katowice Poland
| |
Collapse
|
132
|
Mechanosensitive adhesion complexes in epithelial architecture and cancer onset. Curr Opin Cell Biol 2018; 50:42-49. [PMID: 29454273 DOI: 10.1016/j.ceb.2018.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 01/09/2023]
Abstract
Mechanical signals from the extracellular space are paramount to coordinate tissue morphogenesis and homeostasis. Although there is a wide variety of cellular mechanisms involved in transducing extracellular forces, recent literature emphasizes the central role of two main adhesion complexes in epithelial mechanosensitive processes: focal adhesions and adherens junctions. These biomechanical sensors can decode physical signals such as matrix stiffness or intercellular tension into a wide range of coordinated cellular responses, which can impact cell differentiation, migration, and proliferation. Communication between cells and their microenvironment plays a pivotal role both in physiological and pathological conditions. Here we summarize the most recent findings on the biology of these mechanotransduction pathways in epithelial cells, highlighting the extensive amount of biological processes coordinated by cell-matrix and cell-cell adhesion complexes.
Collapse
|
133
|
The epigenetic factor KDM2B regulates cell adhesion, small rho GTPases, actin cytoskeleton and migration in prostate cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:587-597. [PMID: 29408056 DOI: 10.1016/j.bbamcr.2018.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 12/19/2022]
Abstract
The histone demethylase KDM2B is an epigenetic factor with oncogenic properties that is regulated by the basic fibroblasts growth factor (FGF-2). It has recently been shown that KDM2B co-operates with Polycomb Group proteins to promote cell migration and angiogenesis in tumors. In the present study we addressed the role of KDM2B in regulating actin cytoskeleton signaling, cell-cell adhesion and migration of prostate tumor cells. We report here that KDM2B is functionally expressed in DU-145 prostate cancer cells, activated by FGF-2 and regulates EZH2. KDM2B knockdown induced potent up-regulation of gene transcription and protein expression of the epithelial markers E-cadherin and ZO-1, while KDM2B overexpression down-regulated the levels of both markers, suggesting control of cell adhesion by KDM2B. RhoA and RhoB protein expression and activity were diminished upon KDM2B-knockdown and upregulated in KDM2B-overexpressing cell clones. In accordance, actin reorganization with formation of stress fibers became evident in KDM2B-overexpressing cells and abolished in the presence of the Rho inhibitor C3 transferase. DU-145 cell migration was significantly enhanced in KDM2B overexpressing cells and abolished in C3-pretreated cells. Conversely, the retardation of cell migration observed in KDM2B knockdown cells was enhanced in C3-pretreated cells. These results establish a clear functional link between the epigenetic factor KDM2B and the regulation of cell adhesion and Rho-GTPases signaling that controls actin reorganization and cell migration.
Collapse
|
134
|
Barui A, Chowdhury F, Pandit A, Datta P. Rerouting mesenchymal stem cell trajectory towards epithelial lineage by engineering cellular niche. Biomaterials 2018; 156:28-44. [DOI: 10.1016/j.biomaterials.2017.11.036] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/22/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023]
|
135
|
Feeder Cells Free Rabbit Oral Mucosa Epithelial Cell Sheet Engineering. Tissue Eng Regen Med 2018; 15:321-332. [PMID: 30603557 DOI: 10.1007/s13770-017-0108-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The optimal cell culture method of autologous oral mucosal epithelial cell sheet is not well established for a safe transplantation on to the patients' ocular surface. Animal serum and 3T3 mouse feeder cells are currently being used to stimulate the growth of the epithelial cells. However, the use of animal compounds can have potential side effects for the patient after transplantation of the engineered cell sheet. In the present study, we focused on engineering a rabbit oral mucosal epithelial cell sheet without 3T3 mouse feeder cells using a mix of Dulbecco's Modified Eagle Medium/Bronchial Epithelial Cell Growth Medium culture media (DMEM/BEGM). Autologous oral mucosal epithelial cell sheets, engineered with DMEM/BEGM feeder cell free culture media, were compared to those cultured in presence of serum and feeder cells. Using a DMEM/BEGM mix culture media, feeder cell free culture condition, autologous oral mucosal epithelial cells reached confluence and formed a multilayered sheet. The phenotype of engineered cell sheets cultured with DMEM/BEGM were characterized and compared to those cultured with serum and feeder. Hematoxylin and eosin staining showed the formation of a similar stratified multilayer cell sheets, in both culture conditions. The expression of deltaN-p63, ABCG2, PCNA, E-cadherin, Beta-catenin, CK3, CK4, CK13, Muc5AC, was similar in both culture conditions. We demonstrated that rabbit autologous oral mucosal epithelial cell sheet can be engineered, in feeder cell free conditions. The use of the DMEM/BEGM culture media to engineer culture autologous oral mucosa epithelial cell sheet will help to identify key factors involved in the growth and differentiation of oral mucosal epithelial cells.
Collapse
|
136
|
Li S, Wang D, Zhao J, Weathington NM, Shang D, Zhao Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions. FASEB J 2018; 32:230-242. [PMID: 28874458 PMCID: PMC5731130 DOI: 10.1096/fj.201700415rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/21/2017] [Indexed: 01/06/2023]
Abstract
The tumor necrosis factor receptor-associated factor 2 (TRAF2) is a second messenger adaptor protein that plays an essential role in propagating TNF-α-mediated signaling pathways. Modulation of TRAF2 activity by ubiquitination is well studied; however, the deubiquitinating enzyme (DUB), which regulates TRAF2 stability, has not been identified. Here we reveal USP48 as the first identified DUB to deubiquitinate and stabilize TRAF2 in epithelial cells. Down-regulation of USP48 increases K48-linked polyubiquitination of TRAF2 and reduces TRAF2 protein levels. Interestingly, USP48 only targets the TRAF2 related to JNK pathway, not the TRAF2 related to NF-κB and p38 pathways. USP48 is serine phosphorylated in response to TNF-α. The phosphorylation is catalyzed by glycogen synthase kinase 3β (GSK3β), ultimately resulting in increases in USP48 DUB activity. Furthermore, we reveal a new biologic function of TRAF2 that contributes to epithelial barrier dysfunction, which is attenuated by knockdown of USP48. Inhibition of TRAF2/JNK pathway increases E (epithelial)-cadherin expression and enhances epithelial barrier integrity, while knockdown of USP48 attenuates TNF-α/JNK pathway and increases E-cadherin expression and cell-cell junction in epithelial cells. These data, taken together, indicate that USP48 stabilizes TRAF2, which is promoted by GSK3β-mediated phosphorylation. Further, down-regulation of USP48 increases E-cadherin expression and epithelial barrier integrity through reducing TRAF2 stability.-Li, S., Wang, D., Zhao, J., Weathington, N. M., Shang, D., Zhao, Y. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions.
Collapse
Affiliation(s)
- Shuang Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Anesthesia, The First Affiliated Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nathaniel M Weathington
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yutong Zhao
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
137
|
Kim MH, Kino-oka M. Bioprocessing Strategies for Pluripotent Stem Cells Based on Waddington’s Epigenetic Landscape. Trends Biotechnol 2018; 36:89-104. [DOI: 10.1016/j.tibtech.2017.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Revised: 10/02/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
|
138
|
Zeppieri M, Salvetat ML, Beltrami A, Cesselli D, Russo R, Alcalde I, Merayo-Lloves J, Brusini P, Parodi PC. Adipose Derived Stem Cells for Corneal Wound Healing after Laser Induced Corneal Lesions in Mice. J Clin Med 2017; 6:jcm6120115. [PMID: 29206194 PMCID: PMC5742804 DOI: 10.3390/jcm6120115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023] Open
Abstract
The aim of our study was to assess the clinical effectiveness of topical adipose derived stem cell (ADSC) treatment in laser induced corneal wounds in mice by comparing epithelial repair, inflammation, and histological analysis between treatment arms. Corneal lesions were performed on both eyes of 40 mice by laser induced photorefractive keratectomy. All eyes were treated with topical azythromycin bid for three days. Mice were divided in three treatment groups (n = 20), which included: control, stem cells and basic serum; which received topical treatment three times daily for five consecutive days. Biomicroscope assessments and digital imaging were performed by two masked graders at 30, 54, 78, 100, and 172 h to analyze extent of fluorescein positive epithelial defect, corneal inflammation, etc. Immunohistochemical techniques were used in fixed eyes to assess corneal repair markers Ki67, α Smooth Muscle Actin (α-SMA) and E-Cadherin. The fluorescein positive corneal lesion areas were significantly smaller in the stem cells group on days 1 (p < 0.05), 2 (p < 0.02) and 3. The stem cell treated group had slightly better and faster re-epithelization than the serum treated group in the initial phases. Comparative histological data showed signs of earlier and better corneal repair in epithelium and stromal layers in stem cell treated eyes, which showed more epithelial layers and enhanced wound healing performance of Ki67, E-Cadherin, and α-SMA. Our study shows the potential clinical and histological advantages in the topical ADSC treatment for corneal lesions in mice.
Collapse
Affiliation(s)
- Marco Zeppieri
- Department of Ophthalmology, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine 33100, Italy.
| | - Maria Letizia Salvetat
- Department of Ophthalmology, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine 33100, Italy.
| | - Antonio Beltrami
- Department of Pathology, University of Udine, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine 33100, Italy.
| | - Daniela Cesselli
- Department of Pathology, University of Udine, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine 33100, Italy.
| | - Rossella Russo
- Department of Pharmacobiology, University of Calabria, Cosenza 87036, Italy.
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo 33006, Spain.
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Fundación de Investigación Oftalmológica, University of Oviedo, Oviedo 33006, Spain.
| | - Paolo Brusini
- Department of Ophthalmology, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine 33100, Italy.
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University of Udine, Azienda Ospedaliero Universitaria Santa Maria della Misericordia, Udine 33100, Italy.
| |
Collapse
|
139
|
Dubreuil JD. Enterotoxigenic Escherichia coli targeting intestinal epithelial tight junctions: An effective way to alter the barrier integrity. Microb Pathog 2017; 113:129-134. [DOI: 10.1016/j.micpath.2017.10.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/07/2023]
|
140
|
Gómez-Escudero J, Moreno V, Martín-Alonso M, Hernández-Riquer MV, Feinberg T, Colmenar Á, Calvo E, Camafeita E, Martínez F, Oudhoff MJ, Weiss SJ, Arroyo AG. E-cadherin cleavage by MT2-MMP regulates apical junctional signaling and epithelial homeostasis in the intestine. J Cell Sci 2017; 130:4013-4027. [PMID: 29061881 PMCID: PMC5769589 DOI: 10.1242/jcs.203687] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022] Open
Abstract
Cadherin-based intercellular adhesions are essential players in epithelial homeostasis, but their dynamic regulation during tissue morphogenesis and remodeling remain largely undefined. Here, we characterize an unexpected role for the membrane-anchored metalloproteinase MT2-MMP in regulating epithelial cell quiescence. Following co-immunoprecipitation and mass spectrometry, the MT2-MMP cytosolic tail was found to interact with the zonula occludens protein-1 (ZO-1) at the apical junctions of polarized epithelial cells. Functionally, MT2-MMP localizes in the apical domain of epithelial cells where it cleaves E-cadherin and promotes epithelial cell accumulation, a phenotype observed in 2D polarized cells as well as 3D cysts. MT2-MMP-mediated cleavage subsequently disrupts apical E-cadherin-mediated cell quiescence resulting in relaxed apical cortical tension favoring cell extrusion and re-sorting of Src kinase activity to junctional complexes, thereby promoting proliferation. Physiologically, MT2-MMP loss of function alters E-cadherin distribution, leading to impaired 3D organoid formation by mouse colonic epithelial cells ex vivo and reduction of cell proliferation within intestinal crypts in vivo Taken together, these studies identify an MT2-MMP-E-cadherin axis that functions as a novel regulator of epithelial cell homeostasis in vivo.
Collapse
Affiliation(s)
- Jesús Gómez-Escudero
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Vanessa Moreno
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Mara Martín-Alonso
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - M Victoria Hernández-Riquer
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Tamar Feinberg
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ángel Colmenar
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Emilio Camafeita
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Fernando Martínez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Stephen J Weiss
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alicia G Arroyo
- Matrix Metalloproteinases in Angiogenesis and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| |
Collapse
|
141
|
Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. LIVER RESEARCH 2017; 1:197-207. [PMID: 30034913 PMCID: PMC6051712 DOI: 10.1016/j.livres.2017.12.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol consumption remains one of the predominant causes of liver disease and liver-related death worldwide. Intriguingly, dysregulation of the gut barrier is a key factor promoting the pathogenesis of alcoholic liver disease (ALD). A functional gut barrier, which consists of a mucus layer, an intact epithelial monolayer and mucosal immune cells, supports nutrient absorption and prevents bacterial penetration. Compromised gut barrier function is associated with the progression of ALD. Indeed, alcohol consumption disrupts the gut barrier, increases gut permeability, and induces bacterial translocation both in ALD patients and in experimental models with ALD. Moreover, alcohol consumption also causes enteric dysbiosis with both numerical and proportional perturbations. Here, we review and discuss mechanisms of alcohol-induced gut barrier dysfunction to better understand the contribution of the gut-liver axis to the pathogenesis of ALD. Unfortunately, there is no effectual Food and Drug Administration-approved treatment for any stage of ALD. Therefore, we conclude with a discussion of potential strategies aimed at restoring the gut barrier in ALD. The principle behind antibiotics, prebiotics, probiotics and fecal microbiota transplants is to restore microbial symbiosis and subsequently gut barrier function. Nutrient-based treatments, such as dietary supplementation with zinc, niacin or fatty acids, have been shown to regulate tight junction expression, reduce intestinal inflammation, and prevent endotoxemia as well as liver injury caused by alcohol in experimental settings. Interestingly, saturated fatty acids may also directly control the gut microbiome. In summary, clinical and experimental studies highlight the significance and efficacy of the gut barrier in treating ALD.
Collapse
Affiliation(s)
- Zhanxiang Zhou
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
| |
Collapse
|
142
|
Van Cleemput J, Poelaert KCK, Laval K, Maes R, Hussey GS, Van den Broeck W, Nauwynck HJ. Access to a main alphaherpesvirus receptor, located basolaterally in the respiratory epithelium, is masked by intercellular junctions. Sci Rep 2017; 7:16656. [PMID: 29192251 PMCID: PMC5709510 DOI: 10.1038/s41598-017-16804-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
The respiratory epithelium of humans and animals is frequently exposed to alphaherpesviruses, originating from either external exposure or reactivation from latency. To date, the polarity of alphaherpesvirus infection in the respiratory epithelium and the role of respiratory epithelial integrity herein has not been studied. Equine herpesvirus type 1 (EHV1), a well-known member of the alphaherpesvirus family, was used to infect equine respiratory mucosal explants and primary equine respiratory epithelial cells (EREC), grown at the air-liquid interface. EHV1 binding to and infection of mucosal explants was greatly enhanced upon destruction of the respiratory epithelium integrity with EGTA or N-acetylcysteine. EHV1 preferentially bound to and entered EREC at basolateral cell surfaces. Restriction of infection via apical inoculation was overcome by disruption of intercellular junctions. Finally, basolateral but not apical EHV1 infection of EREC was dependent on cellular N-linked glycans. Overall, our findings demonstrate that integrity of the respiratory epithelium is crucial in the host’s innate defence against primary alphaherpesvirus infections. In addition, by targeting a basolaterally located receptor in the respiratory epithelium, alphaherpesviruses have generated a strategy to efficiently escape from host defence mechanisms during reactivation from latency.
Collapse
Affiliation(s)
- Jolien Van Cleemput
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Katrien C K Poelaert
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Kathlyn Laval
- Department of Molecular Biology and Princeton Neuroscience Institute, Princeton University, 119 Lewis Thomas Laboratory, Washington Road, Princeton, New Jersey, 08544, USA
| | - Roger Maes
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824, USA
| | - Gisela S Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, 784 Wilson Road, East Lansing, Michigan, 48824, USA
| | - Wim Van den Broeck
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Hans J Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
143
|
FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. J Cyst Fibros 2017; 17:190-203. [PMID: 29239766 DOI: 10.1016/j.jcf.2017.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/04/2017] [Accepted: 11/10/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) lung disease severity is highly variable and dependent on several factors including genetic modifiers. Family with sequence similarity 13 member A (FAM13A) has been previously associated with lung function in the general population as well as in several chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), we examined whether FAM13A is a modifier gene of CF lung phenotype. We also studied how FAM13A may contribute to the physiopathological mechanisms associated with CF. METHODS We investigated the association of FAM13A with lung function in CF French patients (n=1222) by SNP-wise analysis and Versatile Gene Based Association Study. We also analyzed the consequences of FAM13A knockdown in A549 cells and primary bronchial epithelial cells from CF patients. RESULTS We found that FAM13A is associated with lung function in CF patients. Utilizing lung epithelial A549 cells and primary human bronchial epithelial cells from CF patients we observed that IL-1β and TGFβ reduced FAM13A expression. Knockdown of FAM13A was associated with increased RhoA activity, induction of F-actin stress fibers and regulation of epithelial-mesenchymal transition markers such as E-cadherin, α-smooth muscle actin and vimentin. CONCLUSION Our data show that FAM13A is a modifier gene of CF lung phenotype regulating RhoA activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition.
Collapse
|
144
|
Abstract
The canonical Wnt/β-catenin signaling pathway, an important modulator of progenitor cell proliferation and differentiation, is highly regulated for the maintenance of critical biological homeostasis. Decades of studies in cancer genetics and genomics have demonstrated that multiple genes encoding key proteins in this signaling pathway serve as targets for recurrent mutational alterations. Among these proteins, β-catenin and adenomatosis polyposis coli (APC) are two key nodes. β-catenin contributes in transporting extracellular signals for nuclear programming. Mutations of the CTNNB1 gene that encodes β-catenin occur in a wide spectrum of cancers. These mutations alter the spatial characteristics of the β-catenin protein, leading to drastic reprogramming of the nuclear transcriptional network. Among the outcomes of this reprogramming are increased cell proliferation, enhanced immunosuppression, and disruption of metabolic regulation. Herein we review the current understanding of CTNNB1 mutations, their roles in tumorigenesis and discuss their possible therapeutic implications for cancer.
Collapse
|
145
|
Brandán YR, Guaytima EDV, Favale NO, Pescio LG, Sterin-Speziale NB, Márquez MG. The inhibition of sphingomyelin synthase 1 activity induces collecting duct cells to lose their epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1865:309-322. [PMID: 29128370 DOI: 10.1016/j.bbamcr.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Epithelial tissue requires that cells attach to each other and to the extracellular matrix by the assembly of adherens junctions (AJ) and focal adhesions (FA) respectively. We have previously shown that, in renal papillary collecting duct (CD) cells, both AJ and FA are located in sphingomyelin (SM)-enriched plasma membrane microdomains. In the present work, we investigated the involvement of SM metabolism in the preservation of the epithelial cell phenotype and tissue organization. To this end, primary cultures of renal papillary CD cells were performed. Cultured cells preserved the fully differentiated epithelial phenotype as reflected by the presence of primary cilia. Cells were then incubated for 24h with increasing concentrations of D609, a SM synthase (SMS) inhibitor. Knock-down experiments silencing SMS 1 and 2 were also performed. By combining biochemical and immunofluorescence studies, we found experimental evidences suggesting that, in CD cells, SMS 1 activity is essential for the preservation of cell-cell adhesion structures and therefore for the maintenance of CD tissue/tubular organization. The inhibition of SMS 1 activity induced CD cells to lose their epithelial phenotype and to undergo an epithelial-mesenchymal transition (EMT) process.
Collapse
Affiliation(s)
- Yamila Romina Brandán
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina
| | - Edith Del Valle Guaytima
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina
| | - Nicolás Octavio Favale
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina; Cátedra de Biología Celular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Norma B Sterin-Speziale
- Instituto de Química y Físico-Química Biológica (IQUIFIB) -CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - María Gabriela Márquez
- Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja, Av. Luis Vernet 1000, 5300 La Rioja, Argentina.
| |
Collapse
|
146
|
López-Posadas R, Stürzl M, Atreya I, Neurath MF, Britzen-Laurent N. Interplay of GTPases and Cytoskeleton in Cellular Barrier Defects during Gut Inflammation. Front Immunol 2017; 8:1240. [PMID: 29051760 PMCID: PMC5633683 DOI: 10.3389/fimmu.2017.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation.
Collapse
Affiliation(s)
| | | | - Imke Atreya
- Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
147
|
Galletti R, Verger S, Hamant O, Ingram GC. Developing a 'thick skin': a paradoxical role for mechanical tension in maintaining epidermal integrity? Development 2017; 143:3249-58. [PMID: 27624830 DOI: 10.1242/dev.132837] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Plant aerial epidermal tissues, like animal epithelia, act as load-bearing layers and hence play pivotal roles in development. The presence of tension in the epidermis has morphogenetic implications for organ shapes but it also constantly threatens the integrity of this tissue. Here, we explore the multi-scale relationship between tension and cell adhesion in the plant epidermis, and we examine how tensile stress perception may act as a regulatory input to preserve epidermal tissue integrity and thus normal morphogenesis. From this, we identify parallels between plant epidermal and animal epithelial tissues and highlight a list of unexplored questions for future research.
Collapse
Affiliation(s)
- Roberta Galletti
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Stéphane Verger
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Lyon F-69342, France
| |
Collapse
|
148
|
Chen L, Mai W, Chen M, Hu J, Zhuo Z, Lei X, Deng L, Liu J, Yao N, Huang M, Peng Y, Ye W, Zhang D. Arenobufagin inhibits prostate cancer epithelial-mesenchymal transition and metastasis by down-regulating β-catenin. Pharmacol Res 2017; 123:130-142. [PMID: 28712972 DOI: 10.1016/j.phrs.2017.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/29/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022]
Abstract
Epithelial-mesenchymal transition (EMT) plays an important role in prostate cancer (PCa) metastasis; thus, developing EMT inhibitors may be a feasible treatment for metastatic PCa. Here, we discovered that arenobufagin and four other bufadienolides suppressed PC3 cell EMT. These compounds modulated EMT marker expression with elevating E-cadherin and reducing ZEB1, vimentin and slug expression, and attenuated the migration and invasion of PC3 cells. Among these five compounds, arenobufagin exhibited the most potent activity. We found that the mRNA and protein expression of β-catenin and β-catenin/TCF4 target genes, which are related to tumor invasion and metastasis, were down-regulated after arenobufagin treatment. Overexpression of β-catenin in PC3 cells antagonized the EMT inhibition effect of arenobufagin, while silencing β-catenin with siRNA enhanced the inhibitory effect of arenobufagin on EMT. In addition, arenobufagin restrained xenograft tumor EMT, as demonstrated by decreased mesenchymal marker expression and increased epithelial marker expression, and reduced the tumor metastatic foci in lung. This study demonstrates a novel anticancer activity of arenobufagin, which inhibits PC3 cell EMT by down-regulating β-catenin, thereby reducing PCa metastasis. In addition, it also provides new evidence for the development of arenobufagin as a treatment for metastatic prostate cancer.
Collapse
Affiliation(s)
- Liping Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Weiqian Mai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Jianyang Hu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Zhenjian Zhuo
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Xueping Lei
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Lijuan Deng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510632, PR China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Yinghui Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
149
|
Verma D, Bajpai VK, Ye N, Maneshi MM, Jetta D, Andreadis ST, Sachs F, Hua SZ. Flow induced adherens junction remodeling driven by cytoskeletal forces. Exp Cell Res 2017; 359:327-336. [PMID: 28803065 DOI: 10.1016/j.yexcr.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 12/30/2022]
Abstract
Adherens junctions (AJs) are a key structural component for tissue organization and function. Under fluid shear stress, AJs exhibit dynamic assembly/disassembly, but how shear stress couples to AJs is unclear. In MDCK cells we measured simultaneously the forces in cytoskeletal α-actinin and the density and length of AJs using a genetically coded optical force sensor, actinin-sstFRET, and fluorescently labeled E-cadherin (E-cad). We found that shear stress of 0.74dyn/cm2 for 3h significantly enhanced E-cad expression at cell-cell contacts and this phenomenon has two phases. The initial formation of segregated AJ plaques coincided with a decrease in cytoskeletal tension, but an increase in tension was necessary for expansion of the plaques and the formation of continuous AJs in the later phase. The changes in cytoskeletal tension and reorganization appear to be an upstream process in response to flow since it occurred in both wild type and dominant negative E-cad cells. Disruption of F-actin with a Rho-ROCK inhibitor eliminated AJ growth under flow. These results delineate the shear stress transduction paths in cultured cells, which helps to understand pathology of a range of diseases that involve dysfunction of E-cadherin.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA
| | - Vivek K Bajpai
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Nannan Ye
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Mohammad M Maneshi
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Deekshitha Jetta
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Frederick Sachs
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Susan Z Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA; Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
150
|
Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci Rep 2017; 7:6235. [PMID: 28740192 PMCID: PMC5524966 DOI: 10.1038/s41598-017-06673-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/15/2017] [Indexed: 12/28/2022] Open
Abstract
Overexpression of cyclooxygenase-2 in oral cancer increases lymph node metastasis and is associated with a poor prognosis. The potential of celecoxib (CXB) use is reported in cancer treatment by inhibiting proliferation through apoptosis, but the effects on the epithelial-mesenchymal transition (EMT) and cancer cell mobility remain unclear. We performed a preclinical study and population-based study to evaluate CXB use in the prevention of oral cancer progression and occurrence. The in-vitro findings showed that CXB is involved in the inhibition of EMT and cell mobility through blocking transcription factors (Slug, Snail and ZEB1), cytoplasmic mediators (focal adhesion kinase (FAK), vimentin and β-catenin), cell adhesion molecules (cadherins and integrins), and surface receptors (AMFR and EGFR). The murine xenograft model showed a 65% inhibition in tumour growth after a 5-week treatment of CXB compared to placebo. Xenograft tumours in placebo-treated mice displayed a well-to-moderate/moderate differentiated SCC grade, while those from CXB-treated mice were well differentiated. The expression levels of membrane EGFR, and nuclear FAK, Slug and ZEB1 were decreased in the xenograft tumours of CXB-treated mice. A retrospective cohort study showed that increasing the daily dose and medication time of CXB was associated with oral cancer prevention. The findings provide an alternative prevention strategy for oral cancer development with CXB use.
Collapse
|