101
|
Tornero-Écija A, Zapata-Del-Baño A, Antón-Esteban L, Vincent O, Escalante R. The association of lipid transfer protein VPS13A with endosomes is mediated by sorting nexin SNX5. Life Sci Alliance 2023; 6:e202201852. [PMID: 36977596 PMCID: PMC10053439 DOI: 10.26508/lsa.202201852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Human VPS13 proteins are implicated in severe neurological diseases. These proteins play an important role in lipid transport at membrane contact sites between different organelles. Identification of adaptors that regulate the subcellular localization of these proteins at specific membrane contact sites is essential to understand their function and role in disease. We have identified the sorting nexin SNX5 as an interactor of VPS13A that mediates its association with endosomal subdomains. As for the yeast sorting nexin and Vps13 endosomal adaptor Ypt35, this association involves the VPS13 adaptor-binding (VAB) domain in VPS13A and a PxP motif in SNX5. Notably, this interaction is impaired by mutation of a conserved asparagine residue in the VAB domain, which is also required for Vps13-adaptor binding in yeast and is pathogenic in VPS13D. VPS13A fragments containing the VAB domain co-localize with SNX5, whereas the more C-terminal part of VPS13A directs its localization to the mitochondria. Overall, our results suggest that a fraction of VPS13A localizes to junctions between the endoplasmic reticulum, mitochondria, and SNX5-containing endosomes.
Collapse
Affiliation(s)
- Alba Tornero-Écija
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| | | | - Laura Antón-Esteban
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| | - Olivier Vincent
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| | - Ricardo Escalante
- Instituto de Investigaciones Biomédicas Alberto Sols, C.S.I.C./U.A.M., Madrid, Spain
| |
Collapse
|
102
|
Henne WM. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr Opin Cell Biol 2023; 82:102178. [PMID: 37295067 PMCID: PMC10782554 DOI: 10.1016/j.ceb.2023.102178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Lipid droplets (LDs) are major lipid storage organelles, sequestering energy-rich triglycerides and serving as nutrient sinks for cellular homeostasis. Observed for over a century but generally ignored, LDs are now appreciated to play key roles in organismal physiology and disease. They also form numerous functional contacts with other organelles. Here, we highlight recent studies examining LDs from distinct perspectives of their life cycle: their biogenesis, "social" life as they interact with other organelles, and deaths via lipolysis or lipophagy. We also discuss recent work showing how changes in LD lipid content alter the biophysical phases of LD lipids, and how this may fine-tune the LD protein landscape and ultimately LD function.
Collapse
Affiliation(s)
- W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
103
|
Goldstein O, Gana-Weisz M, Banfi S, Nigro V, Bar-Shira A, Thaler A, Gurevich T, Mirelman A, Giladi N, Alcalay RN, Orr-Urtreger A. Novel variants in genes related to vesicle-mediated-transport modify Parkinson's disease risk. Mol Genet Metab 2023; 139:107608. [PMID: 37201419 DOI: 10.1016/j.ymgme.2023.107608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVES VPS35 and VPS13 have been associated with Parkinson's disease (PD), and their shared phenotype in yeast when reduced in function is abnormal vacuolar transport. We aim to test if additional potentially deleterious variants in other genes that share this phenotype can modify the risk for PD. METHODS 77 VPS and VPS-related genes were analyzed using whole-genome-sequencing data from 202 PD patients of Ashkenazi Jewish (AJ) ancestry. Filtering was done based on quality and functionality scores. Ten variants in nine genes were further genotyped in 1200 consecutively recruited unrelated AJ-PD patients, and allele frequencies and odds ratio calculated compared to gnomAD-AJ-non-neuro database, in un-stratified (n = 1200) and stratified manner (LRRK2-G2019S-PD patients (n = 145), GBA-PD patients (n = 235), and non-carriers of these mutations (NC, n = 787)). RESULTS Five variants in PIK3C3, VPS11, AP1G2, HGS and VPS13D were significantly associated with PD-risk. PIK3C3-R768W showed a significant association in an un-stratified (all PDs) analysis, as well as in stratified (LRRK2, GBA, and NC) analyses (Odds ratios = 2.71, 5.32, 3.26. and 2.19 with p = 0.0015, 0.002, 0.0287, and 0.0447, respectively). AP1G2-R563W was significantly associated in LRRK2-carriers (OR = 3.69, p = 0.006) while VPS13D-D2932N was significantly associated in GBA-carriers (OR = 5.45, p = 0.0027). VPS11-C846G and HGS-S243Y were significantly associated in NC (OR = 2.48 and 2.06, with p = 0.022 and 0.0163, respectively). CONCLUSIONS Variants in genes involved in vesicle-mediated protein transport and recycling pathways, including autophagy and mitophagy, may differentially modify PD-risk in LRRK2-carriers, GBA carriers, or NC. Specifically, PIK3C3-R768W is a PD-risk allele, with the highest effect size in LRRK2-G2019S carriers. These results suggest oligogenic effect that may depends on the genetic background of the patient. An unbiased burden of mutations approach in these genes should be evaluated in additional PD and control groups. The mechanisms by which these novel variants interact and increase PD-risk should be researched in depth for better tailoring therapeutic intervention for PD prevention or slowing disease progression.
Collapse
Affiliation(s)
- Orly Goldstein
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mali Gana-Weisz
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy; Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy; Medical Genetics, Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anat Bar-Shira
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tanya Gurevich
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Anat Mirelman
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nir Giladi
- Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Laboratory for Early Markers of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roy N Alcalay
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Movement disorders Division, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Avi Orr-Urtreger
- Laboratory of Biomarkers and Genomics of Neurodegeneration, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
104
|
Chaudhari S, Ware AP, Jasti DB, Gorthi SP, Acharya LP, Bhat M, Mallya S, Satyamoorthy K. Exome sequencing of choreoacanthocytosis reveals novel mutations in VPS13A and co-mutation in modifier gene(s). Mol Genet Genomics 2023; 298:965-976. [PMID: 37209156 DOI: 10.1007/s00438-023-02032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Choreoacanthocytosis, one of the forms of neuroacanthocytosis, is caused by mutations in vacuolar protein sorting-associated protein A (VPS13A), and is often misdiagnosed with other form of neuroacanthocytosis with discrete genetic defects. The phenotypic variations among the patients with VPS13A mutations significantly obfuscates the understanding of the disease and treatment strategies. In this study, two unrelated cases were identified, exhibiting the core phenotype of neuroacanthocytosis but with considerable clinical heterogeneity. Case 1 presented with an additional Parkinsonism phenotype, whereas seizures were evident in case 2. To decipher the genetic basis, whole exome sequencing followed by validation with Sanger sequencing was performed. A known homozygous pathogenic nonsense mutation (c.799C > T; p.R267X) in exon 11 of the VPS13A gene was identified in case 1 that resulted in a truncated protein. A novel missense mutation (c.9263T > G; p.M3088R) in exon 69 of VPS13A identified in case 2 was predicted as pathogenic. In silico analysis of the p.M3088R mutation at the C-terminus of VPS13A suggests a loss of interaction with TOMM40 and may disrupt mitochondrial localization. We also observed an increase in mitochondrial DNA copy numbers in case 2. Mutation analysis revealed benign heterozygous variants in interacting partners of VPS13A such as VAPA in case 1. Our study confirmed the cases as ChAc and identified the novel homozygous variant of VPS13A (c.9263T > G; p.M3088R) within the mutation spectrum of VPS13A-associated ChAc. Furthermore, mutations in VPS13A and co-mutations in its potential interacting partner(s) might contribute to the diverse clinical manifestations of ChAc, which requires further study.
Collapse
Affiliation(s)
- Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Akshay Pramod Ware
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dushyanth Babu Jasti
- Department of Neurology, Kasturba Medical College, Manipal, Karnataka, 576104, India
| | - Sankar Prasad Gorthi
- Department of Neurology, Kasturba Medical College, Manipal, Karnataka, 576104, India
- Department of Neurology, Bharati Hospital and Research Center, Bharati Vidyapeeth (Deemed to be University) Medical College and Hospital, Dhankawadi, Pune, Maharashtra, 411043, India
| | - Lavanya Prakash Acharya
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manoj Bhat
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
105
|
Sakuragi T, Nagata S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat Rev Mol Cell Biol 2023:10.1038/s41580-023-00604-z. [PMID: 37106071 PMCID: PMC10134735 DOI: 10.1038/s41580-023-00604-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
Cellular membranes function as permeability barriers that separate cells from the external environment or partition cells into distinct compartments. These membranes are lipid bilayers composed of glycerophospholipids, sphingolipids and cholesterol, in which proteins are embedded. Glycerophospholipids and sphingolipids freely move laterally, whereas transverse movement between lipid bilayers is limited. Phospholipids are asymmetrically distributed between membrane leaflets but change their location in biological processes, serving as signalling molecules or enzyme activators. Designated proteins - flippases and scramblases - mediate this lipid movement between the bilayers. Flippases mediate the confined localization of specific phospholipids (phosphatidylserine (PtdSer) and phosphatidylethanolamine) to the cytoplasmic leaflet. Scramblases randomly scramble phospholipids between leaflets and facilitate the exposure of PtdSer on the cell surface, which serves as an important signalling molecule and as an 'eat me' signal for phagocytes. Defects in flippases and scramblases cause various human diseases. We herein review the recent research on the structure of flippases and scramblases and their physiological roles. Although still poorly understood, we address the mechanisms by which they translocate phospholipids between lipid bilayers and how defects cause human diseases.
Collapse
Affiliation(s)
- Takaharu Sakuragi
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Biochemistry & Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
106
|
Guillén-Samander A, De Camilli P. Endoplasmic Reticulum Membrane Contact Sites, Lipid Transport, and Neurodegeneration. Cold Spring Harb Perspect Biol 2023; 15:a041257. [PMID: 36123033 PMCID: PMC10071438 DOI: 10.1101/cshperspect.a041257] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Endoplasmic Reticulum (ER) is an endomembrane system that plays a multiplicity of roles in cell physiology and populates even the most distal cell compartments, including dendritic tips and axon terminals of neurons. Some of its functions are achieved by a cross talk with other intracellular membranous organelles and with the plasma membrane at membrane contacts sites (MCSs). As the ER synthesizes most membrane lipids, lipid exchanges mediated by lipid transfer proteins at MCSs are a particularly important aspect of this cross talk, which synergizes with the cross talk mediated by vesicular transport. Several mutations of genes that encode proteins localized at ER MCSs result in familial neurodegenerative diseases, emphasizing the importance of the normal lipid traffic within cells for a healthy brain. Here, we provide an overview of such diseases, with a specific focus on proteins that directly or indirectly impact lipid transport.
Collapse
Affiliation(s)
- Andrés Guillén-Samander
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06520, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
107
|
Dall'Armellina F, Stagi M, Swan LE. In silico modeling human VPS13 proteins associated with donor and target membranes suggests lipid transfer mechanisms. Proteins 2023; 91:439-455. [PMID: 36404287 PMCID: PMC10953354 DOI: 10.1002/prot.26446] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 11/22/2022]
Abstract
The VPS13 protein family constitutes a novel class of bridge-like lipid transferases. Autosomal recessive inheritance of mutations in VPS13 genes is associated with the development of neurodegenerative diseases in humans. Bioinformatic approaches previously recognized the domain architecture of these proteins. In this study, we model the first ever full-length structures of the four human homologs VPS13A, VPS13B, VPS13C, and VPS13D in association with model membranes, to investigate their lipid transfer ability and potential structural association with membrane leaflets. We analyze the evolutionary conservation and physicochemical properties of these proteins, focusing on conserved C-terminal amphipathic helices that disturb organelle surfaces and that, adjoined, resemble a traditional Venetian gondola. The gondola domains share significant structural homology with lipid droplet surface-binding proteins. We introduce in silico protein-membrane models displaying the mode of association of VPS13A, VPS13B, VPS13C, and VPS13D to donor and target membranes, and present potential models of action for protein-mediated lipid transfer.
Collapse
Affiliation(s)
- Filippo Dall'Armellina
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Massimiliano Stagi
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Laura E. Swan
- Department of Biochemistry and Systems BiologyInstitute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUK
| |
Collapse
|
108
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
109
|
Moradi Vastegani S, Nasrolahi A, Ghaderi S, Belali R, Rashno M, Farzaneh M, Khoshnam SE. Mitochondrial Dysfunction and Parkinson's Disease: Pathogenesis and Therapeutic Strategies. Neurochem Res 2023:10.1007/s11064-023-03904-0. [PMID: 36943668 DOI: 10.1007/s11064-023-03904-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.
Collapse
Affiliation(s)
- Sadegh Moradi Vastegani
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rafie Belali
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran
- Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
110
|
Cai W, Li P, Gu M, Xu H. Lysosomal Ion Channels and Lysosome-Organelle Interactions. Handb Exp Pharmacol 2023; 278:93-108. [PMID: 36882602 DOI: 10.1007/164_2023_640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Intracellular organelles exchange their luminal contents with each other via both vesicular and non-vesicular mechanisms. By forming membrane contact sites (MCSs) with ER and mitochondria, lysosomes mediate bidirectional transport of metabolites and ions between lysosomes and organelles that regulate lysosomal physiology, movement, membrane remodeling, and membrane repair. In this chapter, we will first summarize the current knowledge of lysosomal ion channels and then discuss the molecular and physiological mechanisms that regulate lysosome-organelle MCS formation and dynamics. We will also discuss the roles of lysosome-ER and lysosome-mitochondria MCSs in signal transduction, lipid transport, Ca 2+ transfer, membrane trafficking, and membrane repair, as well as their roles in lysosome-related pathologies.
Collapse
Affiliation(s)
- Weijie Cai
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Ping Li
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Mingxue Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dun Neurological Research Institute, Houston, TX, USA
| | - Haoxing Xu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dun Neurological Research Institute, Houston, TX, USA. .,Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
111
|
Zhen Y, Stenmark H. Autophagosome Biogenesis. Cells 2023; 12:cells12040668. [PMID: 36831335 PMCID: PMC9954227 DOI: 10.3390/cells12040668] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Autophagy-the lysosomal degradation of cytoplasm-plays a central role in cellular homeostasis and protects cells from potentially harmful agents that may accumulate in the cytoplasm, including pathogens, protein aggregates, and dysfunctional organelles. This process is initiated by the formation of a phagophore membrane, which wraps around a portion of cytoplasm or cargo and closes to form a double-membrane autophagosome. Upon the fusion of the autophagosome with a lysosome, the sequestered material is degraded by lysosomal hydrolases in the resulting autolysosome. Several alternative membrane sources of autophagosomes have been proposed, including the plasma membrane, endosomes, mitochondria, endoplasmic reticulum, lipid droplets, hybrid organelles, and de novo synthesis. Here, we review recent progress in our understanding of how the autophagosome is formed and highlight the proposed role of vesicles that contain the lipid scramblase ATG9 as potential seeds for phagophore biogenesis. We also discuss how the phagophore is sealed by the action of the endosomal sorting complex required for transport (ESCRT) proteins.
Collapse
Affiliation(s)
- Yan Zhen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Correspondence: (Y.Z.); (H.S.); Tel.: +47-22781911 (Y.Z.); +47-22781818 (H.S.)
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
- Correspondence: (Y.Z.); (H.S.); Tel.: +47-22781911 (Y.Z.); +47-22781818 (H.S.)
| |
Collapse
|
112
|
Yperman K, Kuijpers M. Neuronal endoplasmic reticulum architecture and roles in axonal physiology. Mol Cell Neurosci 2023; 125:103822. [PMID: 36781033 DOI: 10.1016/j.mcn.2023.103822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
The endoplasmic reticulum (ER) is the largest membrane compartment within eukaryotic cells and is emerging as a key coordinator of many cellular processes. The ER can modulate local calcium fluxes and communicate with other organelles like the plasma membrane. The importance of ER in neuronal processes such as neurite growth, axon repair and neurotransmission has recently gained much attention. In this review, we highlight the importance of the ER tubular network in axonal homeostasis and discuss how the generation and maintenance of the thin tubular ER network in axons and synapses, requires a cooperative effort of ER-shaping proteins, cytoskeleton and autophagy processes.
Collapse
Affiliation(s)
- Klaas Yperman
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marijn Kuijpers
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, 6525 AJ Nijmegen, the Netherlands.
| |
Collapse
|
113
|
Abstract
Cells store excess energy in the form of lipid droplets (LDs), a specialized sub-compartment of the endoplasmic reticulum (ER) network. The lipodystrophy protein seipin is a key player in LD biogenesis and ER-LD contact site maintenance. Recent structural and in silico studies have started to shed light on the molecular function of seipin as a LD nucleator in early LD biogenesis, whilst new cell biological work implies a role for seipin in ER-mitochondria contact sites and calcium metabolism. In this minireview, I discuss recent insights into the molecular function of seipin.
Collapse
Affiliation(s)
- Veijo T. Salo
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| |
Collapse
|
114
|
Patra S, Patil S, Klionsky DJ, Bhutia SK. Lysosome signaling in cell survival and programmed cell death for cellular homeostasis. J Cell Physiol 2023; 238:287-305. [PMID: 36502521 DOI: 10.1002/jcp.30928] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Recent developments in lysosome biology have transformed our view of lysosomes from static garbage disposals that can also act as suicide bags to decidedly dynamic multirole adaptive operators of cellular homeostasis. Lysosome-governed signaling pathways, proteins, and transcription factors equilibrate the rate of catabolism and anabolism (autophagy to lysosomal biogenesis and metabolite pool maintenance) by sensing cellular metabolic status. Lysosomes also interact with other organelles by establishing contact sites through which they exchange cellular contents. Lysosomal function is critically assessed by lysosomal positioning and motility for cellular adaptation. In this setting, mechanistic target of rapamycin kinase (MTOR) is the chief architect of lysosomal signaling to control cellular homeostasis. Notably, lysosomes can orchestrate explicit cell death mechanisms, such as autophagic cell death and lysosomal membrane permeabilization-associated regulated necrotic cell death, to maintain cellular homeostasis. These lines of evidence emphasize that the lysosomes serve as a central signaling hub for cellular homeostasis.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Shankargouda Patil
- Division of Oral Pathology, Department of Maxillofacial Surgery and Diagnostic Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Daniel J Klionsky
- Department of Molecular, Cellular and Developmental Biology, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Sujit K Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
115
|
Subra M, Dezi M, Bigay J, Lacas-Gervais S, Di Cicco A, Araújo ARD, Abélanet S, Fleuriot L, Debayle D, Gautier R, Patel A, Roussi F, Antonny B, Lévy D, Mesmin B. VAP-A intrinsically disordered regions enable versatile tethering at membrane contact sites. Dev Cell 2023; 58:121-138.e9. [PMID: 36693319 DOI: 10.1016/j.devcel.2022.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/21/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023]
Abstract
Membrane contact sites (MCSs) are heterogeneous in shape, composition, and dynamics. Despite this diversity, VAP proteins act as receptors for multiple FFAT motif-containing proteins and drive the formation of most MCSs that involve the endoplasmic reticulum (ER). Although the VAP-FFAT interaction is well characterized, no model explains how VAP adapts to its partners in various MCSs. We report that VAP-A localization to different MCSs depends on its intrinsically disordered regions (IDRs) in human cells. VAP-A interaction with PTPIP51 and VPS13A at ER-mitochondria MCS conditions mitochondria fusion by promoting lipid transfer and cardiolipin buildup. VAP-A also enables lipid exchange at ER-Golgi MCS by interacting with oxysterol-binding protein (OSBP) and CERT. However, removing IDRs from VAP-A restricts its distribution and function to ER-mitochondria MCS. Our data suggest that IDRs do not modulate VAP-A preference toward specific partners but do adjust their geometry to MCS organization and lifetime constraints. Thus, IDR-mediated VAP-A conformational flexibility ensures membrane tethering plasticity and efficiency.
Collapse
Affiliation(s)
- Mélody Subra
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Manuela Dezi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Joëlle Bigay
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sandra Lacas-Gervais
- Université Côte d'Azur, Centre Commun de Microscopie Appliquée, Parc Valrose, 06000 Nice, France
| | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Ana Rita Dias Araújo
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Sophie Abélanet
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Lucile Fleuriot
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Romain Gautier
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Amanda Patel
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Fanny Roussi
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Bruno Antonny
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France
| | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Bruno Mesmin
- Université Côte d'Azur, Inserm, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560 Valbonne, France.
| |
Collapse
|
116
|
Chen WF, Wang HF, Wang Y, Liu ZG, Xu BH. AmAtg2B-Mediated Lipophagy Regulates Lipolysis of Pupae in Apis mellifera. Int J Mol Sci 2023; 24:2096. [PMID: 36768418 PMCID: PMC9916532 DOI: 10.3390/ijms24032096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/21/2023] Open
Abstract
Lipophagy plays an important role in regulating lipid metabolism in mammals. The exact function of autophagy-related protein 2 (Atg2) has been investigated in mammals, but research on the existence and functions of Atg2 in Apis mellifera (AmAtg2) is still limited. Here, autophagy occurred in honeybee pupae, which targeted lipid droplets (LDs) in fat body, namely lipophagy, which was verified by co-localization of LDs with microtubule-associated protein 1A/1B light chain 3 beta (LC3). Moreover, AmAtg2 homolog B (AmAtg2B) was expressed specifically in pupal fat body, which indicated that AmAtg2B might have special function in fat body. Further, AmAtg2B antibody neutralization and AmAtg2B knock-down were undertaken to verify the functions in pupae. Results showed that low expression of AmAtg2B at the protein and transcriptional levels led to lipophagy inhibition, which down-regulated the expression levels of proteins and genes related to lipolysis. Altogether, results in this study systematically revealed that AmAtg2B interfered with lipophagy and then caused abnormal lipolysis in the pupal stage.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
117
|
Chu Q, Wang J, Du Y, Zhou T, Shi A, Xiong J, Ji WK, Deng L. Oligomeric CHMP7 mediates three-way ER junctions and ER-mitochondria interactions. Cell Death Differ 2023; 30:94-110. [PMID: 35962186 PMCID: PMC9883271 DOI: 10.1038/s41418-022-01048-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
In metazoans the endoplasmic reticulum (ER) undergoes extensive remodeling during the cell cycle. The endosomal sorting complexes required for transport (ESCRT) protein CHMP7 coordinates ESCRT-III dependent nuclear envelope reformation during mitotic exit. However, potential roles of ER-associated CHMP7 at non-mitotic stages remain unclear. Here we discovered a new role of CHMP7 in mediating three-way ER and ER-mitochondrial membrane contact sites (MCSs). We showed that CHMP7 localizes to multiple cellular membranes including the ER, mitochondrial-associated membranes (MAMs) and the outer mitochondrial membrane (OMM) via its N-terminal membrane-binding domain. CHMP7 undergoes dynamic assembly at three-way ER junctions and ER-mitochondrial MCSs through hydrophobic interactions among α helix-1 and α helix-2 of the C-terminal CHMP-like domain, which was required for tethering different organelles in vivo. Furthermore, CHMP7 mediates the formation of three-way ER junctions in parallel with Atlastins (ATLs). Importantly, CHMP7 also regulates ER-mitochondrial interactions and its depletion affects mitochondrial division independently of ESCRT complex. Taken together, our results suggest a direct role of CHMP7 in the formation of the ER contacts in interphase.
Collapse
Affiliation(s)
- Qingzhu Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Juan Xiong
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
118
|
Kumar S, Ruiz N. Bacterial AsmA-Like Proteins: Bridging the Gap in Intermembrane Phospholipid Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231185931. [PMID: 37455811 PMCID: PMC10345924 DOI: 10.1177/25152564231185931] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotic cells, nonvesicular lipid transport between organelles is mediated by lipid-transfer proteins. Recently, a new class of these lipid transporters has been described to facilitate the bulk of inter-organelle lipid transport at contact sites by forming bridge-like structures with a hydrophobic groove through which lipids travel. Because their predicted structure is composed of repeating β-groove (RBG) domains, they have been named the RBG protein superfamily. Early studies on RBG proteins VPS13 and ATG2 recognized the resemblance of their predicted structures to that of the bacterial Lpt system, which transports newly synthesized lipopolysaccharides (LPS) between the inner and the outer membranes (IMs and OMs) of Gram-negative bacteria. In these didermic bacteria, the IMs and OMs are separated by an aqueous periplasmic compartment that is traversed by a bridge-like structure built with β-jelly roll domains from several Lpt proteins that provides a hydrophobic groove for LPS molecules to travel across the periplasm. Despite structural and functional similarities between RBG proteins and the Lpt system, the bacterial AsmA-like protein family has recently emerged as the likely ancestor of RBG proteins and long sought-after transporters that facilitate the transfer of phospholipids from the IM to the OM. Here, we review our current understanding of the structure and function of bacterial AsmA-like proteins, mainly focusing on recent studies that have led to the proposal that AsmA-like proteins mediate the bulk of phospholipid transfer between the IMs and OMs.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
119
|
Du Y, Hu X, Chang W, Deng L, Ji WK, Xiong J. A Possible Role of VPS13B in the Formation of Golgi-Lipid Droplet Contacts Associating with the ER. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231195718. [PMID: 38090145 PMCID: PMC10714374 DOI: 10.1177/25152564231195718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 02/18/2024]
Abstract
While the physical interactions between the Golgi apparatus (Golgi) and lipid droplets (LDs) have been suggested through system-level imaging, the Golgi-LD membrane contact sites (MCSs) remain largely uncharacterized. Here, we show evidence to support the existence of Golgi-LD MCSs in HEK293 cells. We further suggest that vacuolar protein sorting-associated protein 13B (VPS13B) localizes to and promotes the formation of Golgi-LD contacts upon oleic acid (OA) stimulation using 3D high-resolution microscopy. Depletion of VPS13B moderately affects the formation of Golgi-LD contacts upon OA treatment in addition to the fragmentation of the Golgi. Although cellular functions of VPS13B-mediated contacts are still elusive, these findings may provide a new insight into related diseases caused by loss-of-function mutations of VPS13B.
Collapse
Affiliation(s)
- Yuanjiao Du
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuewen Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Lin Deng
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Cell Architecture Research Center; Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Xiong
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
120
|
Amos C, Xu P, De Camilli P. Erythroid Differentiation Dependent Interaction of VPS13A with XK at the Plasma Membrane of K562 Cells. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231215133. [PMID: 38144430 PMCID: PMC10748539 DOI: 10.1177/25152564231215133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/26/2023]
Abstract
Mutations of the bridge-like lipid transport protein VPS13A and the lipid scramblase XK result in Chorea Acanthocytosis (ChAc) and McLeod syndrome (MLS), respectively, two similar conditions involving neurodegeneration and deformed erythrocytes (acanthocytes). VPS13A binds XK, suggesting a model in which VPS13A forms a lipid transport bridge between the endoplasmic reticulum (ER) and the plasma membrane (PM), where XK resides. However, studies of VPS13A in HeLa and COS7 cells showed that this protein localizes primarily at contacts of the ER with mitochondria. Overexpression of XK in these cells redistributed VPS13A to the biosynthetic XK pool in the ER but not to PM-localized XK. Colocalization of VPS13A with XK at the PM was only observed if overexpressed XK harbored mutations that disengaged its VPS13A-binding site from an intramolecular interaction. As the acanthocytosis phenotype of ChAc and MLS suggests a role of the two proteins in cells of the erythroid lineage, we explored their localization in K562 cells, which differentiate into erythroblasts upon hemin addition. When tagged VPS13A was overexpressed in hemin-treated K562 cells, robust formation of ER-PM contacts positive for VPS13A was observed and their formation was abolished in XK KO cells. ER-PM contacts positive for VPS13A were seldom observed in undifferentiated K562 cells, despite the presence of XK in these cells at concentrations similar to those observed after differentiation. These findings reveal that the interaction of VPS13A with XK at ER-PM contacts requires a permissive state which depends upon cell type and/or functional state of the cell.
Collapse
Affiliation(s)
- Chase Amos
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Peng Xu
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Pietro De Camilli
- Departments of Neuroscience and of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
121
|
Leterme S, Bastien O, Aiese Cigliano R, Amato A, Michaud M. Phylogenetic and Structural Analyses of VPS13 Proteins in Archaeplastida Reveal Their Complex Evolutionary History in Viridiplantae. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231211976. [PMID: 38033810 PMCID: PMC10683392 DOI: 10.1177/25152564231211976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
VPS13 is a lipid transfer protein family conserved among Eukaryotes and playing roles in fundamental processes involving vesicular transport and membrane expansion including autophagy and organelle biogenesis. VPS13 folds into a long hydrophobic tunnel, allowing lipid transport, decorated by distinct domains involved in protein localization and regulation. Whereas VPS13 organization and function have been extensively studied in yeast and mammals, information in organisms originating from primary endosymbiosis is scarce. In the higher plant Arabidopsis thaliana, four paralogs, AtVPS13S, X, M1, and M2, were identified, AtVPS13S playing a role in the regulation of root growth, cell patterning, and reproduction. In this work, we performed phylogenetic, as well as domain and structural modeling of VPS13 proteins in Archaeplastida in order to understand their general organization and evolutionary history. We confirmed the presence of human VPS13B orthologues in some phyla and described two new VPS13 families presenting a particular domain arrangement: VPS13R in Rhodophytes and VPS13Y in Chlorophytes and Streptophytes. By focusing on Viridiplantae, we were able to draw the evolutionary history of these proteins made by multiple gene gains and duplications as well as domain rearrangements. We showed that some Chlorophytes have only three (AtVPS13M, S, Y) whereas some Charophytes have up to six VPS13 paralogs (AtVPS13M1, M2, S, Y, X, B). We also highlighted specific structural features of VPS13M and X paralogs. This study reveals the complex evolution of VPS13 family and opens important perspectives for their functional characterization in photosynthetic organisms.
Collapse
Affiliation(s)
- Sébastien Leterme
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Olivier Bastien
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | | | - Alberto Amato
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| | - Morgane Michaud
- Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, Grenoble, France
| |
Collapse
|
122
|
Walker RH, Peikert K, Jung HH, Hermann A, Danek A. Neuroacanthocytosis Syndromes: The Clinical Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231210339. [PMID: 38090146 PMCID: PMC10714877 DOI: 10.1177/25152564231210339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 09/05/2024]
Abstract
The two very rare neurodegenerative diseases historically known as the "neuroacanthocytosis syndromes" are due to mutations of either VPS13A or XK. These are phenotypically similar disorders that affect primarily the basal ganglia and hence result in involuntary abnormal movements as well as neuropsychiatric and cognitive alterations. There are other shared features such as abnormalities of red cell membranes which result in acanthocytes, whose relationship to neurodegeneration is not yet known. Recent insights into the functions of these two proteins suggest dysfunction of lipid processing and trafficking at the subcellular level and may provide a mechanism for neuronal dysfunction and death, and potentially a target for therapeutic interventions.
Collapse
Affiliation(s)
- Ruth H. Walker
- Department of Neurology, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Neurology, Mount Sinai School of Medicine, New York City, NY, USA
| | - Kevin Peikert
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock (UNC), Rostock, Germany
| | - Hans H. Jung
- Department of Neurology, University and University Hospital Zürich, Zürich, Switzerland
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Adrian Danek
- Neurologische Klinik, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
123
|
Pandey T, Zhang J, Wang B, Ma DK. Bridge-Like Lipid Transfer Proteins (BLTPs) in C. elegans: From Genetics to Structures and Functions. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231186489. [PMID: 37455813 PMCID: PMC10345909 DOI: 10.1177/25152564231186489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023]
Abstract
In eukaryotic cells, lipid transfer can occur at membrane contact sites (MCS) to facilitate the exchange of various lipids between two adjacent cellular organelle membranes. Lipid transfer proteins (LTPs), including shuttle LTP or bridge-like LTP (BLTP), transport lipids at MCS and are critical for diverse cellular processes, including lipid metabolism, membrane trafficking, and cell signaling. BLTPs (BLTP1-5, including the ATG2 and VPS13 family proteins) contain lipid-accommodating hydrophobic repeating β-groove (RBG) domains that allow the bulk transfer of lipids through MCS. Compared with vesicular lipid transfer and shuttle LTP, BLTPs have been only recently identified. Their functions and regulatory mechanisms are currently being unraveled in various model organisms and by diverse approaches. In this review, we summarize the genetics, structural features, and biological functions of BLTP in the genetically tractable model organism C. elegans. We discuss our recent studies and findings on C. elegans LPD-3, a prototypical megaprotein ortholog of BLTP1, with identified lipid transfer functions that are evolutionarily conserved in multicellular organisms and in human cells. We also highlight areas for future research of BLTP using C. elegans and complementary model systems and approaches. Given the emerging links of BLTP to several human diseases, including Parkinson's disease and Alkuraya-Kučinskas syndrome, discovering evolutionarily conserved roles of BLTPs and their mechanisms of regulation and action should contribute to new advances in basic cell biology and potential therapeutic development for related human disorders.
Collapse
Affiliation(s)
- Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, USA
| |
Collapse
|
124
|
Huet D, Moreno SNJ. Interorganellar Communication Through Membrane Contact Sites in Toxoplasma Gondii. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231189064. [PMID: 37560622 PMCID: PMC10408353 DOI: 10.1177/25152564231189064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Apicomplexan parasites are a group of protists that cause disease in humans and include pathogens like Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, the etiological agent of toxoplasmosis and one of the most ubiquitous human parasites in the world. Membrane contact sites (MCSs) are widespread structures within eukaryotic cells but their characterization in apicomplexan parasites is only in its very beginnings. Basic biological features of the T. gondii parasitic cycle support numerous organellar interactions, including the transfer of Ca2+ and metabolites between different compartments. In T. gondii, Ca2+ signals precede a series of interrelated molecular processes occurring in a coordinated manner that culminate in the stimulation of key steps of the parasite life cycle. Calcium transfer from the endoplasmic reticulum to other organelles via MCSs would explain the precision, speed, and efficiency that is needed during the lytic cycle of T. gondii. In this short review, we discuss the implications of these structures in cellular signaling, with an emphasis on their potential role in Ca2+ signaling.
Collapse
Affiliation(s)
- Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
125
|
Peikert K, Danek A. VPS13 Forum Proceedings: XK, XK-Related and VPS13 Proteins in Membrane Lipid Dynamics. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231156994. [PMID: 37366410 PMCID: PMC10243564 DOI: 10.1177/25152564231156994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/23/2023] [Indexed: 06/28/2023]
Abstract
In 2020, the pandemic interrupted the series of biannual International Neuroacanthocytosis Meetings that brought together clinicians, scientists, and patient groups to share research into a small group of devastating genetic diseases that combine both acanthocytosis (deformed red blood cells) and neurodegeneration with movement disorders. This Meeting Report describes talks at the 5th VPS13 Forum in January 2022, one of a series of online meetings held to fill the gap. The meeting addressed the basic biology of two key proteins implicated in chorea-acanthocytosis (mutations in VPS13A) and McLeod syndrome (mutations in XK). In a remarkable confluence of ideas, the speakers described different aspects of a single functional unit that comprises of VPS13A and XK proteins working together. Conditions caused by VPS13 (A-D) gene family mutations and related genes, such as XK, previously footnote knowledge, seem to turn central for a novel disease paradigm: bulk lipid transfer disorders.
Collapse
Affiliation(s)
- Kevin Peikert
- Translational Neurodegeneration Section
“Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, University of
Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences
Rostock (CTNR), University Medical Center Rostock, Rostock, Germany
- United Neuroscience Campus Lund-Rostock
(UNC), Rostock site, Rostock, Germany
| | - Adrian Danek
- Department of Neurology, University Hospital,
LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases
(Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Research Site Munich, Munich,
Germany
| |
Collapse
|
126
|
Chen A, Ding WX, Ni HM. Scramblases as Regulators of Autophagy and Lipid Homeostasis: Implications for NAFLD. AUTOPHAGY REPORTS 2022; 1:143-160. [PMID: 35509327 PMCID: PMC9066413 DOI: 10.1080/27694127.2022.2055724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Equilibration of phospholipids between the two monolayers of the lipid bilayer of cellular membranes is mediated by scramblases acting as phospholipid shuttling proteins that are critical for cellular function, particularly during inter-organelle contact. Recent work has identified several protein scramblases, including TMEM41B, VMP1 and ATG9 that are critical in autophagy. More recently, ATG9, TMEM41B, and VMP1 have also been discovered to be important regulators of cellular lipid homeostasis. In vivo mouse models involving ablation of TMEM41B in liver have shown that knockout of these proteins can lead to rapid development of non-alcoholic steatohepatitis (NASH) and systemic dyslipidemia, though this has not been explored yet with ATG9. The resulting phenotype is likely due to the combined effects of a severe lipid secretion defect caused by stalled neutral lipids export from the endoplasmic reticulum (ER) membrane bilayer coupled with increased lipogenesis. Here we briefly discuss recent exciting findings on the topic of scramblases in autophagy, their relevance to human non-alcoholic fatty liver disease (NAFLD)/NASH, as well as future directions in this research.
Collapse
Affiliation(s)
- Allen Chen
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
127
|
Genovese I, Fornetti E, Ruocco G. Mitochondria inter-organelle relationships in cancer protein aggregation. Front Cell Dev Biol 2022; 10:1062993. [PMID: 36601538 PMCID: PMC9806238 DOI: 10.3389/fcell.2022.1062993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are physically associated with other organelles, such as ER and lysosomes, forming a complex network that is crucial for cell homeostasis regulation. Inter-organelle relationships are finely regulated by both tether systems, which maintain physical proximity, and by signaling cues that induce the exchange of molecular information to regulate metabolism, Ca2+ homeostasis, redox state, nutrient availability, and proteostasis. The coordinated action of the organelles is engaged in the cellular integrated stress response. In any case, pathological conditions alter functional communication and efficient rescue pathway activation, leading to cell distress exacerbation and eventually cell death. Among these detrimental signals, misfolded protein accumulation and aggregation cause major damage to the cells, since defects in protein clearance systems worsen cell toxicity. A cause for protein aggregation is often a defective mitochondrial redox balance, and the ER freshly translated misfolded proteins and/or a deficient lysosome-mediated clearance system. All these features aggravate mitochondrial damage and enhance proteotoxic stress. This review aims to gather the current knowledge about the complex liaison between mitochondria, ER, and lysosomes in facing proteotoxic stress and protein aggregation, highlighting both causes and consequences. Particularly, specific focus will be pointed to cancer, a pathology in which inter-organelle relations in protein aggregation have been poorly investigated.
Collapse
Affiliation(s)
- Ilaria Genovese
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,*Correspondence: Ilaria Genovese,
| | - Ersilia Fornetti
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano and Neuro Science, Istituto Italiano di Tecnologia (IIT), Rome, Italy,Department of Physics, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
128
|
Renne MF, Bao X, Hokken MWJ, Bierhuizen AS, Hermansson M, Sprenger RR, Ewing TA, Ma X, Cox RC, Brouwers JF, De Smet CH, Ejsing CS, de Kroon AIPM. Molecular species selectivity of lipid transport creates a mitochondrial sink for di-unsaturated phospholipids. EMBO J 2022; 41:e106837. [PMID: 34873731 PMCID: PMC8762554 DOI: 10.15252/embj.2020106837] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/09/2022] Open
Abstract
Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.
Collapse
Affiliation(s)
- Mike F Renne
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xue Bao
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Margriet WJ Hokken
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical MicrobiologyRadboud University Medical CenterRadboud Institute for Molecular Life SciencesNijmegenThe Netherlands
| | - Adolf S Bierhuizen
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Martin Hermansson
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Richard R Sprenger
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
| | - Tom A Ewing
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
- Present address:
Wageningen Food & Biobased ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Xiao Ma
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Ruud C Cox
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Jos F Brouwers
- Biochemistry and Cell BiologyDepartment of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Present address:
Center for Molecular MedicineUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Cedric H De Smet
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| | - Christer S Ejsing
- Department of Biochemistry and Molecular BiologyVILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdenseDenmark
- Cell Biology and Biophysics UnitEuropean Molecular Biology LaboratoryHeidelbergGermany
| | - Anton IPM de Kroon
- Membrane Biochemistry & BiophysicsDepartment of ChemistryUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
129
|
Kümmel D, Herrmann E, Langemeyer L, Ungermann C. Molecular insights into endolysosomal microcompartment formation and maintenance. Biol Chem 2022; 404:441-454. [PMID: 36503831 DOI: 10.1515/hsz-2022-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Abstract
The endolysosomal system of eukaryotic cells has a key role in the homeostasis of the plasma membrane, in signaling and nutrient uptake, and is abused by viruses and pathogens for entry. Endocytosis of plasma membrane proteins results in vesicles, which fuse with the early endosome. If destined for lysosomal degradation, these proteins are packaged into intraluminal vesicles, converting an early endosome to a late endosome, which finally fuses with the lysosome. Each of these organelles has a unique membrane surface composition, which can form segmented membrane microcompartments by membrane contact sites or fission proteins. Furthermore, these organelles are in continuous exchange due to fission and fusion events. The underlying machinery, which maintains organelle identity along the pathway, is regulated by signaling processes. Here, we will focus on the Rab5 and Rab7 GTPases of early and late endosomes. As molecular switches, Rabs depend on activating guanine nucleotide exchange factors (GEFs). Over the last years, we characterized the Rab7 GEF, the Mon1-Ccz1 (MC1) complex, and key Rab7 effectors, the HOPS complex and retromer. Structural and functional analyses of these complexes lead to a molecular understanding of their function in the context of organelle biogenesis.
Collapse
Affiliation(s)
- Daniel Kümmel
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Eric Herrmann
- Institute of Biochemistry, University of Münster , Corrensstraße 36 , D-48149 Münster , Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry section , Osnabrück University , Barbarastraße 13 , D-49076 Osnabrück , Germany
- Center of Cellular Nanoanalytics (CellNanOs) , Osnabrück University , Barbarastraße 11 , D-49076 Osnabrück , Germany
| |
Collapse
|
130
|
Hong Z, Adlakha J, Wan N, Guinn E, Giska F, Gupta K, Melia TJ, Reinisch KM. Mitoguardin-2-mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. J Cell Biol 2022; 221:e202207022. [PMID: 36282247 PMCID: PMC9597353 DOI: 10.1083/jcb.202207022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022] Open
Abstract
Lipid transport proteins at membrane contacts, where organelles are closely apposed, are critical in redistributing lipids from the endoplasmic reticulum (ER), where they are made, to other cellular membranes. Such protein-mediated transfer is especially important for maintaining organelles disconnected from secretory pathways, like mitochondria. We identify mitoguardin-2, a mitochondrial protein at contacts with the ER and/or lipid droplets (LDs), as a lipid transporter. An x-ray structure shows that the C-terminal domain of mitoguardin-2 has a hydrophobic cavity that binds lipids. Mass spectrometry analysis reveals that both glycerophospholipids and free-fatty acids co-purify with mitoguardin-2 from cells, and that each mitoguardin-2 can accommodate up to two lipids. Mitoguardin-2 transfers glycerophospholipids between membranes in vitro, and this transport ability is required for roles both in mitochondrial and LD biology. While it is not established that protein-mediated transfer at contacts plays a role in LD metabolism, our findings raise the possibility that mitoguardin-2 functions in transporting fatty acids and glycerophospholipids at mitochondria-LD contacts.
Collapse
Affiliation(s)
- Zhouping Hong
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jyoti Adlakha
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Neng Wan
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Emily Guinn
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Fabian Giska
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Kallol Gupta
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| | - Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Karin M. Reinisch
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
131
|
Braschi B, Bruford EA, Cavanagh AT, Neuman SD, Bashirullah A. The bridge-like lipid transfer protein (BLTP) gene group: introducing new nomenclature based on structural homology indicating shared function. Hum Genomics 2022; 16:66. [PMID: 36461115 PMCID: PMC9719229 DOI: 10.1186/s40246-022-00439-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
The HUGO Gene Nomenclature Committee assigns unique symbols and names to human genes. The use of approved nomenclature enables effective communication between researchers, and there are multiple examples of how the usage of unapproved alias symbols can lead to confusion. We discuss here a recent nomenclature update (May 2022) for a set of genes that encode proteins with a shared repeating β-groove domain. Some of the proteins encoded by genes in this group have already been shown to function as lipid transporters. By working with researchers in the field, we have been able to introduce a new root symbol (BLTP, which stands for "bridge-like lipid transfer protein") for this domain-based gene group. This new nomenclature not only reflects the shared domain in these proteins, but also takes into consideration the mounting evidence of a shared lipid transport function.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
- Department of Haematology, School of Clinical Medicine, University of Cambridge, Cambridge, Cambridgeshire, CB2 0AW, UK
| | - Amy T Cavanagh
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| |
Collapse
|
132
|
Zwilling E, Reggiori F. Membrane Contact Sites in Autophagy. Cells 2022; 11:3813. [PMID: 36497073 PMCID: PMC9735501 DOI: 10.3390/cells11233813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Eukaryotes utilize different communication strategies to coordinate processes between different cellular compartments either indirectly, through vesicular transport, or directly, via membrane contact sites (MCSs). MCSs have been implicated in lipid metabolism, calcium signaling and the regulation of organelle biogenesis in various cell types. Several studies have shown that MCSs play a crucial role in the regulation of macroautophagy, an intracellular catabolic transport route that is characterized by the delivery of cargoes (proteins, protein complexes or aggregates, organelles and pathogens) to yeast and plant vacuoles or mammalian lysosomes, for their degradation and recycling into basic metabolites. Macroautophagy is characterized by the de novo formation of double-membrane vesicles called autophagosomes, and their biogenesis requires an enormous amount of lipids. MCSs appear to have a central role in this supply, as well as in the organization of the autophagy-related (ATG) machinery. In this review, we will summarize the evidence for the participation of specific MCSs in autophagosome formation, with a focus on the budding yeast and mammalian systems.
Collapse
Affiliation(s)
- Emma Zwilling
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000C Aarhus, Denmark
| | - Fulvio Reggiori
- Department of Biomedicine, Aarhus University, Ole Worms Allé 4, 8000C Aarhus, Denmark
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Høegh-Guldbergs Gade 6B, 8000C Aarhus, Denmark
| |
Collapse
|
133
|
Kim Y, Ajayi PT, Bleck CKE, Glancy B. Three-dimensional remodelling of the cellular energy distribution system during postnatal heart development. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210322. [PMID: 36189814 PMCID: PMC9527916 DOI: 10.1098/rstb.2021.0322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/12/2022] Open
Abstract
The heart meets the high energy demands of constant muscle contraction and calcium cycling primarily through the conversion of fatty acids into adenosine triphosphate (ATP) by a large volume of mitochondria. As such, the spatial relationships among lipid droplets (LDs), mitochondria, the sarcotubular system and the contractile apparatus are critical to the efficient distribution of energy within the cardiomyocyte. However, the connectivity among components of the cardiac cellular energy distribution system during postnatal development remains unclear. Here, we use volume electron microscopy to demonstrate that the sarcomere branches uniting the myofibrillar network occur more than twice as frequently during early postnatal development as in mature cardiomyocytes. Moreover, we show that the mitochondrial networks arranged in parallel to the contractile apparatus are composed of larger, more compact mitochondria with greater connectivity to adjacent mitochondria in mature as compared with early postnatal cardiomyocytes. Finally, we find that connectivity among mitochondria, LDs and the sarcotubular network is greater in developing than in mature muscles. These data suggest that physical connectivity among cellular structures may facilitate the communication needed to coordinate developmental processes within the cardiac muscle cell. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Yuho Kim
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Physical Therapy and Kinesiology, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Peter T. Ajayi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher K. E. Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
134
|
Castro IG, Shortill SP, Dziurdzik SK, Cadou A, Ganesan S, Valenti R, David Y, Davey M, Mattes C, Thomas FB, Avraham RE, Meyer H, Fadel A, Fenech EJ, Ernst R, Zaremberg V, Levine TP, Stefan C, Conibear E, Schuldiner M. Systematic analysis of membrane contact sites in Saccharomyces cerevisiae uncovers modulators of cellular lipid distribution. eLife 2022; 11:74602. [DOI: 10.7554/elife.74602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Actively maintained close appositions between organelle membranes, also known as contact sites, enable the efficient transfer of biomolecules between cellular compartments. Several such sites have been described as well as their tethering machineries. Despite these advances we are still far from a comprehensive understanding of the function and regulation of most contact sites. To systematically characterize contact site proteomes, we established a high-throughput screening approach in Saccharomyces cerevisiae based on co-localization imaging. We imaged split fluorescence reporters for six different contact sites, several of which are poorly characterized, on the background of 1165 strains expressing a mCherry-tagged yeast protein that has a cellular punctate distribution (a hallmark of contact sites), under regulation of the strong TEF2 promoter. By scoring both co-localization events and effects on reporter size and abundance, we discovered over 100 new potential contact site residents and effectors in yeast. Focusing on several of the newly identified residents, we identified three homologs of Vps13 and Atg2 that are residents of multiple contact sites. These proteins share their lipid transport domain, thus expanding this family of lipid transporters. Analysis of another candidate, Ypr097w, which we now call Lec1 (Lipid-droplet Ergosterol Cortex 1), revealed that this previously uncharacterized protein dynamically shifts between lipid droplets and the cell cortex, and plays a role in regulation of ergosterol distribution in the cell. Overall, our analysis expands the universe of contact site residents and effectors and creates a rich database to mine for new functions, tethers, and regulators.
Collapse
Affiliation(s)
| | - Shawn P Shortill
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Samantha Katarzyna Dziurdzik
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Angela Cadou
- Laboratory for Molecular Cell Biology, University College London
| | | | - Rosario Valenti
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Michael Davey
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
| | - Carsten Mattes
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | - Ffion B Thomas
- Laboratory for Molecular Cell Biology, University College London
| | | | - Hadar Meyer
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Amir Fadel
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Emma J Fenech
- Department of Molecular Genetics, Weizmann Institute of Science
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, PZMS, Medical Faculty, Saarland University
| | | | - Tim P Levine
- UCL Institute of Ophthalmology, University College London
| | | | - Elizabeth Conibear
- Centre for Molecular Medicine and Therapeutics, British Columbia Children’s Hospital Research Institute, University of British Columbia
- Department of Medical Genetics, University of British Columbia
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science
| |
Collapse
|
135
|
Wang C, Wang B, Pandey T, Long Y, Zhang J, Oh F, Sima J, Guo R, Liu Y, Zhang C, Mukherjee S, Bassik M, Lin W, Deng H, Vale G, McDonald JG, Shen K, Ma DK. A conserved megaprotein-based molecular bridge critical for lipid trafficking and cold resilience. Nat Commun 2022; 13:6805. [PMID: 36357390 PMCID: PMC9649747 DOI: 10.1038/s41467-022-34450-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Cells adapt to cold by increasing levels of unsaturated phospholipids and membrane fluidity through conserved homeostatic mechanisms. Here we report an exceptionally large and evolutionarily conserved protein LPD-3 in C. elegans that mediates lipid trafficking to confer cold resilience. We identify lpd-3 mutants in a mutagenesis screen for genetic suppressors of the lipid desaturase FAT-7. LPD-3 bridges the endoplasmic reticulum (ER) and plasma membranes (PM), forming a structurally predicted hydrophobic tunnel for lipid trafficking. lpd-3 mutants exhibit abnormal phospholipid distribution, diminished FAT-7 abundance, organismic vulnerability to cold, and are rescued by Lecithin comprising unsaturated phospholipids. Deficient lpd-3 homologues in Zebrafish and mammalian cells cause defects similar to those observed in C. elegans. As mutations in BLTP1, the human orthologue of lpd-3, cause Alkuraya-Kucinskas syndrome, LPD-3 family proteins may serve as evolutionarily conserved highway bridges critical for ER-associated non-vesicular lipid trafficking and resilience to cold stress in eukaryotic cells.
Collapse
Affiliation(s)
- Changnan Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Bingying Wang
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Taruna Pandey
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yong Long
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Fiona Oh
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Sima
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Ruyin Guo
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Zhang
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaeri Mukherjee
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Michael Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huichao Deng
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Goncalo Vale
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey G McDonald
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kang Shen
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dengke K Ma
- Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
| |
Collapse
|
136
|
McEwan DG, Ryan KM. ATG2 and VPS13 proteins: molecular highways transporting lipids to drive membrane expansion and organelle communication. FEBS J 2022; 289:7113-7127. [PMID: 34783437 DOI: 10.1111/febs.16280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 01/13/2023]
Abstract
Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have recently emerged as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the key components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance, UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bilayers and how this process is disrupted in multiple diseases.
Collapse
Affiliation(s)
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
137
|
Bonet-Ponce L, Cookson MR. The endoplasmic reticulum contributes to lysosomal tubulation/sorting driven by LRRK2. Mol Biol Cell 2022; 33:ar124. [PMID: 36044336 PMCID: PMC9634967 DOI: 10.1091/mbc.e22-04-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lysosomes are dynamic organelles that can remodel their membrane as an adaptive response to various cell signaling events including membrane damage. Recently, we have discovered that damaged lysosomes form and sort tubules into moving vesicles. We named this process LYTL for LYsosomal Tubulation/sorting driven by LRRK2, as the Parkinson's disease protein LRRK2 promotes tubulation by recruiting the motor adaptor protein JIP4 to lysosomes via phosphorylated RAB proteins. Here we use spinning-disk microscopy combined with superresolution to further characterize LYTL after membrane damage with LLOMe (l-leucyl-l-leucine methyl ester). We identified the endoplasmic reticulum (ER) colocalizing with sites of fission of lysosome-derived tubules. In addition, modifying the morphology of the ER by reducing ER tubules leads to a decrease in LYTL sorting, suggesting that contact with tubular ER is necessary for lysosomal membrane sorting. Given the central roles of LRRK2 and lysosomal biology in Parkinson's disease, these discoveries are likely relevant to disease pathology and highlight interactions between organelles in this model.
Collapse
Affiliation(s)
- Luis Bonet-Ponce
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892,*Address correspondence to: Mark R. Cookson (); Luis Bonet-Ponce ()
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892,*Address correspondence to: Mark R. Cookson (); Luis Bonet-Ponce ()
| |
Collapse
|
138
|
Fujiki Y, Okumoto K, Honsho M, Abe Y. Molecular insights into peroxisome homeostasis and peroxisome biogenesis disorders. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119330. [PMID: 35917894 DOI: 10.1016/j.bbamcr.2022.119330] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Peroxisomes are single-membrane organelles essential for cell metabolism including the β-oxidation of fatty acids, synthesis of etherlipid plasmalogens, and redox homeostasis. Investigations into peroxisome biogenesis and the human peroxisome biogenesis disorders (PBDs) have identified 14 PEX genes encoding peroxins involved in peroxisome biogenesis and the mutation of PEX genes is responsible for the PBDs. Many recent findings have further advanced our understanding of the biology, physiology, and consequences of a functional deficit of peroxisomes. In this Review, we discuss cell defense mechanisms that counteract oxidative stress by 1) a proapoptotic Bcl-2 factor BAK-mediated release to the cytosol of H2O2-degrading catalase from peroxisomes and 2) peroxisomal import suppression of catalase by Ser232-phosphorylation of Pex14, a docking protein for the Pex5-PTS1 complex. With respect to peroxisome division, the important issue of how the energy-rich GTP is produced and supplied for the division process was recently addressed by the discovery of a nucleoside diphosphate kinase-like protein, termed DYNAMO1 in a lower eukaryote, which has a mammalian homologue NME3. In regard to the mechanisms underlying the pathogenesis of PBDs, a new PBD model mouse defective in Pex14 manifests a dysregulated brain-derived neurotrophic factor (BDNF)-TrkB pathway, an important signaling pathway for cerebellar morphogenesis. Communications between peroxisomes and other organelles are also addressed.
Collapse
Affiliation(s)
- Yukio Fujiki
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan.
| | - Kanji Okumoto
- Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masanori Honsho
- Medical Institute of Bioregulation, Institute of Rheological Functions of Food, Collaboration Program, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | - Yuichi Abe
- Faculty of Arts and Science, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
139
|
Osawa T, Matoba K, Noda NN. Lipid Transport from Endoplasmic Reticulum to Autophagic Membranes. Cold Spring Harb Perspect Biol 2022; 14:a041254. [PMID: 35940912 PMCID: PMC9620852 DOI: 10.1101/cshperspect.a041254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Autophagy is an intracellular degradation system involving de novo generation of autophagosomes, which function as a transporting vesicle of cytoplasmic components to lysosomes for degradation. Isolation membranes (IMs) or phagophores, the precursor membranes of autophagosomes, require millions of phospholipids to expand and transform into autophagosomes, with the endoplasmic reticulum (ER) being the primary lipid source. Recent advances in structural and biochemical studies of autophagy-related proteins have revealed their lipid transport activities: Atg2 at the interface between IM and ER possesses intermembrane lipid transfer activities, while Atg9 at IM and VMP1 and TMEM41B at ER possess lipid scrambling activities. In this review, we summarize recent advances in the establishment of the lipid transport activities of these proteins and their collaboration mechanisms for lipid transport between the ER and IM, and further discuss how unidirectional lipid transport from the ER to IM occurs during autophagosome formation.
Collapse
Affiliation(s)
- Takuo Osawa
- RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo 141-0021, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
140
|
Njume FN, Razzauti A, Soler M, Perschin V, Fazeli G, Bourez A, Delporte C, Ghogomu SM, Poelvoorde P, Pichard S, Birck C, Poterszman A, Souopgui J, Van Antwerpen P, Stigloher C, Vanhamme L, Laurent P. A lipid transfer protein ensures nematode cuticular impermeability. iScience 2022; 25:105357. [PMID: 36339267 PMCID: PMC9626681 DOI: 10.1016/j.isci.2022.105357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The cuticle of C. elegans is impermeable to chemicals, toxins, and pathogens. However, increased permeability is a desirable phenotype because it facilitates chemical uptake. Surface lipids contribute to the permeability barrier. Here, we identify the lipid transfer protein GMAP-1 as a critical element setting the permeability of the C. elegans cuticle. A gmap-1 deletion mutant increases cuticular permeability to sodium azide, levamisole, Hoechst, and DiI. Expressing GMAP-1 in the hypodermis or transiently in the adults is sufficient to rescue this gmap-1 permeability phenotype. GMAP-1 protein is secreted from the hypodermis to the aqueous fluid filling the space between collagen fibers of the cuticle. In vitro, GMAP-1 protein binds phosphatidylserine and phosphatidylcholine while in vivo, GMAP-1 sets the surface lipid composition and organization. Altogether, our results suggest GMAP-1 secreted by hypodermis shuttles lipids to the surface to form the permeability barrier of C. elegans. GMAP-1 is secreted by the hypodermis toward the cuticle of Caenorhabditis elegans GMAP-1 binds and shuttle phosphoglycerides GMAP-1 sets the lipid composition of the cuticle While healthy, gmap-1 mutant displays high cuticular permeability
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Adria Razzauti
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Miguel Soler
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Axelle Bourez
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Stephen M. Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Simon Pichard
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Catherine Birck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
- Corresponding author
| |
Collapse
|
141
|
Neuman SD, Levine TP, Bashirullah A. A novel superfamily of bridge-like lipid transfer proteins. Trends Cell Biol 2022; 32:962-974. [PMID: 35491307 PMCID: PMC9588498 DOI: 10.1016/j.tcb.2022.03.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023]
Abstract
Lipid transfer proteins mediate nonvesicular transport of lipids at membrane contact sites to regulate the lipid composition of organelle membranes. Recently, a new type of bridge-like lipid transfer protein has emerged; these proteins contain a long hydrophobic groove and can mediate bulk transport of lipids between organelles. Here, we review recent insights into the structure of these proteins and identify a repeating modular unit that we propose to name the repeating β-groove (RBG) domain. This new structural understanding conceptually unifies all the RBG domain-containing lipid transfer proteins as members of an RBG protein superfamily. We also examine the biological functions of these lipid transporters in normal physiology and disease and speculate on the evolutionary origins of RBG proteins in bacteria.
Collapse
Affiliation(s)
- Sarah D Neuman
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | - Tim P Levine
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA.
| |
Collapse
|
142
|
Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC. Lipid Transport Across Bacterial Membranes. Annu Rev Cell Dev Biol 2022; 38:125-153. [PMID: 35850151 DOI: 10.1146/annurev-cellbio-120420-022914] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The movement of lipids within and between membranes in bacteria is essential for building and maintaining the bacterial cell envelope. Moving lipids to their final destination is often energetically unfavorable and does not readily occur spontaneously. Bacteria have evolved several protein-mediated transport systems that bind specific lipid substrates and catalyze the transport of lipids across membranes and from one membrane to another. Specific protein flippases act in translocating lipids across the plasma membrane, overcoming the obstacle of moving relatively large and chemically diverse lipids between leaflets of the bilayer. Active transporters found in double-membraned bacteria have evolved sophisticated mechanisms to traffic lipids between the two membranes, including assembling to form large, multiprotein complexes that resemble bridges, shuttles, and tunnels, shielding lipids from the hydrophilic environment of the periplasm during transport. In this review, we explore our current understanding of the mechanisms thought to drive bacterial lipid transport.
Collapse
Affiliation(s)
- Sabrina I Giacometti
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Mark R MacRae
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Kristen Dancel-Manning
- Office of Science and Research, New York University School of Medicine, New York, NY, USA;
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
| | - Damian C Ekiert
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA; , , ,
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
143
|
Chhetri G, Ke Y, Wang P, Usman M, Li Y, Sapp E, Wang J, Ghosh A, Islam MA, Wang X, Boudi A, DiFiglia M, Li X. Impaired XK recycling for importing manganese underlies striatal vulnerability in Huntington's disease. J Cell Biol 2022; 221:213461. [PMID: 36099524 PMCID: PMC9475296 DOI: 10.1083/jcb.202112073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 02/08/2023] Open
Abstract
Mutant huntingtin, which causes Huntington's disease (HD), is ubiquitously expressed but induces preferential loss of striatal neurons by unclear mechanisms. Rab11 dysfunction mediates homeostatic disturbance of HD neurons. Here, we report that Rab11 dysfunction also underscores the striatal vulnerability in HD. We profiled the proteome of Rab11-positive endosomes of HD-vulnerable striatal cells to look for protein(s) linking Rab11 dysfunction to striatal vulnerability in HD and found XK, which triggers the selective death of striatal neurons in McLeod syndrome. XK was trafficked together with Rab11 and was diminished on the surface of immortalized HD striatal cells and striatal neurons in HD mouse brains. We found that XK participated in transporting manganese, an essential trace metal depleted in HD brains. Introducing dominantly active Rab11 into HD striatal cells improved XK dynamics and increased manganese accumulation in an XK-dependent manner. Our study suggests that impaired Rab11-based recycling of XK onto cell surfaces for importing manganese is a driver of striatal dysfunction in Huntington's disease.
Collapse
Affiliation(s)
- Gaurav Chhetri
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuting Ke
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Ping Wang
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA.,Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Ji'nan, China
| | - Muhammad Usman
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Jing Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Arabinda Ghosh
- Department of Botany, Microbiology Division, Gauhati University, Guwahati, Assam, India
| | - Md Ariful Islam
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Adel Boudi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| | - Xueyi Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA
| |
Collapse
|
144
|
ORP5/8 and MIB/MICOS link ER-mitochondria and intra-mitochondrial contacts for non-vesicular transport of phosphatidylserine. Cell Rep 2022; 40:111364. [PMID: 36130504 DOI: 10.1016/j.celrep.2022.111364] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 05/10/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.
Collapse
|
145
|
Zhang Y, Ge J, Bian X, Kumar A. Quantitative Models of Lipid Transfer and Membrane Contact Formation. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:1-21. [PMID: 36120532 DOI: 10.1177/25152564221096024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid transfer proteins (LTPs) transfer lipids between different organelles, and thus play key roles in lipid homeostasis and organelle dynamics. The lipid transfer often occurs at the membrane contact sites (MCS) where two membranes are held within 10-30 nm. While most LTPs act as a shuttle to transfer lipids, recent experiments reveal a new category of eukaryotic LTPs that may serve as a bridge to transport lipids in bulk at MCSs. However, the molecular mechanisms underlying lipid transfer and MCS formation are not well understood. Here, we first review two recent studies of extended synaptotagmin (E-Syt)-mediated membrane binding and lipid transfer using novel approaches. Then we describe mathematical models to quantify the kinetics of lipid transfer by shuttle LTPs based on a lipid exchange mechanism. We find that simple lipid mixing among membranes of similar composition and/or lipid partitioning among membranes of distinct composition can explain lipid transfer against a concentration gradient widely observed for LTPs. We predict that selective transport of lipids, but not membrane proteins, by bridge LTPs leads to osmotic membrane tension by analogy to the osmotic pressure across a semipermeable membrane. A gradient of such tension and the conventional membrane tension may drive bulk lipid flow through bridge LTPs at a speed consistent with the fast membrane expansion observed in vivo. Finally, we discuss the implications of membrane tension and lipid transfer in organelle biogenesis. Overall, the quantitative models may help clarify the mechanisms of LTP-mediated MCS formation and lipid transfer.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Present address: State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
146
|
Sahyadri M, Nadiga APR, Mehdi S, Mruthunjaya K, Nayak PG, Parihar VK, Manjula SN. Mitochondria-lysosome crosstalk in GBA1-associated Parkinson's disease. 3 Biotech 2022; 12:230. [PMID: 35992895 PMCID: PMC9388709 DOI: 10.1007/s13205-022-03261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/17/2022] [Indexed: 11/26/2022] Open
Abstract
Organelle crosstalk is significant in regulating their respective functions and subsequent cell fate. Mitochondria and lysosomes are amongst the essential organelles in maintaining cellular homeostasis. Mitochondria-lysosome connections, which may develop dynamically in the human neurons, have been identified as sites of bidirectional communication. Aberrancies are often associated with neurodegenerative disorders like Parkinson's disease (PD), suggesting the physical and functional link between these two organelles. PD is often linked with genetic mutations of several mutations discovered in the familial forms of the disease; some are considered risk factors. Many of these genes are either associated with mitochondrial function or belong to endo-lysosomal pathways. The recent investigations have indicated that neurons with mutant glucosylceramidase beta (GBA1) exhibit extended mitochondria-lysosome connections in individuals with PD. This may be due to impaired control of the untethering protein, which aids in the hydrolysis of Rab7 GTP required for contact untethering. A GCase modulator may be used to augment the reduced GBA1 lysosomal enzyme activity in the neurons of PD patients. This review focuses on how GBA1 mutation in PD is interlinked with mitochondria-lysosome (ML) crosstalk, exploring the pathways governing these interactions and mechanistically comprehending the mitochondrial and lysosomal miscommunication in the pathophysiology of PD. This review is based on the limited literature available on the topic and hence may be subject to bias in its views. Our estimates may be conservative and limited due to the lack of studies under the said discipline due to its inherent complex nature. The current association of GBA1 to PD pathogenesis is based on the limited scope of study and further research is necessary to explore the risk factors further and identify the relationship with more detail.
Collapse
Affiliation(s)
- M. Sahyadri
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Abhishek P. R. Nadiga
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - K. Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, 576104 Karnataka India
| | - Vipan K. Parihar
- Department of Pharmacology and Toxicology, NIPER-Hajipur, Bihar, 844102 India
| | - S. N. Manjula
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015 Karnataka India
| |
Collapse
|
147
|
Park JS, Hu Y, Hollingsworth NM, Miltenberger-Miltenyi G, Neiman AM. Interaction between VPS13A and the XK scramblase is important for VPS13A function in humans. J Cell Sci 2022; 135:jcs260227. [PMID: 35950506 PMCID: PMC9482346 DOI: 10.1242/jcs.260227] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
VPS13 family proteins form conduits between the membranes of different organelles through which lipids are transferred. In humans, there are four VPS13 paralogs, and mutations in the genes encoding each of them are associated with different inherited disorders. VPS13 proteins contain multiple conserved domains. The Vps13 adaptor-binding (VAB) domain binds to adaptor proteins that recruit VPS13 to specific membrane contact sites. This work demonstrates the importance of a different domain in VPS13A function. The pleckstrin homology (PH) domain at the C-terminal region of VPS13A is required to form a complex with the XK scramblase and for the co-localization of VPS13A with XK within the cell. Alphafold modeling was used to predict an interaction surface between VPS13A and XK. Mutations in this region disrupt both complex formation and co-localization of the two proteins. Mutant VPS13A alleles found in patients with VPS13A disease truncate the PH domain. The phenotypic similarities between VPS13A disease and McLeod syndrome caused by mutations in VPS13A and XK, respectively, argue that loss of the VPS13A-XK complex is the basis of both diseases.
Collapse
Affiliation(s)
- Jae-Sook Park
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Yiying Hu
- Fish Core Unit, German Center for Neurodegenerative Diseases München (DZNE), 81377 Munich, Germany
- Munich Medical Research School (MMRS), 80336 Munich, Germany
| | - Nancy M. Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | | | - Aaron M. Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
148
|
A partnership between the lipid scramblase XK and the lipid transfer protein VPS13A at the plasma membrane. Proc Natl Acad Sci U S A 2022; 119:e2205425119. [PMID: 35994651 PMCID: PMC9436381 DOI: 10.1073/pnas.2205425119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chorea-acanthocytosis (ChAc) and McLeod syndrome are diseases with shared clinical manifestations caused by mutations in VPS13A and XK, respectively. Key features of these conditions are the degeneration of caudate neurons and the presence of abnormally shaped erythrocytes. XK belongs to a family of plasma membrane (PM) lipid scramblases whose action results in exposure of PtdSer at the cell surface. VPS13A is an endoplasmic reticulum (ER)-anchored lipid transfer protein with a putative role in the transport of lipids at contacts of the ER with other membranes. Recently VPS13A and XK were reported to interact by still unknown mechanisms. So far, however, there is no evidence for a colocalization of the two proteins at contacts of the ER with the PM, where XK resides, as VPS13A was shown to be localized at contacts between the ER and either mitochondria or lipid droplets. Here we show that VPS13A can also localize at ER-PM contacts via the binding of its PH domain to a cytosolic loop of XK, that such interaction is regulated by an intramolecular interaction within XK, and that both VPS13A and XK are highly expressed in the caudate neurons. Binding of the PH domain of VPS13A to XK is competitive with its binding to intracellular membranes that mediate other tethering functions of VPS13A. Our findings support a model according to which VPS13A-dependent lipid transfer between the ER and the PM is coupled to lipid scrambling within the PM. They raise the possibility that defective cell surface exposure of PtdSer may be responsible for neurodegeneration.
Collapse
|
149
|
Ryoden Y, Nagata S. The XK plasma membrane scramblase and the VPS13A cytosolic lipid transporter for ATP-induced cell death. Bioessays 2022; 44:e2200106. [PMID: 35996795 DOI: 10.1002/bies.202200106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/12/2022]
Abstract
Extracellular ATP released from necrotic cells in inflamed tissues activates the P2X7 receptor, stimulates the exposure of phosphatidylserine, and causes cell lysis. Recent findings indicated that XK, a paralogue of XKR8 lipid scramblase, forms a complex with VPS13A at the plasma membrane of T cells. Upon engagement by ATP, an unidentified signal(s) from the P2X7 receptor activates the XK-VPS13A complex to scramble phospholipids, followed by necrotic cell death. P2X7 is expressed highly in CD25+ CD4+ T cells but weakly in CD8+ T cells, suggesting a role of this system in the activation of the immune system to prevent infection. On the other hand, a loss-of-function mutation in XK or VPS13A causes neuroacanthocytosis, indicating the crucial involvement of XK-VPS13A-mediated phospholipid scrambling at plasma membranes in the maintenance of homeostasis in the nervous and red blood cell systems.
Collapse
Affiliation(s)
- Yuta Ryoden
- Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
| |
Collapse
|
150
|
Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2022; 43:1499-1518. [PMID: 35951210 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
|