101
|
Miller CM, Tanowitz M, Donner AJ, Prakash TP, Swayze EE, Harris EN, Seth PP. Receptor-Mediated Uptake of Phosphorothioate Antisense Oligonucleotides in Different Cell Types of the Liver. Nucleic Acid Ther 2018; 28:119-127. [PMID: 29425080 DOI: 10.1089/nat.2017.0709] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Oligonucleotide therapeutics have emerged as a third distinct platform for drug discovery within the pharmaceutical industry. Five oligonucleotide-based drugs have been approved by the US FDA and over 100 oligonucleotides drugs are currently at different stages of human trials. Several of these oligonucleotide drugs are modified using the phosphorothioate (PS) backbone modification where one of the nonbridging oxygen atoms of the phosphodiester linkage is replaced with sulfur. In this review, we summarize our knowledge on receptor-mediated uptake of PS antisense oligonucleotides (ASOs) within different cell types of the liver-a privileged organ for the discovery of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Colton M Miller
- 1 Department of Biochemistry, University of Nebraska , Lincoln, Nebraska
| | | | | | | | | | - Edward N Harris
- 1 Department of Biochemistry, University of Nebraska , Lincoln, Nebraska
| | | |
Collapse
|
102
|
Qin L, Crawford JM. Anatomy and Cellular Functions of the Liver. ZAKIM AND BOYER'S HEPATOLOGY 2018:2-19.e4. [DOI: 10.1016/b978-0-323-37591-7.00001-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
103
|
Shang L, Hosseini M, Liu X, Kisseleva T, Brenner DA. Human hepatic stellate cell isolation and characterization. J Gastroenterol 2018; 53:6-17. [PMID: 29094206 DOI: 10.1007/s00535-017-1404-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/22/2017] [Indexed: 02/04/2023]
Abstract
The hepatic stellate cells (HSCs) localize at the space of Disse in the liver and have multiple functions. They are identified as the major contributor to hepatic fibrosis. Significant understanding of HSCs has been achieved using rodent models and isolated murine HSCs; as well as investigating human liver tissues and human HSCs. There is growing interest and need of translating rodent study findings to human HSCs and human liver diseases. However, species-related differences impose challenges on the translational research. In this review, we focus on the current information on human HSCs isolation methods, human HSCs markers, and established human HSC cell lines.
Collapse
Affiliation(s)
- Linshan Shang
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego, La Jolla, USA
| | - Xiao Liu
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, USA
| | - David Allen Brenner
- Department of Medicine, University of California, San Diego, La Jolla, USA.
- School of Medicine, UC San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0602, USA.
| |
Collapse
|
104
|
Castellví Q, Sánchez-Velázquez P, Moll X, Berjano E, Andaluz A, Burdío F, Bijnens B, Ivorra A. Modeling liver electrical conductivity during hypertonic injection. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2904. [PMID: 28557354 DOI: 10.1002/cnm.2904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Metastases in the liver frequently grow as scattered tumor nodules that neither can be removed by surgical resection nor focally ablated. Previously, we have proposed a novel technique based on irreversible electroporation that may be able to simultaneously treat all nodules in the liver while sparing healthy tissue. The proposed technique requires increasing the electrical conductivity of healthy liver by injecting a hypersaline solution through the portal vein. Aiming to assess the capability of increasing the global conductivity of the liver by means of hypersaline fluids, here, it is presented a mathematical model that estimates the NaCl distribution within the liver and the resulting conductivity change. The model fuses well-established compartmental pharmacokinetic models of the organ with saline injection models used for resuscitation treatments, and it considers changes in sinusoidal blood viscosity because of the hypertonicity of the solution. Here, it is also described a pilot experimental study in pigs in which different volumes of NaCl 20% (from 100 to 200 mL) were injected through the portal vein at different flow rates (from 53 to 171 mL/minute). The in vivo conductivity results fit those obtained by the model, both quantitatively and qualitatively, being able to predict the maximum conductivity with a 14.6% average relative error. The maximum conductivity value was 0.44 second/m, which corresponds to increasing 4 times the mean basal conductivity (0.11 second/m). The results suggest that the presented model is well suited for predicting on liver conductivity changes during hypertonic saline injection.
Collapse
Affiliation(s)
- Quim Castellví
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
| | | | - Xavier Moll
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Enrique Berjano
- BioMIT, Department of Electronic Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Anna Andaluz
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Barcelona, 08193, Spain
| | - Fernando Burdío
- General Surgery Department, Hospital del Mar, Barcelona, 08003, Spain
| | - Bart Bijnens
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, 08010, Spain
| | - Antoni Ivorra
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08018, Spain
- Serra Húnter Fellow, Universitat Pompeu Fabra, Barcelona, 08018, Spain
| |
Collapse
|
105
|
Munk OL, Keiding S, Baker C, Bass L. A microvascular compartment model validated using 11C-methylglucose liver PET in pigs. Phys Med Biol 2017; 63:015032. [PMID: 29045236 DOI: 10.1088/1361-6560/aa9475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The standard compartment model (CM) is widely used to analyse dynamic PET data. The CM is fitted to time-activity curves to estimate rate constants that describe the transport of a tracer between well-mixed compartments. The aim of this study was to develop and validate a more realistic microvascular compartment model (MCM) that includes capillary tracer concentration gradients, backflux from cells into the perfused capillaries and multiple re-uptakes during the passage through a capillary. The MCM incorporates only parameters with clear physiological meaning, it is easy to implement, and it does not require numerical solution. We compared the MCM and CM for the analysis of 3 min dynamic PET data of pig livers (N = 5) following injection of 11C-methylglucose. During PET scans, the tracer concentrations in blood were measured in the abdominal aorta, portal vein and liver vein by manual sampling. We found that the MCM outperformed the CM and that dynamic PET data include information which cannot be extracted using standard CM. The MCM fitted dynamic PET data better than the CM (Akaike values were 46 ± 4 for best MCM fits, and 82 ± 8 for best CM fits; mean ± standard deviation) and extracted physiologically reasonable parameter estimates such as blood perfusion that were in agreement with independent measurements. The difference between model-independent perfusion estimates and the best MCM perfusion estimates was -0.01 ± 0.05 ml/ml/min, whereas the difference was 0.30 ± 0.13 ml/ml/min using the CM. In addition, the MCM predicted the time course of concentrations in the liver vein, a prediction fundamentally unobtainable using the CM as it does not return tracer backflux from cells to capillary blood. The results demonstrate the benefit of using models that include more physiology and that models including concentration gradients should be preferred when analysing the blood-cell exchange of any tracer in any capillary bed.
Collapse
Affiliation(s)
- Ole L Munk
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, 8000 Aarhus, Denmark. Author to whom any correspondence should be addressed
| | | | | | | |
Collapse
|
106
|
Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY) 2017; 8:2897-2914. [PMID: 27875805 PMCID: PMC5191877 DOI: 10.18632/aging.101099] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.
Collapse
|
107
|
Assmus F, Houston JB, Galetin A. Incorporation of lysosomal sequestration in the mechanistic model for prediction of tissue distribution of basic drugs. Eur J Pharm Sci 2017; 109:419-430. [DOI: 10.1016/j.ejps.2017.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/03/2017] [Accepted: 08/15/2017] [Indexed: 12/11/2022]
|
108
|
Lee JY, McMurtry SA, Stevens T. Single cell cloning generates lung endothelial colonies with conserved growth, angiogenic, and bioenergetic characteristics. Pulm Circ 2017; 7:777-792. [PMID: 28841087 PMCID: PMC5703126 DOI: 10.1177/2045893217731295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/03/2017] [Indexed: 01/13/2023] Open
Abstract
Pulmonary artery, capillary, and vein endothelial cells possess distinctive structures and functions, which represent a form of vascular segment specific macroheterogeneity. However, within each of these segmental populations, individual cell functional variability represents a poorly characterized microheterogeneity. Here, we hypothesized that single cell clonogenic assays would reveal microheterogeneity among the parent cell population and enable isolation of highly representative cells with committed parental characteristics. To test this hypothesis, pulmonary microvascular endothelial cells (PMVECs) and pulmonary arterial endothelial cells (PAECs) were isolated from different Sprague Dawley rats. Serum stimulated proliferation of endothelial populations and single cell clonogenic potential were evaluated. In vitro Matrigel assays were utilized to analyze angiogenic potential and the Seahorse assay was used to evaluate bioenergetic profiles. PMVEC populations grew faster and had a higher proliferative potential than PAEC populations. Fewer PMVECs were needed to form networks on Matrigel when compared with PAECs. PMVECs primarily utilized aerobic glycolysis, while PAECs relied more heavily on oxidative phosphorylation, to support bioenergetic demands. Repeated single cell cloning and expansion of PAEC colonies generated homogeneous first-generation clones that were highly reflective of the parental population in terms of growth, angiogenic potential, and bioenergetic profiles. Repeated single cell cloning of the first-generation clones generated second-generation clones with increased proliferative potential while maintaining other parental characteristics. Second-generation clones were highly homogeneous populations. Thus, single cell cloning reveals microheterogeneity among the parent cell population and enables isolation of highly representative cells with parental characteristics.
Collapse
Affiliation(s)
- Ji Young Lee
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
- Division of Pulmonary and Critical Care Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Sarah A. McMurtry
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL, USA
- Department of Internal Medicine, University of South Alabama, Mobile, AL, USA
- Center for Lung Biology, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
109
|
Bergeron JJM, Au CE, Thomas DY, Hermo L. Proteomics Identifies Golgi phosphoprotein 3 (GOLPH3) with A Link Between Golgi Structure, Cancer, DNA Damage and Protection from Cell Death. Mol Cell Proteomics 2017; 16:2048-2054. [PMID: 28954815 DOI: 10.1074/mcp.mr117.000068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 01/13/2023] Open
Abstract
GOLPH3 is the first example of a Golgi resident oncogene protein. It was independently identified in multiple screens; first in proteomic-based screens as a resident protein of the Golgi apparatus, and second as an oncogene product in a screen for genes amplified in cancer. A third screen uncovered the association of GOLPH3 with the Golgi resident phospholipid, phosphatidyl inositol 4 phosphate (PI4P) to maintain the characteristic ribbon structure of the Golgi apparatus favoring vesicular transport of secretory proteins.
Collapse
Affiliation(s)
- John J M Bergeron
- From the ‡Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1;
| | - Catherine E Au
- From the ‡Department of Medicine, McGill University Hospital Research Institute, Montreal, Quebec, Canada H4A 3J1
| | - David Y Thomas
- §Department of Biochemistry, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | - Louis Hermo
- ¶Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada H3A 0C7
| |
Collapse
|
110
|
Jauregui HO, Chowdhury NR, Chowdhury JR. Use of Mammalian Liver Cells for Artificial Liver Support. Cell Transplant 2017; 5:353-67. [PMID: 8727004 DOI: 10.1177/096368979600500302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Advances in orthotopic liver transplantation have improved the survival rate of both acute and chronic liver failure patients to nearly 70%. However, the success of this treatment modality has created an international organ shortage. Many patients die while awaiting transplantation in part due to the minimal capacity to store viable transplantable livers beyond 24 h. Additionally, for many areas of the world, routine use of whole liver transplantation to treat liver disease is impractical due to the demands on both financial and technical resources. Potentially, these issues may be alleviated, at least in part, by the use of liver cell transplantation or cellular-based liver assist devices. The well-documented regenerative capacity of the liver may obviate the need for whole organ transplantation in some instances of acute failure, if the patient may be provided temporary metabolic support. Although other patients ultimately may require transplantation, a longer period of time to find a suitable organ for transplantation may be gained by that supportive therapy. The field of liver cell transplantation may offer solutions to patients with inherited metabolic deficiencies or chronic liver disease. The potential to treat an hepatic disorder by using only a fraction of the whole liver would increase the number of whole organs available for orthotopic liver transplantation. Research in the fields of hepatocyte based intra- and extra-corporeal liver support is providing evidence that these therapeutic modalities may ultimately become routine in the treatment of severe liver disease. A historic overview of that technology along with its current status is discussed.
Collapse
Affiliation(s)
- H O Jauregui
- Department of Pathology, Rhode Island Hospital, Providence 02903, USA
| | | | | |
Collapse
|
111
|
Li YW, Chiang KY, Li YH, Wu SY, Liu W, Lin CR, Wu JL. MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling. PLoS One 2017; 12:e0177887. [PMID: 28531199 PMCID: PMC5439702 DOI: 10.1371/journal.pone.0177887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.
Collapse
Affiliation(s)
- Ya-Wen Li
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Keng-Yu Chiang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Department of Life science, National Taiwan University, Taipei, Taiwan
| | - Yen-Hsing Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Sung-Yu Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Lipid Science and Aging Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ray Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jen-Leih Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
112
|
Abstract
Angiogenesis has traditionally been viewed from the perspective of how endothelial cells (ECs) coordinate migration and proliferation in response to growth factor activation to form new vessel branches. However, ECs must also coordinate their metabolism and adapt metabolic fluxes to the rising energy and biomass demands of branching vessels. Recent studies have highlighted the importance of such metabolic regulation in the endothelium and uncovered core metabolic pathways and mechanisms of regulation that drive the angiogenic process. In this review, we discuss our current understanding of EC metabolism, how it intersects with angiogenic signal transduction, and how alterations in metabolic pathways affect vessel morphogenesis. Understanding EC metabolism promises to reveal new perspectives on disease mechanisms in the vascular system with therapeutic implications for disorders with aberrant vessel growth and function.
Collapse
Affiliation(s)
- Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; .,International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, D-13347 Berlin, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| |
Collapse
|
113
|
Mates JM, Yao Z, Cheplowitz AM, Suer O, Phillips GS, Kwiek JJ, Rajaram MVS, Kim J, Robinson JM, Ganesan LP, Anderson CL. Mouse Liver Sinusoidal Endothelium Eliminates HIV-Like Particles from Blood at a Rate of 100 Million per Minute by a Second-Order Kinetic Process. Front Immunol 2017; 8:35. [PMID: 28167948 PMCID: PMC5256111 DOI: 10.3389/fimmu.2017.00035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023] Open
Abstract
We crafted human immunodeficiency virus (HIV)-like particles of diameter about 140 nm, which expressed two major HIV-1 proteins, namely, env and gag gene products, and used this reagent to simulate the rate of decay of HIV from the blood stream of BALB/c male mice. We found that most (~90%) of the particles were eliminated (cleared) from the blood by the liver sinusoidal endothelial cells (LSECs), the remainder from Kupffer cells; suggesting that LSECs are the major liver scavengers for HIV clearance from blood. Decay was rapid with kinetics suggesting second order with respect to particles, which infers dimerization of a putative receptor on LSEC. The number of HIV-like particles required for saturating the clearance mechanism was approximated. The capacity for elimination of blood-borne HIV-like particles by the sinusoid was 112 million particles per minute. Assuming that the sinusoid endothelial cells were about the size of glass-adherent macrophages, then elimination capacity was more than 540 particles per hour per endothelial cell.
Collapse
Affiliation(s)
- Jessica M Mates
- Departments of Internal Medicine, The Ohio State University , Columbus, OH , USA
| | - Zhili Yao
- Departments of Internal Medicine, The Ohio State University , Columbus, OH , USA
| | - Alana M Cheplowitz
- Departments of Internal Medicine, The Ohio State University , Columbus, OH , USA
| | - Ozan Suer
- Departments of Internal Medicine, The Ohio State University , Columbus, OH , USA
| | - Gary S Phillips
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University , Columbus, OH , USA
| | - Jesse J Kwiek
- Department of Microbiology, The Ohio State University , Columbus, OH , USA
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University , Columbus, OH , USA
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University , Boston, MA , USA
| | - John M Robinson
- Physiology and Cell Biology, The Ohio State University , Columbus, OH , USA
| | - Latha P Ganesan
- Departments of Internal Medicine, The Ohio State University , Columbus, OH , USA
| | - Clark L Anderson
- Departments of Internal Medicine, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
114
|
Beuke K, Schildberg FA, Pinna F, Albrecht U, Liebe R, Bissinger M, Schirmacher P, Dooley S, Bode JG, Knolle PA, Kummer U, Breuhahn K, Sahle S. Quantitative and integrative analysis of paracrine hepatocyte activation by nonparenchymal cells upon lipopolysaccharide induction. FEBS J 2017; 284:796-813. [PMID: 28109179 DOI: 10.1111/febs.14022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 12/02/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Gut-derived bacterial lipopolysaccharides (LPS) stimulate the secretion of tumour necrosis factor (TNF) from liver macrophages (MCs), liver sinusoidal endothelial cells (LSECs) and hepatic stellate cells (HSCs), which control the acute phase response in hepatocytes through activation of the NF-κB pathway. The individual and cooperative impact of nonparenchymal cells on this clinically relevant response has not been analysed in detail due to technical limitations. To gain an integrative view on this complex inter- and intracellular communication, we combined a multiscale mathematical model with quantitative, time-resolved experimental data of different primary murine liver cell types. We established a computational model for TNF-induced NF-κB signalling in hepatocytes, accurately describing dose-responsiveness for physiologically relevant cytokine concentrations. TNF secretion profiles were quantitatively measured for all nonparenchymal cell types upon LPS stimulation. This novel approach allowed the analysis of individual and collective paracrine TNF-mediated NF-κB induction in hepatocytes, revealing strongest effects of MCs and LSECs on hepatocellular NF-κB signalling. Simulations suggest that both cell types act together to maximize the NF-κB pathway response induced by low LPS concentrations (0.1 and 1 ng/mL). Higher LPS concentrations (≥ 5 ng/mL) induced sufficient TNF levels from MCs or LSECs to induce a strong and nonadjustable pathway response. Importantly, these simulations also revealed that the initial cytokine secretion (1-2 h after stimulation) rather than final TNF level (10 h after stimulation) defines the hepatocellular NF-κB response. This raises the question whether the current experimental standard of single high-dose cytokine administration is suitable to mimic in vivo cytokine exposure. DATABASE The computational models described in this manuscript are available in the JWS database via the following link: https://jjj.bio.vu.nl/database/beuke.
Collapse
Affiliation(s)
- Katharina Beuke
- Department of Modeling of Biological Processes, COS Heidelberg/BIOQUANT, Heidelberg University, Germany
| | - Frank A Schildberg
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Federico Pinna
- Institute of Pathology, University Hospital of Heidelberg, Germany
| | - Ute Albrecht
- Clinic for Gastroenterology, Heinrich-Heine-University of Düsseldorf, Germany
| | - Roman Liebe
- Molecular Hepatology, Department of Medicine II, Medical Faculty at Mannheim, Heidelberg University, Germany
| | | | | | - Steven Dooley
- Molecular Hepatology, Department of Medicine II, Medical Faculty at Mannheim, Heidelberg University, Germany
| | - Johannes G Bode
- Clinic for Gastroenterology, Heinrich-Heine-University of Düsseldorf, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, München Rechts der Isar, Technische Universität München, Germany
| | - Ursula Kummer
- Department of Modeling of Biological Processes, COS Heidelberg/BIOQUANT, Heidelberg University, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital of Heidelberg, Germany
| | - Sven Sahle
- Department of Modeling of Biological Processes, COS Heidelberg/BIOQUANT, Heidelberg University, Germany
| |
Collapse
|
115
|
Zhang L, Wei J, Ren L, Zhang J, Wang J, Jing L, Yang M, Yu Y, Sun Z, Zhou X. Endosulfan induces autophagy and endothelial dysfunction via the AMPK/mTOR signaling pathway triggered by oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:843-852. [PMID: 27814983 DOI: 10.1016/j.envpol.2016.10.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Cardiovascular diseases is related to environmental pollution. Endosulfan is an organochlorine pesticide and its toxicity has been reported. However, the relationship between oxidative stress and autophagy induced by endosulfan and its underlying mechanism remain confusing. In this study, human umbilical vein endothelial cells (HUVECs) were chosen to explore the toxicity mechanism and were treated with 0, 1, 6, 12 μg/mL-1 endosulfan for 24 h, respectively. The present results showed that autophagy could be induced by endosulfan, which was verified by the monodansylcadaverine staining, autophagic ultrastructural observation, and LC3-I/LC3-II conversion. In addition, the levels of adenosine triphosphate (ATP), the mitochondria membrane potential (MMP) were significantly decreased in a dose-dependent way. The expression of proinflammatory cytokines (tumor necrosis factor α, interleukin-1β, and interleukin-6) were significantly elevated, and the index of endothelial function such as monocyte chemotactic protein 1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) increased. Moreover, endosulfan had an activation effect on the 5'AMP-activated protein kinase (AMPK)/rapamycin (mTOR) signaling pathway. Our findings demonstrated that endosulfan could induce oxidative stress and mitochondria injury, activate autophagy, induce inflammatory response, and eventually lead to endothelial dysfunction via the AMPK/mTOR pathway. This indicates that exposure to endosulfan is a potential risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Lianshuang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Histology and Embryology, Bin Zhou Medical College, Yan Tai 264003, China
| | - Jialiu Wei
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jin Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Man Yang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yang Yu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
116
|
Brown DL. Immunopathology of the Hepatobiliary System. MOLECULAR AND INTEGRATIVE TOXICOLOGY 2017:329-417. [DOI: 10.1007/978-3-319-47385-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
117
|
Grumet L, Taschler U, Lass A. Hepatic Retinyl Ester Hydrolases and the Mobilization of Retinyl Ester Stores. Nutrients 2016; 9:nu9010013. [PMID: 28035980 PMCID: PMC5295057 DOI: 10.3390/nu9010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 12/26/2022] Open
Abstract
For mammals, vitamin A (retinol and metabolites) is an essential micronutrient that is required for the maintenance of life. Mammals cannot synthesize vitamin A but have to obtain it from their diet. Resorbed dietary vitamin A is stored in large quantities in the form of retinyl esters (REs) in cytosolic lipid droplets of cells to ensure a constant supply of the body. The largest quantities of REs are stored in the liver, comprising around 80% of the body’s total vitamin A content. These hepatic vitamin A stores are known to be mobilized under times of insufficient dietary vitamin A intake but also under pathological conditions such as chronic alcohol consumption and different forms of liver diseases. The mobilization of REs requires the activity of RE hydrolases. It is astounding that despite their physiological significance little is known about their identities as well as about factors or stimuli which lead to their activation and consequently to the mobilization of hepatic RE stores. In this review, we focus on the recent advances for the understanding of hepatic RE hydrolases and discuss pathological conditions which lead to the mobilization of hepatic RE stores.
Collapse
Affiliation(s)
- Lukas Grumet
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Heinrichstraße 31, 8010 Graz, Austria.
| |
Collapse
|
118
|
Drug Distribution Part 2. Predicting Volume of Distribution from Plasma Protein Binding and Membrane Partitioning. Pharm Res 2016; 34:544-551. [PMID: 27966088 DOI: 10.1007/s11095-016-2086-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 01/03/2023]
Abstract
PURPOSE Volume of distribution is an important pharmacokinetic parameter in the distribution and half-life of a drug. Protein binding and lipid partitioning together determine drug distribution. METHODS Here we present a simple relationship that estimates the volume of distribution with the fraction of drug unbound in both plasma and microsomes. Model equations are based upon a two-compartment system and the experimental fractions unbound in plasma and microsomes represent binding to plasma proteins and cellular lipids, respectively. RESULTS The protein and lipid binding components were parameterized using a dataset containing human in vitro and in vivo parameters for 63 drugs. The resulting equation explains ~84% of the variance in the log of the volume of distribution with an average fold-error of 1.6, with 3 outliers. CONCLUSIONS These results suggest that Vss can be predicted for most drugs from plasma protein binding and microsomal partitioning.
Collapse
|
119
|
Cusin F, Fernandes Azevedo L, Bonnaventure P, Desmeules J, Daali Y, Pastor CM. Hepatocyte Concentrations of Indocyanine Green Reflect Transfer Rates Across Membrane Transporters. Basic Clin Pharmacol Toxicol 2016; 120:171-178. [PMID: 27623731 DOI: 10.1111/bcpt.12671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Perioperative imaging with indocyanine green (ICG) is developing to increase safety in dissecting anatomical structures during hepatobiliary surgery. Images obtained with the fluorescence camera rely on concentrations measured in liver regions of interest. However, how ICG sinusoidal uptake and hepatocyte elimination rates generate ICG hepatocyte concentrations is largely unknown. To investigate such issue and better understand the role of membrane transporters in generating ICG hepatocyte concentrations, we perfused ICG in livers isolated from normal livers. Whether the well-known transporter inhibitor rifampicin modifies hepatocyte ICG concentrations was also studied. The dye has a very high and constant extraction ratio (96%) into hepatocytes. This persistent high extraction ratio generates a huge uphill concentration gradient across the sinusoidal membrane: from 5 μM (sinusoids) to 1600 μM (liver). When inside hepatocytes, ICG has low hepatocyte elimination (7 nmol/min.) and liver concentrations do not decrease much over time. Moreover, the tiny hepatocyte ICG efflux is mainly due to ICG return back to sinusoids (90%). Rifampicin slightly inhibits ICG uptake into hepatocytes and when inside hepatocytes blocks ICG efflux into bile canaliculi. In contrast, it increases ICG efflux back to sinusoids with significant decrease in ICG liver concentrations. Imaging with ICG in the perioperative period reflects the high hepatocyte concentrations and relies on the high extraction ratio across hepatocyte sinusoidal membrane. Although ICG concentrations are low in bile ducts, they are adequate for a good visualization and avoid bile duct injury.
Collapse
Affiliation(s)
- Fabien Cusin
- Imaging and sciences of medical information, University Hospital of Geneva, Geneva, Switzerland
| | | | - Pierre Bonnaventure
- Imaging and sciences of medical information, University Hospital of Geneva, Geneva, Switzerland
| | - Jules Desmeules
- Clinical Pharmacology and Toxicology, University Hospital of Geneva, Geneva, Switzerland
| | - Youssef Daali
- Clinical Pharmacology and Toxicology, University Hospital of Geneva, Geneva, Switzerland
| | - Catherine M Pastor
- Imaging and sciences of medical information, University Hospital of Geneva, Geneva, Switzerland.,Paris-Diderot University, Paris, France.,INSERM U1149, Research Center on Inflammation, Paris, France
| |
Collapse
|
120
|
Liver Perfusion Modifies Gd-DTPA and Gd-BOPTA Hepatocyte Concentrations Through Transfer Clearances Across Sinusoidal Membranes. Eur J Drug Metab Pharmacokinet 2016; 42:657-667. [DOI: 10.1007/s13318-016-0382-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
121
|
Sobrevals L, Enguita M, Quiroga J, Prieto J, Fortes P. Insulin-Like Growth Factor I (IGF-I) Expressed from an AAV1 Vector Leads to a Complete Reversion of Liver Cirrhosis in Rats. PLoS One 2016; 11:e0162955. [PMID: 27658043 PMCID: PMC5033470 DOI: 10.1371/journal.pone.0162955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
IGF-I modulates liver tissue homeostasis. It is produced by hepatocytes and signals within the liver through IGF-I receptor expressed on hepatic stellate cells (HSCs). Liver cirrhosis is characterized by marked IGF-I deficiency. Here we compared the effect of two different gene therapy vectors encoding IGF-I as a potential treatment for cirrhotic patients. Rats with carbon tetrachloride-induced liver cirrhosis were treated with controls or with adeno-associated virus 1 (AAV) or simian virus 40 (SV40) vectors expressing IGF-I (AAVIGF-I or SVIGF-I) and molecular and histological studies were performed at 4 days, 8 weeks and 16 weeks. Increased levels of IGF-I were observed in the liver as soon as 4 days after vector administration. Control cirrhotic rats showed increased hepatic expression of pro-inflammatory and pro-fibrogenic factors including transforming growth factor beta (TGFβ), tumor necrosis factor-alpha (TNFα), connective tissue growth factor (CTGF), and vascular endothelial growth factor (VEGF) together with upregulation of α-smooth muscle actin (αSMA), a marker of HSC activation. In IGF-I-treated rats the levels of all these molecules were similar to those of healthy controls by week 8 post-therapy. Of note, the decline of TGFβ, CTGF, VEGF and αSMA expression was more rapid in AAVIGF-I treated animals reaching statistical significance by day 4 post-therapy. IGF-I-treated rats showed similar improvement of liver function tests in parallel with upregulation of hepatocyte nuclear factor 4α (HNF4α), a factor that promotes hepatocellular differentiation. A significant decrease of liver fibrosis, accompanied by upregulation of the hepatoprotective and anti-fibrogenic hepatocyte growth factor (HGF), occurred in all IGF-I-treated rats but complete reversal of liver cirrhosis took place only in AAVIGF-I group. Therefore, AAVIGF-I reverts liver cirrhosis in rats, a capability which deserves clinical testing.
Collapse
Affiliation(s)
- Luciano Sobrevals
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Mónica Enguita
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jorge Quiroga
- University of Navarra Clinic (CUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Jesús Prieto
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- University of Navarra Clinic (CUN), Pamplona, Spain
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
122
|
White D, Coombe D, Rezania V, Tuszynski J. Building a 3D Virtual Liver: Methods for Simulating Blood Flow and Hepatic Clearance on 3D Structures. PLoS One 2016; 11:e0162215. [PMID: 27649537 PMCID: PMC5029923 DOI: 10.1371/journal.pone.0162215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 01/18/2023] Open
Abstract
In this paper, we develop a spatio-temporal modeling approach to describe blood and drug flow, as well as drug uptake and elimination, on an approximation of the liver. Extending on previously developed computational approaches, we generate an approximation of a liver, which consists of a portal and hepatic vein vasculature structure, embedded in the surrounding liver tissue. The vasculature is generated via constrained constructive optimization, and then converted to a spatial grid of a selected grid size. Estimates for surrounding upscaled lobule tissue properties are then presented appropriate to the same grid size. Simulation of fluid flow and drug metabolism (hepatic clearance) are completed using discretized forms of the relevant convective-diffusive-reactive partial differential equations for these processes. This results in a single stage, uniformly consistent method to simulate equations for blood and drug flow, as well as drug metabolism, on a 3D structure representative of a liver.
Collapse
Affiliation(s)
- Diana White
- Department of Mathematics, Clarkson University, Potsdam, New York, United States of America
| | - Dennis Coombe
- Computer Modelling Group Ltd, Calgary, Alberta, Canada
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta, Canada
| | - Jack Tuszynski
- Department of Physics and Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
123
|
Kirsch J, Schneider H, Pagel JI, Rehberg M, Singer M, Hellfritsch J, Chillo O, Schubert KM, Qiu J, Pogoda K, Kameritsch P, Uhl B, Pircher J, Deindl E, Müller S, Kirchner T, Pohl U, Conrad M, Beck H. Endothelial Dysfunction, and A Prothrombotic, Proinflammatory Phenotype Is Caused by Loss of Mitochondrial Thioredoxin Reductase in Endothelium. Arterioscler Thromb Vasc Biol 2016; 36:1891-9. [DOI: 10.1161/atvbaha.116.307843] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/24/2016] [Indexed: 02/07/2023]
Abstract
Objective—
Although the investigation on the importance of mitochondria-derived reactive oxygen species (ROS) in endothelial function has been gaining momentum, little is known on the precise role of the individual components involved in the maintenance of a delicate ROS balance. Here we studied the impact of an ongoing dysregulated redox homeostasis by examining the effects of endothelial cell–specific deletion of murine thioredoxin reductase 2 (Txnrd2), a key enzyme of mitochondrial redox control.
Approach and Results—
We analyzed the impact of an inducible, endothelial cell–specific deletion of Txnrd2 on vascular remodeling in the adult mouse after femoral artery ligation. Laser Doppler analysis and histology revealed impaired angiogenesis and arteriogenesis. In addition, endothelial loss of Txnrd2 resulted in a prothrombotic, proinflammatory vascular phenotype, manifested as intravascular cellular deposits, as well as microthrombi. This phenotype was confirmed by an increased leukocyte response toward interleukin-1 in the mouse cremaster model. In vitro, we could confirm the attenuated angiogenesis measured in vivo, which was accompanied by increased ROS and an impaired mitochondrial membrane potential. Ex vivo analysis of femoral arteries revealed reduced flow-dependent vasodilation in endothelial cell Txnrd2-deficient mice. This endothelial dysfunction could be, at least partly, ascribed to inadequate nitric oxide signaling.
Conclusions—
We conclude that the maintenance of mitochondrial ROS via Txnrd2 in endothelial cells is necessary for an intact vascular homeostasis and remodeling and that Txnrd2 plays a vitally important role in balancing mitochondrial ROS production in the endothelium.
Collapse
Affiliation(s)
- Julian Kirsch
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Judith-Irina Pagel
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Markus Rehberg
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Miriam Singer
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Juliane Hellfritsch
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Omary Chillo
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Kristin Pogoda
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Petra Kameritsch
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Bernd Uhl
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Joachim Pircher
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Elisabeth Deindl
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Susanna Müller
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Thomas Kirchner
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Marcus Conrad
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| | - Heike Beck
- From the Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany (J.K., H.S., J.-I.P., M.R., M.S., J.H., O.C., K.M.S., J.Q., K.P., P.K., B.U., J.P., E.D., U.P., H.B.); Stress and Immunity Lab, Department of Anesthesiology, Ludwig-Maximilians-University Hospital of Munich, Munich, Germany (J.-I.P.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (U.P.); Partner site Munich Heart Alliance, Munich, Germany (U.P.); Institute of Pathology, Ludwig
| |
Collapse
|
124
|
Giraudeau C, Leporq B, Doblas S, Lagadec M, Pastor CM, Daire JL, Van Beers BE. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis. Eur Radiol 2016; 27:1804-1811. [PMID: 27553933 DOI: 10.1007/s00330-016-4536-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. METHODS Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. RESULTS In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). CONCLUSION These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. KEY POINTS • Expression of hepatocyte transporters is modified in rats with advanced liver fibrosis. • Kinetic parameters at gadoxetate-enhanced MRI are correlated with hepatocyte transporter expression. • Hepatocyte transport function can be assessed with compartmental analysis of gadoxetate-enhanced MRI. • Compartmental analysis of gadoxetate-enhanced MRI might provide biomarkers in advanced liver fibrosis.
Collapse
Affiliation(s)
- Céline Giraudeau
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.
| | - Benjamin Leporq
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France
| | - Sabrina Doblas
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France
| | - Matthieu Lagadec
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| | - Catherine M Pastor
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Département d'imagerie et des sciences de l'information médicale, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Jean-Luc Daire
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| | - Bernard E Van Beers
- Laboratory of Imaging Biomarkers, UMR1149 Inserm, University Paris Diderot, Sorbonne Paris Cité, Hôpital Beaujon, 100 boulevard du général Leclerc, 92110, Clichy, France.,Department of Radiology, Beaujon University Hospital Paris Nord, Clichy, France
| |
Collapse
|
125
|
Shin JW, Park SH, Kang YG, Wu Y, Choi HJ, Shin JW. Changes, and the Relevance Thereof, in Mitochondrial Morphology during Differentiation into Endothelial Cells. PLoS One 2016; 11:e0161015. [PMID: 27517609 PMCID: PMC4982679 DOI: 10.1371/journal.pone.0161015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/28/2016] [Indexed: 01/13/2023] Open
Abstract
The roles of mitochondria in various physiological functions of vascular endothelial cells have been investigated extensively. Morphological studies in relation to physiological functions have been performed. However, there have been few reports of morphological investigations related to stem cell differentiation. This was the first morphological study of mitochondria in relation to endothelial differentiation and focused on quantitative analysis of changes in mitochondrial morphology, number, area, and length during differentiation of human mesenchymal stem cells (hMSCs) into endothelial-like cells. To induce differentiation, we engaged vascular endothelial growth factors and flow-induced shear stress. Cells were classified according to the expression of von Willebrand factor as hMSCs, differentiating cells, and almost fully differentiated cells. Based on imaging analysis, we investigated changes in mitochondrial number, area, and length. In addition, mitochondrial networks were quantified on a single-mitochondrion basis by introducing a branch form factor. The data indicated that the mitochondrial number, area per cell, and length were decreased with differentiation. The mitochondrial morphology became simpler with progression of differentiation. These findings could be explained in view of energy level during differentiation; a higher level of energy is needed during differentiation, with larger numbers of mitochondria with branches. Application of this method to differentiation into other lineages will explain the energy levels required to control stem cell differentiation.
Collapse
Affiliation(s)
- Ji Won Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - So Hee Park
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Yanru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | - Hyun Ju Choi
- Research and Development Team, Gimhae Biomedical Center, Gimhae, Gyeongnam, Republic of Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
- Department of Health Science and Technology, Inje University, Gimhae, Gyeongnam, Republic of Korea
- Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Gyeongnam, Republic of Korea
- * E-mail:
| |
Collapse
|
126
|
Pritchard MT, McCracken JM. Identifying Novel Targets for Treatment of Liver Fibrosis: What Can We Learn from Injured Tissues which Heal Without a Scar? Curr Drug Targets 2016; 16:1332-46. [PMID: 26302807 DOI: 10.2174/1389450116666150825111439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/08/2015] [Indexed: 02/07/2023]
Abstract
The liver is unique in that it is able to regenerate. This regeneration occurs without formation of a scar in the case of non-iterative hepatic injury. However, when the liver is exposed to chronic liver injury, the purely regenerative process fails and excessive extracellular matrix proteins are deposited in place of normal liver parenchyma. While much has been discovered in the past three decades, insights into fibrotic mechanisms have not yet lead to effective therapies; liver transplant remains the only cure for advanced liver disease. In an effort to broaden the collection of possible therapeutic targets, this review will compare and contrast the liver wound healing response to that found in two types of wound healing: scarless wound healing of fetal skin and oral mucosa and scar-forming wound healing found in adult skin. This review will examine wound healing in the liver and the skin in relation to the role of humoral and cellular factors, as well as the extracellular matrix, in this process. While several therapeutic targets are similar between fibrotic liver and adult skin wound healing, others are unique and represent novel areas for hepatic anti-fibrotic research. In particular, investigations into the role of hyaluronan in liver fibrosis and fibrosis resolution are warranted.
Collapse
Affiliation(s)
- Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66161, USA.
| | | |
Collapse
|
127
|
Kostallari E, Shah VH. Angiocrine signaling in the hepatic sinusoids in health and disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G246-51. [PMID: 27288423 PMCID: PMC5007289 DOI: 10.1152/ajpgi.00118.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/06/2016] [Indexed: 02/08/2023]
Abstract
The capillary network irrigating the liver is important not only for nutrient and oxygen delivery, but also for the signals distributed to other hepatic cell types necessary to maintain liver homeostasis. During development, endothelial cells are a key component in liver zonation. In adulthood, they maintain hepatic stellate cells and hepatocytes in quiescence. Their importance in pathobiology is highlighted in liver regeneration and chronic liver diseases, where they coordinate paracrine cell behavior. During regeneration, liver sinusoidal endothelial cells induce hepatocyte proliferation and angiogenesis. During fibrogenesis, they undergo morphological and functional changes, which are reflected by their role in hepatic stellate cell activation, inflammation, and distorted sinusoidal structure. Therapeutic strategies to target angiocrine signaling are in progress but are in the early stages. Here, we offer a short synthesis of recent studies on angiocrine signaling in liver homeostasis, regeneration, and fibrogenesis.
Collapse
Affiliation(s)
- Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
128
|
Yamaoka T, Tabata Y, Ikada Y. Blood Clearance and Organ Distribution of Intravenously Administered Polystyrene Microspheres of Different Sizes. J BIOACT COMPAT POL 2016. [DOI: 10.1177/088391159300800302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Tetsuji Yamaoka
- Research Center for Biomedical Engineering Kyoto University 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606, Japan
| | - Yasuhiko Tabata
- Research Center for Biomedical Engineering Kyoto University 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606, Japan
| | - Yoshito Ikada
- Research Center for Biomedical Engineering Kyoto University 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606, Japan
| |
Collapse
|
129
|
Tunnicliffe EM, Banerjee R, Pavlides M, Neubauer S, Robson MD. A model for hepatic fibrosis: the competing effects of cell loss and iron on shortened modified Look-Locker inversion recovery T 1 (shMOLLI-T 1 ) in the liver. J Magn Reson Imaging 2016; 45:450-462. [PMID: 27448630 DOI: 10.1002/jmri.25392] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
PURPOSE To propose a simple multicompartment model of the liver and use Bloch-McConnell simulations to demonstrate the effects of iron and fibrosis on shortened-MOLLI (shMOLLI) T1 measurements. Liver T1 values have shown sensitivity to inflammation and fibrosis, but are also affected by hepatic iron content. Modified Look-Locker inversion recovery (MOLLI) T1 measurements are biased by the lower T2 associated with high iron. MATERIALS AND METHODS A tissue model was generated consisting of liver cells and extracellular fluid (ECF), with iron-dependent relaxation rates. Fibrosis was imitated by increasing the ECF proportion. Simulations of the shMOLLI sequence produced a look-up table (LUT) of shMOLLI-T1 for a given ECF fraction and iron content. The LUT was used to calculate ECF(shMOLLI-T1 ), assuming normal hepatic iron content (HIC), and ECF(shMOLLI- T1,T2*), accounting for HIC determined by T2*, for 77 patients and compared to fibrosis assessed by liver biopsy. RESULTS Simulations showed that increasing HIC decreases shMOLLI-T1 , with an increase in HIC from 1.0 to 2.5 mg/g at normal ECF fraction decreasing shMOLLI-T1 by 160 msec, while increasing ECF increased ShMOLLI-T1 , with an increase of 20% ECF at normal iron increasing shMOLLI-T1 by 200 msec. Calculated patient ECF(shMOLLI-T1 ) showed a strong dependence on Ishak score (3.3 ± 0.8 %ECF/Ishak stage) and 1/T2* (-0.23 ± 0.04 %ECF/Hz). However, when iron was accounted for to produce ECF(shMOLLI- T1,T2*), it was independent of HIC but retained sensitivity to Ishak score. CONCLUSION Use of this multicompartment model of the liver with Bloch-McConnell simulation should enable compensation of iron effects when using shMOLLI-T1 to assess fibrosis. LEVEL OF EVIDENCE 1 J. Magn. Reson. Imaging 2017;45:450-462.
Collapse
Affiliation(s)
- Elizabeth M Tunnicliffe
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Rajarshi Banerjee
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Michael Pavlides
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Matthew D Robson
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
130
|
Kulkarni P, Korzekwa K, Nagar S. Intracellular Unbound Atorvastatin Concentrations in the Presence of Metabolism and Transport. J Pharmacol Exp Ther 2016; 359:26-36. [PMID: 27451408 DOI: 10.1124/jpet.116.235689] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022] Open
Abstract
Accurate prediction of drug target activity and rational dosing regimen design require knowledge of drug concentrations at the target. It is important to understand the impact of processes such as membrane permeability, partitioning, and active transport on intracellular drug concentrations. The present study aimed to predict intracellular unbound atorvastatin concentrations and characterize the effect of enzyme-transporter interplay on these concentrations. Single-pass liver perfusion studies were conducted in rats using atorvastatin (ATV, 1 µM) alone at 4°C and at 37°C in presence of rifampin (RIF, 20 µM) and 1-aminobenzotriazole (ABT, 1 mM), separately and in combination. The unbound intracellular ATV concentration was predicted with a five-compartment explicit membrane model using the parameterized diffusional influx clearance, active basolateral uptake clearance, and metabolic clearance. Chemical inhibition of uptake and metabolism at 37°C proved to be better controls relative to studies at 4°C. The predicted unbound intracellular concentration at the end of the 50-minute perfusion in the +ABT , +ABT+RIF, and the ATV-only groups was 6.5 µM, 0.58 µM, and 5.14 µM, respectively. The predicted total liver concentrations and amount recovered in bile were within 0.94-1.3 fold of the observed value in all groups. The fold difference in total liver concentration did not always extrapolate to the fold difference in predicted unbound concentration across groups. Together, these results support the use of compartmental modeling to predict intracellular concentrations in dynamic organ-based systems. These predictions can provide insight into the role of uptake transporters and metabolizing enzymes in determining drug tissue concentrations.
Collapse
Affiliation(s)
- Priyanka Kulkarni
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Kenneth Korzekwa
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania
| |
Collapse
|
131
|
Vince AR, Hayes MA, Jefferson BJ, Stalker MJ. Sinusoidal endothelial cell and hepatic stellate cell phenotype correlates with stage of fibrosis in chronic liver disease in dogs. J Vet Diagn Invest 2016; 28:498-505. [PMID: 27423735 DOI: 10.1177/1040638716658499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We evaluated the extent of hepatic fibrosis in chronic liver disease of dogs using a modification of Ishak's staging criteria for human chronic liver disease, and examined the association of stage of fibrosis with immunophenotypic markers of transdifferentiation of hepatic sinusoidal endothelial cells and hepatic stellate cells. Formalin-fixed, paraffin-embedded, hematoxylin and eosin-stained liver biopsy specimens from 45 case dogs with chronic liver disease and 55 healthy control dogs were scored for the presence and extent of fibrosis. This stage score for fibrosis strongly correlated with upregulated von Willebrand factor (vWF) expression in lobular sinusoidal endothelial cells (Spearman correlation coefficient [SCC] = 0.57, p < 0.05). Immunoreactivity for vWF factor was identified in 68.9% of case biopsies, varying in distribution from periportal to diffuse, whereas vWF immunoreactivity was identified in only 14.5% of control specimens, and was restricted to the immediate periportal sinusoids. The majority of both case and control biopsies exhibited similar prominent lobular perisinusoidal expression of alpha-smooth muscle actin (α-SMA). A minority of specimens (17.8% of case biopsies, 1.8% of control biopsies) exhibited low perisinoidal α-SMA expression, and there was a weak negative correlation between α-SMA expression and stage of fibrosis (SCC = -0.29, p = 0.0037). These results document a method for staging the severity of fibrosis in canine liver biopsies, and show a strong association between fibrosis and increased expression of vWF in hepatic sinusoidal endothelial cells.
Collapse
Affiliation(s)
- Andrew R Vince
- Animal Health Laboratory, Laboratory Services Division (Vince, Stalker), University of Guelph, Guelph, Ontario, CanadaDepartment of Pathobiology, Ontario Veterinary College (Hayes, Jefferson), University of Guelph, Guelph, Ontario, Canada
| | - M Anthony Hayes
- Animal Health Laboratory, Laboratory Services Division (Vince, Stalker), University of Guelph, Guelph, Ontario, CanadaDepartment of Pathobiology, Ontario Veterinary College (Hayes, Jefferson), University of Guelph, Guelph, Ontario, Canada
| | - Barbara J Jefferson
- Animal Health Laboratory, Laboratory Services Division (Vince, Stalker), University of Guelph, Guelph, Ontario, CanadaDepartment of Pathobiology, Ontario Veterinary College (Hayes, Jefferson), University of Guelph, Guelph, Ontario, Canada
| | - Margaret J Stalker
- Animal Health Laboratory, Laboratory Services Division (Vince, Stalker), University of Guelph, Guelph, Ontario, CanadaDepartment of Pathobiology, Ontario Veterinary College (Hayes, Jefferson), University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
132
|
Shami GJ, Cheng D, Braet F. Combined Multidimensional Microscopy as a Histopathology Imaging Tool. J Cell Physiol 2016; 232:249-256. [DOI: 10.1002/jcp.25470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Gerald J. Shami
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute; The University of Sydney; Camperdown New South Wales Australia
| | - Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute; The University of Sydney; Camperdown New South Wales Australia
| | - Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute; The University of Sydney; Camperdown New South Wales Australia
- Australian Centre for Microscopy and Microanalysis; The University of Sydney; Camperdown New South Wales Australia
- Charles Perkins Centre; Cellular Imaging Facility; The University of Sydney; Camperdown New South Wales Australia
| |
Collapse
|
133
|
Zhong J, Xu C, Gabbay-Benziv R, Lin X, Yang P. Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy. Free Radic Biol Med 2016; 96:234-44. [PMID: 27130031 PMCID: PMC4912469 DOI: 10.1016/j.freeradbiomed.2016.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Pregestational diabetes disrupts neurulation leading to neural tube defects (NTDs). Oxidative stress resulting from reactive oxygen species (ROS) plays a central role in the induction of NTD formation in diabetic pregnancies. We aimed to determine whether mitochondrial dysfunction increases ROS production leading to oxidative stress and diabetic embryopathy. Overexpression of the mitochondrion-specific antioxidant enzyme superoxide dismutase 2 (SOD2) in a transgenic (Tg) mouse model significantly reduced maternal diabetes-induced NTDs. SOD2 overexpression abrogated maternal diabetes-induced mitochondrial dysfunction by inhibiting mitochondrial translocation of the pro-apoptotic Bcl-2 family members, reducing the number of defective mitochondria in neuroepithelial cells, and decreasing mitochondrial membrane potential. Furthermore, SOD2 overexpression blocked maternal diabetes-increased ROS production by diminishing dihydroethidium staining signals in the developing neuroepithelium, and reducing the levels of nitrotyrosine-modified proteins and lipid hydroperoxide level in neurulation stage embryos. SOD2 overexpression also abolished maternal diabetes-induced endoplasmic reticulum stress. Finally, caspase-dependent neuroepithelial cell apoptosis enhanced by oxidative stress was significantly reduced by SOD2 overexpression. Thus, our findings support the hypothesis that mitochondrial dysfunction in the developing neuroepithelium enhances ROS production, which leads to oxidative stress and endoplasmic reticulum (ER) stress. SOD2 overexpression blocks maternal diabetes-induced oxidative stress and ER stress, and reduces the incidence of NTDs in embryos exposed to maternal diabetes.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Xue Lin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
134
|
Szkolnicka D, Hay DC. Concise Review: Advances in Generating Hepatocytes from Pluripotent Stem Cells for Translational Medicine. Stem Cells 2016; 34:1421-6. [PMID: 27015786 PMCID: PMC4982058 DOI: 10.1002/stem.2368] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/24/2016] [Accepted: 03/10/2016] [Indexed: 12/23/2022]
Abstract
The liver is one of the major organs in the human body. Severe or prolonged exposure of the liver to different factors may cause life-threatening disease, which necessitates donor organ transplantation. While orthotopic liver transplantation can be used to effectively treat liver failure, it is an invasive procedure, which is severely limited by organ donation. Therefore, alternative sources of liver support have been proposed and studied. This includes the use of pluripotent stem cell-derived hepatocytes as a renewable source of cells for therapy. In addition to cell-based therapies, in vitro engineered liver tissue provides powerful models for human drug discovery and disease modeling. This review focuses on the generation of hepatocyte-like cells from pluripotent stem cells and their application in translational medicine. Stem Cells 2016;34:1421-1426.
Collapse
Affiliation(s)
- Dagmara Szkolnicka
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - David C Hay
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
135
|
Rao R, Yang Q, Orman MA, Berthiaume F, Ierapetritou MG, Androulakis IP. Burn trauma disrupts circadian rhythms in rat liver. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2016; 6:12-25. [PMID: 27335693 PMCID: PMC4913229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 04/29/2016] [Indexed: 06/06/2023]
Abstract
Circadian rhythms play an important role in maintaining homeostasis and solid organ function. The purpose of this study is to assess the implications of burn injury in rats on the underlying circadian patterns of gene expression in liver. Circadian-regulated genes and burn-induced genes were identified by applying consensus clustering methodology to temporally differentially expressed probe sets obtained from burn and sham-burn data sets. Of the liver specific genes which we hypothesize that exhibit circadian rhythmicity, 88% are not differentially expressed following the burn injury. Specifically, the vast majority of the circadian regulated-genes representing central carbon and nitrogen metabolism are "up-regulated" after the burn injury, indicating the onset of hypermetabolism. In addition, cell-cell junction and membrane structure related genes showing rhythmic behavior in the control group were not differentially expressed across time in the burn group, which could be an indication of hepatic damage due to the burn. Finally, the suppression of the immune function related genes is observed in the postburn phase, implying the severe "immunosuppression". Our results demonstrated that the short term response (24-h post injury) manifests a loss of circadian variability possibly compromising the host in terms of subsequent challenges.
Collapse
Affiliation(s)
- Rohit Rao
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Qian Yang
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Mehmet A Orman
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Francois Berthiaume
- Biomedical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Marianthi G Ierapetritou
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
- Biomedical Engineering Department, Rutgers, The State University of New JerseyPiscataway, NJ 08854, USA
| |
Collapse
|
136
|
Laubenthal L, Hoelker M, Frahm J, Dänicke S, Gerlach K, Südekum KH, Sauerwein H, Häussler S. Short communication: Telomere lengths in different tissues of dairy cows during early and late lactation. J Dairy Sci 2016; 99:4881-4885. [DOI: 10.3168/jds.2015-10095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 02/09/2016] [Indexed: 01/13/2023]
|
137
|
Bang BR, Elmasry S, Saito T. Organ system view of the hepatic innate immunity in HCV infection. J Med Virol 2016; 88:2025-2037. [PMID: 27153233 DOI: 10.1002/jmv.24569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
An orchestration of innate and adaptive immunity determines the infection outcome and whether the host achieves clearance or allows the pathogen to establish persistent infection. The robust activation of the innate immune response plays the most critical role in both limiting viral replication and halting the spread of the pathogen immediately after infection. The magnitude of innate immune activation is coupled with the efficient mounting of the adaptive immunity. Although immunity against HCV infection is known to be inadequate as most cases transitions to chronicity, approximately 25% of acute infection cases result in spontaneous clearance. The exact immune mechanisms that govern the infection outcome remain largely unknown; recent discoveries suggest that the innate immune system facilitates this event. Both infected hepatocytes and local innate immune cells trigger the front line defense program of the liver as well as the recruitment of diverse adaptive immune cells to the site of infection. Although hepatocyte is the target of HCV infection, nearly all cell types that exist in the liver are involved in the innate defense and contribute to the pathophysiology of hepatic inflammation. The main focus of this comprehensive review is to discuss the current knowledge on how each hepatic cell type contributes to the organ system level innate immunity against HCV infection as well as interplays with the viral evasion program. Furthermore, this review article also aims to synchronize the observations from both molecular biological studies and clinical studies with the ultimate goal of improving our understanding of HCV mediated hepatitis. J. Med. Virol. 88:2025-2037, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bo-Ram Bang
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Sandra Elmasry
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, USC Research Center for Liver Diseases, University of Southern California, Keck School of Medicine, Los Angeles, California. .,Department of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, California. .,Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
138
|
Single cell analysis in native tissue: Quantification of the retinoid content of hepatic stellate cells. Sci Rep 2016; 6:24155. [PMID: 27063397 PMCID: PMC4827054 DOI: 10.1038/srep24155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/18/2016] [Indexed: 01/13/2023] Open
Abstract
Hepatic stellate cells (HSCs) are retinoid storing cells in the liver: The retinoid content of those cells changes depending on nutrition and stress level. There are also differences with regard to a HSC’s anatomical position in the liver. Up to now, retinoid levels were only accessible from bulk measurements of tissue homogenates or cell extracts. Unfortunately, they do not account for the intercellular variability. Herein, Raman spectroscopy relying on excitation by the minimally destructive wavelength 785 nm is introduced for the assessment of the retinoid state of single HSCs in freshly isolated, unprocessed murine liver lobes. A quantitative estimation of the cellular retinoid content is derived. Implications of the retinoid content on hepatic health state are reported. The Raman-based results are integrated with histological assessments of the tissue samples. This spectroscopic approach enables single cell analysis regarding an important cellular feature in unharmed tissue.
Collapse
|
139
|
Pastor CM. How transfer rates generate Gd-BOPTA concentrations in rat liver compartments: implications for clinical liver imaging with hepatobiliary contrast agents. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:291-8. [DOI: 10.1002/cmmi.1691] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/08/2016] [Accepted: 02/17/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Catherine M. Pastor
- Centre de Recherche sur l'Inflammation U1149 INSERM and University Paris-Diderot; Paris France
- Département de Radiologie; Hôpitaux Universitaires de Genève; Switzerland
| |
Collapse
|
140
|
Sutherland JJ, Jolly RA, Goldstein KM, Stevens JL. Assessing Concordance of Drug-Induced Transcriptional Response in Rodent Liver and Cultured Hepatocytes. PLoS Comput Biol 2016; 12:e1004847. [PMID: 27028627 PMCID: PMC4814051 DOI: 10.1371/journal.pcbi.1004847] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/03/2016] [Indexed: 12/13/2022] Open
Abstract
The effect of drugs, disease and other perturbations on mRNA levels are studied using gene expression microarrays or RNA-seq, with the goal of understanding molecular effects arising from the perturbation. Previous comparisons of reproducibility across laboratories have been limited in scale and focused on a single model. The use of model systems, such as cultured primary cells or cancer cell lines, assumes that mechanistic insights derived from the models would have been observed via in vivo studies. We examined the concordance of compound-induced transcriptional changes using data from several sources: rat liver and rat primary hepatocytes (RPH) from Drug Matrix (DM) and open TG-GATEs (TG), human primary hepatocytes (HPH) from TG, and mouse liver / HepG2 results from the Gene Expression Omnibus (GEO) repository. Gene expression changes for treatments were normalized to controls and analyzed with three methods: 1) gene level for 9071 high expression genes in rat liver, 2) gene set analysis (GSA) using canonical pathways and gene ontology sets, 3) weighted gene co-expression network analysis (WGCNA). Co-expression networks performed better than genes or GSA when comparing treatment effects within rat liver and rat vs. mouse liver. Genes and modules performed similarly at Connectivity Map-style analyses, where success at identifying similar treatments among a collection of reference profiles is the goal. Comparisons between rat liver and RPH, and those between RPH, HPH and HepG2 cells reveal lower concordance for all methods. We observe that the baseline state of untreated cultured cells relative to untreated rat liver shows striking similarity with toxicant-exposed cells in vivo, indicating that gross systems level perturbation in the underlying networks in culture may contribute to the low concordance. Gene expression studies in model systems are widely used for understanding the mechanism of drugs and other perturbations in biological systems. Other researchers have examined the reproducibility of microarray studies between laboratories, or comparing microarrays and/or RNA sequencing. However, no large scale studies have compared results from protocols which differ in minor details, or results generated in vivo vs. in vitro culture systems thought to serve as useful models. The rat liver is by far the most extensively studied model evaluating effects of drugs and other perturbations, and existing data allowed us to assess the level of concordance between rat liver and rat primary hepatocytes cultured in collagen-coated plates (i.e. “flat” culture) for hundreds of drugs. We found that the mouse liver serves as a better model of the rat liver than do rat primary hepatocytes, even after allowing for differences due to pharmacokinetics. The low concordance observed between rat liver and rat hepatocytes suggests that validating the utility of ‘omics data generated on emerging cell culture approaches (e.g. “organ-on-a-chip”, 3D-printed tissues) using rat cells and comparison to the rat liver may be necessary in order to gain confidence these approaches substantially improve on traditional culture models of human cells.
Collapse
Affiliation(s)
- Jeffrey J. Sutherland
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail: (JJS); (JLS)
| | - Robert A. Jolly
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Keith M. Goldstein
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - James L. Stevens
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
- * E-mail: (JJS); (JLS)
| |
Collapse
|
141
|
Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics. PLoS One 2016; 11:e0146588. [PMID: 26735954 PMCID: PMC4703410 DOI: 10.1371/journal.pone.0146588] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022] Open
Abstract
Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G’ and G” and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.
Collapse
|
142
|
All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells. PLoS One 2015; 10:e0138655. [PMID: 26407160 PMCID: PMC4583235 DOI: 10.1371/journal.pone.0138655] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 09/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.
Collapse
|
143
|
Sørensen KK, Simon‐Santamaria J, McCuskey RS, Smedsrød B. Liver Sinusoidal Endothelial Cells. Compr Physiol 2015; 5:1751-74. [DOI: 10.1002/cphy.c140078] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
144
|
Ehrensberger AH, Franchini DM, East P, George R, Matthews N, Maslen SL, Svejstrup JQ. Retention of the Native Epigenome in Purified Mammalian Chromatin. PLoS One 2015; 10:e0133246. [PMID: 26248330 PMCID: PMC4527833 DOI: 10.1371/journal.pone.0133246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/24/2015] [Indexed: 01/13/2023] Open
Abstract
A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.
Collapse
Affiliation(s)
- Andreas H. Ehrensberger
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, The Francis Crick Insitute, London Research Institute, South Mimms, United Kingdom
| | - Don-Marc Franchini
- DNA Editing Lab, Clare Hall Laboratories, Cancer Research UK, London Research Institute, South Mimms, United Kingdom
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Instituto FIRC di Oncologia Molecolare, Milano, Italy
| | - Philip East
- Bioinformatics and Biostatistics Group, The Francis Crick Insitute, London Research Institute, London, United Kingdom
| | - Roger George
- Protein Purification Facility, The Francis Crick Insitute, London Research Institute, London, United Kingdom
| | - Nik Matthews
- Advanced Sequencing Facility, The Francis Crick Insitute, London Research Institute, London, United Kingdom
| | - Sarah L. Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Jesper Q. Svejstrup
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, The Francis Crick Insitute, London Research Institute, South Mimms, United Kingdom
| |
Collapse
|
145
|
Habka D, Mann D, Landes R, Soto-Gutierrez A. Future Economics of Liver Transplantation: A 20-Year Cost Modeling Forecast and the Prospect of Bioengineering Autologous Liver Grafts. PLoS One 2015; 10:e0131764. [PMID: 26177505 PMCID: PMC4503760 DOI: 10.1371/journal.pone.0131764] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/05/2015] [Indexed: 12/13/2022] Open
Abstract
During the past 20 years liver transplantation has become the definitive treatment for most severe types of liver failure and hepatocellular carcinoma, in both children and adults. In the U.S., roughly 16,000 individuals are on the liver transplant waiting list. Only 38% of them will receive a transplant due to the organ shortage. This paper explores another option: bioengineering an autologous liver graft. We developed a 20-year model projecting future demand for liver transplants, along with costs based on current technology. We compared these cost projections against projected costs to bioengineer autologous liver grafts. The model was divided into: 1) the epidemiology model forecasting the number of wait-listed patients, operated patients and postoperative patients; and 2) the treatment model forecasting costs (pre-transplant-related costs; transplant (admission)-related costs; and 10-year post-transplant-related costs) during the simulation period. The patient population was categorized using the Model for End-Stage Liver Disease score. The number of patients on the waiting list was projected to increase 23% over 20 years while the weighted average treatment costs in the pre-liver transplantation phase were forecast to increase 83% in Year 20. Projected demand for livers will increase 10% in 10 years and 23% in 20 years. Total costs of liver transplantation are forecast to increase 33% in 10 years and 81% in 20 years. By comparison, the projected cost to bioengineer autologous liver grafts is $9.7M based on current catalog prices for iPS-derived liver cells. The model projects a persistent increase in need and cost of donor livers over the next 20 years that’s constrained by a limited supply of donor livers. The number of patients who die while on the waiting list will reflect this ever-growing disparity. Currently, bioengineering autologous liver grafts is cost prohibitive. However, costs will decline rapidly with the introduction of new manufacturing strategies and economies of scale.
Collapse
Affiliation(s)
| | - David Mann
- Cellular Dynamics International, Madison, WI, United States of America
| | - Ronald Landes
- Solving Organ Shortage, Austin, TX, United States of America
- * E-mail: (ASG); (RL)
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- SOS Whole Liver Research Community, Austin, TX, United States of America
- * E-mail: (ASG); (RL)
| |
Collapse
|
146
|
Yuen JJ, Lee SA, Jiang H, Brun PJ, Blaner WS. DGAT1-deficiency affects the cellular distribution of hepatic retinoid and attenuates the progression of CCl4-induced liver fibrosis. Hepatobiliary Surg Nutr 2015; 4:184-96. [PMID: 26151058 DOI: 10.3978/j.issn.2304-3881.2014.12.02] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 10/29/2014] [Indexed: 01/03/2023]
Abstract
BACKGROUND Diacylglycerol O-acyltransferase 1 (DGAT1) catalyzes the final step of triglyceride synthesis, transferring an acyl group from acyl-CoA to diacylglycerol. DGAT1 also catalyzes the acyl-CoA-dependent formation of retinyl esters in vitro and in mouse intestine and skin. Although DGAT1 is expressed in both hepatocytes and hepatic stellate cells (HSCs), we reported genetic and nutritional studies that established that DGAT1 does not contribute to retinyl ester formation in the liver. METHODS We now have explored in more depth the role(s) of DGAT1 in hepatic retinoid metabolism and storage. RESULTS Our data show that DGAT1 affects the cellular distribution between hepatocytes and HSCs of stored and newly absorbed dietary retinol. For livers of Dgat1-deficient mice, a greater percentage of stored retinyl ester is present in HSCs at the expense of hepatocytes. This is also true for newly absorbed oral [(3)H]retinol. These differences are associated with significantly increased expression, by 2.8-fold, of cellular retinol-binding protein, type I (RBP1) in freshly isolated HSCs from Dgat1-deficient mice, raising the possibility that RBP1, which contributes to retinol uptake into cells and retinyl ester synthesis, accounts for the differences. We further show that the retinyl ester-containing lipid droplets in HSCs are affected in Dgat1-null mice, being fewer in number but, on average, larger than in wild type (WT) HSCs. Finally, we demonstrate that DGAT1 affects experimentally induced HSC activation in vivo but that this effect is independent of altered retinoic acid availability or effects on gene expression. CONCLUSIONS Our studies establish that DGAT1 has a role in hepatic retinoid storage and metabolism, but this does not involve direct actions of DGAT1 in retinyl ester synthesis.
Collapse
Affiliation(s)
- Jason J Yuen
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Seung-Ah Lee
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | - William S Blaner
- Department of Medicine, Columbia University, New York, NY 10032, USA
| |
Collapse
|
147
|
Moulin F, Flint O. In VitroModels for the Prediction of Drug-Induced Liver Injury in Lead Discovery. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/9783527673643.ch07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
148
|
Donelan W, Li S, Wang H, Lu S, Xie C, Tang D, Chang LJ, Yang LJ. Pancreatic and duodenal homeobox gene 1 (Pdx1) down-regulates hepatic transcription factor 1 alpha (HNF1α) expression during reprogramming of human hepatic cells into insulin-producing cells. Am J Transl Res 2015; 7:995-1008. [PMID: 26279745 PMCID: PMC4532734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/04/2015] [Indexed: 06/04/2023]
Abstract
Ectopic expression of Pdx1 triggers rapid hepatocyte dedifferentiation by down-regulating liver-enriched transcription factors and liver-specific functional genes such as hepatic nuclear factor-1α (HNF1α), albumin, and AAT. However, the links between Pdx1 over-expression and hepatic gene down-regulation are incompletely understood. HNF1α and HNF4α are important transcription factors that establish and maintain the hepatocyte phenotype. The human HNF4α gene contains two promoters (P1 and P2) that drive expression of P1-(HNF4α 1-6) or P2-(HNF4α 7-9)-derived isoforms, which are used in different tissues and at different times during development. We hypothesized that the relative expression of HNF1α and HNF4α following ectopic Pdx1 expression may promote hepatic cell dedifferentiation and transdifferentiation toward pancreatic beta-cells. We produced lentiviruses expressing Pdx1, Pdx1-VP16, and Ngn3, along with dual-color reporter genes to indicate hepatic and pancreatic beta-cell phenotype changes. Using these PTF alone or in combinations, we demonstrated that Pdx1 not only activates specific beta-cell genes but down-regulates HNF1α. Pdx1-mediated reduction of HNF1α is accompanied by altered expression of its major activator, HNF4α isoforms, down-regulating hepatic genes ALB and AAT. Pdx1 up-regulates HNF4α via the P2 promoter. These P2-driven isoforms compete with P1-driven isoforms to suppress target gene transcription. In Huh7 cells, the AF-1 activation domain is more important for transactivation, whereas in INS1 cells, the F inhibitory domain is more important. The loss and gain of functional activity strongly suggests that Pdx1 plays a central role in reprogramming hepatocytes into beta-cells by suppressing the hepatic phenotype.
Collapse
Affiliation(s)
- William Donelan
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shiwu Li
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Hai Wang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Shun Lu
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Chao Xie
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Dongqi Tang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| | - Lung-Ji Chang
- Department of Molecular Genetics & Microbiology, University of Florida College of MedicineGainesville, Florida 32610
| | - Li-Jun Yang
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida College of MedicineGainesville, Florida 32610
| |
Collapse
|
149
|
Baroni D, Zegarra-Moran O, Moran O. Functional and pharmacological induced structural changes of the cystic fibrosis transmembrane conductance regulator in the membrane solved using SAXS. Cell Mol Life Sci 2015; 72:1363-75. [PMID: 25274064 PMCID: PMC11113906 DOI: 10.1007/s00018-014-1747-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/13/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to the ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. To investigate the conformation of the CFTR in the membrane, we applied the small-angle x-ray scattering (SAXS) technique on microsomal membranes extracted from NIH/3T3 cells permanentely transfected with wild-type (WT) CFTR and with CFTR carrying the ΔF508 mutation. The electronic density profile of the membranes was calculated from the SAXS data, assuming the lipid bilayer electronic density to be composed by a series of Gaussian shells. The data indicate that membranes in the microsome vesicles, that contain mostly endoplasmic reticulum membranes, are oriented in the outside-out conformation. Phosphorylation does not change significantly the electronic density profile, while dephosphorylation produces a significant modification in the inner side of the profile. Thus, we conclude that the CFTR and its associated protein complex in microsomes are mostly phosphorylated. The electronic density profile of the ΔF508-CFTR microsomes is completely different from WT, suggesting a different assemblage of the proteins in the membranes. Low-temperature treatment of cells rescues the ΔF508-CFTR protein, resulting in a conformation that resembles the WT. Differently, treatment with the corrector VX-809 modifies the electronic profile of ΔF508-CFTR membrane, but does not recover completely the WT conformation. To our knowledge, this is the first report of a direct physical measurement of the structure of membranes containing CFTR in its native environment and in different functional and pharmacological conditions.
Collapse
Affiliation(s)
- Debora Baroni
- Istituto di Biofisica, CNR, via De Marini, 6, 16149 Genoa, Italy
| | | | - Oscar Moran
- Istituto di Biofisica, CNR, via De Marini, 6, 16149 Genoa, Italy
| |
Collapse
|
150
|
Mayhew TM, Lucocq JM. From gross anatomy to the nanomorphome: stereological tools provide a paradigm for advancing research in quantitative morphomics. J Anat 2015; 226:309-21. [PMID: 25753334 DOI: 10.1111/joa.12287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
The terms morphome and morphomics are not new but, recently, a group of morphologists and cell biologists has given them clear definitions and emphasised their integral importance in systems biology. By analogy to other '-omes', the morphome refers to the distribution of matter within 3-dimensional (3D) space. It equates to the totality of morphological features within a biological system (virus, single cell, multicellular organism or populations thereof) and morphomics is the systematic study of those structures. Morphomics research has the potential to generate 'big data' because it includes all imaging techniques at all levels of achievable resolution and all structural scales from gross anatomy and medical imaging, via optical and electron microscopy, to molecular characterisation. As with other '-omics', quantification is an important part of morphomics and, because biological systems exist and operate in 3D space, precise descriptions of form, content and spatial relationships require the quantification of structure in 3D. Revealing and quantifying structural detail inside the specimen is achieved currently in two main ways: (i) by some form of reconstruction from serial physical or tomographic slices or (ii) by using randomly-sampled sections and simple test probes (points, lines, areas, volumes) to derive stereological estimates of global and/or individual quantities. The latter include volumes, surfaces, lengths and numbers of interesting features and spatial relationships between them. This article emphasises the value of stereological design, sampling principles and estimation tools as a template for combining with alternative imaging techniques to tackle the 'big data' issue and advance knowledge and understanding of the morphome. The combination of stereology, TEM and immunogold cytochemistry provides a practical illustration of how this has been achieved in the sub-field of nanomorphomics. Applying these quantitative tools/techniques in a carefully managed study design offers us a deeper appreciation of the spatiotemporal relationships between the genome, metabolome and morphome which are integral to systems biology.
Collapse
Affiliation(s)
- Terry M Mayhew
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK; School of Medicine, University of St Andrews, St Andrews, UK
| | | |
Collapse
|