101
|
Xu X, Gnanaprakasam JNR, Sherman J, Wang R. A Metabolism Toolbox for CAR T Therapy. Front Oncol 2019; 9:322. [PMID: 31114756 PMCID: PMC6503740 DOI: 10.3389/fonc.2019.00322] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
The adoptive transfer of T cells expressing chimeric antigen receptors (CARs) through genetic engineering is one of the most promising new therapies for treating cancer patients. A robust CAR T cell-mediated anti-tumor response requires the coordination of nutrient and energy supplies with CAR T cell expansion and function. However, the high metabolic demands of tumor cells compromise the function of CAR T cells by competing for nutrients within the tumor microenvironment (TME). To substantially improve clinical outcomes of CAR T immunotherapy while treating solid tumors, it is essential to metabolically prepare CAR T cells to overcome the metabolic barriers imposed by the TME. In this review, we discuss a potential metabolism toolbox to improve the metabolic fitness of CAR T cells and maximize the efficacy of CAR T therapy.
Collapse
Affiliation(s)
- Xuequn Xu
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - J N Rashida Gnanaprakasam
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - John Sherman
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| |
Collapse
|
102
|
van Duijn J, van Elsas M, Benne N, Depuydt M, Wezel A, Smeets H, Bot I, Jiskoot W, Kuiper J, Slütter B. CD39 identifies a microenvironment-specific anti-inflammatory CD8 + T-cell population in atherosclerotic lesions. Atherosclerosis 2019; 285:71-78. [PMID: 31048101 DOI: 10.1016/j.atherosclerosis.2019.04.217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS CD8+ T-cells have been attributed both atherogenic and atheroprotective properties, but analysis of CD8+ T-cells has mostly been restricted to the circulation and secondary lymphoid organs. The atherosclerotic lesion, however, is a complex microenvironment containing a plethora of inflammatory signals, which may affect CD8+ T-cell activation. Here, we address how this environment affects the functionality of CD8+ T-cells. METHODS AND RESULTS We compared the cytokine production of CD8+ T-cells derived from spleens and enzymatically digested aortas of apoE-/- mice with advanced atherosclerosis by flow cytometry. Aortic CD8+ T-cells produced decreased amounts of IFN-γ and TNF-α compared to their systemic counterparts. The observed dysfunctional phenotype of the lesion-derived CD8+ T-cells was not associated with classical exhaustion markers, but with increased expression of the ectonucleotidase CD39. Indeed, pharmacological inhibition of CD39 in apoE-/- mice partly restored cytokine production by CD8+ T-cells. Using a bone-marrow transplantation approach, we show that TCR signaling is required to induce CD39 expression on CD8+ T-cells in atherosclerotic lesions. Importantly, analysis of human endarterectomy samples showed a strong microenvironment specific upregulation of CD39 on CD8+ T-cells in the plaques of human patients compared to matched blood samples. CONCLUSIONS Our results suggest that the continuous TCR signaling in the atherosclerotic environment in the vessel wall induces an immune regulatory CD8+ T-cell phenotype that is associated with decreased cytokine production through increased CD39 expression in both a murine atherosclerotic model and in atherosclerosis patients. This provides a new understanding of immune regulation by CD8+ T-cells in atherosclerosis.
Collapse
Affiliation(s)
- Janine van Duijn
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marit van Elsas
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Naomi Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Marie Depuydt
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | | | | | - Ilze Bot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Johan Kuiper
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - Bram Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
103
|
Mitochondrial superoxide disrupts the metabolic and epigenetic landscape of CD4 + and CD8 + T-lymphocytes. Redox Biol 2019; 27:101141. [PMID: 30819616 PMCID: PMC6859572 DOI: 10.1016/j.redox.2019.101141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/28/2023] Open
Abstract
While the role of mitochondrial metabolism in controlling T-lymphocyte activation and function is becoming more clear, the specifics of how mitochondrial redox signaling contributes to T-lymphocyte regulation remains elusive. Here, we examined the global effects of elevated mitochondrial superoxide (O2-) on T-lymphocyte activation using a novel model of inducible manganese superoxide dismutase (MnSOD) knock-out. Loss of MnSOD led to specific increases in mitochondrial O2- with no evident changes in hydrogen peroxide (H2O2), peroxynitrite (ONOO-), or copper/zinc superoxide dismutase (CuZnSOD) levels. Unexpectedly, both mitochondrial and glycolytic metabolism showed significant reductions in baseline, maximal capacities, and ATP production with increased mitochondrial O2- levels. MnSOD knock-out T-lymphocytes demonstrated aberrant activation including widespread dysregulation in cytokine production and increased cellular apoptosis. Interestingly, an elevated proliferative signature defined by significant upregulation of cell cycle regulatory genes was also evident in MnSOD knock-out T-lymphocytes, but these cells did not show accelerated proliferative rates. Global disruption in T-lymphocyte DNA methylation and hydroxymethylation was also observed with increased mitochondrial O2-, which was correlated to alterations in intracellular metabolite pools linked to the methionine cycle. Together, these results demonstrate a mitochondrial redox and metabolic couple that when disrupted may alter cellular processes necessary for proper T-lymphocyte activation.
Collapse
|
104
|
Takata T, Kimura J, Ihara H, Hatano N, Tsuchiya Y, Watanabe Y. Redox regulation of Ca 2+/calmodulin-dependent protein kinase IV via oxidation of its active-site cysteine residue. Free Radic Biol Med 2019; 130:99-106. [PMID: 30394289 DOI: 10.1016/j.freeradbiomed.2018.10.440] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 09/15/2018] [Accepted: 10/24/2018] [Indexed: 11/15/2022]
Abstract
We have recently reported that Ca2+/calmodulin (CaM)-dependent protein kinase IV (CaMKIV) is inactivated by reactive sulfur species via polysulfidation of the active-site Cys residue. Here, we show that hydrogen peroxide (H2O2) limit CaMKIV activity at the same active-site Cys residue through oxidation and downstream signaling in cells. CaMKIV is phosphorylated at Thr196 by its upstream CaMK kinase (CaMKK), which induces its full activity. In vitro incubation of CaMKIV with H2O2 resulted in reversible inhibition of CaMKK-induced phospho-Thr196 and the consequent inactivation of CaMKIV. In contrast, mutated CaMKIV (C198V) was refractory to the H2O2-induced enzyme inhibition. In transfected cells expressing CaMKIV, Ca2+ ionophore-induced CaMKIV phosphorylation at Thr196 was decreased upon treatment with H2O2, whereas cells expressing mutant CaMKIV (C198V) were resistant to H2O2 treatment. Modification of free thiol with N-ethylmaleimide revealed that Cys198 in CaMKIV is a target for S-oxidation. Additionally, the Ca2+ influx-induced phospho-Thr196 of endogenous CaMKIV was also inhibited upon treatment with H2O2 in Jurkat T-lymphocytes and cerebellar granule cells. Phosphorylation of cyclic AMP response element-binding protein (CREB) at Ser133, which is downstream of CaMKIV, was also decreased upon treatment with H2O2. Thus, our results indicate that oxidation stress regulates cellular function by decreasing the activity of CaMKIV through Cys198 oxidation.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Jun Kimura
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Naoya Hatano
- The Integrated Center for Mass Spectrometry, Kobe University, Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yukihiro Tsuchiya
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Yasuo Watanabe
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
105
|
Esmaeili B, Mansouri P, Doustimotlagh AH, Izad M. Redox imbalance and IL-17 responses in memory CD4 + T cells from patients with psoriasis. Scand J Immunol 2018; 89:e12730. [PMID: 30375024 DOI: 10.1111/sji.12730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 01/21/2023]
Abstract
All stages of the inflammatory process involved in T cell-mediated chronic skin disorders like psoriasis are affected by redox imbalance. On the other hand, Th17 cells have a critical role in the pathogenesis of psoriasis. In this study, we evaluated redox status in memory CD4 + T cells and plasma of patients with psoriasis and its correlation with IL-17 response. To this end, memory T cells were isolated from 10 patients with psoriasis and 10 controls. Intracellular Glutathione (GSH), reactive oxygen species (ROS) and superoxide as well as IL-17 were measured using flow cytometry. Plasma total anti-oxidant capacity (TAC) was quantified by ferric reducing ability of plasma (FRAP) assay. The expression of catalase (CAT), superoxide dismutase 1(SOD1), superoxide dismutase 2 (SOD2), nuclear factor, erythroid 2 like 2 (NFE2L2) and cytochrome b-245 beta chain (CYBB) genes were analysed using real-time PCR. Our results showed an increased intracellular ROS production in memory CD4 + T cells of patients compared to controls, (P = 0.04). Furthermore, a significant decrease in expression of catalase gene was found in patients, (P = 0.02). However, no significant differences were observed for intracellular GSH, IL-17 and TAC levels between patients and controls. Also, no correlation was seen between the intracellular IL-17 level and intracellular ROS, GSH and catalase gene expression levels. Collectively, we found an increased ROS production in stimulated memory T cells of patients that could be due to reduced expression of catalase gene. However, it seems that these redox abnormalities have no relationship with IL-17 response in memory T cells.
Collapse
Affiliation(s)
- Behnaz Esmaeili
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Immunology, Asthma and Allergy Research Institute (IAARI), Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Mansouri
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Izad
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Occupational Sleep Research Center, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
106
|
Oxidative Stress in Poultry: Lessons from the Viral Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5123147. [PMID: 30647810 PMCID: PMC6311761 DOI: 10.1155/2018/5123147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/25/2018] [Indexed: 12/13/2022]
Abstract
Reactive species (RS), generally known as reactive oxygen species (ROS) and reactive nitrogen species (RNS), are produced during regular metabolism in the host and are required for many cellular processes such as cytokine transcription, immunomodulation, ion transport, and apoptosis. Intriguingly, both RNS and ROS are commonly triggered by the pathogenic viruses and are famous for their dual roles in the clearance of viruses and pathological implications. Uncontrolled production of reactive species results in oxidative stress and causes damage in proteins, lipids, DNA, and cellular structures. In this review, we describe the production of RS, their detoxification by a cellular antioxidant system, and how these RS damage the proteins, lipids, and DNA. Given the widespread importance of RS in avian viral diseases, oxidative stress pathways are of utmost importance for targeted therapeutics. Therefore, a special focus is provided on avian virus-mediated oxidative stresses. Finally, future research perspectives are discussed on the exploitation of these pathways to treat viral diseases of poultry.
Collapse
|
107
|
Loss of the candidate tumor suppressor ZEB1 (TCF8, ZFHX1A) in Sézary syndrome. Cell Death Dis 2018; 9:1178. [PMID: 30518749 PMCID: PMC6281581 DOI: 10.1038/s41419-018-1212-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Abstract
Cutaneous T-cell lymphoma is a group of incurable extranodal non-Hodgkin lymphomas that develop from the skin-homing CD4+ T cell. Mycosis fungoides and Sézary syndrome are the most common histological subtypes. Although next-generation sequencing data provided significant advances in the comprehension of the genetic basis of this lymphoma, there is not uniform consensus on the identity and prevalence of putative driver genes for this heterogeneous group of tumors. Additional studies may increase the knowledge about the complex genetic etiology characterizing this lymphoma. We used SNP6 arrays and GISTIC algorithm to prioritize a list of focal somatic copy-number alterations in a dataset of multiple sequential samples from 21 Sézary syndrome patients. Our results confirmed a prevalence of significant focal deletions over amplifications: single well-known tumor suppressors, such as TP53, PTEN, and RB1, are targeted by these aberrations. In our cohort, ZEB1 (TCF8, ZFHX1A) spans a deletion having the highest level of significance. In a larger group of 43 patients, we found that ZEB1 is affected by deletions and somatic inactivating mutations in 46.5% of cases; also, we found potentially relevant ZEB1 germline variants. The survival analysis shows a worse clinical course for patients with ZEB1 biallelic inactivation. Multiple abnormal expression signatures were found associated with ZEB1 depletion in Sézary patients we verified that ZEB1 exerts a role in oxidative response of Sézary cells. Our data confirm the importance of deletions in the pathogenesis of cutaneous T-cell lymphoma. The characterization of ZEB1 abnormalities in Sézary syndrome fulfils the criteria of a canonical tumor suppressor gene. Although additional confirmations are needed, our findings suggest, for the first time, that ZEB1 germline variants might contribute to the risk of developing this disease. Also, we provide evidence that ZEB1 activity in Sézary cells, influencing the reactive oxygen species production, affects cell viability and apoptosis.
Collapse
|
108
|
Previte DM, Piganelli JD. Reactive Oxygen Species and Their Implications on CD4 + T Cells in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1399-1414. [PMID: 28990401 DOI: 10.1089/ars.2017.7357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.
Collapse
Affiliation(s)
- Dana M Previte
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jon D Piganelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
109
|
Miller CG, Holmgren A, Arnér ESJ, Schmidt EE. NADPH-dependent and -independent disulfide reductase systems. Free Radic Biol Med 2018; 127:248-261. [PMID: 29609022 PMCID: PMC6165701 DOI: 10.1016/j.freeradbiomed.2018.03.051] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022]
Abstract
Over the past seven decades, research on autotrophic and heterotrophic model organisms has defined how the flow of electrons ("reducing power") from high-energy inorganic sources, through biological systems, to low-energy inorganic products like water, powers all of Life's processes. Universally, an initial major biological recipient of these electrons is nicotinamide adenine dinucleotide-phosphate, which thereby transits from an oxidized state (NADP+) to a reduced state (NADPH). A portion of this reducing power is then distributed via the cellular NADPH-dependent disulfide reductase systems as sequential reductions of disulfide bonds. Along the disulfide reduction pathways, some enzymes have active sites that use the selenium-containing amino acid, selenocysteine, in place of the common but less reactive sulfur-containing cysteine. In particular, the mammalian/metazoan thioredoxin systems are usually selenium-dependent as, across metazoan phyla, most thioredoxin reductases are selenoproteins. Among the roles of the NADPH-dependent disulfide reductase systems, the most universal is that they provide the reducing power for the production of DNA precursors by ribonucleotide reductase (RNR). Some studies, however, have uncovered examples of NADPH-independent disulfide reductase systems that can also support RNR. These systems are summarized here and their implications are discussed.
Collapse
Affiliation(s)
- Colin G Miller
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA
| | - Arne Holmgren
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry & Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Edward E Schmidt
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
110
|
Zhao L, He R, Long H, Guo B, Jia Q, Qin D, Liu SQ, Wang Z, Xiang T, Zhang J, Tan Y, Huang J, Chen J, Wang F, Xiao M, Gao J, Yang X, Zeng H, Wang X, Hu C, Alexander PB, Symonds ALJ, Yu J, Wan Y, Li QJ, Ye L, Zhu B. Late-stage tumors induce anemia and immunosuppressive extramedullary erythroid progenitor cells. Nat Med 2018; 24:1536-1544. [PMID: 30297899 PMCID: PMC6211844 DOI: 10.1038/s41591-018-0205-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/27/2018] [Indexed: 01/13/2023]
Abstract
Impaired immunity in patients with late-stage cancer is not limited to antitumor responses, as demonstrated by poor vaccination protection and high susceptibility to infection1-3. This has been largely attributed to chemotherapy-induced impairment of innate immunity, such as neutropenia2, whereas systemic effects of tumors on hematopoiesis and adoptive immunity remain incompletely understood. Here we observed anemia associated with severe deficiency of CD8+ T cell responses against pathogens in treatment-naive mice bearing large tumors. Specifically, we identify CD45+ erythroid progenitor cells (CD71+TER119+; EPCs) as robust immunosuppressors. CD45+ EPCs, induced by tumor growth-associated extramedullary hematopoiesis, accumulate in the spleen to become a major population, outnumbering regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). The CD45+ EPC transcriptome closely resembles that of MDSCs, and, like MDSCs, reactive oxygen species production is a major mechanism underlying CD45+ EPC-mediated immunosuppression. Similarly, an immunosuppressive CD45+ EPC population was detected in patients with cancer who have anemia. These findings identify a major population of immunosuppressive cells that likely contributes to the impaired T cell responses commonly observed in patients with advanced cancer.
Collapse
Affiliation(s)
- Lintao Zhao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Ran He
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Guo
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Diyuan Qin
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Si-Qi Liu
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tong Xiang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yulong Tan
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jiani Huang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Junying Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Minglu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jianbao Gao
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xinxin Yang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Hao Zeng
- College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xinxin Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunyan Hu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Peter B Alexander
- Department of Immunology, Duke University Medical Center, Durham, NC, USA
| | - Alistair L J Symonds
- Institute of Cell and Molecular Science, Barts and London School of Medicine and Dentistry, University of London, London, UK
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Yisong Wan
- Departement of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, USA.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Immunotherapy, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
111
|
Oliveira KM, Binda NS, Lavor MSL, Silva CMO, Rosado IR, Gabellini ELA, Da Silva JF, Oliveira CM, Melo MM, Gomez MV, Melo EG. Conotoxin MVIIA improves cell viability and antioxidant system after spinal cord injury in rats. PLoS One 2018; 13:e0204948. [PMID: 30286181 PMCID: PMC6171875 DOI: 10.1371/journal.pone.0204948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022] Open
Abstract
This study evaluates whether intrathecal MVIIA injection after spinal cord injury (SCI) elicits neuroprotective effects. The test rats were randomly distributed into six groups— sham, placebo, MVIIA 2.5 μM, MVIIA 5 μM, MVIIA 10 μM, and MVIIA 20 μM—and were administered the treatment four hours after SCI. After the optimal MVIIA dose (MVIIA 10 μM) was defined, the best time for application, one or four hours, was analyzed. Locomotor hind limb function and side effects were assessed. Forty-eight hours after the injury and immediately after euthanasia, spinal cord segments were removed from the test rats. Cell viability, reactive oxygen species, lipid peroxidation, and glutamate release were investigated. To examine the MVIIA mechanism of action, the gene expressions of pro-apoptotic (Bax, nNOS, and caspase-3, -8, -9, -12) and anti-apoptotic (Bcl-xl) factors in the spinal cord tissue samples were determined by real-time PCR, and the activities of antioxidant enzymes were also investigated. Application of intrathecal MVIIA 10 μM four hours after SCI prompted a neuroprotective effect: neuronal death decreased (22.46%), oxidative stress diminished, pro-apoptotic factors (Bax, nNOS, and caspase-3, -8) were expressed to a lesser extent, and mitochondrial viability as well as anti-apoptotic factor (Bcl-xl) expression increased. These results suggested that MVIIA provided neuroprotection through antioxidant effects. Indeed, superoxide dismutase (188.41%), and glutathione peroxidase (199.96%), reductase (193.86%), and transferase (175.93%) expressions increased. Therefore, intrathecal MVIIA (MVIIA 10 μM, 4 h) application has neuroprotective potential, and the possible mechanisms are related to antioxidant agent modulation and to intrinsic and extrinsic apoptotic pathways.
Collapse
Affiliation(s)
- Karen M. Oliveira
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Nancy S. Binda
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Mário Sérgio L. Lavor
- Department of Agrarian and Environmental Sciences, Santa Cruz State University, Ilhéus, Bahia, Brazil
| | - Carla M. O. Silva
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Isabel R. Rosado
- Veterinary Medicine Department, Uberaba University, Uberada, Minas Gerais, Brazil
| | | | - Juliana F. Da Silva
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | | | - Marília M. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus Vinícius Gomez
- Laboratory of Toxins, Institute of Education and Research, Santa Casa, Belo Horizonte, Minas Gerais, Brazil
| | - Eliane G. Melo
- Clinical and Surgery Department, Veterinary School, Minas Gerais Federal University, Campus Pampulha, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
112
|
Vlahopoulos S, Adamaki M, Khoury N, Zoumpourlis V, Boldogh I. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer. Pharmacol Ther 2018; 194:59-72. [PMID: 30240635 DOI: 10.1016/j.pharmthera.2018.09.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytokines are pivotal mediators of the immune response, and their coordinated expression protects host tissue from excessive damage and oxidant stress. Nevertheless, the development of lung pathology, including asthma, chronic obstructive pulmonary disease, and ozone-induced lung injury, is associated with oxidant stress; as evidence, there is a significant increase in levels of the modified guanine base 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. 8-OxoG is primarily recognized by 8-oxoguanine glycosylase 1 (OGG1), which catalyzes the first step in the DNA base excision repair pathway. However, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, including NF-κB, to their cognate sites to enable expression of cytokines and chemokines, with ensuing recruitments of inflammatory cells. Hence, defective OGG1 will modulate the coordination between innate and adaptive immunity through excessive oxidant stress and cytokine dysregulation. Both oxidant stress and cytokine dysregulation constitute key elements of oncogenesis by KRAS, which is mechanistically coupled to OGG1. Thus, analysis of the mechanism by which OGG1 modulates gene expression helps discern between beneficial and detrimental effects of oxidant stress, exposes a missing functional link as a marker, and yields a novel target for lung cancer.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Nikolas Khoury
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Istvan Boldogh
- Departments of Microbiology and Immunology and the Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX 77555, United States
| |
Collapse
|
113
|
Weyand CM, Shen Y, Goronzy JJ. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic Biol Med 2018; 125:36-43. [PMID: 29524605 PMCID: PMC6128787 DOI: 10.1016/j.freeradbiomed.2018.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism best known for their damaging potential, but recent evidence has exposed their role as secondary messengers, which regulate cell function through redox-activatable signaling systems. In immune cells, specifically in T cells, redox-sensitive signaling pathways have been implicated in controlling several functional domains; including cell cycle progression, T effector cell differentiation, tissue invasion and inflammatory behavior. T cells from patients with the autoimmune disease rheumatoid arthritis (RA) have emerged as a valuable model system to examine the functional impact of ROS on T cell function. Notably, RA T cells are distinguished from healthy T cells based on reduced ROS production and undergo "reductive stress". Upstream defects leading to the ROSlow status of RA T cells are connected to metabolic reorganization. RA T cells shunt glucose away from pyruvate and ATP production towards the pentose phosphate pathway, where they generate NADPH and consume cellular ROS. Downstream consequences of the ROSlow conditions in RA T cells include insufficient activation of the DNA repair kinase ATM, bypassing of the G2/M cell cycle checkpoint and biased differentiation of T cells into IFN-γ and IL-17-producing inflammatory cells. Also, ROSlow T cells rapidly invade into peripheral tissue due to dysregulated lipogenesis, excessive membrane ruffling, and overexpression of a motility module dominated by the scaffolding protein Tks5. These data place ROS into a pinnacle position in connecting cellular metabolism and protective versus auto-aggressive T cell immunity. Therapeutic interventions for targeted ROS enhancement instead of ROS depletion should be developed as a novel strategy to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA.
| | - Yi Shen
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA
| | - Jorg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA
| |
Collapse
|
114
|
Abdulle AE, Diercks GFH, Feelisch M, Mulder DJ, van Goor H. The Role of Oxidative Stress in the Development of Systemic Sclerosis Related Vasculopathy. Front Physiol 2018; 9:1177. [PMID: 30197602 PMCID: PMC6117399 DOI: 10.3389/fphys.2018.01177] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs including the skin. SSc often is a lethal disorder, because effective disease-modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction, perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction of capillaries is the hallmark of the disease. Most patients present with vasospastic attacks of the digital arteries referred to as 'Raynaud's phenomenon,' which is often an indication of an underlying widespread vasculopathy. Although autoimmune responses and inflammation are both found to play an important role in the pathogenesis of this vasculopathy, no definite initiating factors have been identified. Recently, several studies have underlined the potential role of oxidative stress in the pathogenesis of SSc vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For instance, circulating levels of reactive oxygen species (ROS) related markers have been found to correlate with SSc vasculopathy, the formation of fibrosis and the production of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC) injury and vascular complications. Collectively, these findings suggest a potential role of ROS in the initiation and progression of SSc vasculopathy. In this review, we present the background of oxidative stress related processes (e.g., EC injury, autoimmunity, inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy. Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers of disease activity and evaluate potential anti-oxidative strategies in SSc.
Collapse
Affiliation(s)
- Amaal E. Abdulle
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gilles F. H. Diercks
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Douwe J. Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Section Pathology, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
115
|
Karimi G, Hassanzadeh-Josan S, Memar B, Esmaeili SA, Riahi-Zanjani B. Immunomodulatory effects of silymarin after subacute exposure to mice: A tiered approach immunotoxicity screening. J Pharmacopuncture 2018; 21:90-97. [PMID: 30151309 PMCID: PMC6054091 DOI: 10.3831/kpi.2018.21.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 05/02/2018] [Accepted: 05/06/2018] [Indexed: 12/12/2022] Open
Abstract
Silymarin is a flavonoid complex extracted from the Silybum marianum plant with a wide range of pharmacological and biochemical effects. In the present study, the immunomodulatory effects of silymarin were investigated in BALB/c mice. Silymarin was administered daily by intraperitoneal injection at doses of 50, 100 and 150 mg/kg for 14 consecutive days. Following the exposure, host hematological parameters, spleen cellularity and histopathological examination, as well as delayed-type hypersensitivity (DTH) responses, hemagglutination titers (HA), splenocyte cytokine production and lymphocyte proliferation assay were studied in all of the test groups of animals. The results showed that the low dose of silymarin (50 mg/kg) could stimulate both cellular and humoral immune functions in the treated hosts. In addition, silymarin at 100 mg/kg appeared to impact on DTH responses and lymphoproliferation. Based on the finding here, it would seem that silymarin has efficient immunostimulant properties. As a recommendation, the application of silymarin along with acupuncture technique (herbal acupuncture) can be thought as a good plan to modulate and enhance the immune system for the management of several immunodeficiency disorders. However, further studies are required to demonstrate this hypothesis.
Collapse
Affiliation(s)
- Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samed Hassanzadeh-Josan
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Cancer Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi-Zanjani
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
116
|
Bettonville M, d'Aria S, Weatherly K, Porporato PE, Zhang J, Bousbata S, Sonveaux P, Braun MY. Long-term antigen exposure irreversibly modifies metabolic requirements for T cell function. eLife 2018; 7:30938. [PMID: 29911570 PMCID: PMC6025959 DOI: 10.7554/elife.30938] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 06/14/2018] [Indexed: 12/11/2022] Open
Abstract
Energy metabolism is essential for T cell function. However, how persistent antigenic stimulation affects T cell metabolism is unknown. Here, we report that long-term in vivo antigenic exposure induced a specific deficit in numerous metabolic enzymes. Accordingly, T cells exhibited low basal glycolytic flux and limited respiratory capacity. Strikingly, blockade of inhibitory receptor PD-1 stimulated the production of IFNγ in chronic T cells, but failed to shift their metabolism towards aerobic glycolysis, as observed in effector T cells. Instead, chronic T cells appeared to rely on oxidative phosphorylation (OXPHOS) and fatty acid oxidation (FAO) to produce ATP for IFNγ synthesis. Check-point blockade, however, increased mitochondrial production of superoxide and reduced viability and effector function. Thus, in the absence of a glycolytic switch, PD-1-mediated inhibition appears essential for limiting oxidative metabolism linked to effector function in chronic T cells, thereby promoting survival and functional fitness.
Collapse
Affiliation(s)
- Marie Bettonville
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Stefania d'Aria
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Kathleen Weatherly
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jinyu Zhang
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Sabrina Bousbata
- Laboratory of Molecular Parasitology, Proteomic Platform, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Michel Y Braun
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
117
|
Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 2018; 22:1321-1335. [PMID: 28936716 DOI: 10.1007/s10495-017-1424-9] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS), a group of ions and molecules, include hydroxyl radicals (·OH), alkoxyl radicals, superoxide anion (O2·-), singlet oxygen (1O2) and hydrogen peroxide (H2O2). Hydroxyl radicals and alkoxyl radicals are extremely and highly reactive species respectively. Endogenous ROS are mainly formed in mitochondrial respiratory chain. Low levels of ROS play important roles in regulating biological functions in mammalian cells. However, excess production of ROS can induce cell death by oxidative damaging effects to intracellular biomacromolecules. Cancer cell death types induced by ROS include apoptotic, autophagic, ferroptotic and necrotic cell death. Since abnormal metabolism in cancer cells, they have higher ROS content compared to normal cells. The higher endogenous ROS levels in cancer cells endow them more susceptible to the ROS-induction treatment. Indeed, some anticancer drugs currently used in clinic, such as molecular targeted drugs and chemotherapeutic agents, effectively kill cancer cells by inducing ROS generation. In addition, photodynamic therapy (PDT) is mainly based on induction of ROS burst to kill cancer cells. The mechanism of cell death induced by radiotherapy using ionizing radiation also refers to ROS production. Moreover, ROS play an important role in tumor immune therapy. Altogether, combining above traditional treatments with ROS-induced agents will be considered as a promising strategy in cancer therapy. In this review, we focus on our current understanding of the anticancer effects of ROS.
Collapse
Affiliation(s)
- Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China. .,Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, China.
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Songmao Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
118
|
Rashida Gnanaprakasam JN, Wu R, Wang R. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Front Immunol 2018; 9:1075. [PMID: 29868027 PMCID: PMC5964129 DOI: 10.3389/fimmu.2018.01075] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/30/2018] [Indexed: 12/28/2022] Open
Abstract
A robust adaptive immune response requires a phase of proliferative burst which is followed by the polarization of T cells into relevant functional subsets. Both processes are associated with dramatically increased bioenergetics demands, biosynthetic demands, and redox demands. T cells meet these demands by rewiring their central metabolic pathways that generate energy and biosynthetic precursors by catabolizing and oxidizing nutrients into carbon dioxide. Simultaneously, oxidative metabolism also produces reactive oxygen species (ROS), which are tightly controlled by antioxidants and plays important role in regulating T cell functions. In this review, we discuss how metabolic rewiring during T cell activation influence ROS production and antioxidant capacity.
Collapse
Affiliation(s)
- Josephin N Rashida Gnanaprakasam
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruohan Wu
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| | - Ruoning Wang
- Center for Childhood Cancer & Blood Diseases, Hematology/Oncology & BMT, The Research Institute at Nationwide Children's Hospital, Ohio State University, Columbus, OH, United States
| |
Collapse
|
119
|
Abstract
Hydrogen peroxide (H2O2) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple H2O2-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by H2O2. Peroxiredoxins possess a high-affinity binding site for H2O2 that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most H2O2 effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most H2O2 effectors are therefore at a competitive disadvantage for reaction with H2O2. Recent Advances: Here we review intracellular sources of H2O2 as well as H2O2 target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to H2O2-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and H2O2 effector proteins localized in specific subcellular compartments participates in H2O2 signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into H2O2 signaling. Antioxid. Redox Signal. 28, 537-557.
Collapse
Affiliation(s)
- Sue Goo Rhee
- 1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea
| | - Hyun Ae Woo
- 2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea
| | - Dongmin Kang
- 3 Department of Life Science, Ewha Womans University , Seoul, Korea
| |
Collapse
|
120
|
Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. Influence of Inflammation in the Process of T Lymphocyte Differentiation: Proliferative, Metabolic, and Oxidative Changes. Front Immunol 2018; 9:339. [PMID: 29545794 PMCID: PMC5839096 DOI: 10.3389/fimmu.2018.00339] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/06/2018] [Indexed: 01/02/2023] Open
Abstract
T lymphocytes, from their first encounter with their specific antigen as naïve cell until the last stages of their differentiation, in a replicative state of senescence, go through a series of phases. In several of these stages, T lymphocytes are subjected to exponential growth in successive encounters with the same antigen. This entire process occurs throughout the life of a human individual and, earlier, in patients with chronic infections/pathologies through inflammatory mediators, first acutely and later in a chronic form. This process plays a fundamental role in amplifying the activating signals on T lymphocytes and directing their clonal proliferation. The mechanisms that control cell growth are high levels of telomerase activity and maintenance of telomeric length that are far superior to other cell types, as well as metabolic adaptation and redox control. Large numbers of highly differentiated memory cells are accumulated in the immunological niches where they will contribute in a significant way to increase the levels of inflammatory mediators that will perpetuate the new state at the systemic level. These levels of inflammation greatly influence the process of T lymphocyte differentiation from naïve T lymphocyte, even before, until the arrival of exhaustion or cell death. The changes observed during lymphocyte differentiation are correlated with changes in cellular metabolism and these in turn are influenced by the inflammatory state of the environment where the cell is located. Reactive oxygen species (ROS) exert a dual action in the population of T lymphocytes. Exposure to high levels of ROS decreases the capacity of activation and T lymphocyte proliferation; however, intermediate levels of oxidation are necessary for the lymphocyte activation, differentiation, and effector functions. In conclusion, we can affirm that the inflammatory levels in the environment greatly influence the differentiation and activity of T lymphocyte populations. However, little is known about the mechanisms involved in these processes. The elucidation of these mechanisms would be of great help in the advance of improvements in pathologies with a large inflammatory base such as rheumatoid arthritis, intestinal inflammatory diseases, several infectious diseases and even, cancerous processes.
Collapse
Affiliation(s)
- Marco A Moro-García
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain
| | - Juan C Mayo
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rosa M Sainz
- Department of Morphology and Cell Biology, Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Rebeca Alonso-Arias
- Department of Immunology, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
121
|
Yarosz EL, Chang CH. The Role of Reactive Oxygen Species in Regulating T Cell-mediated Immunity and Disease. Immune Netw 2018; 18:e14. [PMID: 29503744 PMCID: PMC5833121 DOI: 10.4110/in.2018.18.e14] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
T lymphocytes rely on several metabolic processes to produce the high amounts of energy and metabolites needed to drive clonal expansion and the development of effector functions. However, many of these pathways result in the production of reactive oxygen species (ROS), which have canonically been thought of as cytotoxic agents due to their ability to damage DNA and other subcellular structures. Interestingly, ROS has recently emerged as a critical second messenger for T cell receptor signaling and T cell activation, but the sensitivity of different T cell subsets to ROS varies. Therefore, the tight regulation of ROS production by cellular antioxidant pathways is critical to maintaining proper signal transduction without compromising the integrity of the cell. This review intends to detail the common metabolic sources of intracellular ROS and the mechanisms by which ROS contributes to the development of T cell-mediated immunity. The regulation of ROS levels by the glutathione pathway and the Nrf2-Keap1-Cul3 trimeric complex will be discussed. Finally, T cell-mediated autoimmune diseases exacerbated by defects in ROS regulation will be further examined in order to identify potential therapeutic interventions for these disorders.
Collapse
Affiliation(s)
- Emily L Yarosz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cheong-Hee Chang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
122
|
Franchina DG, Dostert C, Brenner D. Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends Immunol 2018; 39:489-502. [PMID: 29452982 DOI: 10.1016/j.it.2018.01.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
T cells are a central component of defenses against pathogens and tumors. Their effector functions are sustained by specific metabolic changes that occur upon activation, and these have been the focus of renewed interest. Energy production inevitably generates unwanted products, namely reactive oxygen species (ROS), which have long been known to trigger cell death. However, there is now evidence that ROS also act as intracellular signaling molecules both in steady-state and upon antigen recognition. The levels and localization of ROS contribute to the redox modeling of effector proteins and transcription factors, influencing the outcome of the T cell response. We discuss here how ROS can directly fine-tune metabolism and effector functions of T cells.
Collapse
Affiliation(s)
- Davide G Franchina
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
123
|
Zhang Y, Liu Y, Yang X, Cui H, Xu X, Mao L, Zhou H. Antioxidant and immunomodulatory activities of Oviductus ranae in mice. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000417751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Yang Zhang
- Changshu Institute of Technology, People’s Republic of China
| | - Yang Liu
- Changshu Institute of Technology, People’s Republic of China
| | - Xiudong Yang
- Jilin Institute of Chemical Technology, People’s Republic of China
| | - Hao Cui
- Jilin Institute of Chemical Technology, People’s Republic of China
| | - Xiaoxiao Xu
- Jilin Institute of Chemical Technology, People’s Republic of China
| | - Liping Mao
- Jilin Institute of Chemical Technology, People’s Republic of China
| | - Hongli Zhou
- Jilin Institute of Chemical Technology, People’s Republic of China
| |
Collapse
|
124
|
Seelige R, Searles S, Bui JD. Mechanisms regulating immune surveillance of cellular stress in cancer. Cell Mol Life Sci 2018; 75:225-240. [PMID: 28744671 PMCID: PMC11105730 DOI: 10.1007/s00018-017-2597-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/28/2017] [Accepted: 07/17/2017] [Indexed: 12/19/2022]
Abstract
The purpose of this review is to explore immune-mediated mechanisms of stress surveillance in cancer, with particular emphasis on the idea that all cancers have classical hallmarks (Hanahan and Weinberg in Cell 100:57-70, 67; Cell 144:646-674, 68) that could be interrelated. We postulate that hallmarks of cancer associated with cellular stress pathways (Luo et al. in Cell 136:823-837, 101) including oxidative stress, proteotoxic stress, mitotic stress, DNA damage, and metabolic stress could define and modulate the inflammatory component of cancer. As such, the overarching goal of this review is to define the types of cellular stress that cancer cells undergo, and then to explore mechanisms by which immune cells recognize, respond to, and are affected by each stress response.
Collapse
Affiliation(s)
- Ruth Seelige
- Department of Pathology, University of California, 9500 Gilman Dr MC 0612, La Jolla, CA, 92093-0612, USA
| | - Stephen Searles
- Department of Pathology, University of California, 9500 Gilman Dr MC 0612, La Jolla, CA, 92093-0612, USA
| | - Jack D Bui
- Department of Pathology, University of California, 9500 Gilman Dr MC 0612, La Jolla, CA, 92093-0612, USA.
| |
Collapse
|
125
|
Abstract
Reactive oxygen species (ROS) mediate redox signaling necessary for numerous cellular functions. Yet, high levels of ROS in cells and tissues can cause damage and cell death. Therefore, regulation of redox homeostasis is essential for ROS-dependent signaling that does not incur cellular damage. Cells achieve this optimal balance by coordinating ROS production and elimination. In this Minireview, we discuss the mechanisms by which proliferating cancer and T cells maintain a carefully controlled redox balance. Greater insight into such redox biology may enable precisely targeted manipulation of ROS for effective medical therapies against cancer or immunological disorders.
Collapse
Affiliation(s)
- Hyewon Kong
- From the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Navdeep S Chandel
- From the Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
126
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 362] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
127
|
Kuksal N, Chalker J, Mailloux RJ. Progress in understanding the molecular oxygen paradox - function of mitochondrial reactive oxygen species in cell signaling. Biol Chem 2017; 398:1209-1227. [PMID: 28675747 DOI: 10.1515/hsz-2017-0160] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/27/2017] [Indexed: 11/15/2022]
Abstract
The molecular oxygen (O2) paradox was coined to describe its essential nature and toxicity. The latter characteristic of O2 is associated with the formation of reactive oxygen species (ROS), which can damage structures vital for cellular function. Mammals are equipped with antioxidant systems to fend off the potentially damaging effects of ROS. However, under certain circumstances antioxidant systems can become overwhelmed leading to oxidative stress and damage. Over the past few decades, it has become evident that ROS, specifically H2O2, are integral signaling molecules complicating the previous logos that oxyradicals were unfortunate by-products of oxygen metabolism that indiscriminately damage cell structures. To avoid its potential toxicity whilst taking advantage of its signaling properties, it is vital for mitochondria to control ROS production and degradation. H2O2 elimination pathways are well characterized in mitochondria. However, less is known about how H2O2 production is controlled. The present review examines the importance of mitochondrial H2O2 in controlling various cellular programs and emerging evidence for how production is regulated. Recently published studies showing how mitochondrial H2O2 can be used as a secondary messenger will be discussed in detail. This will be followed with a description of how mitochondria use S-glutathionylation to control H2O2 production.
Collapse
|
128
|
Franchina DG, He F, Brenner D. Survival of the fittest: Cancer challenges T cell metabolism. Cancer Lett 2017; 412:216-223. [PMID: 29074426 DOI: 10.1016/j.canlet.2017.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023]
Abstract
T cells represent the major contributors to antitumor-specific immunity among the tumor-infiltrating lymphocytes. However, tumors acquire ways to evade immunosurveillance and anti-tumor responses are too weak to eradicate the disease. T cells are often functionally impaired as a result of interaction with, or signals from, transformed cells and the tumor microenvironment, including stromal cells. Among these, nutrients use and consumption is critically important for the control of differentiation and effector mechanisms of T cells. Moreover, Treg cells-skewing conditions often coexist within the cancer milieu, which sustains the notion of immune privileged tumors. Additionally, cancer cells contend with tumor infiltrating lymphocytes for nutrients and can outcompete the immune response. PD1- and CTLA-based immunotherapies partially remodel cell metabolism leading the way to clinical approaches of metabolic reprogramming for therapeutic purposes. Here we shortly discuss T cell fates during anti-tumor immune responses and how signals within tumor microenvironment influence T cell metabolism, altering functions and longevity of the cell.
Collapse
Affiliation(s)
- Davide G Franchina
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Feng He
- Department of Infection and Immunity, Immune Systems Biology, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, 29, rue Henri Koch, L-4354 Esch-sur-Alzette, Luxembourg; Odense Research Center for Anaphylaxis (ORCA), Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
129
|
Yong CS, Abba Moussa D, Cretenet G, Kinet S, Dardalhon V, Taylor N. Metabolic orchestration of T lineage differentiation and function. FEBS Lett 2017; 591:3104-3118. [PMID: 28901530 DOI: 10.1002/1873-3468.12849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
T cells are stimulated by the engagement of antigen, cytokine, pathogen, and hormone receptors. While research performed over many years has focused on deciphering the molecular components of these pathways, recent data underscore the importance of the metabolic environment in conditioning responses to receptor engagement. The ability of T cells to undergo a massive proliferation and cytokine secretion in response to receptor signals requires alterations to their bioenergetic homeostasis, allowing them to meet new energetic and biosynthetic demands. The metabolic reprogramming of activated T cells is regulated not only by changes in intracellular nutrient uptake and utilization but also by nutrient and oxygen concentrations in the extracellular environment. Notably, the extracellular environment can be profoundly altered by pathological conditions such as infections and tumors, thereby perturbing the metabolism and function of antigen-specific T lymphocytes. This review highlights the interplay between diverse metabolic networks and the transcriptional/epigenetic states that condition T-cell differentiation, comparing the metabolic features of T lymphocytes with other immune cells. We further address recent discoveries in the metabolic pathways that govern T-cell function in physiological and pathological conditions.
Collapse
Affiliation(s)
- Carmen S Yong
- IGMM, CNRS, Univ. Montpellier, Montpellier, France
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Vic., Australia
| | | | | | | | | | - Naomi Taylor
- IGMM, CNRS, Univ. Montpellier, Montpellier, France
| |
Collapse
|
130
|
Scheffel MJ, Scurti G, Simms P, Garrett-Mayer E, Mehrotra S, Nishimura MI, Voelkel-Johnson C. Efficacy of Adoptive T-cell Therapy Is Improved by Treatment with the Antioxidant N-Acetyl Cysteine, Which Limits Activation-Induced T-cell Death. Cancer Res 2017; 76:6006-6016. [PMID: 27742673 DOI: 10.1158/0008-5472.can-16-0587] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 07/19/2016] [Indexed: 01/20/2023]
Abstract
Although adoptive transfer of autologous tumor antigen-specific T-cell immunotherapy can produce remarkable clinical efficacy, most patients do not achieve durable complete responses. We hypothesized that reducing susceptibility of T cells to activation-induced cell death (AICD), which increases during the rapid in vitro expansion of therapeutic T cells before their infusion, might improve the persistence of adoptively transferred cells. Our investigations revealed that repetitive stimulation of the T-cell receptor (TCR) induced AICD, as a result of activating the DNA damage response pathway through ATM-mediated Ser15 phosphorylation of p53. Activation of this DNA damage response pathway also occurred upon antigen-specific restimulation in TCR-transduced TIL1383I T cells prepared for adoptive transfer to patients as part of a clinical trial. Notably, treatment with the antioxidant N-acetyl cysteine (NAC) significantly reduced upregulation of the DNA damage marker γH2AX, subsequent ATM activation, and cell death. In the Pmel mouse model of melanoma, the presence of NAC during ex vivo T-cell expansion improved the persistence of adoptively transferred cells, reduced tumor growth, and increased survival. Taken together, our results offer a preclinical proof of concept for the addition of NAC to current therapeutic T-cell expansion protocols, offering immediate potential to improve the quality and therapeutic efficacy of adoptive T-cell therapeutics infused into patients. Cancer Res; 76(20); 6006-16. ©2016 AACR.
Collapse
Affiliation(s)
- Matthew J Scheffel
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Gina Scurti
- Department of Surgery, Loyola University Chicago, Maywood, Illinois
| | - Patricia Simms
- Flow Cytometry Core Facility, Loyola University Chicago, Maywood, Illinois
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | | | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
131
|
Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M, Binsfeld C, Hao Z, Brüstle A, Itsumi M, Jäger C, Chen Y, Pinkenburg O, Camara B, Ollert M, Bindslev-Jensen C, Vasiliou V, Gorrini C, Lang PA, Lohoff M, Harris IS, Hiller K, Brenner D. Glutathione Primes T Cell Metabolism for Inflammation. Immunity 2017; 46:675-689. [PMID: 28423341 DOI: 10.1016/j.immuni.2017.03.019] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/31/2017] [Accepted: 03/29/2017] [Indexed: 01/19/2023]
Abstract
Activated T cells produce reactive oxygen species (ROS), which trigger the antioxidative glutathione (GSH) response necessary to buffer rising ROS and prevent cellular damage. We report that GSH is essential for T cell effector functions through its regulation of metabolic activity. Conditional gene targeting of the catalytic subunit of glutamate cysteine ligase (Gclc) blocked GSH production specifically in murine T cells. Gclc-deficient T cells initially underwent normal activation but could not meet their increased energy and biosynthetic requirements. GSH deficiency compromised the activation of mammalian target of rapamycin-1 (mTOR) and expression of NFAT and Myc transcription factors, abrogating the energy utilization and Myc-dependent metabolic reprogramming that allows activated T cells to switch to glycolysis and glutaminolysis. In vivo, T-cell-specific ablation of murine Gclc prevented autoimmune disease but blocked antiviral defense. The antioxidative GSH pathway thus plays an unexpected role in metabolic integration and reprogramming during inflammatory T cell responses.
Collapse
Affiliation(s)
- Tak W Mak
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada; Departments of Medical Biophysics and Immunology, University of Toronto, Toronto, ON M5G 2M9, Canada.
| | - Melanie Grusdat
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Gordon S Duncan
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada
| | - Catherine Dostert
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Yannic Nonnenmacher
- Technische Universität Braunschweig, Braunschweig Integrated Center of Systems Biology, Braunschweig D-38106, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Maureen Cox
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada
| | - Carole Binsfeld
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg
| | - Zhenyue Hao
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada; The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S3E1 Canada
| | - Anne Brüstle
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
| | - Momoe Itsumi
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Christian Jäger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, CT 06520, New Haven, USA
| | - Olaf Pinkenburg
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, D-35032 Germany
| | - Bärbel Camara
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, D-35032 Germany
| | - Markus Ollert
- Department of Infection and Immunity, Allergy and Clinical Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Carsten Bindslev-Jensen
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, CT 06520, New Haven, USA
| | - Chiara Gorrini
- The Campbell Family Cancer Research Institute and University Health Network, Toronto, ON M5G 2C1, Canada
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, University of Düsseldorf, Düsseldorf, D-40225, Germany
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, D-35032 Germany
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Karsten Hiller
- Technische Universität Braunschweig, Braunschweig Integrated Center of Systems Biology, Braunschweig D-38106, Germany; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, L-4367, Luxembourg; Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, D-38124, Germany
| | - Dirk Brenner
- Department of Infection and Immunity, Experimental and Molecular Immunology, Luxembourg Institute of Health, Esch-sur-Alzette, L-4354, Luxembourg; Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, DK-5000, Denmark.
| |
Collapse
|
132
|
Post-translational control of T cell development by the ESCRT protein CHMP5. Nat Immunol 2017; 18:780-790. [DOI: 10.1038/ni.3764] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
|
133
|
Derambure C, Dzangue-Tchoupou G, Berard C, Vergne N, Hiron M, D'Agostino MA, Musette P, Vittecoq O, Lequerré T. Pre-silencing of genes involved in the electron transport chain (ETC) pathway is associated with responsiveness to abatacept in rheumatoid arthritis. Arthritis Res Ther 2017; 19:109. [PMID: 28545499 PMCID: PMC5445375 DOI: 10.1186/s13075-017-1319-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/05/2017] [Indexed: 11/10/2022] Open
Abstract
Background In the current context of personalized medicine, one of the major challenges in the management of rheumatoid arthritis (RA) is to identify biomarkers that predict drug responsiveness. From the European APPRAISE trial, our main objective was to identify a gene expression profile associated with responsiveness to abatacept (ABA) + methotrexate (MTX) and to understand the involvement of this signature in the pathophysiology of RA. Methods Whole human genome microarrays (4 × 44 K) were performed from a first subset of 36 patients with RA. Data validation by quantitative reverse-transcription (qRT)-PCR was performed from a second independent subset of 32 patients with RA. Gene Ontology and WikiPathways database allowed us to highlight the specific biological mechanisms involved in predicting response to ABA/MTX. Results From the first subset of 36 patients with RA, a combination including 87 transcripts allowed almost perfect separation between responders and non-responders to ABA/MTX. Next, the second subset of patients 32 with RA allowed validation by qRT-PCR of a minimal signature with only four genes. This latter signature categorized 81% of patients with RA with 75% sensitivity, 85% specificity and 85% negative predictive value. This combination showed a significant enrichment of genes involved in electron transport chain (ETC) pathways. Seven transcripts from ETC pathways (NDUFA6, NDUFA4, UQCRQ, ATP5J, COX7A2, COX7B, COX6A1) were significantly downregulated in responders versus non-responders to ABA/MTX. Moreover, dysregulation of these genes was independent of inflammation and was specific to ABA response. Conclusion Pre-silencing of ETC genes is associated with future response to ABA/MTX and might be a crucial key to susceptibility to ABA response. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1319-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Derambure
- Normandie Univ, UNIROUEN, Inserm U 1245, F 76000, Rouen, France
| | | | - C Berard
- LITIS EA 4108, Computer science, information processing and systems laboratory, Normandy University, Institute for Research and Innovation in Biomedicine, 76451, Mont-Saint-Aignan, France
| | - N Vergne
- LMRS UMR 6085 CNRS, Raphaël Salem laboratory, Normandy University, 76575, Saint Étienne du Rouvray, France
| | - M Hiron
- Normandie Univ, UNIROUEN, Inserm U 905, F 76000, Rouen, France
| | - M A D'Agostino
- Departement of Rheumatology, AP-HP Ambroise Paré Hospital, University of Versailles Saint Quentin en Yvelines, 92100, Boulogne-Billancourt, France
| | - P Musette
- Normandie Univ, UNIROUEN, Inserm U 1234, Rouen University Hospital, Department of Dermatology, F 76000, Rouen, France
| | - O Vittecoq
- Normandie Univ, UNIROUEN, Inserm U 1234, Inserm CIC-CRB 1404, Rouen University Hospital, Department of Dermatology, F 76000, Rouen, France
| | - T Lequerré
- Normandie Univ, UNIROUEN, Inserm U 1234, Inserm CIC-CRB 1404, Rouen University Hospital, Department of Dermatology, F 76000, Rouen, France.
| |
Collapse
|
134
|
Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 2017; 12:e0175549. [PMID: 28426686 PMCID: PMC5398529 DOI: 10.1371/journal.pone.0175549] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Collapse
|
135
|
Reactive oxygen species mediated T lymphocyte abnormalities in an iron-overloaded mouse model and iron-overloaded patients with myelodysplastic syndromes. Ann Hematol 2017; 96:1085-1095. [DOI: 10.1007/s00277-017-2985-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/29/2017] [Indexed: 12/31/2022]
|
136
|
Choi S, Warzecha C, Zvezdova E, Lee J, Argenty J, Lesourne R, Aravind L, Love PE. THEMIS enhances TCR signaling and enables positive selection by selective inhibition of the phosphatase SHP-1. Nat Immunol 2017; 18:433-441. [PMID: 28250424 PMCID: PMC5807080 DOI: 10.1038/ni.3692] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
THEMIS, a T cell-specific protein with high expression in CD4+CD8+ thymocytes, has a crucial role in positive selection and T cell development. THEMIS lacks defined catalytic domains but contains two tandem repeats of a distinctive module of unknown function (CABIT). Here we found that THEMIS directly regulated the catalytic activity of the tyrosine phosphatase SHP-1. This action was mediated by the CABIT modules, which bound to the phosphatase domain of SHP-1 and promoted or stabilized oxidation of SHP-1's catalytic cysteine residue, which inhibited the tyrosine-phosphatase activity of SHP-1. Deletion of SHP-1 alleviated the developmental block in Themis-/- thymocytes. Thus, THEMIS facilitates thymocyte positive selection by enhancing the T cell antigen receptor signaling response to low-affinity ligands.
Collapse
Affiliation(s)
- Seeyoung Choi
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Claude Warzecha
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ekaterina Zvezdova
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jan Lee
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jérémy Argenty
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - Renaud Lesourne
- Centre de Physiopathologie de Toulouse Purpan, Toulouse, France; and Institut National de la Santé et de la Recherche Médicale, U1043, Centre National de la Recherche Scientifique, U5282, and Université de Toulouse, Université Paul Sabatier, Toulouse F-31300, France
| | - L. Aravind
- National Library of Medicine, National Institutes of Health, Bethesda, MD, 20892
| | - Paul E. Love
- Section on Hematopoiesis and Lymphocyte Biology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
137
|
Kouidhi S, Elgaaied AB, Chouaib S. Impact of Metabolism on T-Cell Differentiation and Function and Cross Talk with Tumor Microenvironment. Front Immunol 2017; 8:270. [PMID: 28348562 PMCID: PMC5346542 DOI: 10.3389/fimmu.2017.00270] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/24/2017] [Indexed: 12/12/2022] Open
Abstract
The immune system and metabolism are highly integrated and multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. Accumulating evidence indicates that the regulation of nutrient uptake and utilization in T cells is critically important for the control of their differentiation and manipulating metabolic pathways in these cells can shape their function and survival. This review will discuss some potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. It will also describe show subsets of T cells have specific metabolic requirements and signaling pathways that contribute to their respective function. Examples showing the apparent similarity between cancer cell metabolism and T cells during activation are illustrated and finally some mechanisms being used by tumor microenvironment to orchestrate T-cell metabolic dysregulation and the subsequent emergence of immune suppression are discussed. We believe that targeting T-cell metabolism may provide an additional opportunity to manipulate T-cell function in the development of novel therapeutics.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- ISBST, Laboratory BVBGR, LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, Sidi Thabet, Tunisia; Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Amel Benammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Sciences of Tunis, University Tunis El Manar , Tunis , Tunisia
| | - Salem Chouaib
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1186, Laboratory «Integrative Tumor Immunology and Genetic Oncology», Equipe Labellisée LIGUE 2015, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, University of Paris-Sud, Villejuif, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
138
|
Renner K, Singer K, Koehl GE, Geissler EK, Peter K, Siska PJ, Kreutz M. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Front Immunol 2017; 8:248. [PMID: 28337200 PMCID: PMC5340776 DOI: 10.3389/fimmu.2017.00248] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy.
Collapse
Affiliation(s)
- Kathrin Renner
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Katrin Singer
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Gudrun E Koehl
- Department of Surgery, University Hospital Regensburg , Regensburg , Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg , Regensburg , Germany
| | - Katrin Peter
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Peter J Siska
- Internal Medicine III, University Hospital Regensburg , Regensburg , Germany
| | - Marina Kreutz
- Internal Medicine III, University Hospital Regensburg, Regensburg, Germany; Regensburg Center for Interventional Immunology, Regensburg, Germany
| |
Collapse
|
139
|
Fisicaro P, Barili V, Montanini B, Acerbi G, Ferracin M, Guerrieri F, Salerno D, Boni C, Massari M, Cavallo MC, Grossi G, Giuberti T, Lampertico P, Missale G, Levrero M, Ottonello S, Ferrari C. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med 2017; 23:327-336. [DOI: 10.1038/nm.4275] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
|
140
|
Yang Z, Shen Y, Oishi H, Matteson EL, Tian L, Goronzy JJ, Weyand CM. Restoring oxidant signaling suppresses proarthritogenic T cell effector functions in rheumatoid arthritis. Sci Transl Med 2016; 8:331ra38. [PMID: 27009267 DOI: 10.1126/scitranslmed.aad7151] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/09/2016] [Indexed: 12/14/2022]
Abstract
In patients with rheumatoid arthritis (RA), CD4(+)T cells hyperproliferate during clonal expansion, differentiating into cytokine-producing effector cells that contribute to disease pathology. However, the metabolic underpinnings of this hyperproliferation remain unclear. In contrast to healthy T cells, naïve RA T cells had a defect in glycolytic flux due to the up-regulation of glucose-6-phosphate dehydrogenase (G6PD). Excess G6PD shunted glucose into the pentose phosphate pathway, resulting in NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) accumulation and reactive oxygen species (ROS) consumption. With surplus reductive equivalents, RA T cells insufficiently activated the redox-sensitive kinase ataxia telangiectasia mutated (ATM), bypassed the G2/M cell cycle checkpoint, and hyperproliferated. Moreover, insufficient ATM activation biased T cell differentiation toward the T helper 1 (TH1) and TH17 lineages, imposing a hyperinflammatory phenotype. We have identified several interventions that replenish intracellular ROS, which corrected the abnormal proliferative behavior of RA T cells and successfully suppressed synovial inflammation. Thus, rebalancing glucose utilization and restoring oxidant signaling may provide a therapeutic strategy to prevent autoimmunity in RA.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yi Shen
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hisashi Oishi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eric L Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Lu Tian
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
141
|
Case AJ, Roessner CT, Tian J, Zimmerman MC. Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine Profiles. PLoS One 2016; 11:e0164609. [PMID: 27727316 PMCID: PMC5058488 DOI: 10.1371/journal.pone.0164609] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 02/07/2023] Open
Abstract
Norepinephrine (NE) produces multifaceted regulatory patterns in T-lymphocytes. Recently, we have shown that NE utilizes redox signaling as evidenced by increased superoxide (O2●-) causally linked to the observed changes in these cells; however, the source of this reactive oxygen species (ROS) remains elusive. Herein, we hypothesized that the source of increased O2●- in NE-stimulated T-lymphocytes is due to disruption of mitochondrial bioenergetics. To address this hypothesis, we utilized purified mouse splenic CD4+ and CD8+ T-lymphocytes stimulated with NE and assessed O2●- levels, mitochondrial metabolism, cellular proliferation, and cytokine profiles. We demonstrate that the increase in O2●- levels in response to NE is time-dependent and occurs at later points of T-lymphocyte activation. Moreover, the source of O2●- was indeed the mitochondria as evidenced by enhanced MitoSOX Red oxidation as well as abrogation of this signal by the addition of the mitochondrial-targeted O2●--scavenging antioxidant MitoTempol. NE-stimulated T-lymphocytes also demonstrated decreased mitochondrial respiratory capacity, which suggests disruption of mitochondrial metabolism and the potential source of increased mitochondrial O2●-. The effects of NE in regards to redox signaling appear to be adrenergic receptor-dependent as specific receptor antagonists could reverse the increase in O2●-; however, differential receptors regulating these processes were observed in CD4+ versus CD8+ T-lymphocytes. Finally, mitochondrial O2●- was shown to be mechanistic to the NE-mediated T-lymphocyte phenotype as supplementation of MitoTempol could reverse specific changes in cytokine expression observed with NE treatment. Overall, these studies indicate that mitochondrial metabolism and O2●--mediated redox signaling play a regulatory role in the T-lymphocyte response to NE.
Collapse
Affiliation(s)
- Adam J. Case
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
- * E-mail:
| | - Colton T. Roessner
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Jun Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| |
Collapse
|
142
|
Kamiński MM, Liedmann S, Milasta S, Green DR. Polarization and asymmetry in T cell metabolism. Semin Immunol 2016; 28:525-534. [DOI: 10.1016/j.smim.2016.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/31/2022]
|
143
|
Abimannan T, Peroumal D, Parida JR, Barik PK, Padhan P, Devadas S. Oxidative stress modulates the cytokine response of differentiated Th17 and Th1 cells. Free Radic Biol Med 2016; 99:352-363. [PMID: 27567538 DOI: 10.1016/j.freeradbiomed.2016.08.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS) signaling is critical in T helper (Th) cell differentiation; however its role in differentiated Th cell functions is unclear. In this study, we investigated the role of oxidative stress on the effector functions of in vitro differentiated mouse Th17 and Th1 cells or CD4+ T cells from patients with Rheumatoid Arthritis using pro-oxidants plumbagin (PB) and hydrogen peroxide. We found that in mouse Th cells, non-toxic concentration of pro-oxidants inhibited reactivation induced expression of IL-17A in Th17 and IFN-γ in Th1 cells by reducing the expression of their respective TFs, RORγt and T-bet. Interestingly, in both the subsets, PB increased the expression of IL-4 by enhancing reactivation induced ERK1/2 phosphorylation. We further investigated the cytokine modulatory effect of PB on CD4+ T cells isolated from PBMCs of patients with Rheumatoid Arthritis, a well-known Th17 and or Th1 mediated disease. In human CD4+ T cells from Rheumatoid Arthritis patients, PB reduced the frequencies of IL-17A+ (Th17), IFN-γ+ (Th1) and IL-17A+/IFN-γ+ (Th17/1) cells and also inhibited the production of pro-inflammatory cytokines TNF-α and IL-6. N-Acetyl Cysteine (NAC) an antioxidant completely reversed PB mediated cytokine modulatory effects in both mouse and human cells indicating a direct role for ROS. Together our data suggest that oxidative microenvironment can alter cytokine response of terminally differentiated cells and thus altering intracellular ROS could be a potential way to target Th17 and Th1 cells in autoimmune disorders.
Collapse
Affiliation(s)
- Thiruvaimozhi Abimannan
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar 751023, Odisha, India
| | - Doureradjou Peroumal
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar 751023, Odisha, India
| | - Jyoti R Parida
- Institute of Medical Sciences & SUM Hospital, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Prakash K Barik
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar 751023, Odisha, India
| | - Prasanta Padhan
- Kalinga Institute of Medical Sciences, Patia, Bhubaneswar 751024, Odisha, India
| | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar 751023, Odisha, India.
| |
Collapse
|
144
|
Huq R, Samuel ELG, Sikkema WKA, Nilewski LG, Lee T, Tanner MR, Khan FS, Porter PC, Tajhya RB, Patel RS, Inoue T, Pautler RG, Corry DB, Tour JM, Beeton C. Preferential uptake of antioxidant carbon nanoparticles by T lymphocytes for immunomodulation. Sci Rep 2016; 6:33808. [PMID: 27654170 PMCID: PMC5031970 DOI: 10.1038/srep33808] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/31/2016] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases mediated by a type of white blood cell-T lymphocytes-are currently treated using mainly broad-spectrum immunosuppressants that can lead to adverse side effects. Antioxidants represent an alternative approach for therapy of autoimmune disorders; however, dietary antioxidants are insufficient to play this role. Antioxidant carbon nanoparticles scavenge reactive oxygen species (ROS) with higher efficacy than dietary and endogenous antioxidants. Furthermore, the affinity of carbon nanoparticles for specific cell types represents an emerging tactic for cell-targeted therapy. Here, we report that nontoxic poly(ethylene glycol)-functionalized hydrophilic carbon clusters (PEG-HCCs), known scavengers of the ROS superoxide (O2•-) and hydroxyl radical, are preferentially internalized by T lymphocytes over other splenic immune cells. We use this selectivity to inhibit T cell activation without affecting major functions of macrophages, antigen-presenting cells that are crucial for T cell activation. We also demonstrate the in vivo effectiveness of PEG-HCCs in reducing T lymphocyte-mediated inflammation in delayed-type hypersensitivity and in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Our results suggest the preferential targeting of PEG-HCCs to T lymphocytes as a novel approach for T lymphocyte immunomodulation in autoimmune diseases without affecting other immune cells.
Collapse
Affiliation(s)
- Redwan Huq
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | - Thomas Lee
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mark R. Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fatima S. Khan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Paul C. Porter
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rajeev B. Tajhya
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Rutvik S. Patel
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Taeko Inoue
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Graduate Program in Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Robia G. Pautler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David B. Corry
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - James M. Tour
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- The NanoCarbon Center, Rice University, Houston, Texas 77005, USA
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas 77030, USA
- Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
145
|
Peroumal D, Abimannan T, Tagirasa R, Parida JR, Singh SK, Padhan P, Devadas S. Inherent low Erk and p38 activity reduce Fas Ligand expression and degranulation in T helper 17 cells leading to activation induced cell death resistance. Oncotarget 2016; 7:54339-54359. [PMID: 27486885 PMCID: PMC5342346 DOI: 10.18632/oncotarget.10913] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 06/20/2016] [Indexed: 12/22/2022] Open
Abstract
Activation Induced Cell Death of T helper cells is central to maintaining immune homeostasis and a perturbation often manifests in aberrant T helper cells that is associated with immunopathologies. Significant presence of T cells positive for IL-17A (Th17) and dual positive for IFN-γ/IL-17A (Th1/Th17) in both effector (CD45RA+RO+) and memory (CD45RA-RO+) compartments with differential FasL protein in RA peripheral blood suggested their differential TCR AICD sensitivity. Lowered active caspase-3 in Th17 and Th1/Th17 over Th1 cells confirmed their capability to resist AICD and pointed to early upstream events. Differential MAPK activities, FasL protein and downstream caspase-3 activities in murine Th1 and Th17 cells established distinct TCR mediated signaling pathways and suggested low Erk and p38 activity as pivotal for AICD sensitivity. We extrapolated our mouse and human data and report that Fas-FasL is the preferred death pathway for both Th1 and Th17 and that inherently low Erk2 activity protected Th17 cells from TCR AICD. The presence of significantly higher numbers of aberrant T helper cells in RA also suggest an inflammatory cytokine milieu and AICD insensitive T cell link to sustained inflammation. Re sensitization to apoptosis by targeting MAPK activity especially Erk2 in RA might be of therapeutic value.
Collapse
Affiliation(s)
- Doureradjou Peroumal
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar, Odisha, India
| | - Thiruvaimozhi Abimannan
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar, Odisha, India
| | - Jyothi Ranjan Parida
- Institute of Medical Sciences & SUM Hospital, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Santosh Kumar Singh
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar, Odisha, India
| | - Prasantha Padhan
- Kalinga Institute of Medical Sciences, Patia, Bhubaneswar, Odisha, India
| | - Satish Devadas
- Infectious Disease Biology, Institute of Life Sciences, Chandrashekarpur, Bhubaneswar, Odisha, India
| |
Collapse
|
146
|
Abstract
Reactive oxygen species (ROS) are generated during T cell activation and serve a signaling function but can also be damaging. In this issue of Immunity, Zhang et al. (2016) show that miR-23a prevents ROS-elicited necrosis by suppressing cyclophilin D (PPIF), a regulator of ROS escape from mitochondria.
Collapse
Affiliation(s)
- Judith Agudo
- Genetics and Genomic Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian D Brown
- Genetics and Genomic Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
147
|
Herbel C, Patsoukis N, Bardhan K, Seth P, Weaver JD, Boussiotis VA. Clinical significance of T cell metabolic reprogramming in cancer. Clin Transl Med 2016; 5:29. [PMID: 27510264 PMCID: PMC4980327 DOI: 10.1186/s40169-016-0110-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 02/06/2023] Open
Abstract
Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy.
Collapse
Affiliation(s)
- Christoph Herbel
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kankana Bardhan
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Pankaj Seth
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, 330 Brookline Avenue, Dana 513, Boston, MA, 02215, USA.,Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Boston, USA
| | - Jessica D Weaver
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,Beth Israel Deaconess Cancer Center, Harvard Medical School, 330 Brookline Avenue, Dana 513, Boston, MA, 02215, USA.
| |
Collapse
|
148
|
Reactive Oxygen Species Regulate T Cell Immune Response in the Tumor Microenvironment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1580967. [PMID: 27547291 PMCID: PMC4980531 DOI: 10.1155/2016/1580967] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 06/06/2016] [Accepted: 06/30/2016] [Indexed: 12/21/2022]
Abstract
Reactive oxygen species (ROS) produced by cellular metabolism play an important role as signaling messengers in immune system. ROS elevated in the tumor microenvironment are associated with tumor-induced immunosuppression. T cell-based therapy has been recently approved to be effective for cancer treatment. However, T cells often become dysfunctional after reaching the tumor site. It has been reported that ROS participate extensively in T cells activation, apoptosis, and hyporesponsiveness. The sensitivity of T cells to ROS varies among different subsets. ROS can be regulated by cytokines, amino acid metabolism, and enzymatic activity. Immunosuppressive cells accumulate in the tumor microenvironment and induce apoptosis and functional suppression of T cells by producing ROS. Thus, modulating the level of ROS may be important to prolong survival of T cells and enhance their antitumor function. Combining T cell-based therapy with antioxidant treatment such as administration of ROS scavenger should be considered as a promising strategy in cancer treatment, aiming to improve antitumor T cells immunity.
Collapse
|
149
|
Chaudhuri L, Srivastava RK, Kos F, Shrikant PA. Uncoupling protein 2 regulates metabolic reprogramming and fate of antigen-stimulated CD8+ T cells. Cancer Immunol Immunother 2016; 65:869-74. [PMID: 27271549 PMCID: PMC4919150 DOI: 10.1007/s00262-016-1851-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 05/23/2016] [Indexed: 01/21/2023]
Abstract
Adoptive cell therapy (ACT) employing ex vivo-generated tumor antigen-specific CD8+ T cells shows tumor efficacy when the transferred cells possess both effector and memory functions. New strategies based on understanding of mechanisms that balance CD8+ T cell differentiation toward effector and memory responses are highly desirable. Emerging information confirms a central role for antigen-induced metabolic reprogramming in CD8+ T cell differentiation and clonal expansion. The mitochondrial protein uncoupling protein 2 (UCP2) is induced by antigen stimulation of CD8+ T cells; however, its role in metabolic reprogramming underlying differentiation and clonal expansion has not been reported. Employing genetic (siRNA) and pharmacologic (Genipin) approaches, we note that antigen-induced UCP2 expression reduces glycolysis, fatty acid synthesis and production of reactive oxygen species to balance differentiation with survival of effector CD8+ T cells. Inhibition of UCP2 promotes CD8+ T cell terminal differentiation into short-lived effector cells (CD62L(lo)KLRG1(Hi)IFNγ(Hi)) that undergo clonal contraction. These findings are the first to reveal a role for antigen-induced UCP2 expression in balancing CD8+ T cell differentiation and survival. Targeting UCP2 to regulate metabolic reprogramming of CD8+ T cells is an attractive new approach to augment efficacy of tumor therapy by ACT.
Collapse
Affiliation(s)
- Leena Chaudhuri
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
| | - Rupesh K Srivastava
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Department of Zoology, School of Biological Sciences, Dr. Hari Singh Gour University, Sagar, MP, 470003, India
| | - Ferdynand Kos
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA
- Department of Experimental Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Protul A Shrikant
- Departments of Immunology, Molecular Pharmacology/Experimental Therapeutics and Research, Mayo Clinic Arizona, JRB 3-356, E. Shea Blvd, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
150
|
Kabat AM, Pott J, Maloy KJ. The Mucosal Immune System and Its Regulation by Autophagy. Front Immunol 2016; 7:240. [PMID: 27446072 PMCID: PMC4916208 DOI: 10.3389/fimmu.2016.00240] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
The gastrointestinal tract presents a unique challenge to the mucosal immune system, which has to constantly monitor the vast surface for the presence of pathogens, while at the same time maintaining tolerance to beneficial or innocuous antigens. In the intestinal mucosa, specialized innate and adaptive immune components participate in directing appropriate immune responses toward these diverse challenges. Recent studies provide compelling evidence that the process of autophagy influences several aspects of mucosal immune responses. Initially described as a “self-eating” survival pathway that enables nutrient recycling during starvation, autophagy has now been connected to multiple cellular responses, including several aspects of immunity. Initial links between autophagy and host immunity came from the observations that autophagy can target intracellular bacteria for degradation. However, subsequent studies indicated that autophagy plays a much broader role in immune responses, as it can impact antigen processing, thymic selection, lymphocyte homeostasis, and the regulation of immunoglobulin and cytokine secretion. In this review, we provide a comprehensive overview of mucosal immune cells and discuss how autophagy influences many aspects of their physiology and function. We focus on cell type-specific roles of autophagy in the gut, with a particular emphasis on the effects of autophagy on the intestinal T cell compartment. We also provide a perspective on how manipulation of autophagy may potentially be used to treat mucosal inflammatory disorders.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Johanna Pott
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford , Oxford , UK
| |
Collapse
|