101
|
Li S, Zhou A, Wang J, Zhang S. Interplay of autophagy and apoptosis during PRRSV infection of Marc145 cell. INFECTION GENETICS AND EVOLUTION 2016; 39:51-54. [PMID: 26774368 DOI: 10.1016/j.meegid.2016.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/31/2015] [Accepted: 01/11/2016] [Indexed: 11/29/2022]
Abstract
Autophagy and apoptosis play essential roles 'in virus infection. Our study was performed to investigate the interplay between autophagy and apoptosis in PRRSV replication. In our present study, autophagy and apoptosis were induced by PRRSV infection. Viral replication was dampened/attenuated by autophagy deficient and potentiated by apoptosis inhibition. Furthermore, PRRSV replication was restored by apoptosis inhibition in autophagy deficient cells. Taken together, our findings unveil the functional relationship between autophagy and apoptosis during PRRSV replication.
Collapse
Affiliation(s)
- Shuaifeng Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Zhou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxing Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Shujun Zhang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
102
|
Abstract
The nonstructural proteins (nsPs) of chikungunya virus (CHIKV) are expressed as one or two polyprotein precursors, which are translated directly from the viral genomic RNA. Mature nsPs are generated by precise processing of these polyproteins. Both the precursors and mature nsPs are essential for CHIKV replication. Similar to other alphaviruses, CHIKV nsPs not only perform virus RNA replication but are also crucial for other activities essential for virus infection and pathogenesis. Thus far the best-studied CHIKV ns-protein is nsP2, for which protease, NTPase, RNA triphosphatase, and RNA helicase activities have been demonstrated. In addition, nsP2 is crucial for shut-off of host cell transcription and translation and it counteracts cellular antiviral responses. Compared to their homologues from the well-studied Sindbis and Semliki Forest viruses, CHIKV nsP1, nsP3, and nsP4 have been subjected to only few studies. Nevertheless, there are strong indirect pieces of evidence indicating that these CHIKV proteins have the same enzymatic activities as their counterparts in the other alphaviruses. Information concerning the specific interaction of CHIKV nsPs with host components is beginning to emerge. All the nsPs are involved in the functioning of membrane-bound replication complexes also called spherules, but the finer details of the structure and assembly of these complexes are currently poorly understood.
Collapse
|
103
|
Meng G, Xia M, Wang D, Chen A, Wang Y, Wang H, Yu D, Wei J. Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget 2015; 5:6365-74. [PMID: 25051374 PMCID: PMC4171636 DOI: 10.18632/oncotarget.2219] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Apoptosis contributes to antitumor effect of Newcastle disease virus (NDV). Autophagy is a protective response under cellular stress including viral infection. How autophagy interferes with oncolysis of NDV remains unclear. In this study, we found that NDV La Sota strain induced autophagy and preserved autophagic flux in non-small cell lung cancer cells. NDV-induced autophagy promoted viral replication by blocking cancer cells from caspase-dependent apoptosis. Moreover, we found that NDV recruited SQSTM1-mediated mitophagy to control cytochrome c release, and thus blocked intrinsic pro-apoptotic signaling. Finally, we observed an enhanced oncolysis in NSCLC cells treated with NDV in the presence of an autophagy inhibitor 3-methyladenine (3-MA). Interestingly, a more profound antitumor effect could be achieved when administration of 3-MA was postponed to 24 h after NDV infection. Our findings unveil a novel way that NDV subverts mitophagy to favor its replication by blocking apoptosis, and provide rationale for systemic therapeutic cohort combining NDV with autophagy inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Gang Meng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Mao Xia
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Diancheng Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Aiping Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yongshan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongwei Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Decai Yu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China; Nanjing University Hightech Institute at Suzhou, Suzhou, China
| |
Collapse
|
104
|
Xiong J. Atg7 in development and disease: panacea or Pandora's Box? Protein Cell 2015; 6:722-34. [PMID: 26404030 PMCID: PMC4598325 DOI: 10.1007/s13238-015-0195-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023] Open
Abstract
Macroautophagy is an evolutionarily conserved intracellular degradation system used by life ranging from yeasts to mammals. The core autophagic machinery is composed of ATG (autophagy-related) protein constituents. One particular member of the ATG protein family, Atg7, has been the focus of recent research. Atg7 acts as an E1-like activating enzyme facilitating both microtubule-associated protein light chain 3 (LC3)-phosphatidylethanolamine and ATG12 conjugation. Thus, Atg7 stands at the hub of these two ubiquitin-like systems involving LC3 and Atg12 in autophagic vesicle expansion. In this review, I focus on the pleiotropic function of Atg7 in development, maintenance of health, and alternations of such control in disease.
Collapse
Affiliation(s)
- Jianhua Xiong
- Center for Molecular Medicine, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
105
|
Wintachai P, Kaur P, Lee RCH, Ramphan S, Kuadkitkan A, Wikan N, Ubol S, Roytrakul S, Chu JJH, Smith DR. Activity of andrographolide against chikungunya virus infection. Sci Rep 2015; 5:14179. [PMID: 26384169 PMCID: PMC4585663 DOI: 10.1038/srep14179] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 08/20/2015] [Indexed: 11/30/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus that has recently engendered large epidemics around the world. There is no specific antiviral for treatment of patients infected with CHIKV, and development of compounds with significant anti-CHIKV activity that can be further developed to a practical therapy is urgently required. Andrographolide is derived from Andrographis paniculata, a herb traditionally used to treat a number of conditions including infections. This study sought to determine the potential of andrographolide as an inhibitor of CHIKV infection. Andrographolide showed good inhibition of CHIKV infection and reduced virus production by approximately 3log10 with a 50% effective concentration (EC50) of 77 μM without cytotoxicity. Time-of-addition and RNA transfection studies showed that andrographolide affected CHIKV replication and the activity of andrographolide was shown to be cell type independent. This study suggests that andrographolide has the potential to be developed further as an anti-CHIKV therapeutic agent.
Collapse
Affiliation(s)
| | - Parveen Kaur
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Regina Ching Hua Lee
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Suwipa Ramphan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Atichat Kuadkitkan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Nitwara Wikan
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Justin Jang Hann Chu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| |
Collapse
|
106
|
Joubert PE, Stapleford K, Guivel-Benhassine F, Vignuzzi M, Schwartz O, Albert ML. Inhibition of mTORC1 Enhances the Translation of Chikungunya Proteins via the Activation of the MnK/eIF4E Pathway. PLoS Pathog 2015; 11:e1005091. [PMID: 26317997 PMCID: PMC4552638 DOI: 10.1371/journal.ppat.1005091] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/16/2015] [Indexed: 01/20/2023] Open
Abstract
Chikungunya virus (CHIKV), the causative agent of a major epidemic spanning five continents, is a positive stranded mRNA virus that replicates using the cell's cap-dependent translation machinery. Despite viral infection inhibiting mTOR, a metabolic sensor controls cap-dependent translation, viral proteins are efficiently translated. Rapalog treatment, silencing of mtor or raptor genes, but not rictor, further enhanced CHIKV infection in culture cells. Using biochemical assays and real time imaging, we demonstrate that this effect is independent of autophagy or type I interferon production. Providing in vivo evidence for the relevance of our findings, mice treated with mTORC1 inhibitors exhibited increased lethality and showed a higher sensitivity to CHIKV. A systematic evaluation of the viral life cycle indicated that inhibition of mTORC1 has a specific positive effect on viral proteins, enhancing viral replication by increasing the translation of both structural and nonstructural proteins. Molecular analysis defined a role for phosphatidylinositol-3 kinase (PI3K) and MAP kinase-activated protein kinase (MnKs) activation, leading to the hyper-phosphorylation of eIF4E. Finally, we demonstrated that in the context of CHIKV inhibition of mTORC1, viral replication is prioritized over host translation via a similar mechanism. Our study reveals an unexpected bypass pathway by which CHIKV protein translation overcomes viral induced mTORC1 inhibition.
Collapse
Affiliation(s)
- Pierre-Emmanuel Joubert
- Unité Immunobiologie des Cellules Dendritiques, Département d’Immunologie, Institut Pasteur, Paris, Cedex 15, France
- INSERM U818, Paris, France
| | - Kenneth Stapleford
- Unité des populations virales et Pathogenèse, Département de Virologie, Institut Pasteur, Paris, Cedex 15, France
| | | | - Marco Vignuzzi
- Unité des populations virales et Pathogenèse, Département de Virologie, Institut Pasteur, Paris, Cedex 15, France
| | - Olivier Schwartz
- Unité Virus et Immunité, Département de Virologie Institut Pasteur, Paris, Cedex 15, France
| | - Matthew L. Albert
- Unité Immunobiologie des Cellules Dendritiques, Département d’Immunologie, Institut Pasteur, Paris, Cedex 15, France
- INSERM U818, Paris, France
- Centre d’Immunologie Humaine, Département d’Immunologie, Institut Pasteur, Paris, Cedex 15, France
| |
Collapse
|
107
|
Lum FM, Ng LF. Cellular and molecular mechanisms of chikungunya pathogenesis. Antiviral Res 2015; 120:165-74. [DOI: 10.1016/j.antiviral.2015.06.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/27/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
|
108
|
RNase L Cleavage Products Promote Switch from Autophagy to Apoptosis by Caspase-Mediated Cleavage of Beclin-1. Int J Mol Sci 2015; 16:17611-36. [PMID: 26263979 PMCID: PMC4581211 DOI: 10.3390/ijms160817611] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 01/03/2023] Open
Abstract
Autophagy and apoptosis share regulatory molecules enabling crosstalk in pathways that affect cellular homeostasis including response to viral infections and survival of tumor cells. Ribonuclease L (RNase L) is an antiviral endonuclease that is activated in virus-infected cells and cleaves viral and cellular single-stranded RNAs to produce small double-stranded RNAs with roles in amplifying host responses. Activation of RNase L induces autophagy and apoptosis in many cell types. However, the mechanism by which RNase L mediates crosstalk between these two pathways remains unclear. Here we show that small dsRNAs produced by RNase L promote a switch from autophagy to apoptosis by caspase-mediated cleavage of Beclin-1, terminating autophagy. The caspase 3-cleaved C-terminal fragment of Beclin-1 enhances apoptosis by translocating to the mitochondria along with proapoptotic protein, Bax, and inducing release of cytochrome C to the cytosol. Cleavage of Beclin-1 determines switch to apoptosis since expression of caspase-resistant Beclin-1 inhibits apoptosis and sustains autophagy. Moreover, inhibiting RNase L-induced autophagy promotes cell death and inhibiting apoptosis prolongs autophagy in a cross-inhibitory mechanism. Our results demonstrate a novel role of RNase L generated small RNAs in cross-talk between autophagy and apoptosis that impacts the fate of cells during viral infections and cancer.
Collapse
|
109
|
Couderc T, Lecuit M. Chikungunya virus pathogenesis: From bedside to bench. Antiviral Res 2015; 121:120-31. [PMID: 26159730 DOI: 10.1016/j.antiviral.2015.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/04/2015] [Indexed: 11/28/2022]
Abstract
Chikungunya virus (CHIKV) is an arbovirus transmitted to humans by mosquito bite. A decade ago, the virus caused a major outbreak in the islands of the Indian Ocean, then reached India and Southeast Asia. More recently, CHIKV has emerged in the Americas, first reaching the Caribbean and now extending to Central, South and North America. It is therefore considered a major public health and economic threat. CHIKV causes febrile illness typically associated with debilitating joint pains. In rare cases, it may also cause central nervous system disease, notably in neonates. Joint symptoms may persist for months to years, and lead to arthritis. This review focuses on the spectrum of signs and symptoms associated with CHIKV infection in humans. It also illustrates how the analysis of clinical and biological data from human cohorts and the development of animal and cellular models of infection has helped to identify the tissue and cell tropisms of the virus and to decipher host responses in benign, severe or persistent disease. This article forms part of a symposium in Antiviral Research on "Chikungunya discovers the New World".
Collapse
Affiliation(s)
- Thérèse Couderc
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France.
| | - Marc Lecuit
- Institut Pasteur, Biology of Infection Unit, Paris, France; Inserm U1117, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Division of Infectious Diseases and Tropical Medicine, Necker-Enfants Malades University Hospital, Institut Imagine, Paris, France; Global Virus Network.
| |
Collapse
|
110
|
Steele S, Brunton J, Kawula T. The role of autophagy in intracellular pathogen nutrient acquisition. Front Cell Infect Microbiol 2015; 5:51. [PMID: 26106587 PMCID: PMC4460576 DOI: 10.3389/fcimb.2015.00051] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/26/2015] [Indexed: 01/01/2023] Open
Abstract
Following entry into host cells intracellular pathogens must simultaneously evade innate host defense mechanisms and acquire energy and anabolic substrates from the nutrient-limited intracellular environment. Most of the potential intracellular nutrient sources are stored within complex macromolecules that are not immediately accessible by intracellular pathogens. To obtain nutrients for proliferation, intracellular pathogens must compete with the host cell for newly-imported simple nutrients or degrade host nutrient storage structures into their constituent components (fatty acids, carbohydrates, and amino acids). It is becoming increasingly evident that intracellular pathogens have evolved a wide variety of strategies to accomplish this task. One recurrent microbial strategy is to exploit host degradative processes that break down host macromolecules into simple nutrients that the microbe can use. Herein we focus on how a subset of bacterial, viral, and eukaryotic pathogens leverage the host process of autophagy to acquire nutrients that support their growth within infected cells.
Collapse
Affiliation(s)
- Shaun Steele
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Jason Brunton
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| | - Thomas Kawula
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina Chapel Hill, NC, USA
| |
Collapse
|
111
|
Lin PY, Chang CD, Chen YC, Shih WL. RhoA/ROCK1 regulates Avian Reovirus S1133-induced switch from autophagy to apoptosis. BMC Vet Res 2015; 11:103. [PMID: 25944062 PMCID: PMC4430033 DOI: 10.1186/s12917-015-0417-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 04/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autophagy is an essential process in the control of cellular homeostasis. It enables cells under certain stress conditions to survive by removing toxic cellular components, and may protect cells from apoptosis. In the present study, the signaling pathways involved in ARV S1133 regulated switch from autophagy to apoptosis were investigated. RESULTS ARV S1133 infection caused autophagy in the early to middle infectious stages in Vero and DF1 cells, and apoptosis in the middle to late stages. Conversion of the autophagy marker LC3-I to LC3-II occurred earlier than cleavage of the apoptotic marker caspase-3. ARV S1133 also activated the Beclin-1 promoter in the early to middle stages of infection. Levels of RhoA-GTP and ROCK1 activity were elevated upon ARV S1133 infection, while inhibition of RhoA and ROCK1 reduced autophagy and subsequent apoptosis. Conversely, inhibition of caspase-3 did not affect the level of autophagy. Beclin-1 knockdown and treatment with autophagy inhibitors, 3-MA and Bafilomycin A1, suppressed ARV S1133-induced autophagy and apoptosis simultaneously, suggesting the shift from autophagy to apoptosis. A co-immunoprecipitation assay demonstrated that the formation of a RhoA, ROCK1 and Beclin-1 complex coincided with the induction of autophagy. CONCLUSION Our results demonstrate that RhoA/ROCK1 signaling play critical roles in the transition of cell activity from autophagy to apoptosis in ARV S1133-infected cells.
Collapse
Affiliation(s)
- Ping-Yuan Lin
- Department of Biological Science and Technology, Pingtung, 91201, Taiwan.
| | - Ching-Dong Chang
- Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| | - Yo-Chia Chen
- Department of Biological Science and Technology, Pingtung, 91201, Taiwan.
| | - Wen-Ling Shih
- Department of Biological Science and Technology, Pingtung, 91201, Taiwan. .,Graduate Institute of Biotechnology, National Pingtung University of Science and Technology, 1, Shuefu Rd., Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
112
|
Teng TS, Kam YW, Lee B, Hapuarachchi HC, Wimal A, Ng LC, Ng LFP. A Systematic Meta-analysis of Immune Signatures in Patients With Acute Chikungunya Virus Infection. J Infect Dis 2015; 211:1925-35. [PMID: 25635123 PMCID: PMC4442625 DOI: 10.1093/infdis/jiv049] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Individuals infected with chikungunya virus (CHIKV) normally exhibit a variety of clinical manifestations during the acute phase of infection. However, studies in different patient cohorts have revealed that disease manifestations vary in frequency. METHODS Disease profiles between patients with acute CHIKV-infection and febrile patients without CHIKV were compared and examined to determine whether any clinical presentations were associated with the clinical outcome of CHIKV infection. Circulatory immune mediators profiles were then characterized and compared with data from 14 independent patient cohort studies. The particular immune mediator signature that defines acute CHIKV infection was determined. RESULTS Our findings revealed a specific pattern of clinical presentations of joint-specific arthralgia from this CHIKV cohort. More importantly, we identified an immune mediator signature dominated by proinflammatory cytokines, which include interferon α and γ and interleukin 2, 2R, 6, 7, 12, 15, 17, and 18, across different patient cohorts of CHIKV load associated with arthralgia. CONCLUSIONS To our knowledge, this is the first study that associated levels of CHIKV load with arthralgia as an indicator of acute CHIKV infection. Importantly, our findings also revealed specific immune mediator signatures that can be used to better define CHIKV infection.
Collapse
Affiliation(s)
- Terk-Shin Teng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis
| | - Yiu-Wing Kam
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis
| | - Bernett Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis
| | | | - Abeyewickreme Wimal
- Department of Parasitology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis Institute of Infection and Global Health, University of Liverpool, United Kingdom
| |
Collapse
|
113
|
Long KM, Heise MT. Protective and Pathogenic Responses to Chikungunya Virus Infection. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:13-21. [PMID: 26366337 DOI: 10.1007/s40475-015-0037-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chikungunya virus (CHIKV) is an arbovirus responsible for causing epidemic outbreaks of human disease characterized by painful and often debilitating arthralgia. Recently CHIKV has moved into the Caribbean and the Americas resulting in massive outbreaks in naïve human populations. Given the importance of CHIKV as an emerging disease, a significant amount of effort has gone into interpreting the virus-host interactions that contribute to protection or virus-induced pathology following CHIKV infection, with the long term goal of using this information to develop new therapies or safe and effective anti-CHIKV vaccines. This work has made it clear that numerous distinct host responses are involved in the response to CHIKV infection, where some aspects of the host innate and adaptive immune response protect from or limit virus-induced disease, while other pathways actually exacerbate the virus-induced disease process. This review will discuss mechanisms that have been identified as playing a role in the host response to CHIKV infection and illustrate the importance of carefully evaluating these responses to determine whether they play a protective or pathologic role during CHIKV infection.
Collapse
Affiliation(s)
- Kristin M Long
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, CB 7292, Chapel Hill, NC 27599
| | - Mark T Heise
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, CB 7292, Chapel Hill, NC 27599 ; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, CB 7292, Chapel Hill, NC 27599
| |
Collapse
|
114
|
Rougeron V, Sam IC, Caron M, Nkoghe D, Leroy E, Roques P. Chikungunya, a paradigm of neglected tropical disease that emerged to be a new health global risk. J Clin Virol 2014; 64:144-52. [PMID: 25453326 DOI: 10.1016/j.jcv.2014.08.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 08/25/2014] [Indexed: 01/08/2023]
Abstract
Chikungunya virus (CHIKV) is an alphavirus of the Togaviridae family that causes chronic and incapacitating arthralgia in human populations. Since its discovery in 1952, CHIKV was responsible for sporadic and infrequent outbreaks. However, since 2005, global Chikungunya outbreaks have occurred, inducing some fatalities and associated with severe and chronic morbidity. Chikungunya is thus considered as an important re-emerging public health problem in both tropical and temperate countries, where the distribution of the Aedes mosquito vectors continues to expand. This review highlights the most recent advances in our knowledge and understanding of the epidemiology, biology, treatment and vaccination strategies of CHIKV.
Collapse
Affiliation(s)
- Virginie Rougeron
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon; Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (IRD 224 - CNRS 5290 - UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mélanie Caron
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Dieudonné Nkoghe
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Eric Leroy
- Centre International de Recherches Médicales de Franceville, Franceville, Gabon; Unité Mixte de Recherche Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (IRD 224 - CNRS 5290 - UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Pierre Roques
- CEA, Institute of Emerging Diseases and Innovative Therapies, Division of Immuno-Virology, Fontenay-aux-Roses, France; Université Paris-Sud 11, UMR E1, Orsay, France.
| |
Collapse
|
115
|
Kobayashi S, Orba Y, Yamaguchi H, Takahashi K, Sasaki M, Hasebe R, Kimura T, Sawa H. Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Res 2014; 191:83-91. [DOI: 10.1016/j.virusres.2014.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/11/2014] [Accepted: 07/16/2014] [Indexed: 11/27/2022]
|
116
|
Münz C. Regulation of innate immunity by the molecular machinery of macroautophagy. Cell Microbiol 2014; 16:1627-36. [DOI: 10.1111/cmi.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Christian Münz
- Viral Immunobiology; Institute of Experimental Immunology; University of Zurich; Zurich Switzerland
| |
Collapse
|
117
|
Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J, Hong Y. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 2014; 10:1072-83. [PMID: 25285039 PMCID: PMC4183927 DOI: 10.7150/ijbs.9719] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy and apoptosis are two important catabolic processes contributing to the maintenance of cellular and tissue homeostasis. Autophagy controls the turnover of protein aggregates and damaged organelles within cells, while apoptosis is the principal mechanism by which unwanted cells are dismantled and eliminated from organisms. Despite marked differences between these two pathways, they are highly interconnected in determining the fate of cells. Intriguingly, caspases, the primary drivers of apoptotic cell death, play a critical role in mediating the complex crosstalk between autophagy and apoptosis. Pro-apoptotic signals can converge to activate caspases to execute apoptotic cell death. In addition, activated caspases can degrade autophagy proteins (i.e., Beclin-1, Atg5, and Atg7) to shut down the autophagic response. Moreover, caspases can convert pro-autophagic proteins into pro-apoptotic proteints to trigger apoptotic cell death instead. It is clear that caspases are important in both apoptosis and autophagy, thus a detailed deciphering of the role of caspases in these two processes is still required to clarify the functional relationship between them. In this article, we provide a current overview of caspases in its interplay between autophagy and apoptosis. We emphasized that defining the role of caspases in autophagy-apoptosis crosstalk will provide a framework for more precise manipulation of these two processes during cell death.
Collapse
Affiliation(s)
- Haijian Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoru Che
- 2. Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiaoli Zheng
- 3. Clinical Research Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Pan
- 4. Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Anwen Shao
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
118
|
Lee YR, Wang PS, Wang JR, Liu HS. Enterovirus 71-induced autophagy increases viral replication and pathogenesis in a suckling mouse model. J Biomed Sci 2014; 21:80. [PMID: 25139436 PMCID: PMC4237791 DOI: 10.1186/s12929-014-0080-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/11/2014] [Indexed: 11/10/2022] Open
Abstract
Background We previously reported that Enterovirus 71 (EV71) infection activates autophagy, which promotes viral replication both in vitro and in vivo. In the present study we further investigated whether EV71 infection of neuronal SK-N-SH cells induces an autophagic flux. Furthermore, the effects of autophagy on EV71-related pathogenesis and viral load were evaluated after intracranial inoculation of mouse-adapted EV71 (MP4 strain) into 6-day-old ICR suckling mice. Results We demonstrated that in EV71-infected SK-N-SH cells, EV71 structural protein VP1 and nonstructural protein 2C co-localized with LC3 and mannose-6-phosphate receptor (MPR, endosome marker) proteins by immunofluorescence staining, indicating amphisome formation. Together with amphisome formation, EV71 induced an autophagic flux, which could be blocked by NH4Cl (inhibitor of acidification) and vinblastine (inhibitor of fusion), as demonstrated by Western blotting. Suckling mice intracranially inoculated with EV71 showed EV71 VP1 protein expression (representing EV71 infection) in the cerebellum, medulla, and pons by immunohistochemical staining. Accompanied with these infected brain tissues, increased expression of LC3-II protein as well as formation of LC3 aggregates, autophagosomes and amphisomes were detected. Amphisome formation, which was confirmed by colocalization of EV71-VP1 protein or LC3 puncta and the endosome marker protein MPR. Thus, EV71-infected suckling mice (similar to EV71-infected SK-N-SH cells) also show an autophagic flux. The physiopathological parameters of EV71-MP4 infected mice, including body weight loss, disease symptoms, and mortality were increased compared to those of the uninfected mice. We further blocked EV71-induced autophagy with the inhibitor 3-methyladenine (3-MA), which attenuated the disease symptoms and decreased the viral load in the brain tissues of the infected mice. Conclusions In this study, we reveal that EV71 infection of suckling mice induces an amphisome formation accompanied with the autophagic flux in the brain tissues. Autophagy induced by EV71 promotes viral replication and EV71-related pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
119
|
Mo J, Zhang M, Marshall B, Smith S, Covar J, Atherton S. Interplay of autophagy and apoptosis during murine cytomegalovirus infection of RPE cells. Mol Vis 2014; 20:1161-73. [PMID: 25324684 PMCID: PMC4145064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 08/12/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Previous studies have demonstrated that autophagy is involved in the pathogenesis of human cytomegalovirus (HCMV) infection. However, whether autophagy is regulated by murine cytomegalovirus (MCMV) infection has not yet been investigated. The purpose of these studies was to determine how autophagy is affected by MCMV infection of the retinal pigment epithelial (RPE) cells and whether there is a functional relationship between autophagy and apoptosis; and if so, how regulation of autophagy impacts apoptosis. METHODS RPE cells were isolated from C57BL/6 mice and infected with MCMV K181. The cells were cultured in medium containing rapamycin, chloroquine, or ammonium chloride. Green fluorescent protein-light chain 3 (GFP-LC3) plasmid was transfected to RPE cells, and the GFP-LC3 positive puncta were counted. Electron microscopic (EM) images were taken to visualize the structure of the autophagic vacuoles. Western blot was performed to detect the expression of related proteins. Trypan blue exclusion assay was used to measure the percentage of viable cells. RESULTS Although the LC3B-II levels consistently increased during MCMV infection of RPE cells, administration of chloroquine or ammonium chloride increased LC3B-II expression only at the early stage of infection (6 h post-inoculation [p.i.] and 12 h p.i.), not at or after 24 h p.i. The punctate autophagic vacuoles in the GFP-LC3 transfected RPE cells were counted using light microscopy or by EM examination, the number of autophagic vacuoles was significantly increased in the MCMV-infected RPE cells compared to the uninfected controls. Compared to untreated MCMV-infected control cells, rapamycin treatment resulted in a significant decrease in the cleaved caspase 3 levels as well as a significant decrease in the ratio of phosphorylated mammalian target of rapamycin (mTOR) to total mTOR and in the ratio of phosphorylated P70S6K to total P70S6K. In contrast, chloroquine treatment resulted in a significant increase in the cleaved caspase 3 levels in the MCMV-infected RPE cells. CONCLUSIONS Autophagic vacuole accumulation was detected during MCMV infection of RPE cells. In contrast, autophagic flux was greatly decreased at or after 24 h p.i. The results suggest that MCMV might have a strategy for inhibiting or blocking autophagy activity by targeting a later autophagy process, such as the formation of autolysosomes or degradation of their content. Our data also suggest that there is a functional relationship between autophagy and apoptosis, which plays an important role during MCMV infection of the RPE.
Collapse
Affiliation(s)
- Juan Mo
- Georgia Regents University, Medical College of Georgia, Department of Cellular Biology and Anatomy, Augusta, GA
| | - Ming Zhang
- Georgia Regents University, Medical College of Georgia, Department of Cellular Biology and Anatomy, Augusta, GA
| | - Brendan Marshall
- Georgia Regents University, Medical College of Georgia, Department of Cellular Biology and Anatomy, Augusta, GA
| | - Sylvia Smith
- Georgia Regents University, Medical College of Georgia, Department of Cellular Biology and Anatomy, Augusta, GA,Georgia Regents University, Medical College of Georgia, Department of Ophthalmology, Augusta, GA
| | - Jason Covar
- Georgia Regents University, Medical College of Georgia, Department of Cellular Biology and Anatomy, Augusta, GA
| | - Sally Atherton
- Georgia Regents University, Medical College of Georgia, Department of Cellular Biology and Anatomy, Augusta, GA
| |
Collapse
|
120
|
Jheng JR, Ho JY, Horng JT. ER stress, autophagy, and RNA viruses. Front Microbiol 2014; 5:388. [PMID: 25140166 PMCID: PMC4122171 DOI: 10.3389/fmicb.2014.00388] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022] Open
Abstract
Endoplasmic reticulum (ER) stress is a general term for representing the pathway by which various stimuli affect ER functions. ER stress induces the evolutionarily conserved signaling pathways, called the unfolded protein response (UPR), which compromises the stimulus and then determines whether the cell survives or dies. In recent years, ongoing research has suggested that these pathways may be linked to the autophagic response, which plays a key role in the cell's response to various stressors. Autophagy performs a self-digestion function, and its activation protects cells against certain pathogens. However, the link between the UPR and autophagy may be more complicated. These two systems may act dependently, or the induction of one system may interfere with the other. Experimental studies have found that different viruses modulate these mechanisms to allow them to escape the host immune response or, worse, to exploit the host's defense to their advantage; thus, this topic is a critical area in antiviral research. In this review, we summarize the current knowledge about how RNA viruses, including influenza virus, poliovirus, coxsackievirus, enterovirus 71, Japanese encephalitis virus, hepatitis C virus, and dengue virus, regulate these processes. We also discuss recent discoveries and how these will produce novel strategies for antiviral treatment.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan
| | - Jin-Yuan Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University Kweishan, Taiwan ; Research Center for Emerging Viral Infections, Chang Gung University Kweishan, Taiwan ; Department of Medical Research, Chang Gung Memorial Hospital Kweishan, Taiwan
| |
Collapse
|
121
|
Smith DR. Global protein profiling studies of chikungunya virus infection identify different proteins but common biological processes. Rev Med Virol 2014; 25:3-18. [PMID: 25066270 DOI: 10.1002/rmv.1802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 12/24/2022]
Abstract
Chikungunya fever (CHIKF) caused by the mosquito-transmitted chikungunya virus (CHIKV) swept into international prominence from late 2005 as an epidemic of CHIKF spread around countries surrounding the Indian Ocean. Although significant advances have been made in understanding the pathobiology of CHIKF, numerous questions still remain. In the absence of commercially available specific drugs to treat the disease, or a vaccine to prevent the diseases, the questions have particular significance. A number of studies have used global proteome analysis to increase our understanding of the process of CHIKV infection using a number of different experimental techniques and experimental systems. In all, over 700 proteins have been identified in nine different analyses by five different groups as being differentially regulated. Remarkably, only a single protein, eukaryotic elongation factor 2, has been identified by more than two different groups as being differentially regulated during CHIKV infection. This review provides a critical overview of the studies that have used global protein profiling to understand CHIKV infection and shows that while a broad consensus is emerging on which biological processes are altered during CHIKV infection, this consensus is poorly supported in terms of consistent identification of any key proteins mediating those biological processes.
Collapse
Affiliation(s)
- Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Bangkok, Thailand; Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand
| |
Collapse
|
122
|
Abstract
Antiviral innate immune responses and apoptosis are the two major factors limiting viral infections. Successful viral infection requires the virus to take advantage of the cellular machinery to bypass cellular defenses. Accumulated evidences show that autophagy plays a crucial role in cell-to-virus interaction. Here, we focus on how viruses subvert mitophagy to favor viral replication by mitigating innate immune responses and apoptotic signaling.
Collapse
Affiliation(s)
- Mao Xia
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | | | | | | |
Collapse
|
123
|
Sharma M, Bhattacharyya S, Nain M, Kaur M, Sood V, Gupta V, Khasa R, Abdin MZ, Vrati S, Kalia M. Japanese encephalitis virus replication is negatively regulated by autophagy and occurs on LC3-I- and EDEM1-containing membranes. Autophagy 2014; 10:1637-51. [PMID: 25046112 DOI: 10.4161/auto.29455] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a lysosomal degradative pathway that has diverse physiological functions and plays crucial roles in several viral infections. Here we examine the role of autophagy in the life cycle of JEV, a neurotropic flavivirus. JEV infection leads to induction of autophagy in several cell types. JEV replication was significantly enhanced in neuronal cells where autophagy was rendered dysfunctional by ATG7 depletion, and in Atg5-deficient mouse embryonic fibroblasts (MEFs), resulting in higher viral titers. Autophagy was functional during early stages of infection however it becomes dysfunctional as infection progressed resulting in accumulation of misfolded proteins. Autophagy-deficient cells were highly susceptible to virus-induced cell death. We also observed JEV replication complexes that are marked by nonstructural protein 1 (NS1) and dsRNA colocalized with endogenous LC3 but not with GFP-LC3. Colocalization of NS1 and LC3 was also observed in Atg5 deficient MEFs, which contain only the nonlipidated form of LC3. Viral replication complexes furthermore show association with a marker of the ER-associated degradation (ERAD) pathway, EDEM1 (ER degradation enhancer, mannosidase α-like 1). Our data suggest that virus replication occurs on ERAD-derived EDEM1 and LC3-I-positive structures referred to as EDEMosomes. While silencing of ERAD regulators EDEM1 and SEL1L suppressed JEV replication, LC3 depletion exerted a profound inhibition with significantly reduced RNA levels and virus titers. Our study suggests that while autophagy is primarily antiviral for JEV and might have implications for disease progression and pathogenesis of JEV, nonlipidated LC3 plays an important autophagy independent function in the virus life cycle.
Collapse
Affiliation(s)
- Manish Sharma
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India; Department of Biotechnology; Faculty of Science; Jamia Hamdard; New Delhi, India
| | - Sankar Bhattacharyya
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| | - Minu Nain
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India; Department of Biotechnology; Faculty of Science; Jamia Hamdard; New Delhi, India
| | - Manpreet Kaur
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| | - Vikas Sood
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| | - Vishal Gupta
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| | - Renu Khasa
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| | - Malik Z Abdin
- Department of Biotechnology; Faculty of Science; Jamia Hamdard; New Delhi, India
| | - Sudhanshu Vrati
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| | - Manjula Kalia
- Vaccine and Infectious Disease Research Centre; Translational Health Science and Technology Institute; Gurgaon, Haryana India
| |
Collapse
|
124
|
Martyniszyn L, Szulc-Dąbrowska L, Boratyńska-Jasińska A, Struzik J, Winnicka A, Niemiałtowski M. Crosstalk between autophagy and apoptosis in RAW 264.7 macrophages infected with ectromelia orthopoxvirus. Viral Immunol 2014; 26:322-35. [PMID: 24116707 DOI: 10.1089/vim.2013.0003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Several studies have provided evidence that complex relationships between autophagic and apoptotic cell death pathways occur in cancer and virus-infected cells. Previously, we demonstrated that infection of macrophages with Moscow strain of ectromelia virus (ECTV-MOS) induces apoptosis under in vitro and in vivo conditions. Here, we found that autophagy was induced in RAW 264.7 cells during infection with ECTV-MOS. Silencing of beclin 1, an autophagy-related gene, reduced the percentage of late apoptotic cells in virus-infected RAW 264.7 macrophages. Pharmacological modulation of autophagy by wortmannin (inhibitor) or rapamycin (inductor) did not affect or cause increased apoptosis in ECTV-MOS-infected RAW 264.7 cells, respectively. Meantime, blocking apoptosis by a pan-caspase inhibitor, Z-VAD-FMK, increased the formation of autophagosomes in infected macrophages. Taken together, three important points arise from our study. First, autophagy may co-occur with apoptosis in RAW 264.7 cells exposed to ECTV-MOS. Second, at later stages of infection, autophagy may partially participate in the execution of macrophage cell death by enhancing apoptosis. Third, when apoptosis is blocked infected macrophages undergo increased autophagy. Our results provide new information about the relationship between autophagy and apoptosis in ECTV-MOS-infected macrophages.
Collapse
Affiliation(s)
- Lech Martyniszyn
- 1 Division of Immunology, Department of Preclinical Sciences, Warsaw University of Life Sciences SGGW (WULS-SGGW) , Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
125
|
Chan SW. Unfolded protein response in hepatitis C virus infection. Front Microbiol 2014; 5:233. [PMID: 24904547 PMCID: PMC4033015 DOI: 10.3389/fmicb.2014.00233] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 04/30/2014] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA virus of clinical importance. The virus establishes a chronic infection and can progress from chronic hepatitis, steatosis to fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). The mechanisms of viral persistence and pathogenesis are poorly understood. Recently the unfolded protein response (UPR), a cellular homeostatic response to endoplasmic reticulum (ER) stress, has emerged to be a major contributing factor in many human diseases. It is also evident that viruses interact with the host UPR in many different ways and the outcome could be pro-viral, anti-viral or pathogenic, depending on the particular type of infection. Here we present evidence for the elicitation of chronic ER stress in HCV infection. We analyze the UPR signaling pathways involved in HCV infection, the various levels of UPR regulation by different viral proteins and finally, we propose several mechanisms by which the virus provokes the UPR.
Collapse
Affiliation(s)
- Shiu-Wan Chan
- Faculty of Life Sciences, The University of Manchester Manchester, UK
| |
Collapse
|
126
|
Rubella virus perturbs autophagy. Med Microbiol Immunol 2014; 203:323-31. [PMID: 24824868 DOI: 10.1007/s00430-014-0340-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022]
Abstract
Autophagy is a cellular catabolic process implicated in numerous physiological processes and pathological conditions, including infections. Viruses have evolved different strategies to modulate the autophagic process. Since the effects of rubella virus (RV) on autophagy have not yet been reported, we evaluated the autophagic activity in the Statens Seruminstitut Rabbit Cornea cell line infected with the To336 strain of RV. Our results showed that RV lowered the levels of microtubule-associated protein 1 light chain 3 B-II (LC3B-II) and the autophagy-related gene 12-autophagy-related gene 5 conjugate, inhibited the autophagic flux, suppressed the intracellular redistribution of LC3B, decreased both the average number and the size of autophagosomes per cell and impeded the formation of acidic vesicular organelles. Induction of autophagy by using rapamycin decreased both the viral yields and the apoptotic rates of infected cultures. Besides its cytoprotective effects, autophagy furnishes an important antiviral mechanism, inhibition of which may reorchestrate intracellular environment so as to better serve the unique requirements of RV replication. Together, our observations suggest that RV utilizes a totally different strategy to cope with autophagy than that evolved by other positive-stranded RNA viruses, and there is considerable heterogeneity among the members of the Togaviridae family in terms of their effects on the cellular autophagic cascade.
Collapse
|
127
|
Apte-Deshpande AD, Paingankar MS, Gokhale MD, Deobagkar DN. Serratia odorifera mediated enhancement in susceptibility of Aedes aegypti for chikungunya virus. Indian J Med Res 2014; 139:762-8. [PMID: 25027087 PMCID: PMC4140042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND & OBJECTIVES The susceptibility of the mosquito to the invading pathogen is predominantly dictated by the complex interactions between the mosquito midgut and the surface proteins of the invading pathogen. It is well documented that the midgut microbiota plays an important role in determining the susceptibility of the mosquito to the pathogen. In the present study, we investigated the influence of Serratia odorifera, an endogenous cultivable midgut inhabitant of Aedes aegypti on the chikungunya virus (CHIKV) susceptibility to this mosquito. METHODS Ae. aegypti females free of gutflora were co-fed with CHIKV and either of the two midgut inhabitants namely, S. odorifeara and Microbacterium oxydans. CHIKV dissemination was checked on 10 th day post feeding (DPF) using indirect immunoflurescence assay and plaque assay. CHIKV interacting proteins of the mosquito midgut were identified using virus overlay protein binding assay and MALDI TOF/TOF analysis. RESULTS The observations revealed that co-feeding of S. odorifera with CHIKV significantly enhanced the CHIKV susceptibility in adult Ae. aegypti, as compared to the mosquitoes fed with CHIKV alone and CHIKV co-fed with another midgut inhabitant, M. oxydans. Virus overlay protein binding assay (VOPBA) results revealed that porin and heat shock protein (HSP60) of Ae. aegypti midgut brush border membrane fraction interacted with CHIKV. INTERPRETATION & CONCLUSIONS The results of this study indicated that the enhancement in the CHIKV susceptibility of Ae. aegypti females was due to the suppression of immune response of Ae. aegypti as a result of the interaction between S. odorifera P40 protein and porin on the gut membrane.
Collapse
Affiliation(s)
| | - Mandar S. Paingankar
- Department of Zoology, Centre for Advance Studies, University of Pune, Pune, India
| | | | - Dileep N. Deobagkar
- Department of Zoology, Centre for Advance Studies, University of Pune, Pune, India
| |
Collapse
|
128
|
Wikan N, Khongwichit S, Phuklia W, Ubol S, Thonsakulprasert T, Thannagith M, Tanramluk D, Paemanee A, Kittisenachai S, Roytrakul S, Smith DR. Comprehensive proteomic analysis of white blood cells from chikungunya fever patients of different severities. J Transl Med 2014; 12:96. [PMID: 24721947 PMCID: PMC4022080 DOI: 10.1186/1479-5876-12-96] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/02/2014] [Indexed: 01/13/2023] Open
Abstract
Background Chikungunya fever (CHIKF) is a recently re-emerged mosquito transmitted viral disease caused by the chikungunya virus (CHIKV), an Alphavirus belonging to the family Togaviridae. Infection of humans with CHIKV can result in CHIKF of variable severity, although the factors mediating disease severity remain poorly defined. Methods White blood cells were isolated from blood samples collected during the 2009-2010 CHIKF outbreak in Thailand. Clinical presentation and viral load data were used to classify samples into three groups, namely non chikungunya fever (non-CHIKF), mild CHIKF, and severe CHIKF. Five samples from each group were analyzed for protein expression by GeLC-MS/MS. Results CHIKV proteins (structural and non-structural) were found only in CHIKF samples. A total of 3505 human proteins were identified, with 68 proteins only present in non-CHIKF samples. A total of 240 proteins were found only in CHIKF samples, of which 65 and 46 were found only in mild and severe CHIKF samples respectively. Proteins with altered expression mapped predominantly to cellular signaling pathways (including toll-like receptor and PI3K-Akt signaling) although many other processes showed altered expression as a result of CHIKV infection. Expression of proteins consistent with the activation of the inflammasome was detected, and quantitation of (pro)-caspase 1 at the protein and RNA levels showed an association with disease severity. Conclusions This study confirms the infection of at least a component of white blood cells by CHIKV, and shows that CHIKV infection results in activation of the inflammasome in a manner that is associated with disease severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus 25/25 Phuttamonthol Sai 4, Nakorn Pathom 73170, Thailand.
| |
Collapse
|
129
|
Perot BP, Ingersoll MA, Albert ML. The impact of macroautophagy on CD8(+) T-cell-mediated antiviral immunity. Immunol Rev 2014; 255:40-56. [PMID: 23947346 DOI: 10.1111/imr.12096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a catabolic recycling pathway, which can be induced by various stress stimuli. Viruses are able to manipulate autophagy in the cells that they infect. The impact of autophagy on the innate immune response to viruses and its stimulatory role in antigen presentation to CD4(+) T cells are well documented. Herein, we present the impact of autophagy on the activation of cytotoxic T lymphocyte (CTL)-mediated antiviral immune responses, which are required for the eradication or control of multiple viruses. We first discuss the general mechanisms by which viruses can either induce or block autophagy in cells. We then explore the cross-talk between autophagy and innate immune processes, which are both first line defenses against viruses; and constitute crucial steps for the initiation of potent adaptive immune responses. We describe the impact of autophagy on the presentation of viral peptide antigens on class I major histocompatibility complex (MHC I), a prerequisite for the priming of CTL responses. In sum, our review highlights the interplay between viruses and three integrated host response pathways - autophagy, innate and adaptive immunity - providing a framework for future mechanistic and pathogenesis-based research.
Collapse
Affiliation(s)
- Brieuc P Perot
- Unité d'immunobiologie des cellules dendritiques, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
130
|
Bouley SJ, Maginnis MS, Derdowski A, Gee GV, O'Hara BA, Nelson CD, Bara AM, Atwood WJ, Dugan AS. Host cell autophagy promotes BK virus infection. Virology 2014; 456-457:87-95. [PMID: 24889228 PMCID: PMC7112032 DOI: 10.1016/j.virol.2014.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/27/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
Abstract
Autophagy is important for a variety for virus life cycles. We sought to determine the role of autophagy in human BK polyomavirus (BKPyV) infection. The addition excess amino acids during viral infection reduced BKPyV infection. Perturbing autophagy levels using inhibitors, 3-MA, bafilomycin A1, and spautin-1, also reduced infection, while rapamycin treatment of host cells increased infection. siRNA knockdown of autophagy genes, ATG7 and Beclin-1, corresponded to a decrease in BKPyV infection. BKPyV infection not only correlated with autophagosome formation, but also virus particles localized to autophagy-specific compartments early in infection. These data support a novel role for autophagy in the promotion of BKPyV infection. Amino acid supplementation decreases BKPyV infection. Autophagy inhibitors, 3-MA, bafilomycin A, and spautin-1, decrease BKPyV infection, while rapamycin increases infection. Inhibitors are most effective when added early in viral life cycle. Knockdown of autophagy genes, Beclin-1 and ATG7, in host cells decreases BKPyV infection levels. BKPyV localizes to LC3+ autophagosome 3 h post infection.
Collapse
Affiliation(s)
- Stephanie J Bouley
- Department of Natural Sciences, Assumption College, Worcester, MA 01609, United States
| | - Melissa S Maginnis
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, United States
| | - Aaron Derdowski
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, United States
| | - Gretchen V Gee
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, United States
| | - Bethany A O'Hara
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, United States
| | - Christian D Nelson
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, United States
| | - Anne M Bara
- Department of Natural Sciences, Assumption College, Worcester, MA 01609, United States
| | - Walter J Atwood
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, United States
| | - Aisling S Dugan
- Department of Natural Sciences, Assumption College, Worcester, MA 01609, United States.
| |
Collapse
|
131
|
San‐Miguel B, Crespo I, Vallejo D, Álvarez M, Prieto J, González‐Gallego J, Tuñón MJ. Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. J Pineal Res 2014; 56:313-21. [PMID: 24499270 PMCID: PMC7166588 DOI: 10.1111/jpi.12124] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/31/2014] [Indexed: 12/29/2022]
Abstract
Autophagy is an important survival pathway and participates in the host response to infection. Beneficial effects of melatonin have been previously reported in an animal model of acute liver failure (ALF) induced by the rabbit hemorrhagic disease virus (RHDV). This study was aimed to investigate whether melatonin protection against liver injury induced by the RHDV associates to modulation of autophagy. Rabbits were infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received 20 mg/kg melatonin at 0, 12, and 24 hr postinfection. RHDV induced autophagy, with increased expression of beclin-1, ubiquitin-like autophagy-related (Atg)5, Atg12, Atg16L1 and sequestrosome 1 (p62/SQSTM1), protein 1 light chain 3 (LC3) staining, and conversion of LC3-I to autophagosome-associated LC3-II. These effects reached a maximum at 24 hr postinfection, in parallel to extensive colocalization of LC3 and lysosome-associated membrane protein (LAMP)-1. The autophagic response induced by RHDV infection was significantly inhibited by melatonin administration. Melatonin treatment also resulted in decreased immunoreactivity for RHDV viral VP60 antigen and a significantly reduction in RHDV VP60 mRNA levels, oxidized to reduced glutathione ratio (GSSG/GSH), caspase-3 activity, and immunoglobulin-heavy-chain-binding protein (BiP) and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. Results indicate that, in addition to its antioxidant and antiapoptotic effects, and the suppression of ER stress, melatonin induces a decrease in autophagy associated with RHDV infection and inhibits RHDV RNA replication. Results obtained reveal novel molecular pathways accounting for the protective effect of melatonin in this animal model of ALF.
Collapse
Affiliation(s)
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
| | - Daniela Vallejo
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
| | | | - Jesús Prieto
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
- Division of Hepatology and Gene TherapyCenter for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
| | - Javier González‐Gallego
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED)University of LeónLeónSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Spain
| |
Collapse
|
132
|
Wei M, Duan D, Liu Y, Wang Z, Li Z. Autophagy may protect MC3T3-E1 cells from fluoride-induced apoptosis. Mol Med Rep 2014; 9:2309-15. [PMID: 24682525 DOI: 10.3892/mmr.2014.2079] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 02/04/2014] [Indexed: 11/05/2022] Open
Abstract
Fluoride is an essential trace element for all mammalian species; however, excess fluoride intake is known to be toxic to cells in animals and humans. The toxicity of fluoride is mainly exerted via induction of apoptosis. Autophagy is induced by numerous cytotoxic stimuli; however, it is often unclear whether, under specific conditions, autophagy has a pro‑survival or a pro‑apoptotic role. To answer this critical question, the present study assessed autophagy and apoptosis simultaneously in single cells. It was demonstrated that fluoride was able to inhibit cell proliferation and induce apoptosis and autophagy, whereas autophagy appeared to be protective. Further analysis revealed that MAPK/JNK‑dependent autophagy may be protective in fluoride‑induced apoptosis. It is anticipated that the presented single‑cell approach may be a powerful tool for gaining a quantitative understanding of the complex regulation of autophagy, its effect on cell fate and its association with other cellular pathways.
Collapse
Affiliation(s)
- Min Wei
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Dongmei Duan
- Department of Traditional Chinese Medicine, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yujie Liu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhigang Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Zhongli Li
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
133
|
Vallejo D, Crespo I, San-Miguel B, Alvarez M, Prieto J, Tuñón MJ, González-Gallego J. Autophagic response in the Rabbit Hemorrhagic Disease, an animal model of virally-induced fulminant hepatic failure. Vet Res 2014; 45:15. [PMID: 24490870 PMCID: PMC3922607 DOI: 10.1186/1297-9716-45-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/22/2014] [Indexed: 01/05/2023] Open
Abstract
The Rabbit Hemorrhagic Disease Virus (RHDV) induces a severe disease that fulfils many requirements of an animal model of fulminant hepatic failure. However, a better knowledge of molecular mechanisms contributing to liver damage is required, and it is unknown whether the RHDV induces liver autophagy and how it relates to apoptosis. In this study, we attempted to explore which signalling pathways were involved in the autophagic response induced by the RHDV and to characterize their role in the context of RHDV pathogenesis. Rabbits were infected with 2 × 10⁴ hemmaglutination units of a RHDV isolate. The autophagic response was measured as presence of autophagic vesicles, LC3 staining, conversion of LC3-I to autophagosome-associated LC3-II and changes in expression of beclin-1, UVRAG, Atg5, Atg12, Atg16L1 and p62/SQSTM1. RHDV-triggered autophagy reached a maximum at 24 hours post-infection (hpi) and declined at 30 and 36 hpi. Phosphorylation of mTOR also augmented in early periods of infection and there was an increase in the expression of the endoplasmic reticulum chaperones BiP/GRP78, CHOP and GRP94. Apoptosis, measured as caspase-3 activity and expression of PARP-1, increased significantly at 30 and 36 hpi in parallel to the maximal expression of the RHDV capsid protein VP60. These data indicate that RHDV infection initiates a rapid autophagic response, perhaps in an attempt to protect liver, which associates to ER stress development and is independent from downregulation of the major autophagy suppressor mTOR. As the infection continues and the autophagic response declines, cells begin to exhibit apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - María Jesús Tuñón
- Institute of Biomedicine (IBIOMED), University of León, 24071 León, Spain.
| | | |
Collapse
|
134
|
Antiviral autophagy restrictsRift Valley fever virus infection and is conserved from flies to mammals. Immunity 2013; 40:51-65. [PMID: 24374193 DOI: 10.1016/j.immuni.2013.10.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023]
Abstract
Autophagy has been implicated as a component of host defense, but the significance of antimicrobial autophagy in vivo and the mechanism by which it is regulated during infection are poorly defined. Here we found that antiviral autophagy was conserved in flies and mammals during infection with Rift Valley fever virus (RVFV), a mosquito-borne virus that causes disease in humans and livestock. In Drosophila, Toll-7 limited RVFV replication and mortality through activation of autophagy. RVFV infection also elicited autophagy in mouse and human cells, and viral replication was increased in the absence of autophagy genes. The mammalian Toll-like receptor adaptor, MyD88, was required for anti-RVFV autophagy, revealing an evolutionarily conserved requirement for pattern-recognition receptors in antiviral autophagy. Pharmacologic activation of autophagy inhibited RVFV infection in mammalian cells, including primary hepatocytes and neurons. Thus, autophagy modulation might be an effective strategy for treating RVFV infection, which lacks approved vaccines and therapeutics.
Collapse
|
135
|
Cruz DJM, Bonotto RM, Gomes RGB, da Silva CT, Taniguchi JB, No JH, Lombardot B, Schwartz O, Hansen MAE, Freitas-Junior LH. Identification of novel compounds inhibiting chikungunya virus-induced cell death by high throughput screening of a kinase inhibitor library. PLoS Negl Trop Dis 2013; 7:e2471. [PMID: 24205414 PMCID: PMC3814572 DOI: 10.1371/journal.pntd.0002471] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/27/2013] [Indexed: 12/16/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne arthrogenic alphavirus that causes acute febrile illness in humans accompanied by joint pains and in many cases, persistent arthralgia lasting weeks to years. The re-emergence of CHIKV has resulted in numerous outbreaks in the eastern hemisphere, and threatens to expand in the foreseeable future. Unfortunately, no effective treatment is currently available. The present study reports the use of resazurin in a cell-based high-throughput assay, and an image-based high-content assay to identify and characterize inhibitors of CHIKV-infection in vitro. CHIKV is a highly cytopathic virus that rapidly kills infected cells. Thus, cell viability of HuH-7 cells infected with CHIKV in the presence of compounds was determined by measuring metabolic reduction of resazurin to identify inhibitors of CHIKV-associated cell death. A kinase inhibitor library of 4,000 compounds was screened against CHIKV infection of HuH-7 cells using the resazurin reduction assay, and the cell toxicity was also measured in non-infected cells. Seventy-two compounds showing ≥50% inhibition property against CHIKV at 10 µM were selected as primary hits. Four compounds having a benzofuran core scaffold (CND0335, CND0364, CND0366 and CND0415), one pyrrolopyridine (CND0545) and one thiazol-carboxamide (CND3514) inhibited CHIKV-associated cell death in a dose-dependent manner, with EC50 values between 2.2 µM and 7.1 µM. Based on image analysis, these 6 hit compounds did not inhibit CHIKV replication in the host cell. However, CHIKV-infected cells manifested less prominent apoptotic blebs typical of CHIKV cytopathic effect compared with the control infection. Moreover, treatment with these compounds reduced viral titers in the medium of CHIKV-infected cells by up to 100-fold. In conclusion, this cell-based high-throughput screening assay using resazurin, combined with the image-based high content assay approach identified compounds against CHIKV having a novel antiviral activity - inhibition of virus-induced CPE - likely by targeting kinases involved in apoptosis. Recent outbreaks and expanding global distribution of Chikungunya virus (CHIKV) in different regions of Asia, Africa and Europe necessitates the development of effective therapeutic interventions. At present, only two antiviral compounds (chloroquine and ribavirin) that inhibit viral infection in vitro have been used in clinical cases of chikungunya infections. However, neither of these compounds have shown strong efficacy in vivo. Recent attempts to identify new antiviral candidates for CHIKV using cell-based phenotypic approach have been reported. In this study, we developed a simple cell-based high-throughput assay using resazurin to identify potential anti-CHIKV compounds. This high-throughput assay is based on the metabolic reduction of resazurin to the highly fluorescent resorufin by viable cells as an indicator of activity against CHIKV-induced CPE. We screened 4,000 small molecules belonging to the BioFocus kinase inhibitor chemical library and found a cluster of related molecules with antiviral activity against CHIKV. Finally, we characterized the putative mode of action of these active compounds using an image-based high content assay and conventional virological methods (i.e., virus yield reduction assay, microneutralization assay).
Collapse
Affiliation(s)
- Deu John M. Cruz
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Rafaela M. Bonotto
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
- Universidade Feevale, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Rafael G. B. Gomes
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
- Universidade Federal de Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Camila T. da Silva
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
- Universidade Estadual do Rio Grande do Sul - Campus Novo Hamburgo, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Juliana B. Taniguchi
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
- Universidade Estadual Paulista “Júlio de Mesquita Filho”-Campus Araraquara, Araraquara, São Paulo, Brazil
| | - Joo Hwan No
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Benoit Lombardot
- Image Mining Group (IMG), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Olivier Schwartz
- Virus and Immunity Unit, Department of Virology, Institut Pasteur, Paris, France
| | - Michael A. E. Hansen
- Image Mining Group (IMG), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
| | - Lucio H. Freitas-Junior
- Center for Neglected Diseases Drug Discovery (CND3), Institut Pasteur Korea, Seongnam-si, Gyeonggi-do, South Korea
- * E-mail: ,
| |
Collapse
|
136
|
Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. J Virol 2013; 88:525-37. [PMID: 24173218 DOI: 10.1128/jvi.01849-13] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Newcastle disease virus (NDV) is an important avian pathogen. We previously reported that NDV triggers autophagy in U251 glioma cells, resulting in enhanced virus replication. In this study, we investigated whether NDV triggers autophagy in chicken cells and tissues to enhance virus replication. We demonstrated that NDV infection induced steady-state autophagy in chicken-derived DF-1 cells and in primary chicken embryo fibroblast (CEF) cells, evident through increased double- or single-membrane vesicles, the accumulation of green fluorescent protein (GFP)-LC3 dots, and the conversion of LC3-I to LC3-II. In addition, we measured autophagic flux by monitoring p62/SQSTM1 degradation, LC3-II turnover, and GFP-LC3 lysosomal delivery and proteolysis, to confirm that NDV infection induced the complete autophagic process. Inhibition of autophagy by pharmacological inhibitors and RNA interference reduced virus replication, indicating an important role for autophagy in NDV infection. Furthermore, we conducted in vivo experiments and observed the conversion of LC3-I to LC3-II in heart, liver, spleen, lung, and kidney of NDV-infected chickens. Regulation of the induction of autophagy with wortmannin, chloroquine, or starvation treatment affects NDV production and pathogenesis in tissues of both lung and intestine; however, treatment with rapamycin, an autophagy inducer of mammalian cells, showed no detectable changes in chicken cells and tissues. Moreover, administration of the autophagy inhibitor wortmannin increased the survival rate of NDV-infected chickens. Our studies provide strong evidence that NDV infection induces autophagy which benefits NDV replication in chicken cells and tissues.
Collapse
|
137
|
Li M, Wang X, Yu Y, Yu Y, Xie Y, Zou Y, Ge J, Peng T, Chen R. Coxsackievirus B3-induced calpain activation facilitates the progeny virus replication via a likely mechanism related with both autophagy enhancement and apoptosis inhibition in the early phase of infection: an in vitro study in H9c2 cells. Virus Res 2013; 179:177-86. [PMID: 24177271 DOI: 10.1016/j.virusres.2013.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 11/15/2022]
Abstract
Calpain is a family of neutral cysteine proteinase involved in many physiological and pathological processes including virus replication, autophagy and apoptosis. Previous study has indicated the involvement of calpain in pathogenesis of coxsackievirus B3 (CVB3)-induced myocarditis. Besides, many studies demonstrated that host cell autophagy and apoptosis mechanisms participate in virus life cycle. However, role of calpain in CVB3 replication via autophagy/apoptosis mechanisms has not been reported, which was discussed here in H9c2 cardiomyocytes. The data demonstrated that calpain was activated following CVB3 infection. Calpain inhibition decreased autophagy, indicating role of calpain in enhancing autophagy during CVB3 infection. Both calpain activity and autophagy were involved in facilitating CVB3 replication demonstrated by virus titer and CVB3 capsid protein VP1 expression alterations resulting from calpain inhibitor ALLN and autophagy inhibitor 3MA intervention. We also found that both calpain activity and autophagy suppressed caspase3 activity and host cell apoptosis 5-10h post-infection (p.i.). In summary, the present study shows that CVB3 infection of H9c2 cells hinders caspase3 activity provocation and cell apoptosis at least in the early phase of infection (5-10h p.i.) via calpain-induced autophagy enhancement, which might be a mechanism facilitating CVB3 replication in host cells.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Xinggang Wang
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Yong Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Ying Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Yeqing Xie
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Yunzeng Zou
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Junbo Ge
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China
| | - Tianqing Peng
- Lawson Health Research Institute, Department of Medicine and Pathology, University of Western Ontario, Canada
| | - Ruizhen Chen
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, China.
| |
Collapse
|
138
|
Blázquez AB, Escribano-Romero E, Merino-Ramos T, Saiz JC, Martín-Acebes MA. Infection with Usutu virus induces an autophagic response in mammalian cells. PLoS Negl Trop Dis 2013; 7:e2509. [PMID: 24205422 PMCID: PMC3812092 DOI: 10.1371/journal.pntd.0002509] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/30/2013] [Indexed: 12/19/2022] Open
Abstract
Usutu virus (USUV) is an African mosquito-borne flavivirus closely related to West Nile virus and Japanese encephalitis virus, which host range includes mainly mosquitoes and birds, although infections in humans have been also documented, thus warning about USUV as a potential health threat. Circulation of USUV in Africa was documented more than 50 years ago, but it was not until the last decade that it emerged in Europe causing episodes of avian mortality and some human severe cases. Since autophagy is a cellular pathway that can play important roles on different aspects of viral infections and pathogenesis, the possible implication of this pathway in USUV infection has been examined using Vero cells and two viral strains of different origin. USUV infection induced the unfolded protein response, revealed by the splicing of Xbp-1 mRNA. Infection with USUV also stimulated the autophagic process, which was demonstrated by an increase in the cytoplasmic aggregation of microtubule-associated protein 1 light chain 3 (LC3), a marker of autophagosome formation. In addition to this, an increase in the lipidated form of LC3, that is associated with autophagosome formation, was noticed following infection. Pharmacological modulation of the autophagic pathway with the inductor of autophagy rapamycin resulted in an increase in virus yield. On the other hand, treatment with 3-methyladenine or wortmannin, two distinct inhibitors of phosphatidylinositol 3-kinases involved in autophagy, resulted in a decrease in virus yield. These results indicate that USUV virus infection upregulates the cellular autophagic pathway and that drugs that target this pathway can modulate the infection of this virus, thus identifying a potential druggable pathway in USUV-infection. The identification of cellular components and metabolic pathways involved in virus replication provides valuable information for the development of new antiviral strategies. Autophagy is one of these metabolic pathways with multiple implications during viral replication. Autophagy literally means self-digestion and constitutes a cellular process by which intracellular components are enclosed by membrane structures and degraded. Interestingly autophagy can contribute either positively or negatively to viral infections. For instance, several viruses hijack these autophagic membranes to build their replication complexes or take advantage on metabolic rearrangements induced following autophagy, while in other cases autophagy contributes to viral clearance and innate immunity. In this study, we explored the possible implication of the autophagic pathway during Usutu virus infection (USUV). USUV is an African mosquito-borne flavivirus that mainly infects mosquitoes and birds, although infections in humans have been also documented, thus warning about USUV as a potential health threat. Our results indicate that infection by USUV of different origins triggers an autophagic response within infected cells. Even more, drugs that target components from the autophagic pathway modulate USUV-infection. These results provide the basis for the design of new antiviral research lines against this pathogen.
Collapse
Affiliation(s)
- Ana-Belén Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Estela Escribano-Romero
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Teresa Merino-Ramos
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Juan-Carlos Saiz
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail: ,
| |
Collapse
|
139
|
Tovilovic G, Ristic B, Milenkovic M, Stanojevic M, Trajkovic V. The Role and Therapeutic Potential of Autophagy Modulation in Controlling Virus-Induced Cell Death. Med Res Rev 2013; 34:744-67. [DOI: 10.1002/med.21303] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Gordana Tovilovic
- Institute for Biological Research; University of Belgrade; Despot Stefan Boulevard 142 11000 Belgrade Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Marina Milenkovic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Maja Stanojevic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology; School of Medicine; University of Belgrade; Dr. Subotica 1 11000 Belgrade Serbia
| |
Collapse
|
140
|
Richetta C, Grégoire IP, Verlhac P, Azocar O, Baguet J, Flacher M, Tangy F, Rabourdin-Combe C, Faure M. Sustained autophagy contributes to measles virus infectivity. PLoS Pathog 2013; 9:e1003599. [PMID: 24086130 PMCID: PMC3784470 DOI: 10.1371/journal.ppat.1003599] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 07/17/2013] [Indexed: 01/06/2023] Open
Abstract
The interplay between autophagy and intracellular pathogens is intricate as autophagy is an essential cellular response to fight against infections, whereas numerous microbes have developed strategies to escape this process or even exploit it to their own benefit. The fine tuned timing and/or selective molecular pathways involved in the induction of autophagy upon infections could be the cornerstone allowing cells to either control intracellular pathogens, or be invaded by them. We report here that measles virus infection induces successive autophagy signallings in permissive cells, via distinct and uncoupled molecular pathways. Immediately upon infection, attenuated measles virus induces a first transient wave of autophagy, via a pathway involving its cellular receptor CD46 and the scaffold protein GOPC. Soon after infection, a new autophagy signalling is initiated which requires viral replication and the expression of the non-structural measles virus protein C. Strikingly, this second autophagy signalling can be sustained overtime within infected cells, independently of the expression of C, but via a third autophagy input resulting from cell-cell fusion and the formation of syncytia. Whereas this sustained autophagy signalling leads to the autophagy degradation of cellular contents, viral proteins escape from degradation. Furthermore, this autophagy flux is ultimately exploited by measles virus to limit the death of infected cells and to improve viral particle formation. Whereas CD150 dependent virulent strains of measles virus are unable to induce the early CD46/GOPC dependent autophagy wave, they induce and exploit the late and sustained autophagy. Overall, our work describes distinct molecular pathways for an induction of self-beneficial sustained autophagy by measles virus. Autophagy is an evolutionarily conserved lysosomal dependent degradative pathway for recycling of long-lived proteins and damaged organelles. Autophagy is also an essential cellular response to fight infection by destroying infectious pathogens trapped within autophagosomes and plays a key role in the induction of both innate and adaptive immune responses. Numerous viruses have evolved strategies to counteract autophagy in order to escape from degradation or/and to inhibit immune signals. The kinetic and molecular pathways involved in the induction of autophagy upon infections might determine if cells would be able to control pathogens or would be invaded by them. We showed that measles virus (MeV) infection induces successive autophagy signallings in cells via distinct molecular pathways. A first autophagy wave is induced by the engagement of the MeV cellular receptor CD46 and the scaffold protein GOPC. A second wave is initiated after viral replication by the expression of the non-structural MeV protein C and is sustained overtime within infected cells thanks to the formation of syncytia. This sustained autophagy is exploited by MeV to limit the death of infected cells and to improve viral particle formation. We describe new molecular pathways by which MeV hijacks autophagy to promote its infectivity.
Collapse
Affiliation(s)
- Clémence Richetta
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Isabel P. Grégoire
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Pauline Verlhac
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Olga Azocar
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Joël Baguet
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Monique Flacher
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS URA-3015, Paris, France
| | - Chantal Rabourdin-Combe
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Mathias Faure
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
- * E-mail:
| |
Collapse
|
141
|
Abraham R, Mudaliar P, Padmanabhan A, Sreekumar E. Induction of cytopathogenicity in human glioblastoma cells by chikungunya virus. PLoS One 2013; 8:e75854. [PMID: 24086645 PMCID: PMC3783433 DOI: 10.1371/journal.pone.0075854] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/22/2013] [Indexed: 01/01/2023] Open
Abstract
Chikungunya virus (CHIKV), an arthritogenic old-world alphavirus, has been implicated in the central nervous system (CNS) infection in infants and elderly patients. Astrocytes are the major immune cells of the brain parenchyma that mediate inflammation. In the present study we found that a local isolate of CHIKV infect and activate U-87 MG cells, a glioblastoma cell line of human astrocyte origin. The infection kinetics were similar in infected U-87 MG cells and the human embryo kidney (HEK293) cells as indicated by immunofluorescence and plaque assays, 24h post-infection (p.i.). In infected U-87 MG cells, apoptosis was detectable from 48h p.i. evidenced by DNA fragmentation, PARP cleavage, loss of mitochondrial membrane potential, nuclear condensation and visible cytopathic effects in a dose and time-dependent manner. XBP1 mRNA splicing and eIF2α phosphorylation studies indicated the occurrence of endoplasmic reticulum stress in infected cells. In U-87 MG cells stably expressing a green fluorescent protein-tagged light chain-3 (GFP-LC3) protein, CHIKV infection showed increased autophagy response. The infection led to an enhanced expression of the mRNA transcripts of the pro-inflammatory cytokines IL-1β, TNF-α, IL-6 and CXCL9 within 24h p.i. Significant up-regulation of the proteins of RIG-I like receptor (RLR) pathway, such as RIG-I and TRAF-6, was observed indicating the activation of the cytoplasmic-cellular innate immune response. The overall results show that the U-87 MG cell line is a potential in vitro model for in depth study of these molecular pathways in response to CHIKV infection. The responses in these cells of CNS origin, which are inherently defective in Type I interferon response, could be analogous to that occurring in infants and very old patients who also have a compromised interferon-response. The results also point to the intriguing possibility of using this virus for studies to develop oncolytic virus therapy approaches against glioblastoma, a highly aggressive malignancy.
Collapse
Affiliation(s)
- Rachy Abraham
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Prashant Mudaliar
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Aiswaria Padmanabhan
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Easwaran Sreekumar
- Viral Disease Biology Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
142
|
Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, Gong L, Chen J, Liu Y, Cao R, Lv J. B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Biol Sci 2013; 9:766-77. [PMID: 23983610 PMCID: PMC3753441 DOI: 10.7150/ijbs.5711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 08/02/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The unfolded protein response, autophagy and endoplasmic reticulum (ER) stress-induced apoptosis regulate tumor cell fate and have become novel signaling targets for the development of cancer therapeutic drugs. Curcumin has been used to treat several different cancers, including ovarian cancer, in clinical trials and research; however, the role of ER stress and autophagy in the therapeutic effects of curcumin and new curcumin analogues remains unclear. METHODS Cell viability was determined using the MTT assay. Apoptosis was detected using flow cytometry with PI/Annexin V-FITC staining. The expression levels of ER stress- and autophagy-related proteins were analyzed by western blotting. The activation of autophagy was detected using immunofluorescence staining. RESULTS We demonstrated that B19 induced HO8910 cell apoptosis in a dose-responsive manner. We also determined and that this effect was associated with corresponding increases in a series of key components in the UPR and ER stress-mediated apoptosis pathways, followed by caspase 3 cleavage and activation. We also observed that B19 treatment induced autophagy in HO8910 cells. The inhibition of autophagy using 3-methyladenine (3-MA) increased levels of intracellular misfolded proteins, which enhanced ovarian cancer apoptosis. CONCLUSIONS Our data indicate that ER stress and autophagy may play a role in the apoptosis that is induced by the curcumin analogue B19 in an epithelial ovarian cancer cell line and that autophagy inhibition can increase curcumin analogue-induced apoptosis by inducing severe ER stress.
Collapse
Affiliation(s)
- Wanglei Qu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Thiberville SD, Moyen N, Dupuis-Maguiraga L, Nougairede A, Gould EA, Roques P, de Lamballerie X. Chikungunya fever: epidemiology, clinical syndrome, pathogenesis and therapy. Antiviral Res 2013; 99:345-70. [PMID: 23811281 PMCID: PMC7114207 DOI: 10.1016/j.antiviral.2013.06.009] [Citation(s) in RCA: 316] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/21/2013] [Accepted: 06/18/2013] [Indexed: 12/11/2022]
Abstract
Chikungunya fever is caused by a mosquito-borne alphavirus originating in East Africa. During the past 7 years, the disease has spread to islands of the Indian Ocean, Asia and Europe. Its spread has been facilitated by a mutation favouring replication in the mosquito Ae. albopictus. No vaccines or antiviral drugs are available to prevent or treat chikungunya fever. This paper provides an extensive review of the virus and disease, including Supplementary Tables.
Chikungunya virus (CHIKV) is the aetiological agent of the mosquito-borne disease chikungunya fever, a debilitating arthritic disease that, during the past 7 years, has caused immeasurable morbidity and some mortality in humans, including newborn babies, following its emergence and dispersal out of Africa to the Indian Ocean islands and Asia. Since the first reports of its existence in Africa in the 1950s, more than 1500 scientific publications on the different aspects of the disease and its causative agent have been produced. Analysis of these publications shows that, following a number of studies in the 1960s and 1970s, and in the absence of autochthonous cases in developed countries, the interest of the scientific community remained low. However, in 2005 chikungunya fever unexpectedly re-emerged in the form of devastating epidemics in and around the Indian Ocean. These outbreaks were associated with mutations in the viral genome that facilitated the replication of the virus in Aedes albopictus mosquitoes. Since then, nearly 1000 publications on chikungunya fever have been referenced in the PubMed database. This article provides a comprehensive review of chikungunya fever and CHIKV, including clinical data, epidemiological reports, therapeutic aspects and data relating to animal models for in vivo laboratory studies. It includes Supplementary Tables of all WHO outbreak bulletins, ProMED Mail alerts, viral sequences available on GenBank, and PubMed reports of clinical cases and seroprevalence studies.
Collapse
Affiliation(s)
- Simon-Djamel Thiberville
- UMR_D 190 "Emergence des Pathologies Virales" (Aix-Marseille Univ. IRD French Institute of Research for Development EHESP French School of Public Health), Marseille, France; University Hospital Institute for Infectious Disease and Tropical Medicine, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
144
|
|
145
|
Tovilovic G, Ristic B, Siljic M, Nikolic V, Kravic-Stevovic T, Dulovic M, Milenkovic M, Knezevic A, Bosnjak M, Bumbasirevic V, Stanojevic M, Trajkovic V. mTOR-independent autophagy counteracts apoptosis in herpes simplex virus type 1-infected U251 glioma cells. Microbes Infect 2013; 15:615-24. [PMID: 23669212 DOI: 10.1016/j.micinf.2013.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 01/08/2013] [Accepted: 04/29/2013] [Indexed: 01/04/2023]
Abstract
We investigated the role of autophagy, a stress-inducible lysosomal self-digestion of cellular components, in modulation of herpes simplex virus type 1 (HSV-1)-triggered death of U251 human glioma cells. HSV-1 caused apoptotic death in U251 cells, characterized by phosphatidylserine externalization, caspase activation and DNA fragmentation. HSV-1-induced apoptosis was associated with the induction of autophagic response, as confirmed by the conversion of cytosolic LC3-I to autophagosome-associated LC3-II, increase in intracellular acidification, presence of autophagic vesicles, and increase in proteolysis of the selective autophagic target p62. HSV-1-triggered autophagy was not associated with the significant increase in the expression of proautophagic protein beclin-1 or downregulation of the major autophagy suppressor mammalian target of rapamycin (mTOR). Moreover, the phosphorylation of mTOR and its direct substrate p70 S6 kinase was augmented by HSV-1 infection, while the mTOR stimulator Akt and inhibitor AMPK-activated protein kinase (AMPK) were accordingly activated and suppressed, respectively. An shRNA-mediated knockdown of the autophagy-essential LC3β, as well as pharmacological inhibition of autophagy with bafilomycin A1 or 3-methyladenine, markedly accelerated apoptotic changes and ensuing cell death in HSV-1-infected glioma cells. These data indicate that AMPK/Akt/mTOR-independent autophagy could prolong survival of HSV-1-infected U251 glioma cells by counteracting the coinciding apoptotic response.
Collapse
Affiliation(s)
- Gordana Tovilovic
- Institute for Biological Research, University of Belgrade, Despota Stefana Blvd.142, 11000 Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Deng L, Lei Y, Liu R, Li J, Yuan K, Li Y, Chen Y, Liu Y, Lu Y, Edwards CK, Huang C, Wei Y. Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis 2013; 4:e614. [PMID: 23640456 PMCID: PMC3674351 DOI: 10.1038/cddis.2013.142] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a cellular catabolic process by which long-lived proteins and damaged organelles are degradated by lysosomes. Activation of autophagy is an important survival mechanism that protects cancer cells from various stresses, including anticancer agents. Recent studies indicate that pyrvinium pamoate, an FDA-approved antihelminthic drug, exhibits wide-ranging anticancer activity. Here we demonstrate that pyrvinium inhibits autophagy both in vitro and in vivo. We further demonstrate that the inhibition of autophagy is mammalian target of rapamycin independent but depends on the transcriptional inhibition of autophagy genes. Moreover, the combination of pyrvinium with autophagy stimuli improves its toxicity against cancer cells, and pretreatment of cells with 3-MA or siBeclin1 partially protects cells from pyrvinium-induced cell death under glucose starvation, suggesting that targeted autophagy addiction is involved in pyrvinium-mediated cytotoxicity. Finally, in vivo studies show that the combination therapy of pyrvinium with the anticancer and autophagy stimulus agent, 2-deoxy-𝒟-glucose (2-DG), is significantly more effective in inhibiting tumor growth than pyrvinium or 2-DG alone. This study supports a novel cancer therapeutic strategy based on targeting autophagy addiction and implicates using pyrvinium as an autophagy inhibitor in combination with chemotherapeutic agents to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Longfei Deng
- The State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Judith D, Mostowy S, Bourai M, Gangneux N, Lelek M, Lucas-Hourani M, Cayet N, Jacob Y, Prévost MC, Pierre P, Tangy F, Zimmer C, Vidalain PO, Couderc T, Lecuit M. Species-specific impact of the autophagy machinery on Chikungunya virus infection. EMBO Rep 2013; 14:534-44. [PMID: 23619093 DOI: 10.1038/embor.2013.51] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 03/20/2013] [Accepted: 03/21/2013] [Indexed: 01/01/2023] Open
Abstract
Chikungunya virus (CHIKV) is a recently re-emerged arbovirus that triggers autophagy. Here, we show that CHIKV interacts with components of the autophagy machinery during its replication cycle, inducing a cytoprotective effect. The autophagy receptor p62 protects cells from death by binding ubiquitinated capsid and targeting it to autophagolysosomes. By contrast, the human autophagy receptor NDP52--but not its mouse orthologue--interacts with the non-structural protein nsP2, thereby promoting viral replication. These results highlight the distinct roles of p62 and NDP52 in viral infection, and identify NDP52 as a cellular factor that accounts for CHIKV species specificity.
Collapse
|
148
|
Dong X, Levine B. Autophagy and viruses: adversaries or allies? J Innate Immun 2013; 5:480-93. [PMID: 23391695 DOI: 10.1159/000346388] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/07/2012] [Indexed: 12/11/2022] Open
Abstract
The autophagy pathway is an essential component of host defense against viral infection, orchestrating pathogen degradation (xenophagy), innate immune signaling, and certain aspects of adaptive immunity. Single autophagy proteins or cassettes of the core autophagy machinery can also function as antiviral factors independently of the canonical autophagy pathway. Moreover, to survive and propagate within the host, viruses have evolved a variety of strategies to evade autophagic attack and manipulate the autophagy machinery for their own benefit. This review summarizes recent advances in understanding the antiviral and proviral roles of autophagy and previously unappreciated autophagy-independent functions of autophagy-related genes.
Collapse
Affiliation(s)
- Xiaonan Dong
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
149
|
Rathore APS, Ng ML, Vasudevan SG. Differential unfolded protein response during Chikungunya and Sindbis virus infection: CHIKV nsP4 suppresses eIF2α phosphorylation. Virol J 2013; 10:36. [PMID: 23356742 PMCID: PMC3605262 DOI: 10.1186/1743-422x-10-36] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 01/11/2013] [Indexed: 12/27/2022] Open
Abstract
Chikungunya (CHIKV) and Sindbis (SINV) are arboviruses belonging to the alphavirus genus within the Togaviridae family. They cause frequent epidemics of febrile illness and long-term arthralgic sequelae that affect millions of people each year. Both viruses replicate prodigiously in infected patients and in vitro in mammalian cells, suggesting some level of control over the host cellular translational machinery that senses and appropriately directs the cell's fate through the unfolded protein response (UPR). The mammalian UPR involves BIP (or GRP78), the master sensor in the endoplasmic reticulum (ER) together with the three downstream effector branches: inositol-requiring ser/thr protein kinase/endonuclease (IRE-1), PKR-like ER resident kinase (PERK) and activating transcription factor 6 (ATF-6). Through careful analysis of CHIKV and SINV infections in cell culture we found that the former selectively activates ATF-6 and IRE-1 branches of UPR and suppresses the PERK pathway. By separately expressing each of the CHIKV proteins as GFP-fusion proteins, we found that non-structural protein 4 (nsP4), which is a RNA-dependent-RNA polymerase, suppresses the serine-51 phosphorylation of eukaryotic translation initiation factor, alpha subunit (eIF2α), which in turn regulates the PERK pathway. This study provides insight into a mechanism by which CHIKV replication responds to overcome the host UPR machinery.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, 8-College Road, Singapore 169857, Singapore
| | | | | |
Collapse
|
150
|
Rana J, Sreejith R, Gulati S, Bharti I, Jain S, Gupta S. Deciphering the host-pathogen protein interface in chikungunya virus-mediated sickness. Arch Virol 2013; 158:1159-72. [PMID: 23334837 DOI: 10.1007/s00705-013-1602-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/02/2012] [Indexed: 12/20/2022]
Abstract
Successful infection with chikungunya virus (CHIKV) depends largely on the ability of this virus to manipulate cellular processes in its favour through specific interactions with several host factors. The knowledge of virus-host interactions is of particular value for understanding the interface through which therapeutic strategies could be applied. In the current study, the authors have employed a computational method to study the protein interactions between CHIKV and both its human host and its mosquito vector. In this structure-based study, 2028 human and 86 mosquito proteins were predicted to interact with those of CHIKV through 3918 and 112 unique interactions, respectively. This approach could predict 40 % of the experimentally confirmed CHIKV-host interactions along with several novel interactions, suggesting the involvement of CHIKV in intracellular cell signaling, programmed cell death, and transcriptional and translational regulation. The data corresponded to those obtained in earlier studies for HIV and dengue viruses using the same methodology. This study provides a conservative set of potential interactions that can be employed for future experimental studies with a view to understanding CHIKV biology.
Collapse
Affiliation(s)
- Jyoti Rana
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, A-10, Sector 62, Noida, 201 307 Uttar Pradesh, India
| | | | | | | | | | | |
Collapse
|