101
|
Boeijen LL, Spaan M, Boonstra A. The effects of nucleoside/nucleotide analogues on host immune cells: the baseline for future immune therapy for HBV? Antivir Ther 2020; 25:181-191. [PMID: 32589166 DOI: 10.3851/imp3364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
HBV is a non-cytopathic virus and the progression of liver fibrosis is attributed to the host immune response. Complete suppression of viral replication using nucleotide or nucleoside analogues (NUCs) can prevent most complications related to chronic HBV infection. Unfortunately, antiviral treatment has to be administered lifelong to the majority of patients as HBV persists in the hepatocytes. However, although NUCs are very frequently administered in clinical practice, their effects on vital parts of the host immune response to HBV are not well established. In this review we summarize the currently available data gathered from longitudinal studies that investigated treatment-associated alterations of HBV-specific CD4+ and CD8+ T-cells, regulatory T-cells and natural killer (NK) cells. These observations are important, as they can guide the design of studies that investigate the efficacy of new immune therapeutic agents. Novel experimental compounds will likely be added to ongoing NUC treatment, which leads to a functional cure in only a small minority of patients.
Collapse
Affiliation(s)
- Lauke L Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - Michelle Spaan
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
102
|
Abstract
Chronic hepatitis B (CHB) is a widespread global infection and a leading cause of hepatocellular carcinoma and liver failure. Current approaches to treat CHB involve the suppression of viral replication with either interferon or nucleos(t)ide analog therapy, but neither of these approaches can reliably induce viral eradication, immunologic control or long-lived viral suppression in the absence of continued therapy. In this update, we explore the major obstacles of CHB cure and review new therapeutic strategies and drug candidates.
Collapse
Affiliation(s)
- Lydia Tang
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Shyam Kottilil
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Eleanor Wilson
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|
103
|
Gyurova IE, Ali A, Waggoner SN. Natural Killer Cell Regulation of B Cell Responses in the Context of Viral Infection. Viral Immunol 2019; 33:334-341. [PMID: 31800366 DOI: 10.1089/vim.2019.0129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Secretion of both neutralizing and nonneutralizing virus-specific antibodies by B cells is a key component of immune control of many virus infections and a critical benchmark of successful preventative vaccines. Natural killer (NK) cells also play a vital role in antiviral immune defense via cytolytic elimination of infected cells and production of proinflammatory antiviral cytokines. Accumulating evidence points to multifaceted crosstalk between NK cells and antiviral B cell responses that can determine virus elimination, pathogenesis of infection, and efficacy of vaccine-elicited protection. These outcomes are a result of both positive and negative influences of NK cells on the B cell responses, as well as canonical antiviral killing of infected B cells. On one hand, NK cell-derived cytokines such as interferon-gamma (IFN-γ) may promote B cell activation and enhance immunoglobulin production. In contrast, NK cell immunoregulatory killing of CD4 T cells can limit affinity maturation in germinal centers resulting in weak infection or vaccine induction of antiviral neutralizing antibodies. In this review, we will discuss these and other dueling contributions of NK cells to B cell responses during virus infection or vaccination.
Collapse
Affiliation(s)
- Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati, Cincinnati, Ohio, USA.,Graduate Program in Immunology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA.,Medical Scientist Training Program, University of Cincinnati, Cincinnati, Ohio, USA.,Graduate Program in Immunology, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
104
|
Immunopathogenesis of HBV Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1179:71-107. [DOI: 10.1007/978-981-13-9151-4_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
105
|
Sheppard S, Schuster IS, Andoniou CE, Cocita C, Adejumo T, Kung SKP, Sun JC, Degli-Esposti MA, Guerra N. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s. Cell Rep 2019; 22:3385-3392. [PMID: 29590608 PMCID: PMC5896200 DOI: 10.1016/j.celrep.2018.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022] Open
Abstract
TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s) and a subset of natural killer (NK) cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells.
Collapse
Affiliation(s)
- Sam Sheppard
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK; Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, 408 East 69th Street, New York, NY 10065, USA
| | - Iona S Schuster
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Christopher E Andoniou
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Clement Cocita
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Thomas Adejumo
- Medical Research Center, Hammersmith Hospital, London W12 0NN, UK
| | - Sam K P Kung
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg R3E 0T5, Manitoba, Canada
| | - Joseph C Sun
- Memorial Sloan Kettering Cancer Center, Zuckerman Research Center, 408 East 69th Street, New York, NY 10065, USA
| | - Mariapia A Degli-Esposti
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, Western Australia, Australia; Centre for Experimental Immunology, Lions Eye Institute, Nedlands, Western Australia, Australia
| | - Nadia Guerra
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
106
|
Abstract
The liver is an immunologically tolerant organ that is uniquely equipped to limit hypersensitivity to food-derived antigens and bacterial products through the portal vein and can feasibly accept liver allografts. The adaptive immune response is a major branch of the immune system that induces organ/tissue-localized and systematic responses against pathogens and tumors while promoting self-tolerance. Persistent infection of the liver with a virus or other pathogen typically results in tolerance, which is a key feature of the liver. The liver's immunosuppressive microenvironment means that hepatic adaptive immune cells become readily tolerogenic, promoting the death of effector cells and the “education” of regulatory cells. The above mechanisms may result in the clonal deletion, exhaustion, or inhibition of peripheral T cells, which are key players in the adaptive immune response. These tolerance mechanisms are believed to be responsible for almost all liver diseases. However, optimal protective adaptive immune responses may be achieved through checkpoint immunotherapy and the modulation of hepatic innate immune cells in the host. In this review, we focus on the mechanisms involved in hepatic adaptive immune tolerance, the liver diseases caused thereby, and the therapeutic strategies needed to overcome this tolerance.
Collapse
Affiliation(s)
- Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Molecular Medicine, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
107
|
Gao YH, Li QQ, Wang CG, Sun J, Wang XM, Li YJ, He XT, Xu HQ, Niu JQ. The role of IL22 polymorphisms on liver cirrhosis in patients with hepatitis B virus: A case control study. Medicine (Baltimore) 2019; 98:e17867. [PMID: 31689880 PMCID: PMC6946515 DOI: 10.1097/md.0000000000017867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/14/2019] [Accepted: 10/08/2019] [Indexed: 01/12/2023] Open
Abstract
AIMS Interleukin(IL)-22 plays an important role in promoting liver regeneration and repair, but its role in chronic HBV-related liver diseasesis not clear. The goal of this study was to evaluate associations between eight IL22 single nucleotide polymorphisms (SNPs) and the development of chronic HBV cirrhosis and HBV-related HCC within a Chinese Han population. METHODS We investigated associations between single nucleotide polymorphisms (SNPs) in the IL22 gene (rs1026788, rs2227472, rs2227491, rs2227485, rs1179249, rs2046068,rs2227473, and rs7314777) and the risk of HBV-related chronic liver diseases within a Han population in Northeast China. A total of 649 participants were included in the study, including 103 patients with CHB, 264 patients with LC, and 282 patients with HCC. The odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated using chi-square test. Haplotype analysis was conducted by haploview software. RESULTS Genotype and allele distributions of SNPs rs1179249 and rs2227472 differed between LC and CHB groups (both P < 0.05).The G alleles of SNP rs2227491 and rs1026788 were more frequent in the LC group than in the CHB group (P = 0.046, P = 0.041 respectively). A IL22 haplotype consisting of the minor alleles of SNP rs1179249 and the major alleles of seven other SNPs occurred less frequently in the LC and HCC groups than in the CHB group (28.2%, 33.94%, and 37.86%, respectively, P < 0.05). Moreover, there were no significant associations between smoking or drinking and IL22 SNPs on the risk of HCC (P > 0.05). CONCLUSION IL22 genetic variations were associated with chronic HBV infection progression, especially in the HBV-LC group. The IL22 genetic variations may help clinicians initiate the correct treatment strategy at the CHB stage.
Collapse
Affiliation(s)
- Yan-Hang Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Qing-Quan Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
- Department of Gastroenterology, The Hospital of CNOOC, Tianjin
| | - Chun-Guang Wang
- Department of Surgery, The Second Hospital of Jilin University, Changchun, Jilin
| | - Jing Sun
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
- Department of Gastroenterology, Heping Hospital, Changzhi Medical College, Changzhi, Shanxi
| | - Xiao-Mei Wang
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Ya-Jun Li
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Xiu-Ting He
- Department of Geriatrics, The First Hospital of Jilin University
| | - Hong-Qin Xu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
| | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun
- Jilin Province Key Laboratory of Infectious Diseases, Laboratory of Molecular Virology, Changchun, Jilin Province, China
| |
Collapse
|
108
|
Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 2019; 16:662-675. [PMID: 31548710 DOI: 10.1038/s41575-019-0196-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Multiple new therapeutic approaches are currently being developed to achieve sustained, off-treatment suppression of HBV, a persistent hepatotropic infection that kills ~2,000 people a day. A fundamental therapeutic goal is the restoration of robust HBV-specific adaptive immune responses that are able to maintain prolonged immunosurveillance of residual infection. Here, we provide insight into key components of successful T cell and B cell responses to HBV, discussing the importance of different specificities and effector functions, local intrahepatic immunity and pathogenic potential. We focus on the parallels and interactions between T cell and B cell responses, highlighting emerging areas for future investigation. We review the potential for different immunotherapies in development to restore or release endogenous adaptive immunity by direct or indirect approaches, including limitations and risks. Finally, we consider an alternative HBV treatment strategy of replacing failed endogenous immunity with infusions of highly targeted T cells or antibodies.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
109
|
Fisicaro P, Rossi M, Vecchi A, Acerbi G, Barili V, Laccabue D, Montali I, Zecca A, Penna A, Missale G, Ferrari C, Boni C. The Good and the Bad of Natural Killer Cells in Virus Control: Perspective for Anti-HBV Therapy. Int J Mol Sci 2019; 20:ijms20205080. [PMID: 31614928 PMCID: PMC6834135 DOI: 10.3390/ijms20205080] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Immune modulatory therapies are widely believed to represent potential therapeutic strategies for chronic hepatitis B infection (CHB). Among the cellular targets for immune interventions, Natural Killer (NK) cells represent possible candidates because they have a key role in anti-viral control by producing cytokines and by exerting cytotoxic functions against virus-infected cells. However, in patients with chronic hepatitis B, NK cells have been described to be more pathogenic than protective with preserved cytolytic activity but with a poor capacity to produce anti-viral cytokines. In addition, NK cells can exert a regulatory activity and possibly suppress adaptive immune responses in the setting of persistent viral infections. Consequently, a potential drawback of NK-cell targeted modulatory interventions is that they can potentiate the suppressive NK cell effect on virus-specific T cells, which further causes impairment of exhausted anti-viral T cell functions. Thus, clinically useful NK-cell modulatory strategies should be not only suited to improve positive anti-viral NK cell functions but also to abrogate T cell suppression by NK cell-mediated T cell killing. This review outlines the main NK cell features with a particular focus on CHB infection. It describes different mechanisms involved in NK-T cell interplay as well as how NK cells can have positive anti-viral effector functions and negative suppressive effects on T cells activity. This review discusses how modulation of their balance can have potential therapeutic implications.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy.
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda-Ospedaliero-Universitaria di Parma, 43126 Parma, Italy.
| |
Collapse
|
110
|
Ravichandran G, Neumann K, Berkhout LK, Weidemann S, Langeneckert AE, Schwinge D, Poch T, Huber S, Schiller B, Hess LU, Ziegler AE, Oldhafer KJ, Barikbin R, Schramm C, Altfeld M, Tiegs G. Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice. J Hepatol 2019; 71:773-782. [PMID: 31173810 DOI: 10.1016/j.jhep.2019.05.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND AIMS Primary sclerosing cholangitis (PSC) is an idiopathic, chronic cholestatic liver disorder characterized by biliary inflammation and fibrosis. Increased numbers of intrahepatic interferon-γ- (IFNγ) producing lymphocytes have been documented in patients with PSC, yet their functional role remains to be determined. METHODS Liver tissue samples were collected from patients with PSC. The contribution of lymphocytes to liver pathology was assessed in Mdr2-/- x Rag1-/- mice, which lack T and B cells, and following depletion of CD90.2+ or natural killer (NK)p46+ cells in Mdr2-/- mice. Liver pathology was also determined in Mdr2-/- x Ifng-/- mice and following anti-IFNγ antibody treatment of Mdr2-/- mice. Immune cell composition was analysed by multi-colour flow cytometry. Liver injury and fibrosis were determined by standard assays. RESULTS Patients with PSC showed increased IFNγ serum levels and elevated numbers of hepatic CD56bright NK cells. In Mdr2-/- mice, hepatic CD8+ T cells and NK cells were the primary source of IFNγ. Depletion of CD90.2+ cells reduced hepatic Ifng expression, NK cell cytotoxicity and liver injury similar to Mdr2-/- x Rag1-/- mice. Depletion of NK cells resulted in reduced CD8+ T cell cytotoxicity and liver fibrosis. The complete absence of IFNγ in Mdr2-/-x Ifng-/- mice reduced NK cell and CD8+ T cell frequencies expressing the cytotoxic effector molecules granzyme B and TRAIL and prevented liver fibrosis. The antifibrotic effect of IFNγ was also observed upon antibody-dependent neutralisation in Mdr2-/- mice. CONCLUSION IFNγ changed the phenotype of hepatic CD8+ T cells and NK cells towards increased cytotoxicity and its absence attenuated liver fibrosis in chronic sclerosing cholangitis. Therefore, unravelling the immunopathogenesis of PSC with a particular focus on IFNγ might help to develop novel treatment options. LAY SUMMARY Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease characterized by biliary inflammation and fibrosis, whose current medical treatment is hardly effective. We observed an increased interferon (IFN)-γ response in patients with PSC and in a mouse model of sclerosing cholangitis. IFNγ changed the phenotype of hepatic CD8+ T lymphocytes and NK cells towards increased cytotoxicity, and its absence decreased liver cell death, reduced frequencies of inflammatory macrophages in the liver and attenuated liver fibrosis. Therefore, IFNγ-dependent immune responses may disclose checkpoints for future therapeutic intervention strategies in sclerosing cholangitis.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Cells, Cultured
- Cholangitis, Sclerosing/immunology
- Disease Models, Animal
- Humans
- Immunity, Cellular/immunology
- Immunologic Factors/immunology
- Immunologic Factors/pharmacology
- Interferon-gamma/immunology
- Interferon-gamma/pharmacology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Liver/immunology
- Liver/pathology
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Cirrhosis/therapy
- Mice
- Mice, Knockout
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura K Berkhout
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Annika E Langeneckert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Dorothee Schwinge
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Poch
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Schiller
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leonard U Hess
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Annerose E Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Karl J Oldhafer
- Department of General Abdominal Surgery, Asklepios Hospital Barmbek, Semmelweis University of Medicine Hamburg, Germany
| | - Roja Barikbin
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schramm
- Center for Internal Medicine, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany; Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
111
|
Zhou G, Sprengers D, Mancham S, Erkens R, Boor PPC, van Beek AA, Doukas M, Noordam L, Campos Carrascosa L, de Ruiter V, van Leeuwen RWF, Polak WG, de Jonge J, Groot Koerkamp B, van Rosmalen B, van Gulik TM, Verheij J, IJzermans JNM, Bruno MJ, Kwekkeboom J. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. J Hepatol 2019; 71:753-762. [PMID: 31195061 DOI: 10.1016/j.jhep.2019.05.026] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma is an aggressive hepatobiliary malignancy originating from biliary tract epithelium. Whether cholangiocarcinoma is responsive to immune checkpoint antibody therapy is unknown, and knowledge of its tumor immune microenvironment is limited. We aimed to characterize tumor-infiltrating lymphocytes (TILs) in cholangiocarcinoma and assess functional effects of targeting checkpoint molecules on TILs. METHODS We isolated TILs from resected tumors of patients with cholangiocarcinoma and investigated their compositions compared with their counterparts in tumor-free liver (TFL) tissues and blood, by flow cytometry and immunohistochemistry. We measured expression of immune co-stimulatory and co-inhibitory molecules on TILs, and determined whether targeting these molecules improved ex vivo functions of TILs. RESULTS Proportions of cytotoxic T cells and natural killer cells were decreased, whereas regulatory T cells were increased in tumors compared with TFL. While regulatory T cells accumulated in tumors, the majority of cytotoxic and helper T cells were sequestered at tumor margins, and natural killer cells were excluded from the tumors. The co-stimulatory receptor GITR and co-inhibitory receptors PD1 and CTLA4 were over-expressed on tumor-infiltrating T cells compared with T cells in TFL and blood. Antagonistic targeting of PD1 or CTLA4 or agonistic targeting of GITR enhanced effector molecule production and T cell proliferation in ex vivo stimulation of TILs derived from cholangiocarcinoma. The inter-individual variations in TIL responses to checkpoint treatments were correlated with differences in TIL immune phenotype. CONCLUSIONS Decreased numbers of cytotoxic immune cells and increased numbers of suppressor T cells that over-express co-inhibitory receptors suggest that the tumor microenvironment in cholangiocarcinoma is immunosuppressive. Targeting GITR, PD1 or CTLA4 enhances effector functions of tumor-infiltrating T cells, indicating that these molecules are potential immunotherapeutic targets for patients with cholangiocarcinoma. LAY SUMMARY The defense functions of immune cells are suppressed in cholangiocarcinoma tumors. Stimulating or blocking "immune checkpoint" molecules expressed on tumor-infiltrating T cells can enhance the defense functions of these cells. Therefore, these molecules may be promising targets for therapeutic stimulation of immune cells to eradicate the tumors and prevent cancer recurrence in patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Guoying Zhou
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Shanta Mancham
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Remco Erkens
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Adriaan A van Beek
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lisanne Noordam
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Lucia Campos Carrascosa
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Valeska de Ruiter
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Roelof W F van Leeuwen
- Department of Hospital Pharmacy and Medical Oncology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Wojciech G Polak
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jeroen de Jonge
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Belle van Rosmalen
- Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Academic Medical Center, Amsterdam, the Netherlands
| | - Joanne Verheij
- Department of Pathology, Academic Medical Center, Amsterdam, the Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Marco J Bruno
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Jaap Kwekkeboom
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
112
|
Sag D, Ayyildiz ZO, Gunalp S, Wingender G. The Role of TRAIL/DRs in the Modulation of Immune Cells and Responses. Cancers (Basel) 2019; 11:cancers11101469. [PMID: 31574961 PMCID: PMC6826877 DOI: 10.3390/cancers11101469] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
Expression of TRAIL (tumor necrosis factor–related apoptosis–inducing ligand) by immune cells can lead to the induction of apoptosis in tumor cells. However, it becomes increasingly clear that the interaction of TRAIL and its death receptors (DRs) can also directly impact immune cells and influence immune responses. Here, we review what is known about the role of TRAIL/DRs in immune cells and immune responses in general and in the tumor microenvironment in particular.
Collapse
Affiliation(s)
- Duygu Sag
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Zeynep Ozge Ayyildiz
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Sinem Gunalp
- Department of Genome Sciences and Molecular Biotechnology, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| | - Gerhard Wingender
- Izmir Biomedicine and Genome Center (IBG), 35340 Balcova/Izmir, Turkey.
- Department of Biomedicine and Health Technologies, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, 35340 Balcova/Izmir, Turkey.
| |
Collapse
|
113
|
Huang A, Shinde PV, Huang J, Senff T, Xu HC, Margotta C, Häussinger D, Willnow TE, Zhang J, Pandyra AA, Timm J, Weggen S, Lang KS, Lang PA. Progranulin prevents regulatory NK cell cytotoxicity against antiviral T cells. JCI Insight 2019; 4:129856. [PMID: 31484831 DOI: 10.1172/jci.insight.129856] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/06/2019] [Indexed: 12/15/2022] Open
Abstract
`NK cell-mediated regulation of antigen-specific T cells can contribute to and exacerbate chronic viral infection, but the protective mechanisms against NK cell-mediated attack on T cell immunity are poorly understood. Here, we show that progranulin (PGRN) can reduce NK cell cytotoxicity through reduction of NK cell expansion, granzyme B transcription, and NK cell-mediated lysis of target cells. Following infection with the lymphocytic choriomeningitis virus (LCMV), PGRN levels increased - a phenomenon dependent on the presence of macrophages and type I IFN signaling. Absence of PGRN in mice (Grn-/-) resulted in enhanced NK cell activity, increased NK cell-mediated killing of antiviral T cells, reduced antiviral T cell immunity, and increased viral burden, culminating in increased liver immunopathology. Depletion of NK cells restored antiviral immunity and alleviated pathology during infection in Grn-/- mice. In turn, PGRN treatment improved antiviral T cell immunity. Taken together, we identified PGRN as a critical factor capable of reducing NK cell-mediated attack of antiviral T cells.
Collapse
Affiliation(s)
| | | | - Jun Huang
- Department of Molecular Medicine II and
| | - Tina Senff
- Institute of Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas E Willnow
- Molecular Cardiovascular Research, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | - Jinping Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II and.,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jörg Timm
- Institute of Virology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sascha Weggen
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, Universität Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
114
|
Bozzano F, Perrone C, Moretta L, De Maria A. NK Cell Precursors in Human Bone Marrow in Health and Inflammation. Front Immunol 2019; 10:2045. [PMID: 31555276 PMCID: PMC6724745 DOI: 10.3389/fimmu.2019.02045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
NK cells are generated from hematopoietic stem cells (HSC) residing in the bone marrow (BM), similar to other blood cells. Development toward mature NK cells occurs largely outside the BM through travel of CD34+ and other progenitor intermediates toward secondary lymphoid organs. The BM harbors multipotent CD34+ common lymphoid progenitors (CLPs) that generate T, B, NK, and Dendritic Cells and are devoid of erythroid, myeloid, and megakaryocytic potential. Over recent years, there has been a quest for single-lineage progenitors predominantly with the objective of manipulation and intervention in mind, which has led to the identification of unipotent NK cell progenitors devoid of other lymphoid lineage potential. Research efforts for the study of lymphopoiesis have almost exclusively concentrated on healthy donor tissues and on repopulation/transplant models. This has led to the widely accepted assumption that lymphopoiesis during disease states reflects the findings of these models. However, compelling evidences in animal models show that inflammation plays a fundamental role in the regulation of HSC maturation and release in the BM niches through several mechanisms including modulation of the CXCL12-CXCR4 expression. Indeed, recent findings during systemic inflammation in patients provide evidence that a so-far overlooked CLP exists in the BM (Lin−CD34+DNAM-1brightCXCR4+) and that it overwhelmingly exits the BM during systemic inflammation. These “inflammatory” precursors have a developmental trajectory toward surprisingly functional NK and T cells as reviewed here and mirror the steady state maintenance of the NK cell pool by CD34+DNAM-1−CXCR4− precursors. Our understanding of NK cell precursor development may benefit from including a distinct “inflammatory” progenitor modeling of lymphoid precursors, allowing rapid deployment of specialized Lin−CD34+DNAM-1brightCXCR4+ -derived resources from the BM.
Collapse
Affiliation(s)
| | - Carola Perrone
- Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genoa, Italy
| | | | - Andrea De Maria
- Centro di Eccellenza per la Ricerca Biomedica, Università di Genova, Genoa, Italy.,Clinica Malattie Infettive, Ospedale Policlinico S. Martino IRCCS, Genoa, Italy.,Dipartimento di Scienze Dell Salute, Università Degli Studi di Genova, Genoa, Italy
| |
Collapse
|
115
|
Fanning GC, Zoulim F, Hou J, Bertoletti A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat Rev Drug Discov 2019; 18:827-844. [PMID: 31455905 DOI: 10.1038/s41573-019-0037-0] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a common cause of liver disease globally, with a disproportionately high burden in South-East Asia. Vaccines and nucleoside or nucleotide drugs are available and reduce both new infection rates and the development of liver disease in HBV-positive persons who adhere to long-term suppressive treatment. Although there is still considerable value in optimizing access to virus-suppressing regimens, the scientific and medical communities have embarked on a concerted journey to identify new antiviral drugs and immune interventions aimed at curing infection. The mechanisms and drug targets being explored are diverse; however, the field universally recognizes the importance of addressing the persistence of episomal covalently closed circular DNA, the existence of integrated HBV DNA in the host genome and the large antigen load, particularly of hepatitis B surface antigen. Another major challenge is to reinvigorate the exhausted immune response within the liver microenvironment. Ultimately, combinations of new drugs will be required to cure infection. Here we critically review the recent literature that describes the rationale for curative therapies and the resulting compounds that are being tested in clinical trials for hepatitis B.
Collapse
Affiliation(s)
- Gregory C Fanning
- Janssen Pharmaceuticals, China Research & Development, Shanghai, China.
| | - Fabien Zoulim
- Cancer Research Centre of Lyon, INSERM U1052, Lyon University, Hospices Civils de Lyon, Lyon, France
| | - Jinlin Hou
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
116
|
KLRG1+ natural killer cells exert a novel antifibrotic function in chronic hepatitis B. J Hepatol 2019; 71:252-264. [PMID: 30905683 DOI: 10.1016/j.jhep.2019.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Natural killer (NK) cells are known to exert strong antiviral activity. Killer cell lectin-like receptor subfamily G member 1 (KLRG1) is expressed by terminally differentiated NK cells and KLRG1-expressing lymphocytes are known to expand following chronic viral infections. We aimed to elucidate the previously unknown role of KLRG1 in the pathogenesis of chronic hepatitis B (CHB). METHODS KLRG1+ NK cells were taken from the blood and liver of healthy individuals and patients with CHB. The phenotype and function of these cells was assessed using flow cytometry and in vitro stimulation. RESULTS Patients with CHB had a higher frequency of KLRG1+ NK cells compared to healthy controls (blood 13.4 vs. 2.3%, p <0.0001 and liver 23.4 vs. 2.6%, p <0.01). KLRG1+ NK cells were less responsive to K562 and cytokine stimulation, but demonstrated enhanced cytotoxicity (9.0 vs. 4.8%, p <0.05) and IFN-γ release (8.0 vs. 1.5%, p <0.05) via antibody dependent cellular cytotoxicity compared to their KLRG1- counterparts. KLRG1+ NK cells possessed a mature phenotype, demonstrating stronger cytolytic activity and IFN-γ secretion against hepatic stellate cells (HSCs) than KLRG1- NK cells. Moreover, KLRG1+ NK cells more effectively induced primary HSC apoptosis in a TRAIL-dependent manner. Increased KLRG1+ NK cell frequency in the liver and blood was associated with lower fibrosis stage (F0/F1) in patients with CHB. Finally, the expression of CD44, degranulation and IFN-γ production were all increased in KLRG1+ NK cells following stimulation with osteopontin, the CD44 ligand, suggesting that HSC-derived osteopontin may cause KLRG1+ NK cell activation. CONCLUSIONS KLRG1+ NK cells likely play an antifibrotic role during the natural course of CHB infection. Harnessing this antifibrotic function may provide a novel therapeutic approach to treat liver fibrosis in patients with CHB. LAY SUMMARY Individuals that are chronically infected with hepatitis B virus (HBV) possess an increased number of immune cells, called natural killer (NK) cells expressing the surface marker KLRG1 in the blood and liver. Here, we demonstrate that these specific NK cells are able to kill activated stellate cells in the liver. Because activated stellate cells contribute to liver scarring, i.e. fibrosis, and subsequent liver dysfunction in individuals with chronic HBV infection, KLRG1+ NK cells are a novel immune cell type that can limit liver scarring.
Collapse
|
117
|
Li TY, Yang Y, Zhou G, Tu ZK. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World J Gastroenterol 2019; 25:3527-3537. [PMID: 31367154 PMCID: PMC6658392 DOI: 10.3748/wjg.v25.i27.3527] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/29/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is one the leading risk factors for chronic hepatitis, liver fibrosis, cirrhosis and hepatocellular cancer (HCC), which are a major global health problem. A large number of clinical studies have shown that chronic HBV persistent infection causes the dysfunction of innate and adaptive immune response involving monocytes/macrophages, dendritic cells, natural killer (NK) cells, T cells. Among these immune cells, cell subsets with suppressive features have been recognized such as myeloid derived suppressive cells(MDSC), NK-reg, T-reg, which represent a critical regulatory system during liver fibrogenesis or tumourigenesis. However, the mechanisms that link HBV-induced immune dysfunction and HBV-related liver diseases are not understood. In this review we summarize the recent studies on innate and adaptive immune cell dysfunction in chronic HBV infection, liver fibrosis, cirrhosis, and HCC, and further discuss the potential mechanism of HBV-induced immunosuppressive cascade in HBV infection and consequences. It is hoped that this article will help ongoing research about the pathogenesis of HBV-related hepatic fibrosis and HBV-related HCC.
Collapse
Affiliation(s)
- Tian-Yang Li
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Yang Yang
- Institute of Liver diseases, the First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guo Zhou
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
| | - Zheng-Kun Tu
- Infectious Disease, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510000, Guangdong Province, China
- Institute of Liver diseases, the First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
118
|
Wang Y, Zhang C. The Roles of Liver-Resident Lymphocytes in Liver Diseases. Front Immunol 2019; 10:1582. [PMID: 31379818 PMCID: PMC6648801 DOI: 10.3389/fimmu.2019.01582] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
Tissue-resident lymphocytes usually reside in barrier sites and are involved in innate and adaptive immunity. In recent years, many studies have shown that multiple types of lymphocytes are resident in the liver, including memory CD8+ T (TRM) cells; "unconventional" T cells, such as invariant natural killer T (iNKT) cells, mucosal associated invariant T (MAIT) cells, and γδT cells; innate lymphoid cells (ILCs) such as natural killer (NK) cells and other ILCs. Although diverse types of tissue-resident lymphocytes share similar phenotypes, functional properties, and transcriptional regulation, the unique microenvironment of the liver can reshape their phenotypic and functional characteristics. Liver-resident lymphocytes serve as sentinels and perform immunosurveillance in response to infection and non-infectious insults, and are involved in the maintenance of liver homeostasis. Under the pathological conditions, distinct liver-resident lymphocytes exert protective or pathological effects in the process of various liver diseases. In this review, we highlight the unique properties of liver-resident lymphocytes, and discuss their functional characteristics in different liver diseases.
Collapse
Affiliation(s)
- Yanan Wang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Cai Zhang
- Institute of Immunopharmacology and Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
119
|
Zhang J, Chen Q, Feng H. Relationship Between Chronic Hepatitis B Virus Infection and Nature Killer Cells. Viral Immunol 2019; 32:263-268. [PMID: 31158068 DOI: 10.1089/vim.2018.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jin Zhang
- Gastroenterology, Nanjing Jiangbei People's Hospital, Nanjing, China
| | - Quan Chen
- Infectious Diseases Section, Nanjing Jiangbei People's Hospital, Nanjing, China
| | - Hao Feng
- Infectious Diseases Section, Nanjing Jiangbei People's Hospital, Nanjing, China
- Infectious Diseases Section, Jiangsu Provincial People's Hospital Pukou Branch, Pukou District Central Hospital, Nanjing, China
| |
Collapse
|
120
|
Asín-Prieto E, Parra-Guillen ZP, Mantilla JDG, Vandenbossche J, Stuyckens K, de Trixhe XW, Perez-Ruixo JJ, Troconiz IF. Immune network for viral hepatitis B: Topological representation. Eur J Pharm Sci 2019; 136:104939. [PMID: 31195071 DOI: 10.1016/j.ejps.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
The liver is a well-known immunotolerogenic environment, which provides the adequate setting for liver infectious pathogens persistence such as the hepatitis B virus (HBV). Consequently, HBV infection can derive in the development of chronic disease in a proportion of the patients. If this situation persists in time, chronic hepatitis B (CHB) would end in cirrhosis, hepatocellular carcinoma and eventually, the death of the patient. It is thought that this immunotolerogenic environment is the result of complex interactions between different elements of the immune system and the viral biology. Therefore, the purpose of this work is to unravel the mechanisms implied in the development of CHB and to design a tool able to help in the study of adequate therapies. Firstly, a conceptual framework with the main components of the immune system and viral dynamics was constructed providing an overall insight on the pathways and interactions implied in this disease. Secondly, a review of the literature was performed in a modular fashion: (i) viral dynamics, (ii) innate immune response, (iii) humoral and (iv) cellular adaptive immune responses and (v) tolerogenic aspects. Finally, the information collected was integrated into a single topological representation that could serve as the plan for the systems pharmacology model architecture. This representation can be considered as the previous unavoidable step to the construction of a quantitative model that could assist in biomarker and target identification, drug design and development, dosing optimization and disease progression analysis.
Collapse
Affiliation(s)
- Eduardo Asín-Prieto
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Zinnia P Parra-Guillen
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - José David Gómez Mantilla
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | | | - Kim Stuyckens
- Global Clinical Pharmacology, Janssen R&D, Beerse, Belgium
| | | | | | - Iñaki F Troconiz
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
121
|
Sung PS, Park DJ, Kim JH, Han JW, Lee EB, Lee GW, Nam HC, Jang JW, Bae SH, Choi JY, Shin EC, Park SH, Yoon SK. Ex vivo Detection and Characterization of Hepatitis B Virus-Specific CD8 + T Cells in Patients Considered Immune Tolerant. Front Immunol 2019; 10:1319. [PMID: 31244857 PMCID: PMC6563765 DOI: 10.3389/fimmu.2019.01319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
In this study, we aimed to detect and characterize ex vivo virus-specific CD8+ T cells in patients with immune-tolerant hepatitis B virus (HBV) infection. We investigated a Korean chronic hepatitis B cohort composed of 15 patients in the immune-tolerant phase, 17 in the immune-active phase, and 13 under antiviral treatment. We performed enzyme-linked immunospot (ELISpot) assays ex vivo and intracellular cytokine staining after in vitro culture. We also performed ex vivo multimer staining assays and examined the expression of programmed death-1 (PD-1) and CD127 in pentamer-positive cells. Ex vivo ELISpot revealed that HBV-specific T cell function was weaker in immune-tolerant patients than in those under antiviral treatment. In vitro culture of peripheral blood mononuclear cells for 10 days revealed that HBV-specific CD8+ T cells produced interferon-γ in some immune-tolerant patients. We detected HBV-specific CD8+ T cells ex vivo (using the HBV core18-27 pentamer) in patients from all three groups. The PD-1+ subset of pentamer+ CD8+ T cells was smaller ex vivo in the immune-tolerant phase than in the immune-active phase or under antiviral treatment. Interestingly, the proportion of PD-1+ CD8+ T cells in HBV-specific CD8+ T cells correlated with patient age when all enrolled patients were analyzed. Overall, HBV-specific CD8+ T cells are present in patients considered as immune-tolerant, although their ex vivo functionality is significantly weaker than that in patients under antiviral treatment (P < 0.05). Despite the high viral load, the proportion of PD-1 expression in HBV-specific CD8+ T cells is lower in the immune-tolerant phase than in other phases. Our results indicate appropriate stimulation may enhance the effector function of HBV-specific CD8+ T cells in patients considered as being in the immune-tolerant phase.
Collapse
Affiliation(s)
- Pil Soo Sung
- Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dong Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jung-Hee Kim
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji Won Han
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Eun Byul Lee
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Gil Won Lee
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hee Chul Nam
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Jeong Won Jang
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Si Hyun Bae
- Department of Internal Medicine, College of Medicine, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, South Korea
| | - Seung Kew Yoon
- Department of Biomedicine & Health Sciences, The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
122
|
HBV Immune-Therapy: From Molecular Mechanisms to Clinical Applications. Int J Mol Sci 2019; 20:ijms20112754. [PMID: 31195619 PMCID: PMC6600394 DOI: 10.3390/ijms20112754] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection represents a worldwide public health concern with approximately 250 million people chronically infected and at risk of developing liver cirrhosis and hepatocellular carcinoma. Nucleos(t)ide analogues (NUC) are the most widely used therapies for HBV infection, but they often require long-lasting administration to avoid the risk of HBV reactivation at withdrawal. Therefore, there is an urgent need to develop novel treatments to shorten the duration of NUC therapy by accelerating virus control, and to complement the effect of available anti-viral therapies. In chronic HBV infection, virus-specific T cells are functionally defective, and this exhaustion state is a key determinant of virus persistence. Reconstitution of an efficient anti-viral T cell response may thus represent a rational strategy to treat chronic HBV patients. In this perspective, the enhancement of adaptive immune responses by a checkpoint inhibitor blockade, specific T cell vaccines, lymphocyte metabolism targeting, and autologous T cell engineering, including chimeric antigen receptor (CAR) and TCR-redirected T cells, constitutes a promising immune modulatory approach for a therapeutic restoration of protective immunity. The advances of the emerging immune-based therapies in the setting of the HBV research field will be outlined.
Collapse
|
123
|
Zheng B, Yang Y, Han Q, Yin C, Pan Z, Zhang J. STAT3 directly regulates NKp46 transcription in NK cells of HBeAg-negative CHB patients. J Leukoc Biol 2019; 106:987-996. [PMID: 31132315 DOI: 10.1002/jlb.2a1118-421r] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
NK cells play an important role in early control of HBV infection. The function of NK cells is inhibited in chronic hepatitis B virus (CHB) infection, although the underlying mechanism remains unknown. We found that the expression of STAT3 decreased in peripheral NK cells of CHB patients, and was associated with low levels of degranulation and IFN-γ secretion. In addition, STAT3 levels were positively correlated with cytolysis-associated molecules and antiviral cytokines, such as CD107a, granzyme B, perforin, and IFN-γ. HBsAg directly inhibited the expression and activation of STAT3 in NK cells, and knocking down STAT3 expression in NK cells inhibited proliferation, decreased cyclin d1 levels, and suppressed responsiveness to IL-21 stimulation. Furthermore, STAT3 directly bound to the promoter of NKp46, an important activating receptor of NK cells, to regulate its transcription and expression. Taken together, our findings indicate that STAT3 is an important positive regulator of NK cells, and provide a new mechanism of NK cell dysfunction in CHB.
Collapse
Affiliation(s)
- Bingqing Zheng
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Yinli Yang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Chunlai Yin
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Zhaoyi Pan
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
124
|
Barrow AD, Martin CJ, Colonna M. The Natural Cytotoxicity Receptors in Health and Disease. Front Immunol 2019; 10:909. [PMID: 31134055 PMCID: PMC6514059 DOI: 10.3389/fimmu.2019.00909] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022] Open
Abstract
The Natural Cytotoxicity Receptors (NCRs), NKp46, NKp44, and NKp30, were some of the first human activating Natural Killer (NK) cell receptors involved in the non-MHC-restricted recognition of tumor cells to be cloned over 20 years ago. Since this time many host- and pathogen-encoded ligands have been proposed to bind the NCRs and regulate the cytotoxic and cytokine-secreting functions of tissue NK cells. This diverse set of NCR ligands can manifest on the surface of tumor or virus-infected cells or can be secreted extracellularly, suggesting a remarkable NCR polyfunctionality that regulates the activity of NK cells in different tissue compartments during steady state or inflammation. Moreover, the NCRs can also be expressed by other innate and adaptive immune cell subsets under certain tissue conditions potentially conferring NK recognition programs to these cells. Here we review NCR biology in health and disease with particular reference to how this important class of receptors regulates the functions of tissue NK cells as well as confer NK cell recognition patterns to other innate and adaptive lymphocyte subsets. Finally, we highlight how NCR biology is being harnessed for novel therapeutic interventions particularly for enhanced tumor surveillance.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claudia Jane Martin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
125
|
Hoogeveen RC, Robidoux MP, Schwarz T, Heydmann L, Cheney JA, Kvistad D, Aneja J, Melgaço JG, Fernandes CA, Chung RT, Boonstra A, Kim AY, Baumert TF, Timm J, Lewis-Ximenez LL, Tonnerre P, Lauer GM. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 2019; 68:893-904. [PMID: 30580250 DOI: 10.1136/gutjnl-2018-316644] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic HBV infection affects more than 250 million people worldwide and remains a global healthcare problem in part because we lack curative treatment. Sustained viral control requires HBV-specific T cells, but these become functionally impaired in chronic infection. Clinical evidence indicates that functional cure of HBV infection by the host immune response is feasible. Developing T cell-based therapies able to achieve functional cure will require identification of the requirements for a successful T cell response against HBV and the relative contribution of individual T cell specificities to HBV control. DESIGN The phenotype and function of HBV-specific T cells were studied directly ex vivo using fluorochrome-labelled multimers. We studied multiple HBV-specific T cell specificities targeting different HBV proteins in individuals with either an acute self-limiting or chronic HBV infection. RESULTS We detected strong T cell responses targeting multiple HBV viral proteins in acute self-limiting and low-frequency core and polymerase-specific T cells in chronic infection. Expression of the T cell inhibitory receptor PD-1, as well as T cell differentiation, T cell function and T cell regulation differed by stages and outcomes of infection. In addition, these features differed significantly between T cells targeting different HBV specificities. CONCLUSION HBV-specific T cells with different target specificities are characterised by distinct phenotypical and functional profiles. These results have direct implications for the design of immunological studies in HBV infection, and are potentially relevant for informing immunotherapeutic approaches to induce functional cure.
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - Maxwell P Robidoux
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tatjana Schwarz
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Laura Heydmann
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, Strasbourg, France
| | - James A Cheney
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kvistad
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana G Melgaço
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos A Fernandes
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro, Brazil
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas F Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, Strasbourg, France
| | - Jörg Timm
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | | | - Pierre Tonnerre
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
126
|
Mikulak J, Bruni E, Oriolo F, Di Vito C, Mavilio D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front Immunol 2019; 10:946. [PMID: 31114585 PMCID: PMC6502999 DOI: 10.3389/fimmu.2019.00946] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The liver is considered a preferential tissue for NK cells residency. In humans, almost 50% of all intrahepatic lymphocytes are NK cells that are strongly imprinted in a liver-specific manner and show a broad spectrum of cellular heterogeneity. Hepatic NK (he-NK) cells play key roles in tuning liver immune response in both physiological and pathological conditions. Therefore, there is a pressing need to comprehensively characterize human he-NK cells to better understand the related mechanisms regulating their effector-functions within the dynamic balance between immune-tolerance and immune-surveillance. This is of particular relevance in the liver that is the only solid organ whose parenchyma is constantly challenged on daily basis by millions of foreign antigens drained from the gut. Therefore, the present review summarizes our current knowledge on he-NK cells in the light of the latest discoveries in the field of NK cell biology and clinical relevance.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Bruni
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Clara Di Vito
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
127
|
A global scientific strategy to cure hepatitis B. Lancet Gastroenterol Hepatol 2019; 4:545-558. [PMID: 30981686 DOI: 10.1016/s2468-1253(19)30119-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a global public health challenge on the same scale as tuberculosis, HIV, and malaria. The International Coalition to Eliminate HBV (ICE-HBV) is a coalition of experts dedicated to accelerating the discovery of a cure for chronic hepatitis B. Following extensive consultation with more than 50 scientists from across the globe, as well as key stakeholders including people affected by HBV, we have identified gaps in our current knowledge and new strategies and tools that are required to achieve HBV cure. We believe that research must focus on the discovery of interventional strategies that will permanently reduce the number of productively infected cells or permanently silence the covalently closed circular DNA in those cells, and that will stimulate HBV-specific host immune responses which mimic spontaneous resolution of HBV infection. There is also a pressing need for the establishment of repositories of standardised HBV reagents and protocols that can be accessed by all HBV researchers throughout the world. The HBV cure research agenda outlined in this position paper will contribute markedly to the goal of eliminating HBV infection worldwide.
Collapse
|
128
|
Ali A, Gyurova IE, Waggoner SN. Mutually assured destruction: the cold war between viruses and natural killer cells. Curr Opin Virol 2019; 34:130-139. [PMID: 30877885 DOI: 10.1016/j.coviro.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cells play a multitude of antiviral roles that are significant enough to provoke viral counterefforts to subvert their activity. As innate lymphocytes, NK cells provide a rapid source of pro-inflammatory antiviral cytokines and bring to bear cytolytic activities that are collectively meant to constrain viral replication and dissemination. Additionally, NK cells participate in adaptive immunity both by shaping virus-specific T-cell responses and by developing adaptive features themselves, including enhanced antibody-dependent effector functions. The relative importance of different functional activities of NK cells are poorly understood, thereby obfuscating clinical use of these cells. Here we focus on opposing efforts of NK cells and viruses to gain tactical superiority during infection.
Collapse
Affiliation(s)
- Ayad Ali
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States
| | - Ivayla E Gyurova
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States
| | - Stephen N Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, United States; Medical Scientist Training Program, University of Cincinnati College of Medicine, United States; Immunology Graduate Training Program, University of Cincinnati College of Medicine, United States; Pathobiology and Molecular Medicine Graduate Program, University of Cincinnati College of Medicine, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| |
Collapse
|
129
|
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Lucy Golden-Mason
- Department of Medicine, Keck School of Medicine, Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
130
|
Ivanova DL, Denton SL, Fettel KD, Sondgeroth KS, Munoz Gutierrez J, Bangoura B, Dunay IR, Gigley JP. Innate Lymphoid Cells in Protection, Pathology, and Adaptive Immunity During Apicomplexan Infection. Front Immunol 2019; 10:196. [PMID: 30873151 PMCID: PMC6403415 DOI: 10.3389/fimmu.2019.00196] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 01/23/2019] [Indexed: 12/23/2022] Open
Abstract
Apicomplexans are a diverse and complex group of protozoan pathogens including Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., Eimeria spp., and Babesia spp. They infect a wide variety of hosts and are a major health threat to humans and other animals. Innate immunity provides early control and also regulates the development of adaptive immune responses important for controlling these pathogens. Innate immune responses also contribute to immunopathology associated with these infections. Natural killer (NK) cells have been for a long time known to be potent first line effector cells in helping control protozoan infection. They provide control by producing IL-12 dependent IFNγ and killing infected cells and parasites via their cytotoxic response. Results from more recent studies indicate that NK cells could provide additional effector functions such as IL-10 and IL-17 and might have diverse roles in immunity to these pathogens. These early studies based their conclusions on the identification of NK cells to be CD3–, CD49b+, NK1.1+, and/or NKp46+ and the common accepted paradigm at that time that NK cells were one of the only lymphoid derived innate immune cells present. New discoveries have lead to major advances in understanding that NK cells are only one of several populations of innate immune cells of lymphoid origin. Common lymphoid progenitor derived innate immune cells are now known as innate lymphoid cells (ILC) and comprise three different groups, group 1, group 2, and group 3 ILC. They are a functionally heterogeneous and plastic cell population and are important effector cells in disease and tissue homeostasis. Very little is known about each of these different types of ILCs in parasitic infection. Therefore, we will review what is known about NK cells in innate immune responses during different protozoan infections. We will discuss what immune responses attributed to NK cells might be reconsidered as ILC1, 2, or 3 population responses. We will then discuss how different ILCs may impact immunopathology and adaptive immune responses to these parasites.
Collapse
Affiliation(s)
- Daria L Ivanova
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Stephen L Denton
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Kevin D Fettel
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| | | | - Juan Munoz Gutierrez
- Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Berit Bangoura
- Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Ildiko R Dunay
- Institute of Inflammation and Neurodegeneration, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Jason P Gigley
- Molecular Biology, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
131
|
A Highly Attenuated Vesicular Stomatitis Virus-Based Vaccine Platform Controls Hepatitis B Virus Replication in Mouse Models of Hepatitis B. J Virol 2019; 93:JVI.01586-18. [PMID: 30541859 DOI: 10.1128/jvi.01586-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Therapeutic vaccines may be an important component of a treatment regimen for curing chronic hepatitis B virus (HBV) infection. We previously demonstrated that recombinant wild-type vesicular stomatitis virus (VSV) expressing the HBV middle surface glycoprotein (MHBs) elicits functional immune responses in mouse models of HBV replication. However, VSV has some undesirable pathogenic properties, and the use of this platform in humans requires further viral attenuation. We therefore generated a highly attenuated VSV that expresses MHBs and contains two attenuating mutations. This vector was evaluated for immunogenicity, pathogenesis, and anti-HBV function in mice. Compared to wild-type VSV, the highly attenuated virus displayed markedly reduced pathogenesis but induced similar MHBs-specific CD8+ T cell and antibody responses. The CD8+ T cell responses elicited by this vector in naive mice prevented HBV replication in animals that were later challenged by hydrodynamic injection or transduction with adeno-associated virus encoding the HBV genome (AAV-HBV). In mice in which persistent HBV replication was first established by AAV-HBV transduction, subsequent immunization with the attenuated VSV induced MHBs-specific CD8+ T cell responses that corresponded with reductions in serum and liver HBV antigens and nucleic acids. HBV control was associated with an increase in the frequency of intrahepatic HBV-specific CD8+ T cells and a transient elevation in serum alanine aminotransferase activity. The ability of VSV to induce a robust multispecific T cell response that controls HBV replication combined with the improved safety profile of the highly attenuated vector suggests that this platform offers a new approach for HBV therapeutic vaccination.IMPORTANCE A curative treatment for chronic hepatitis B must eliminate the virus from the liver, but current antiviral therapies typically fail to do so. Immune-mediated resolution of infection occurs in a small fraction of chronic HBV patients, which suggests the potential efficacy of therapeutic strategies that boost the patient's own immune response to the virus. We modified a safe form of VSV to express an immunogenic HBV protein and evaluated the efficacy of this vector in the prevention and treatment of HBV infection in mouse models. Our results show that this vector elicits HBV-specific immune responses that prevent the establishment of HBV infection and reduce viral proteins in the serum and viral DNA/RNA in the liver of mice with persistent HBV replication. These findings suggest that highly attenuated and safe virus-based vaccine platforms have the potential to be utilized for the development of an effective therapeutic vaccine against chronic HBV infection.
Collapse
|
132
|
Bertoletti A, Le Bert N. Immunotherapy for Chronic Hepatitis B Virus Infection. Gut Liver 2019; 12:497-507. [PMID: 29316747 PMCID: PMC6143456 DOI: 10.5009/gnl17233] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/15/2017] [Accepted: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
While new therapies for chronic hepatitis C virus infection have delivered remarkable cure rates, curative therapies for chronic hepatitis B virus (HBV) infection remain a distant goal. Although current direct antiviral therapies are very efficient in controlling viral replication and limiting the progression to cirrhosis, these treatments require lifelong administration due to the frequent viral rebound upon treatment cessation, and immune modulation with interferon is only effective in a subgroup of patients. Specific immunotherapies can offer the possibility of eliminating or at least stably maintaining low levels of HBV replication under the control of a functional host antiviral response. Here, we review the development of immune cell therapy for HBV, highlighting the potential antiviral efficiency and potential toxicities in different groups of chronically infected HBV patients. We also discuss the chronic hepatitis B patient populations that best benefit from therapeutic immune interventions.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore.,Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore.,Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, A*STAR, Singapore
| |
Collapse
|
133
|
Liver-Resident NK Cells Control Antiviral Activity of Hepatic T Cells via the PD-1-PD-L1 Axis. Immunity 2019; 50:403-417.e4. [DOI: 10.1016/j.immuni.2018.12.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/25/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
|
134
|
Gehring AJ, Protzer U. Targeting Innate and Adaptive Immune Responses to Cure Chronic HBV Infection. Gastroenterology 2019; 156:325-337. [PMID: 30367834 DOI: 10.1053/j.gastro.2018.10.032] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022]
Abstract
Fewer than 1% of chronic hepatitis B virus infections per year are cured with antiviral treatment. This creates a need for long-term treatment, which poses challenges for patients and health systems. Because cure is accompanied by recovery of antiviral immunity, a combination of direct-acting antiviral agents and immunotherapy are likely to be required. Extensive efforts have been made to identify determinants of the failed immune response to hepatitis B virus in patients with chronic infection. We review mechanisms of immune dysfunction in patients with chronic hepatitis B virus infection, immunotherapy strategies in development, and the challenges associated with successful implementation of immunotherapy.
Collapse
Affiliation(s)
- Adam J Gehring
- Toronto Centre for Liver Disease and Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada.
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
135
|
Gill US, Kennedy PTF. The impact of currently licensed therapies on viral and immune responses in chronic hepatitis B: Considerations for future novel therapeutics. J Viral Hepat 2019; 26:4-15. [PMID: 30415490 DOI: 10.1111/jvh.13040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
Despite the availability of a preventative vaccine, chronic hepatitis B (CHB) remains a global healthcare challenge with the risk of disease progression due to cirrhosis and hepatocellular carcinoma. Although current treatment strategies, interferon and nucleos(t)ide analogues have contributed to reducing morbidity and mortality related to CHB, these therapies are limited in providing functional cure. The treatment paradigm in CHB is rapidly evolving with a number of new agents in the developmental pipeline. However, until novel agents with functional cure capability are available in the clinical setting, there is a pressing need to optimize currently licensed therapies. Here, we discuss current agents used alone and/or in combination strategies along with the impact of these therapies on viral and immune responses. Novel treatment strategies are outlined, and the potential role of current therapies in the employment of pipeline agents is discussed.
Collapse
Affiliation(s)
- Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| | - Patrick T F Kennedy
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
136
|
Rehermann B, Thimme R. Insights From Antiviral Therapy Into Immune Responses to Hepatitis B and C Virus Infection. Gastroenterology 2019; 156:369-383. [PMID: 30267712 PMCID: PMC6340757 DOI: 10.1053/j.gastro.2018.08.061] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/05/2018] [Accepted: 08/21/2018] [Indexed: 12/17/2022]
Abstract
There are 257 million persons worldwide with chronic hepatitis B virus (HBV) infection, a leading causes of liver cancer. Almost all adults with acute HBV infection have a rapid immune response to the virus, resulting in life-long immunity, but there is no cure for individuals with chronic HBV infection, which they acquire during early life. The mechanisms that drive the progression of HBV through distinct clinical phases to end-stage liver disease are poorly understood. Likewise, it is not clear whether and how immune responses can be modulated to allow control and/or clearance of intrahepatic HBV DNA. We review the innate and adaptive immune responses to acute and chronic HBV infections and responses to antiviral therapy. Comparisons with hepatitis C virus infection provide insights into the reversibility of innate inflammatory responses and the potential for successful therapy to recover virus-specific memory immune responses.
Collapse
Affiliation(s)
- Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland.
| | - Robert Thimme
- Klinik für Innere Medizin II, University Hospital Freiburg, Faculty of Medicine, Hugstetter Straße 55, 79106 Freiburg, Germany
| |
Collapse
|
137
|
Manske K, Kallin N, König V, Schneider A, Kurz S, Bosch M, Welz M, Cheng R, Bengsch B, Steiger K, Protzer U, Thimme R, Knolle PA, Wohlleber D. Outcome of Antiviral Immunity in the Liver Is Shaped by the Level of Antigen Expressed in Infected Hepatocytes. Hepatology 2018; 68:2089-2105. [PMID: 29729204 PMCID: PMC6585666 DOI: 10.1002/hep.30080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
The liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL). Using in vivo bioluminescence to quantitatively and dynamically image luciferase activity, we demonstrated that Ad-TTR-GOL infection always persists, whereas Ad-CMV-GOL infection is always cleared, independent of the number of infected hepatocytes. Failure to clear Ad-TTR-GOL infection involved mechanisms acting during initiation as well as execution of antigen-specific immunity. First, hepatocyte-restricted antigen expression led to delayed and curtailed T-cell expansion-10,000-fold after Ad-CMV-GOL versus 150-fold after Ad-TTR-GOL-infection. Second, CD8 T-cells primed toward antigens selectively expressed by hepatocytes showed high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression levels similar to that seen in chronic hepatitis B. Third, Ad-TTR-GOL but not Ad-CMV-GOL-infected hepatocytes escaped being killed by effector T-cells while still inducing high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression, indicating different thresholds of T-cell receptor signaling relevant for triggering effector functions compared with exhaustion. Conclusion: Our study identifies deficits in the generation of CD8 T-cell immunity toward hepatocyte-expressed antigens and escape of infected hepatocytes expressing low viral antigen levels from effector T-cell killing as independent factors promoting viral persistence. This highlights the importance of addressing both the restauration of CD8 T-cell dysfunction and overcoming local hurdles of effector T-cell function to eliminate virus-infected hepatocytes.
Collapse
Affiliation(s)
- Katrin Manske
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Nina Kallin
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Verena König
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Annika Schneider
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Sandra Kurz
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Miriam Bosch
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| | - Meike Welz
- Institute of Experimental ImmunologyUniversity Hospital Bonn, University of BonnGermany
| | - Ru‐Lin Cheng
- Institute of Experimental ImmunologyUniversity Hospital Bonn, University of BonnGermany
| | | | - Katja Steiger
- Institute of PathologyTechnical University of MunichGermany
| | - Ulrike Protzer
- Institute of Virology and Klinikum Rechts der IsarTechnical University of Munich and Helmholtz Center for Environment and HealthMunichGermany
- German Center for Infection ResearchMunichGermany
| | - Robert Thimme
- University Hospital FreiburgUniversity of FreiburgGermany
| | - Percy A. Knolle
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
- Institute of Experimental ImmunologyUniversity Hospital Bonn, University of BonnGermany
- German Center for Infection ResearchMunichGermany
| | - Dirk Wohlleber
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der IsarTechnical University of MunichGermany
| |
Collapse
|
138
|
Boelen L, Debebe B, Silveira M, Salam A, Makinde J, Roberts CH, Wang ECY, Frater J, Gilmour J, Twigger K, Ladell K, Miners KL, Jayaraman J, Traherne JA, Price DA, Qi Y, Martin MP, Macallan DC, Thio CL, Astemborski J, Kirk G, Donfield SM, Buchbinder S, Khakoo SI, Goedert JJ, Trowsdale J, Carrington M, Kollnberger S, Asquith B. Inhibitory killer cell immunoglobulin-like receptors strengthen CD8 + T cell-mediated control of HIV-1, HCV, and HTLV-1. Sci Immunol 2018; 3:eaao2892. [PMID: 30413420 PMCID: PMC6277004 DOI: 10.1126/sciimmunol.aao2892] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 06/06/2018] [Accepted: 10/09/2018] [Indexed: 01/05/2023]
Abstract
Killer cell immunoglobulin-like receptors (KIRs) are expressed predominantly on natural killer cells, where they play a key role in the regulation of innate immune responses. Recent studies show that inhibitory KIRs can also affect adaptive T cell-mediated immunity. In mice and in human T cells in vitro, inhibitory KIR ligation enhanced CD8+ T cell survival. To investigate the clinical relevance of these observations, we conducted an extensive immunogenetic analysis of multiple independent cohorts of HIV-1-, hepatitis C virus (HCV)-, and human T cell leukemia virus type 1 (HTLV-1)-infected individuals in conjunction with in vitro assays of T cell survival, analysis of ex vivo KIR expression, and mathematical modeling of host-virus dynamics. Our data suggest that functional engagement of inhibitory KIRs enhances the CD8+ T cell response against HIV-1, HCV, and HTLV-1 and is a significant determinant of clinical outcome in all three viral infections.
Collapse
Affiliation(s)
- Lies Boelen
- Department of Medicine, Imperial College London, London, UK
| | - Bisrat Debebe
- Department of Medicine, Imperial College London, London, UK
| | - Marcos Silveira
- Department of Medicine, Imperial College London, London, UK
- Faculty of Engineering, São Paulo State University-UNESP, São Paulo, Brazil
| | - Arafa Salam
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | - Julia Makinde
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Chrissy H Roberts
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Eddie C Y Wang
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, UK
| | - Katie Twigger
- Department of Medicine, Imperial College London, London, UK
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Jyothi Jayaraman
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - James A Traherne
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Derek C Macallan
- Institute for Infection and Immunity, St. George's, University of London, London, UK
| | | | | | | | | | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, CA, USA
| | - Salim I Khakoo
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - John Trowsdale
- Immunology Division, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Simon Kollnberger
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Becca Asquith
- Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
139
|
NK cells in liver homeostasis and viral hepatitis. SCIENCE CHINA-LIFE SCIENCES 2018; 61:1477-1485. [PMID: 30421296 DOI: 10.1007/s11427-018-9407-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
As an important member of the innate immune system, natural killer (NK) cells are well known for their rapid and efficient immune responses against infectious agents and tumors. NK cells are widely distributed throughout the body and are particularly enriched within the liver, where they display unique phenotypic and functional properties, playing important roles in various liver diseases. Herein, we present an overview of liver NK cell properties with regard to phenotype, function, and subset composition at steady state, and we also summarize the complex reciprocal interactions between liver NK cells and other cell types within the local environment of the liver. We also provide an overview of recent advances demonstrating the roles of NK cells in viral hepatitis, including a discussion of NK cell altered states and their beneficial versus harmful effects during hepatitis B virus and hepatitis C virus infection.
Collapse
|
140
|
Shi A, Zhang X, Xiao F, Zhu L, Yan W, Han M, Luo X, Chen T, Ning Q. CD56 bright natural killer cells induce HBsAg reduction via cytolysis and cccDNA decay in long-term entecavir-treated patients switching to peginterferon alfa-2a. J Viral Hepat 2018; 25:1352-1362. [PMID: 29888839 DOI: 10.1111/jvh.12946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/30/2018] [Indexed: 12/12/2022]
Abstract
HBV surface antigen (HBsAg) reduction is well observed in chronic hepatitis B (CHB) patients treated with pegylated interferon alpha-2a (PegIFNα). However, the mechanism of HBsAg suppression has not been fully elucidated. Twenty-seven of 55 entecavir-treated CHB e antigen positive patients were switched to PegIFNα treatment (Group A) whereas 28 patients continued entecavir treatment (Group B). The percentage or absolute number of CD56bright /CD56dim NK cells, expression of receptors and cytokines were evaluated by flow cytometry for 48 weeks and correlated with treatment efficacy. In vitro, purified NK cells were co-cultured with HepAD38 cells for measurement of HBsAg, apoptosis and covalently closed circular DNA (cccDNA). In association with a reduction of HBsAg, the percentage and absolute number of CD56bright NK cells was significantly elevated in patients in group A, especially in Virologic Responders (VRs, HBsAg decreased). Furthermore, the percentage of NKp30+ , NKp46+ , TRAIL+ , TNF-α+ and IFNγ+ CD56bright NK cells were significantly expanded in Group A, which were positively correlated with the decline of HBsAg at week 48. In vitro, peripheral NK cells from Group A induced a decline of HBsAg in comparison with NK cells from Group B which was significantly inhibited by anti-TRAIL, anti-TNF-α and anti-IFNγ antibodies. Furthermore, apoptosis of HepAD38 cells and levels of cccDNA, were significantly reduced by TRAIL+ and TNF-α+ /IFNγ+ NK cells from Group A, respectively. A functional restoration of CD56bright NK cells in entecavir-treated patients who were switched to PegIFNα contributes to HBsAg and cccDNA clearance through TRAIL-induced cytolysis and TNF-α/IFNγ-mediated noncytolytic pathways.
Collapse
Affiliation(s)
- A Shi
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Zhang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - F Xiao
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - L Zhu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - W Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - M Han
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - X Luo
- Department of Pediatric Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - T Chen
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Q Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
141
|
Li H, Zhai N, Wang Z, Song H, Yang Y, Cui A, Li T, Wang G, Niu J, Crispe IN, Su L, Tu Z. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection. Gut 2018; 67:2035-2044. [PMID: 28899983 PMCID: PMC6176520 DOI: 10.1136/gutjnl-2017-314098] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/05/2017] [Accepted: 07/24/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. METHODS Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. RESULTS In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. CONCLUSIONS Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition.
Collapse
Affiliation(s)
- Haijun Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Naicui Zhai
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Zhongfeng Wang
- Institute of Liver Diseases, The First Hospital, Jilin University, Changchun, China
| | - Hongxiao Song
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yang Yang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - An Cui
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Tianyang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Guangyi Wang
- Department of Liver and Gall Surgery, The First Hospital, Jilin University, Changchun, China
| | - Junqi Niu
- Institute of Liver Diseases, The First Hospital, Jilin University, Changchun, China
| | - Ian Nicholas Crispe
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Lishan Su
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Institute of Liver Diseases, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
142
|
Tang J, Wu ZY, Dai RJ, Ma J, Gong GZ. Hepatitis B virus-persistent infection and innate immunity defect: Cell-related or virus-related? World J Clin Cases 2018; 6:233-241. [PMID: 30211203 PMCID: PMC6134278 DOI: 10.12998/wjcc.v6.i9.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 02/05/2023] Open
Abstract
The outcomes of hepatitis B virus (HBV) infection are closely related to the age at which infection was acquired. Infection acquired in adult life tends to be self-limited, in contrast to perinatal acquirement, for which chronic persistence of the HBV is a general outcome. Innate immunity plays an indispensable role in early virus infection, facilitating virus clearance. However, it has been reported that HBV is under-recognized and poorly eliminated by the innate immune system in the early stages of infection, possibly explaining the long-lasting persistence of viremia afterwards. Furthermore, due to the existence of covalently closed circular DNA, chronic HBV clearance is very difficult, even when patients are given interferon-α and nucleotide/nucleoside analogs for antiviral therapy. The mechanism by which HBV evades innate immune recognition and establishes persistent infection remains a subject of debate. Besides, some researchers are becoming more interested in how to eradicate chronic HBV infection by restoring or boosting innate immunity. This review aimed to summarize the current knowledge on how intrahepatocyte signaling pathways and innate immune cells act after the onset of HBV infection and how these actions are related to the persistence of HBV. We anticipate the insights presented herein to be helpful for future development of novel immune therapeutic strategies to fight HBV infection.
Collapse
Affiliation(s)
- Jian Tang
- Department of Infectious Disease, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Zhen-Yu Wu
- Department of Infectious Disease, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Rong-Juan Dai
- Department of Infectious Disease, the First Affiliated Hospital of University of South China, Hengyang 421001, Hunan Province, China
| | - Jing Ma
- Department of Infectious Disease, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Guo-Zhong Gong
- Department of Infectious Disease, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
143
|
Guillerey C. Roles of cytotoxic and helper innate lymphoid cells in cancer. Mamm Genome 2018; 29:777-789. [PMID: 30178306 DOI: 10.1007/s00335-018-9781-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells have long been recognized for their anti-cancer activity and are now included in the large family of innate lymphoid cells (ILCs). The discovery of new ILC subsets that, similarly to NK cells, are able to kill tumor cells encourages us to redefine NK cell role in anti-tumor immunity. Conventional NK cells circulate through the blood and screen the body for "stressed" cells. Therefore, NK cells are believed to play a key role in cancer immunosurveillance by the early elimination of cells undergoing malignant transformation. Tissue-resident ILCs might play a similar role since they are ideally located to detect the early signs of malignant transformation in their organ of residence. We are only beginning to appreciate the importance of the whole ILC family in cancer. Confusingly, these cells have been reported to both inhibit and fuel cancer progression and the factors regulating these dual functions remain unclear. Here, I review the recent advances in our understanding of cytotoxic and cytokine-producing helper ILC subsets in cancer.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia. .,School of Medicine, University of Queensland, Herston, QLD, 4006, Australia.
| |
Collapse
|
144
|
Golsaz-Shirazi F, Amiri MM, Shokri F. Immune function of plasmacytoid dendritic cells, natural killer cells, and their crosstalk in HBV infection. Rev Med Virol 2018; 28:e2007. [PMID: 30175481 DOI: 10.1002/rmv.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 06/25/2018] [Accepted: 07/16/2018] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus infection is a major health problem, with over 245 million chronic carriers worldwide. This persistent infection is thought to be associated with inefficient innate and adaptive immune responses. Natural killer cells (NK cells) and plasmacytoid dendritic cells (pDCs) are the major innate immune cells which respond to viral infection at the early phase and are considered major components of the antiviral immune response. In this review, we summarize recent findings regarding the role of NK cells, pDCs, and their cross-talk in HBV infection and its chronicity. Although the data regarding the biological function of pDCs and NK cells in HBV infection is still controversial, many studies show that in chronic HBV infection, the cytotoxicity of NK cells is retained, while their capacity to secrete cytokines is strongly impaired. In addition, interferon-α production by pDCs is impaired during chronic HBV infection, and the virus interferes with pDC-NK cell interaction.
Collapse
Affiliation(s)
- Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, Tehran, Iran
| |
Collapse
|
145
|
Levrero M, Subic M, Villeret F, Zoulim F. Perspectives and limitations for nucleo(t)side analogs in future HBV therapies. Curr Opin Virol 2018; 30:80-89. [DOI: 10.1016/j.coviro.2018.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
|
146
|
Suslov A, Wieland S, Menne S. Modulators of innate immunity as novel therapeutics for treatment of chronic hepatitis B. Curr Opin Virol 2018; 30:9-17. [PMID: 29444493 PMCID: PMC5988934 DOI: 10.1016/j.coviro.2018.01.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/18/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
The first line defense mechanisms against viral infection are mediated by the innate immune system. Viral components are detected by infected cells and/or innate immune cells that express different sensory receptors. They in turn mediate induction of direct antiviral mechanisms and further modulation of innate and adaptive immune responses. For evading the innate system, most viruses have evolved efficient mechanisms to block sensing and/or antiviral functions of the innate response. Interestingly, hepatitis B virus (HBV) seems to act like a stealth virus that escapes cell intrinsic antiviral mechanisms through avoiding recognition by the innate system rather than blocking its effector functions. In line with this concept, agonistic activation of innate immunity has emerged as a promising novel anti-HBV therapy approach with several compounds having advanced to the clinical stage.
Collapse
Affiliation(s)
- Aleksei Suslov
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Stefan Wieland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland.
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC 20057, United States.
| |
Collapse
|
147
|
Moreno-Cubero E, Arco RTSD, Peña-Asensio J, Villalobos ESD, Míquel J, Larrubia JR. Is it possible to stop nucleos(t)ide analogue treatment in chronic hepatitis B patients? World J Gastroenterol 2018; 24:1825-1838. [PMID: 29740199 PMCID: PMC5937201 DOI: 10.3748/wjg.v24.i17.1825] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (CHB) remains a challenging global health problem, with nearly one million related deaths per year. Nucleos(t)ide analogue (NA) treatment suppresses viral replication but does not provide complete cure of the hepatitis B virus (HBV) infection. The accepted endpoint for therapy is the loss of hepatitis B surface antigen (HBsAg), but this is hardly ever achieved. Therefore, indefinite treatment is usually required. Many different studies have evaluated NA therapy discontinuation after several years of NA treatment and before HBsAg loss. The results have indicated that the majority of patients can remain off therapy, with some even reaching HBsAg seroconversion. Fortunately, this strategy has proved to be safe, but it is essential to consider the risk of liver damage and other comorbidities and to ensure a close follow-up of the candidates before considering this strategy. Unanswered questions remain, namely in which patients could this strategy be effective and what is the optimal time point at which to perform it. To solve this enigma, we should keep in mind that the outcome will ultimately depend on the equilibrium between HBV and the host’s immune system. Viral parameters that have been described as good predictors of response in HBeAg(+) cases, have proven useless in HBeAg(-) ones. Since antiviral immunity plays an essential role in the control of HBV infection, we sought to review and explain potential immunological biomarkers to predict safe NA discontinuation in both groups.
Collapse
Affiliation(s)
| | - Robert T Sánchez del Arco
- Internal Medicine Service, Guadalajara University Hospital, University of Alcalá, Guadalajara 19002, Spain
| | - Julia Peña-Asensio
- Department of Biology of Systems, University of Alcalá, Alcalá de Henares (Madrid) 28805, Spain
| | | | | | - Juan Ramón Larrubia
- Department of Medicine and Medical Specialties, University of Alcalá, Alcalá de Henares (Madrid) 28805, Spain
| |
Collapse
|
148
|
Li L, Barry V, Daffis S, Niu C, Huntzicker E, French DM, Mikaelian I, Lanford RE, Delaney WE, Fletcher SP. Anti-HBV response to toll-like receptor 7 agonist GS-9620 is associated with intrahepatic aggregates of T cells and B cells. J Hepatol 2018; 68:912-921. [PMID: 29247724 PMCID: PMC9940657 DOI: 10.1016/j.jhep.2017.12.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/17/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS GS-9620, an oral agonist of toll-like receptor 7, is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the chimpanzee and woodchuck models of CHB. Herein, we investigated the immunomodulatory mechanisms underlying these antiviral effects. METHODS Archived liver biopsies and paired peripheral blood mononuclear cell samples from a previous chimpanzee study were analyzed by RNA sequencing, quantitative reverse transcription PCR, immunohistochemistry (IHC) and in situ hybridization (ISH). RESULTS GS-9620 treatment of CHB chimpanzees induced an intrahepatic transcriptional profile significantly enriched with genes associated with hepatitis B virus (HBV) clearance in acutely infected chimpanzees. Type I and II interferon, CD8+ T cell and B cell transcriptional signatures were associated with treatment response, together with evidence of hepatocyte death and liver regeneration. IHC and ISH confirmed an increase in intrahepatic CD8+ T cell and B cell numbers during treatment, and revealed that GS-9620 transiently induced aggregates predominantly comprised of CD8+ T cells and B cells in portal regions. There were no follicular dendritic cells or IgG-positive cells in these lymphoid aggregates and very few CD11b+ myeloid cells. There was no change in intrahepatic natural killer cell number during GS-9620 treatment. CONCLUSION The antiviral response to GS-9620 treatment in CHB chimpanzees was associated with an intrahepatic interferon response and formation of lymphoid aggregates in the liver. Our data indicate these intrahepatic structures are not fully differentiated follicles containing germinal center reactions. However, the temporal correlation between development of these T and B cell aggregates and the antiviral response to treatment suggests they play a role in promoting an effective immune response against HBV. LAY SUMMARY New therapies to treat chronic hepatitis B (CHB) are urgently needed. In this study we performed a retrospective analysis of liver and blood samples from a chimpanzee model of CHB to help understand how GS-9620, a drug in clinical trials, suppressed hepatitis B virus (HBV). We found that the antiviral response to GS-9620 was associated with accumulation of immune cells in the liver that can either kill cells infected with HBV or can produce antibodies that may prevent HBV from infecting new liver cells. These findings have important implications for how GS-9620 may be used in patients and may also help guide the development of new therapies to treat chronic HBV infection.
Collapse
Affiliation(s)
- Li Li
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | | | | | | | | - Robert E. Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | | | - Simon P. Fletcher
- Gilead Sciences, Inc., Foster City, CA, USA,Corresponding Author: Mailing address: Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, USA, Phone: (650) 372-7663. Fax: (650) 522-5890.
| |
Collapse
|
149
|
Zheng M, Sun H, Tian Z. Natural killer cells in liver diseases. Front Med 2018; 12:269-279. [PMID: 29675689 DOI: 10.1007/s11684-018-0621-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 12/06/2017] [Indexed: 12/12/2022]
Abstract
The liver has been characterized as a frontline lymphoid organ with complex immunological features such as liver immunity and liver tolerance. Liver tolerance plays an important role in liver diseases including acute inflammation, chronic infection, autoimmune disease, and tumors. The liver contains a large proportion of natural killer (NK) cells, which exhibit heterogeneity in phenotypic and functional characteristics. NK cell activation, well known for its role in the immune surveillance against tumor and pathogen-infected cells, depends on the balance between numerous activating and inhibitory signals. In addition to the innate direct "killer" functions, NK cell activity contributes to regulate innate and adaptive immunity (helper or regulator). Under the setting of liver diseases, NK cells are of great importance for stimulating or inhibiting immune responses, leading to either immune activation or immune tolerance. Here, we focus on the relationship between NK cell biology, such as their phenotypic features and functional diversity, and liver diseases.
Collapse
Affiliation(s)
- Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Haoyu Sun
- Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China
| | - Zhigang Tian
- Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, 230027, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
150
|
Gill US, Pallett LJ, Kennedy PTF, Maini MK. Liver sampling: a vital window into HBV pathogenesis on the path to functional cure. Gut 2018; 67:767-775. [PMID: 29331944 PMCID: PMC6058064 DOI: 10.1136/gutjnl-2017-314873] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/29/2017] [Accepted: 12/07/2017] [Indexed: 12/12/2022]
Abstract
In order to optimally refine the multiple emerging drug targets for hepatitis B virus (HBV), it is vital to evaluate virological and immunological changes at the site of infection. Traditionally liver biopsy has been the mainstay of HBV disease assessment, but with the emergence of non-invasive markers of liver fibrosis, there has been a move away from tissue sampling. Here we argue that liver biopsy remains an important tool, not only for the clinical assessment of HBV but also for research progress and evaluation of novel agents. The importance of liver sampling has been underscored by recent findings of specialised subsets of tissue-resident immune subsets capable of efficient pathogen surveillance, compartmentalised in the liver and not sampled in the blood. Importantly, the assessment of virological parameters, such as cccDNA quantitation, also requires access to liver tissue. We discuss strategies to maximise information obtained from the site of infection and disease pathology. Fine needle aspirates of the liver may allow longitudinal sampling of the local virus/host landscape. The careful utilisation of liver tissue and aspirates in conjunction with blood will provide critical information in the assessment of new therapeutics for the functional cure of HBV.
Collapse
Affiliation(s)
- Upkar S Gill
- Department of Hepatology, Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | - Patrick T F Kennedy
- Department of Hepatology, Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mala K Maini
- Division of Infection and Immunity, UCL, London, UK
| |
Collapse
|