101
|
Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 2020; 216:108445. [PMID: 32344016 DOI: 10.1016/j.clim.2020.108445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Recent progress has highlighted the involvement of a variety of innate and adaptive immune cells in lupus nephritis. These include activated neutrophils producing extracellular chromatin traps that induce type I interferon production and endothelial injury, metabolically-rewired IL-17-producing T-cells causing tissue inflammation, follicular and extra-follicular helper T-cells promoting the maturation of autoantibody-producing B-cells that may also sustain the formation of germinal centers, and alternatively activated monocytes/macrophages participating in tissue repair and remodeling. The role of resident cells such as podocytes and tubular epithelial cells is increasingly recognized in regulating the local immune responses and determining the kidney function and integrity. These findings are corroborated by advanced, high-throughput genomic studies, which have revealed an unprecedented amount of data highlighting the molecular heterogeneity of immune and non-immune cells implicated in lupus kidney disease. Importantly, this research has led to the discovery of putative pathogenic pathways, enabling the rationale design of novel treatments.
Collapse
|
102
|
Hua Z, Hou B. The role of B cell antigen presentation in the initiation of CD4+ T cell response. Immunol Rev 2020; 296:24-35. [PMID: 32304104 DOI: 10.1111/imr.12859] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/26/2020] [Indexed: 01/21/2023]
Abstract
B cells have been known for their ability to present antigens to T cells for almost 40 years. However, the precise roles of B cell antigen presentation in various immune responses are not completely understood. The term "professional" antigen-presenting cells (APCs) was proposed to distinguish APCs that are required for initiating the immune responses from those use antigen presentation to enhance their own effector functions. Unlike dendritic cells, which are defined as professional APCs for their well-established functions in activating naive T cells, B cells have been shown in the past to mostly present antigens to activated CD4+ T cells mainly to seek help from T helper cells. However, recent evidence suggested that B cells can act as professional APCs under infectious conditions or conditions mimicking viral infections. B cell antigen receptors (BCRs) and the innate receptor Toll-like receptors are activated synergistically in response to pathogens or virus-like particles, under which conditions B cells are not only potent but also the predominant APCs to turn naive CD4+ T cells into T follicular helper cells. The discovery of B cells as professional APCs to initiate CD4+ T cell response provides a new insight for both autoimmune diseases and vaccine development.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
103
|
Haycook CP, Balsamo JA, Glass EB, Williams CH, Hong CC, Major AS, Giorgio TD. PEGylated PLGA Nanoparticle Delivery of Eggmanone for T Cell Modulation: Applications in Rheumatic Autoimmunity. Int J Nanomedicine 2020; 15:1215-1228. [PMID: 32110018 PMCID: PMC7036983 DOI: 10.2147/ijn.s234850] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helper T cell activity is dysregulated in a number of diseases including those associated with rheumatic autoimmunity. Treatment options are limited and usually consist of systemic immune suppression, resulting in undesirable consequences from compromised immunity. Hedgehog (Hh) signaling has been implicated in the activation of T cells and the formation of the immune synapse, but remains understudied in the context of autoimmunity. Modulation of Hh signaling has the potential to enable controlled immunosuppression but a potential therapy has not yet been developed to leverage this opportunity. Methods In this work, we developed biodegradable nanoparticles to enable targeted delivery of eggmanone (Egm), a specific Hh inhibitor, to CD4+ T cell subsets. We utilized two FDA-approved polymers, poly(lactic-co-glycolic acid) and polyethylene glycol, to generate hydrolytically degradable nanoparticles. Furthermore, we employed maleimide-thiol mediated conjugation chemistry to decorate nanoparticles with anti-CD4 F(ab') antibody fragments to enable targeted delivery of Egm. Results Our novel delivery system achieved a highly specific association with the majority of CD4+ T cells present among a complex cell population. Additionally, we have demonstrated antigen-specific inhibition of CD4+ T cell responses mediated by nanoparticle-formulated Egm. Conclusion This work is the first characterization of Egm's immunomodulatory potential. Importantly, this study also suggests the potential benefit of a biodegradable delivery vehicle that is rationally designed for preferential interaction with a specific immune cell subtype for targeted modulation of Hh signaling.
Collapse
Affiliation(s)
- Christopher P Haycook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joseph A Balsamo
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Charles H Williams
- Department of Medicine, Division of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Charles C Hong
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy S Major
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN 37232, USA.,U.S., Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
104
|
Chodisetti SB, Fike AJ, Domeier PP, Singh H, Choi NM, Corradetti C, Kawasawa YI, Cooper TK, Caricchio R, Rahman ZSM. Type II but Not Type I IFN Signaling Is Indispensable for TLR7-Promoted Development of Autoreactive B Cells and Systemic Autoimmunity. THE JOURNAL OF IMMUNOLOGY 2020; 204:796-809. [PMID: 31900342 DOI: 10.4049/jimmunol.1901175] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/18/2019] [Indexed: 01/12/2023]
Abstract
TLR7 is associated with development of systemic lupus erythematosus (SLE), but the underlying mechanisms are incompletely understood. Although TLRs are known to activate type I IFN (T1IFN) signaling, the role of T1IFN and IFN-γ signaling in differential regulation of TLR7-mediated Ab-forming cell (AFC) and germinal center (GC) responses, and SLE development has never been directly investigated. Using TLR7-induced and TLR7 overexpression models of SLE, we report in this study a previously unrecognized indispensable role of TLR7-induced IFN-γ signaling in promoting AFC and GC responses, leading to autoreactive B cell and SLE development. T1IFN signaling in contrast, only modestly contributed to autoimmune responses and the disease process in these mice. TLR7 ligand imiquimod treated IFN-γ reporter mice show that CD4+ effector T cells including follicular helper T (Tfh) cells are the major producers of TLR7-induced IFN-γ. Transcriptomic analysis of splenic tissues from imiquimod-treated autoimmune-prone B6.Sle1b mice sufficient and deficient for IFN-γR indicates that TLR7-induced IFN-γ activates multiple signaling pathways to regulate TLR7-promoted SLE. Conditional deletion of Ifngr1 gene in peripheral B cells further demonstrates that TLR7-driven autoimmune AFC, GC and Tfh responses and SLE development are dependent on IFN-γ signaling in B cells. Finally, we show crucial B cell-intrinsic roles of STAT1 and T-bet in TLR7-driven GC, Tfh and plasma cell differentiation. Altogether, we uncover a nonredundant role for IFN-γ and its downstream signaling molecules STAT1 and T-bet in B cells in promoting TLR7-driven AFC, GC, and SLE development whereas T1IFN signaling moderately contributes to these processes.
Collapse
Affiliation(s)
- Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Adam J Fike
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Nicholas M Choi
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Yuka Imamura Kawasawa
- Department of Pharmacology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033.,Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033; and
| | - Timothy K Cooper
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033;
| |
Collapse
|
105
|
Jang E, Kim UK, Jang K, Song YS, Cha JY, Yi H, Youn J. Bach2 deficiency leads autoreactive B cells to produce IgG autoantibodies and induce lupus through a T cell-dependent extrafollicular pathway. Exp Mol Med 2019; 51:1-13. [PMID: 31819031 PMCID: PMC6901549 DOI: 10.1038/s12276-019-0352-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/08/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
Class-switched IgG autoantibodies but not unswitched IgM autoantibodies play a crucial role in the development of systemic lupus erythematosus (SLE). Bach2 is known to be essential for class switch recombination of Ig genes, but recent genomic and clinical studies have suggested an association of Bach2 deficiency with SLE. This study was undertaken to examine the mechanism by which Bach2 regulates the development of SLE. Despite defects in Ig class switch recombination and germinal center formation when actively immunized, Bach2−/− mice spontaneously accumulated IgG autoantibody-secreting cells without germinal center reactions in a regulatory T cell-independent manner, and this phenomenon was accompanied by manifestations akin to SLE. Transcriptome analyses revealed that Bach2 regulated the expression of genes related to germinal center formation and SLE pathogenesis in B cells. B cell-specific deletion of Bach2 was sufficient to impair the development of germinal center B cells but insufficient to promote the production of IgG autoantibodies. Bach2 deficiency caused CD4+ T cells to overexpress Icos and differentiate into extrafollicular helper T cells in a cell-autonomous manner. These findings suggest that Bach2-deficient autoreactive B cells preferentially react at extrafollicular sites to give rise to IgG class-switched pathogenic plasma cells and that this effect requires the help of Bach2-Icoshi helper T cells. Thus, the cell-autonomous roles of Bach2 in B cells and in their cognate CD4+ T cells are required to maintain self-tolerance against SLE. Bach2, a protein that regulates gene expression, is required in the B cells and T cells of the immune system to protect against autoimmune disease. Bach2 deficiency has previously been associated with systemic lupus erythematosus (SLE), but the mechanisms through which it contributes to the development of an immune response against healthy tissue in many parts of the body were unclear. Jeehee Youn at Hanyang University in Seoul, South Korea, and colleagues showed that B cells from mice lacking Bach2 produce self-reactive antibodies and express SLE-related genes. Furthermore, when they specifically deleted Bach2 in T cells, they found that it triggered differentiation into a type of T cell which promoted the maturation of self-reactive B cells. The authors conclude that Bach2 activity in both B cells and T cells is key to maintaining immune self-tolerance.
Collapse
Affiliation(s)
- Eunkyeong Jang
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Un Kyo Kim
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Kiseok Jang
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Young Soo Song
- Department of Pathology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Ji-Young Cha
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21936, Korea
| | - Hansol Yi
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea
| | - Jeehee Youn
- Laboratory of Autoimmunology, Department of Anatomy and Cell Biology, College of Medicine, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
106
|
Domeier PP, Chodisetti SB, Schell SL, Kawasawa YI, Fasnacht MJ, Soni C, Rahman ZSM. B-Cell-Intrinsic Type 1 Interferon Signaling Is Crucial for Loss of Tolerance and the Development of Autoreactive B Cells. Cell Rep 2019; 24:406-418. [PMID: 29996101 PMCID: PMC6089613 DOI: 10.1016/j.celrep.2018.06.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/09/2018] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
Type 1 interferon (T1IFN) signaling promotes inflammation and lupus pathology, but its role in autoreactive B cell development in the antibody-forming cell (AFC) and germinal center (GC) pathways is unclear. Using a lupus model that allows for focused study of the AFC and GC responses, we show that T1IFN signaling is crucial for autoreactive B cell development in the AFC and GC pathways. Through bone marrow chimeras, DNA-reactive B cell transfer, and GC-specific Cre mice, we confirm that IFNαR signaling in B cells promotes autoreactive B cell development into both pathways. Transcriptomic analysis reveals gene expression alterations in multiple signaling pathways in non-GC and GC B cells in the absence of IFNαR. Finally, we find that T1IFN signaling promotes autoreactive B cell development in the AFC and GC pathways by regulating BCR signaling. These data suggest value for anti-IFNαR therapy in individuals with elevated T1IFN activity before clinical disease onset. The B-cell-intrinsic mechanisms of type 1 interferon (T1IFN) signaling in regulating B cell tolerance is unclear. Domeier et al. show that T1IFN signaling in B cells causes loss of B cell tolerance, promoting autoreactive B cell development into the antibody-forming cell and germinal center pathways by regulating BCR signaling.
Collapse
Affiliation(s)
- Phillip P Domeier
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Sathi Babu Chodisetti
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Stephanie L Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Yuka Imamura Kawasawa
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Melinda J Fasnacht
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Chetna Soni
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Ziaur S M Rahman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA.
| |
Collapse
|
107
|
Hamilton JA, Hsu HC, Mountz JD. Autoreactive B cells in SLE, villains or innocent bystanders? Immunol Rev 2019; 292:120-138. [PMID: 31631359 PMCID: PMC6935412 DOI: 10.1111/imr.12815] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022]
Abstract
The current concepts for development of autoreactive B cells in SLE (systemic lupus erythematosus) focus on extrinsic stimuli and factors that provoke B cells into tolerance loss. Traditionally, major tolerance loss pathways are thought to be regulated by factors outside the B cell including autoantigen engagement of the B-cell receptor (BCR) with simultaneous type I interferon (IFN) produced by dendritic cells, especially plasmacytoid dendritic cells (pDCs). Later, in autoreactive follicles, B-cells encounter T-follicular helper cells (Tfh) that produce interleukin (IL)-21, IL-4 and pathogenic cytokines, IL-17 and IFN gamma (IFNɣ). This review discusses these mechanisms and also highlights recent advances pointing to the peripheral transitional B-cell stage as a major juncture where transient autocrine IFNβ expression by developing B-cells imprints a heightened susceptibility to external factors favoring differentiation into autoantibody-producing plasmablasts. Recent studies highlight transitional B-cell heterogeneity as a determinant of intrinsic resistance or susceptibility to tolerance loss through the shaping of B-cell responsiveness to cytokines and other environment factors.
Collapse
Affiliation(s)
| | - Hui-Chen Hsu
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - John D Mountz
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
108
|
Du SW, Arkatkar T, Al Qureshah F, Jacobs HM, Thouvenel CD, Chiang K, Largent AD, Li QZ, Hou B, Rawlings DJ, Jackson SW. Functional Characterization of CD11c + Age-Associated B Cells as Memory B Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:2817-2826. [PMID: 31636237 DOI: 10.4049/jimmunol.1900404] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022]
Abstract
Age-associated B cells (ABCs) are a unique subset of B cells defined by surface CD11b and CD11c expression. Although ABC expansion has been observed in both human and animal studies in the setting of advanced age, during humoral autoimmunity and following viral infection, the functional properties of this cellular subset remain incompletely defined. In the current study, we demonstrate that ABCs fulfill the criteria for memory B cells (MBCs), based on evidence of Ag-dependent expansion and persistence in a state poised for rapid differentiation into Ab-secreting plasma cells during secondary responses. First, we show that a majority of ABCs are not actively cycling but exhibit an extensive replication history consistent with prior Ag engagement. Second, despite unswitched surface IgM expression, ABCs show evidence of activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Third, BCRs cloned from sorted ABCs exhibit broad autoreactivity and polyreactivity. Although the overall level of ABC self-reactivity was not increased relative to naive B cells, ABCs lacked features of functional anergy characteristic of autoreactive B cells. Fourth, ABCs express MBC surface markers consistent with being poised for rapid plasma cell differentiation during recall responses. Finally, in a murine model of viral infection, adoptively transferred CD11c+ B cells rapidly differentiated into class-switched Ab-secreting cells upon Ag rechallenge. In summary, we phenotypically and functionally characterize ABCs as IgM-expressing MBCs, findings that together implicate ABCs in the pathogenesis of systemic autoimmunity.
Collapse
Affiliation(s)
- Samuel W Du
- Seattle Children's Research Institute, Seattle, WA 98101
| | - Tanvi Arkatkar
- Seattle Children's Research Institute, Seattle, WA 98101
| | - Fahd Al Qureshah
- Seattle Children's Research Institute, Seattle, WA 98101.,King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109
| | - Holly M Jacobs
- Seattle Children's Research Institute, Seattle, WA 98101
| | | | - Kristy Chiang
- Seattle Children's Research Institute, Seattle, WA 98101
| | | | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; and
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA 98101.,Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA 98101; .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| |
Collapse
|
109
|
Adamichou C, Georgakis S, Bertsias G. Cytokine targets in lupus nephritis: Current and future prospects. Clin Immunol 2019; 206:42-52. [DOI: 10.1016/j.clim.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/21/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
110
|
Dang WZ, Li H, Jiang B, Nandakumar KS, Liu KF, Liu LX, Yu XC, Tan HJ, Zhou C. Therapeutic effects of artesunate on lupus-prone MRL/lpr mice are dependent on T follicular helper cell differentiation and activation of JAK2-STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152965. [PMID: 31129432 DOI: 10.1016/j.phymed.2019.152965] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/27/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Anti-malarial drug artesunate (ART), a semi-synthetic derivative of artemisnin, has immunosuppressive effects on several autoimmune diseases, including Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), and Colitis. However, molecular mechanisms of ART, especially on follicular helper T cells (Tfh), central players in SLE pathology, are far from clear. PURPOSE The object for this work is to investigate the therapeutic effect of ART on lupus-prone MRL/lpr mice and its regulatory function on Tfh cells. STUDY DESIGN AND METHODS MRL/lpr mice were used to explore therapeutic effects of ART on lupus-prone MRL/lpr mice and its regulatory functions on Tfh cells. Then, experiments of renal function were accomplished using the biochemical kits. Effects of ART on histopathology of kidneys, inflammatory factors and autoantibodies were examined using H&E staining, ELISA and real-time PCR. Flow cytometry and western blot analysis were used to examine effects of ART on Tfh differentiation and Jak2-Stat3 signaling pathway. RESULTS Upon oral administration, ART significantly prolonged the survival of MRL/lpr mice, ameliorated the lupus nephritis symptoms, decreased the levels of anti-dsDNA antibodies deposited in the kidney, and the levels of pathogenic cytokines (IL-6, IFN-γ and IL-21). After ART treatment, T-cell compartment in the spleen of MRL/lpr mice was restored in terms of reduction in the number of Tfh cells and in the maintenance of the ratio of Tfr to follicular regulatory T cells (Tfh). In addition, ART has significantly inhibited the phosphorylation levels of Jak2 and Stat3 in the MRL/lpr mice. CONCLUSION ART showed therapeutic effects on lupus-prone MRL/lpr mice by inhibiting the differentiation of Tfh cells as well as altering the activation status of Jak2-Stat3 signaling cascade.
Collapse
Affiliation(s)
- Wen-Zhen Dang
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Bing Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China; Department of Pharmacology of Chinese Material Medical, School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Kutty Selva Nandakumar
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Kai-Fei Liu
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Li-Xin Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao-Chen Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui-Jing Tan
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China
| | - Chun Zhou
- SMU-KI United Medical Inflammatory Center, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, No. 1023-1063, Shatai South Road, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
111
|
Ivashkiv LB. IFNγ: signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol 2019; 18:545-558. [PMID: 29921905 DOI: 10.1038/s41577-018-0029-z] [Citation(s) in RCA: 706] [Impact Index Per Article: 141.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IFNγ is a cytokine with important roles in tissue homeostasis, immune and inflammatory responses and tumour immunosurveillance. Signalling by the IFNγ receptor activates the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) pathway to induce the expression of classical interferon-stimulated genes that have key immune effector functions. This Review focuses on recent advances in our understanding of the transcriptional, chromatin-based and metabolic mechanisms that underlie IFNγ-mediated polarization of macrophages to an 'M1-like' state, which is characterized by increased pro-inflammatory activity and macrophage resistance to tolerogenic and anti-inflammatory factors. In addition, I describe the newly discovered effects of IFNγ on other leukocytes, vascular cells, adipose tissue cells, neurons and tumour cells that have important implications for autoimmunity, metabolic diseases, atherosclerosis, neurological diseases and immune checkpoint blockade cancer therapy.
Collapse
Affiliation(s)
- Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA. .,Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
112
|
Efficacy, Toxicity, and Infectious Complications in Ruxolitinib-Treated Patients with Corticosteroid-Refractory Graft-versus-Host Disease after Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1689-1694. [DOI: 10.1016/j.bbmt.2019.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/25/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
|
113
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
114
|
van Langelaar J, Rijvers L, Janssen M, Wierenga-Wolf AF, Melief MJ, Siepman TA, de Vries HE, Unger PPA, van Ham SM, Hintzen RQ, van Luijn MM. Induction of brain-infiltrating T-bet-expressing B cells in multiple sclerosis. Ann Neurol 2019; 86:264-278. [PMID: 31136008 PMCID: PMC6771938 DOI: 10.1002/ana.25508] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 12/24/2022]
Abstract
Objective Results from anti‐CD20 therapies demonstrate that B‐ and T‐cell interaction is a major driver of multiple sclerosis (MS). The local presence of B‐cell follicle‐like structures and oligoclonal bands in MS patients indicates that certain B cells infiltrate the central nervous system (CNS) to mediate pathology. Which peripheral triggers underlie the development of CNS‐infiltrating B cells is not fully understood. Methods Ex vivo flow cytometry was used to assess chemokine receptor profiles of B cells in blood, cerebrospinal fluid, meningeal, and brain tissues of MS patients (n = 10). Similar analyses were performed for distinct memory subsets in the blood of untreated and natalizumab‐treated MS patients (n = 38). To assess T‐bet(CXCR3)+ B‐cell differentiation, we cultured B cells from MS patients (n = 21) and healthy individuals (n = 34) under T helper 1‐ and TLR9‐inducing conditions. Their CNS transmigration capacity was confirmed using brain endothelial monolayers. Results CXC chemokine receptor 3 (CXCR3)‐expressing B cells were enriched in different CNS compartments of MS patients. Treatment with the clinically effective drug natalizumab prevented the recruitment of CXCR3high IgG1+ subsets, corresponding to their increased ability to cross CNS barriers in vitro. Blocking of interferon‐γ (IFNγ) reduced the transmigration potential and antigen‐presenting function of these cells. IFNγ‐induced B cells from MS patients showed increased T‐bet expression and plasmablast development. Additional TLR9 triggering further upregulated T‐bet and CXCR3, and was essential for IgG1 switching. Interpretation This study demonstrates that T‐bethigh IgG1+ B cells are triggered by IFNγ and TLR9 signals, likely contributing to enhanced CXCR3‐mediated recruitment and local reactivity in the CNS of MS patients. ANN NEUROL 2019;86:264–278
Collapse
Affiliation(s)
- Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Liza Rijvers
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Theodora A Siepman
- Department of Neurology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Center, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Peter-Paul A Unger
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
115
|
von Gamm M, Schaub A, Jones AN, Wolf C, Behrens G, Lichti J, Essig K, Macht A, Pircher J, Ehrlich A, Davari K, Chauhan D, Busch B, Wurst W, Feederle R, Feuchtinger A, Tschöp MH, Friedel CC, Hauck SM, Sattler M, Geerlof A, Hornung V, Heissmeyer V, Schulz C, Heikenwalder M, Glasmacher E. Immune homeostasis and regulation of the interferon pathway require myeloid-derived Regnase-3. J Exp Med 2019; 216:1700-1723. [PMID: 31126966 PMCID: PMC6605757 DOI: 10.1084/jem.20181762] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/15/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
The RNase Regnase-1 is a master RNA regulator in macrophages and T cells that degrades cellular and viral RNA upon NF-κB signaling. The roles of its family members, however, remain largely unknown. Here, we analyzed Regnase-3-deficient mice, which develop hypertrophic lymph nodes. We used various mice with immune cell-specific deletions of Regnase-3 to demonstrate that Regnase-3 acts specifically within myeloid cells. Regnase-3 deficiency systemically increased IFN signaling, which increased the proportion of immature B and innate immune cells, and suppressed follicle and germinal center formation. Expression analysis revealed that Regnase-3 and Regnase-1 share protein degradation pathways. Unlike Regnase-1, Regnase-3 expression is high specifically in macrophages and is transcriptionally controlled by IFN signaling. Although direct targets in macrophages remain unknown, Regnase-3 can bind, degrade, and regulate mRNAs, such as Zc3h12a (Regnase-1), in vitro. These data indicate that Regnase-3, like Regnase-1, is an RNase essential for immune homeostasis but has diverged as key regulator in the IFN pathway in macrophages.
Collapse
Affiliation(s)
- Matthias von Gamm
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annalisa Schaub
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Christine Wolf
- Institute of Environmental Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gesine Behrens
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Johannes Lichti
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Katharina Essig
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Anna Macht
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Joachim Pircher
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | - Andreas Ehrlich
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany
| | | | - Dhruv Chauhan
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benjamin Busch
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Munich, Germany.,Technische Universität München-Weihenstephan, Neuherberg-Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Germany.,Munich Cluster for Systems Neurology, Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany
| | - Caroline C Friedel
- Institute for Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Center for Integrated Protein Science Munich, Chemistry Department, Technical University of Munich, Garching, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Christian Schulz
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, Ludwig-Maximilians-University, Munich, Germany.,German Center for Cardiovascular Research, partner site Munich Heart Alliance, Munich, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Elke Glasmacher
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany .,Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
116
|
Stone SL, Peel JN, Scharer CD, Risley CA, Chisolm DA, Schultz MD, Yu B, Ballesteros-Tato A, Wojciechowski W, Mousseau B, Misra RS, Hanidu A, Jiang H, Qi Z, Boss JM, Randall TD, Brodeur SR, Goldrath AW, Weinmann AS, Rosenberg AF, Lund FE. T-bet Transcription Factor Promotes Antibody-Secreting Cell Differentiation by Limiting the Inflammatory Effects of IFN-γ on B Cells. Immunity 2019; 50:1172-1187.e7. [PMID: 31076359 PMCID: PMC6929688 DOI: 10.1016/j.immuni.2019.04.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 01/07/2023]
Abstract
Although viral infections elicit robust interferon-γ (IFN-γ) and long-lived antibody-secreting cell (ASC) responses, the roles for IFN-γ and IFN-γ-induced transcription factors (TFs) in ASC development are unclear. We showed that B cell intrinsic expression of IFN-γR and the IFN-γ-induced TF T-bet were required for T-helper 1 cell-induced differentiation of B cells into ASCs. IFN-γR signaling induced Blimp1 expression in B cells but also initiated an inflammatory gene program that, if not restrained, prevented ASC formation. T-bet did not affect Blimp1 upregulation in IFN-γ-activated B cells but instead regulated chromatin accessibility within the Ifng and Ifngr2 loci and repressed the IFN-γ-induced inflammatory gene program. Consistent with this, B cell intrinsic T-bet was required for formation of long-lived ASCs and secondary ASCs following viral, but not nematode, infection. Therefore, T-bet facilitates differentiation of IFN-γ-activated inflammatory effector B cells into ASCs in the setting of IFN-γ-, but not IL-4-, induced inflammatory responses.
Collapse
Affiliation(s)
- Sara L Stone
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jessica N Peel
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Christopher A Risley
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Danielle A Chisolm
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael D Schultz
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bingfei Yu
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Wojciech Wojciechowski
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Betty Mousseau
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravi S Misra
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Adedayo Hanidu
- Boerhinger Ingelheim Pharmaceutical Inc., Ridgefield, CT 06877, USA
| | - Huiping Jiang
- Boerhinger Ingelheim Pharmaceutical Inc., Ridgefield, CT 06877, USA
| | - Zhenhao Qi
- Boerhinger Ingelheim Pharmaceutical Inc., Ridgefield, CT 06877, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Troy D Randall
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott R Brodeur
- Boerhinger Ingelheim Pharmaceutical Inc., Ridgefield, CT 06877, USA
| | - Ananda W Goldrath
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amy S Weinmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alexander F Rosenberg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Informatics Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
117
|
Zumaquero E, Stone SL, Scharer CD, Jenks SA, Nellore A, Mousseau B, Rosal-Vela A, Botta D, Bradley JE, Wojciechowski W, Ptacek T, Danila MI, Edberg JC, Bridges SL, Kimberly RP, Chatham WW, Schoeb TR, Rosenberg AF, Boss JM, Sanz I, Lund FE. IFNγ induces epigenetic programming of human T-bet hi B cells and promotes TLR7/8 and IL-21 induced differentiation. eLife 2019; 8:e41641. [PMID: 31090539 PMCID: PMC6544433 DOI: 10.7554/elife.41641] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Although B cells expressing the IFNγR or the IFNγ-inducible transcription factor T-bet promote autoimmunity in Systemic Lupus Erythematosus (SLE)-prone mouse models, the role for IFNγ signaling in human antibody responses is unknown. We show that elevated levels of IFNγ in SLE patients correlate with expansion of the T-bet expressing IgDnegCD27negCD11c+CXCR5neg (DN2) pre-antibody secreting cell (pre-ASC) subset. We demonstrate that naïve B cells form T-bethi pre-ASCs following stimulation with either Th1 cells or with IFNγ, IL-2, anti-Ig and TLR7/8 ligand and that IL-21 dependent ASC formation is significantly enhanced by IFNγ or IFNγ-producing T cells. IFNγ promotes ASC development by synergizing with IL-2 and TLR7/8 ligands to induce genome-wide epigenetic reprogramming of B cells, which results in increased chromatin accessibility surrounding IRF4 and BLIMP1 binding motifs and epigenetic remodeling of IL21R and PRDM1 loci. Finally, we show that IFNγ signals poise B cells to differentiate by increasing their responsiveness to IL-21.
Collapse
Affiliation(s)
- Esther Zumaquero
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Sara L Stone
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Scott A Jenks
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Anoma Nellore
- Department of Medicine, Division of Infectious DiseaseThe University of Alabama at BirminghamBirminghamUnited States
| | - Betty Mousseau
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Antonio Rosal-Vela
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Davide Botta
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| | - John E Bradley
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Wojciech Wojciechowski
- Center for Pediatric Biomedical Research, Flow Cytometry Shared Resource LaboratoryUniversity of Rochester School of Medicine and DentistryRochesterUnited States
| | - Travis Ptacek
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- Informatics Group, Center for Clinical and Translational ScienceThe University of Alabama at BirminghamBirminghamUnited States
| | - Maria I Danila
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeffrey C Edberg
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Robert P Kimberly
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - W Winn Chatham
- Department of Medicine, Division of Clinical Immunology and RheumatologyThe University of Alabama at BirminghamBirminghamUnited States
| | - Trenton R Schoeb
- Department of Genetics, Animal Resources ProgramThe University of Alabama at BirminghamBirminghamUnited States
| | - Alexander F Rosenberg
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
- The Informatics InstituteThe University of Alabama at BirminghamBirminghamUnited States
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Ignacio Sanz
- Department of Medicine, Division of RheumatologyEmory UniversityAtlantaUnited States
| | - Frances E Lund
- Department of MicrobiologyThe University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
118
|
Laffont S, Guéry JC. Deconstructing the sex bias in allergy and autoimmunity: From sex hormones and beyond. Adv Immunol 2019; 142:35-64. [PMID: 31296302 DOI: 10.1016/bs.ai.2019.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Men and women differ in their susceptibility to develop autoimmunity and allergy but also in their capacity to cope with infections. Mechanisms responsible for this sexual dimorphism are still poorly documented and probably multifactorial. This review discusses the recent development in our understanding of the cell-intrinsic actions of biological factors linked to sex, sex hormones and sex chromosome complement, on immune cells, which may account for the sex differences in the enhanced susceptibility of women to develop immunological disorders, such as allergic asthma or systemic lupus erythematosus (SLE). We choose to more specifically discuss the impact of sex hormones on the development and function of immune cell populations directly involved in type-2 immunity, and the role of the X-linked Toll like receptor 7 (TLR7) in anti-viral immunity and in SLE. We will also elaborate on the recent evidence demonstrating that TLR7 escapes from X chromosome inactivation in the immune cells of women, and how this may contribute to endow woman immune system with enhanced responsiveness to RNA-virus and susceptibility to SLE.
Collapse
Affiliation(s)
- Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France.
| |
Collapse
|
119
|
Moneta GM, Pires Marafon D, Marasco E, Rosina S, Verardo M, Fiorillo C, Minetti C, Bracci-Laudiero L, Ravelli A, De Benedetti F, Nicolai R. Muscle Expression of Type I and Type II Interferons Is Increased in Juvenile Dermatomyositis and Related to Clinical and Histologic Features. Arthritis Rheumatol 2019; 71:1011-1021. [PMID: 30552836 DOI: 10.1002/art.40800] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/06/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the expression of type I interferon (IFNα/β)- and type II IFN (IFNγ)-inducible genes in muscle biopsy specimens from patients with juvenile dermatomyositis (DM) and to correlate their expression levels with histologic and clinical features. METHODS Expression levels of IFN-inducible genes and proinflammatory cytokines were assessed by quantitative polymerase chain reaction in muscle biopsy specimens from patients with juvenile DM (n = 39), patients with Duchenne's muscular dystrophy (DMD), and healthy controls. Muscle biopsy sections were stained and scored for severity of histopathologic features. The charts of patients with juvenile DM were reviewed for clinical features at the time of sampling and long-term outcomes. RESULTS Muscle expression levels of IFNα/β-inducible genes (type I IFN score), IFNγ, IFNγ-inducible genes (type II IFN score), and tumor necrosis factor (TNF) were significantly higher in juvenile DM patients not receiving glucocorticoid therapy before muscle biopsy (n = 27) compared to DMD patients (n = 24) (type I IFN score, P < 0.0001; type II IFN score, P < 0.001; TNF, P < 0.05) and healthy controls (n = 4) (type I IFN score, P < 0.01; type II IFN score, P < 0.01; TNF, P < 0.05). Immunofluorescence staining of muscle biopsy sections from untreated juvenile DM patients showed increased immunoreactivity for IFNγ and HLA class II molecules compared to controls. Type I and type II IFN scores were correlated with typical histopathologic features of juvenile DM muscle biopsy samples, such as infiltration of endomysial CD3+ cells (type I IFN score, r = 0.68; type II IFN score, r = 0.63), perimysial CD3+ cells (type I IFN score, r = 0.59; type II IFN score, r = 0.66), CD68+ cells (type II IFN score, r = 0.46), and perifascicular atrophy (type I IFN score, r = 0.61; type II IFN score, r = 0.77). Juvenile DM patients with a high type I IFN score, a high type II IFN score, and high TNF expression levels showed more severe disease activity at biopsy (P < 0.05). In addition, juvenile DM patients with a high type II IFN score at biopsy reached clinically inactive disease significantly later than patients with low type II IFN score (log rank chi-square value 13.53, P < 0.001). CONCLUSION The increased expression of IFN-inducible genes in the muscle in juvenile DM patients and their association with histologic and clinical features further support a pathogenic role for both type I and type II IFNs in juvenile DM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlo Minetti
- University of Genoa and Istituto Giannina Gaslini, IRCCS, Genoa, Italy
| | - Luisa Bracci-Laudiero
- Ospedale Pediatrico Bambino Gesù, IRCCS, Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Angelo Ravelli
- University of Genoa and Istituto Giannina Gaslini, IRCCS, Genoa, Italy
| | | | | |
Collapse
|
120
|
Wang N, Yigit B, van der Poel CE, Cuenca M, Carroll MC, Herzog RW, Engel P, Terhorst C. The Checkpoint Regulator SLAMF3 Preferentially Prevents Expansion of Auto-Reactive B Cells Generated by Graft-vs.-Host Disease. Front Immunol 2019; 10:831. [PMID: 31057553 PMCID: PMC6482334 DOI: 10.3389/fimmu.2019.00831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/29/2019] [Indexed: 12/16/2022] Open
Abstract
Absence of the mouse cell surface receptor SLAMF3 in SLAMF3-/- mice suggested that this receptor negatively regulates B cell homeostasis by modulating activation thresholds of B cell subsets. Here, we examine whether anti-SLAMF3 affects both B and T cell subsets during immune responses to haptenated ovalbumin [NP-OVA] and in the setting of chronic graft vs. host disease (cGVHD) induced by transferring B6.C-H2bm12/KhEg (bm12) CD4+ T cells into B6 WT mice. We find that administering αSLAMF3 to NP-OVA immunized B6 mice primarily impairs antibody responses and Germinal center B cell [GC B] numbers, whilst CXCR5+, PD-1+, and ICOS+ T follicular helper (TFH) cells are not significantly affected. By contrast, administering αSLAMF3 markedly enhanced autoantibody production upon induction of cGVHD by the transfer of bm12 CD4+ T cells into B6 recipients. Surprisingly, αSLAMF3 accelerated both the differentiation of GC B and donor-derived TFH cells initiated by cGVHD. The latter appeared to be induced by decreased numbers of donor-derived Treg and T follicular regulatory (TFR) cells. Collectively, these data show that control of anti-SLAMF3-induced signaling is requisite to prevent autoantibody responses during cGVHD, but reduces responses to foreign antigens.
Collapse
Affiliation(s)
- Ninghai Wang
- Division of Immunology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Burcu Yigit
- Division of Immunology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Marta Cuenca
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona, Barcelona, Spain
| | - Cox Terhorst
- Division of Immunology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
121
|
Abstract
A single exposure to many viral and bacterial pathogens typically induces life-long immunity, however, the development of the protective immunity to Plasmodium parasites is strikingly less efficient and achieves only partial protection, with adults residing in endemic areas often experiencing asymptomatic infections. Although naturally acquired immunity to malaria requires both cell-mediated and humoral immune responses, antibodies govern the control of malarial disease caused by the blood-stage form of the parasites. A large body of epidemiological evidence described that antibodies to Plasmodium antigens are inefficiently generated and rapidly lost without continued parasite exposure, suggesting that malaria is accompanied by defects in the development of immunological B cell memory. This topic has been of focus of recent studies of malaria infection in humans and mice. This review examines the main findings to date on the processes that modulate the acquisition of memory B cell responses to malaria, and highlights the importance of closing outstanding gaps of knowledge in the field for the rational design of next generation therapeutics against malaria.
Collapse
Affiliation(s)
- Ann Ly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
122
|
Bates MA, Benninghoff AD, Gilley KN, Holian A, Harkema JR, Pestka JJ. Mapping of Dynamic Transcriptome Changes Associated With Silica-Triggered Autoimmune Pathogenesis in the Lupus-Prone NZBWF1 Mouse. Front Immunol 2019; 10:632. [PMID: 30984195 PMCID: PMC6450439 DOI: 10.3389/fimmu.2019.00632] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/08/2019] [Indexed: 12/12/2022] Open
Abstract
Crystalline silica (cSiO2) is a widely recognized environmental trigger of autoimmune disease. In the lupus-prone female NZBWF1 mouse, airway exposure to cSiO2 triggers pulmonary ectopic lymphoid neogenesis, systemic autoantibody elevation, and glomerulonephritis. Here we tested the hypothesis that upregulation of adaptive immune function genes in the lung precedes cSiO2-triggering of autoimmune disease in this model. The study include three groups of mice, as follows: (1) necropsied 1 d after a single intranasal instillation of 1 mg cSiO2 or vehicle, (2) necropsied 1 d after four weekly single instillations of 1 mg cSiO2 or vehicle, or (3) necropsied 1, 5, 9, or 13 weeks after four weekly single instillations of 1 mg cSiO2 or vehicle. NanoString nCounter analysis revealed modest transcriptional changes associated with innate and adaptive immune response as early as 1 d after a single cSiO2 instillation. These responses were greatly expanded after four weekly cSiO2 instillations. Concurrent with ectopic lymphoid neogenesis, dramatic increases in mRNAs associated with chemokine release, cytokine production, sustained interferon activity, complement activation, and adhesion molecules were observed. As disease progressed, expression of these genes persisted and was further amplified. Consistent with autoimmune pathogenesis, the time between 5 and 9 weeks post-instillation reflected an important transition period where considerable immune gene upregulation in the lung was observed. Upon termination of the chronic study (13 weeks), cSiO2-induced changes in transcriptome signatures were similarly robust in kidney as compared to the lung, but more modest in spleen. Transcriptomic signatures in lung and kidney were indicative of infiltration and/or expansion of neutrophils, macrophages, dendritic cells, B cells, and T cells that corresponded with accelerated autoimmune pathogenesis. Taken together, airway exposure to cSiO2 elicited aberrant mRNA signatures for both innate and adaptive immunity that were consistent with establishment of the lung as the central autoimmune nexus for launching systemic autoimmunity and ultimately, kidney injury.
Collapse
Affiliation(s)
- Melissa A Bates
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences and the School of Veterinary Medicine, Utah State University, Logan, UT, United States
| | - Kristen N Gilley
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, Center for Environmental Health Sciences, University of Montana, Missoula, MT, United States
| | - Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, United States
| | - James J Pestka
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, United States.,Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
123
|
Getahun A, Cambier JC. Non-Antibody-Secreting Functions of B Cells and Their Contribution to Autoimmune Disease. Annu Rev Cell Dev Biol 2019; 35:337-356. [PMID: 30883216 DOI: 10.1146/annurev-cellbio-100617-062518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
B cells play multiple important roles in the pathophysiology of autoimmune disease. Beyond producing pathogenic autoantibodies, B cells can act as antigen-presenting cells and producers of cytokines, including both proinflammatory and anti-inflammatory cytokines. Here we review our current understanding of the non-antibody-secreting roles that B cells may play during development of autoimmunity, as learned primarily from reductionist preclinical models. Attention is also given to concepts emerging from clinical studies using B cell depletion therapy, which shed light on the roles of these mechanisms in human autoimmune disease.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA; .,Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206, USA
| |
Collapse
|
124
|
Jenks SA, Cashman KS, Woodruff MC, Lee FEH, Sanz I. Extrafollicular responses in humans and SLE. Immunol Rev 2019; 288:136-148. [PMID: 30874345 PMCID: PMC6422038 DOI: 10.1111/imr.12741] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/18/2019] [Indexed: 12/14/2022]
Abstract
Chronic autoimmune diseases, and in particular Systemic Lupus Erythematosus (SLE), are endowed with a long-standing autoreactive B-cell compartment that is presumed to reactivate periodically leading to the generation of new bursts of pathogenic antibody-secreting cells (ASC). Moreover, pathogenic autoantibodies are typically characterized by a high load of somatic hypermutation and in some cases are highly stable even in the context of prolonged B-cell depletion. Long-lived, highly mutated antibodies are typically generated through T-cell-dependent germinal center (GC) reactions. Accordingly, an important role for GC reactions in the generation of pathogenic autoreactivity has been postulated in SLE. Nevertheless, pathogenic autoantibodies and autoimmune disease can be generated through B-cell extrafollicular (EF) reactions in multiple mouse models and human SLE flares are characterized by the expansion of naive-derived activated effector B cells of extrafollicular phenotype. In this review, we will discuss the properties of the EF B-cell pathway, its relationship to other effector B-cell populations, its role in autoimmune diseases, and its contribution to human SLE. Furthermore, we discuss the relationship of EF B cells with Age-Associated B cells (ABCs), a TLR-7-driven B-cell population that mediates murine autoimmune and antiviral responses.
Collapse
Affiliation(s)
- Scott A. Jenks
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Kevin S. Cashman
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C. Woodruff
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - F. Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
125
|
Smirnova NF, Conlon TM, Morrone C, Dorfmuller P, Humbert M, Stathopoulos GT, Umkehrer S, Pfeiffer F, Yildirim AÖ, Eickelberg O. Inhibition of B cell-dependent lymphoid follicle formation prevents lymphocytic bronchiolitis after lung transplantation. JCI Insight 2019; 4:123971. [PMID: 30728330 DOI: 10.1172/jci.insight.123971] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Lung transplantation (LTx) is the only therapeutic option for many patients with chronic lung disease. However, long-term survival after LTx is severely compromised by chronic rejection (chronic lung allograft dysfunction [CLAD]), which affects 50% of recipients after 5 years. The underlying mechanisms for CLAD are poorly understood, largely due to a lack of clinically relevant animal models, but lymphocytic bronchiolitis is an early sign of CLAD. Here, we report that lymphocytic bronchiolitis occurs early in a long-term murine orthotopic LTx model, based on a single mismatch (grafts from HLA-A2:B6-knockin donors transplanted into B6 recipients). Lymphocytic bronchiolitis is followed by formation of B cell-dependent lymphoid follicles that induce adjacent bronchial epithelial cell dysfunction in a spatiotemporal fashion. B cell deficiency using recipient μMT-/- mice prevented intrapulmonary lymphoid follicle formation and lymphocytic bronchiolitis. Importantly, selective inhibition of the follicle-organizing receptor EBI2, using genetic deletion or pharmacologic inhibition, prevented functional and histological deterioration of mismatched lung grafts. In sum, we provided what we believe to be a mouse model of chronic rejection and lymphocytic bronchiolitis after LTx and identified intrapulmonary lymphoid follicle formation as a target for pharmacological intervention of long-term allograft dysfunction after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Carmela Morrone
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Peter Dorfmuller
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Marc Humbert
- Faculty of Medicine, Paris-Sud University, Kremlin-Bicêtre, France.,Department of Pathology and INSERM U999, Pulmonary Hypertension, Pathophysiology and Novel Therapies, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Stephan Umkehrer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Franz Pfeiffer
- Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, Garching, Germany
| | - Ali Ö Yildirim
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany
| | - Oliver Eickelberg
- Comprehensive Pneumology Center, Member of the German Center for Lung Research, Institute of Lung Biology and Disease, Helmholtz Zentrum München, Ludwig-Maximilians University Munich, Munich Germany.,Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
126
|
Gorman JA, Hundhausen C, Kinsman M, Arkatkar T, Allenspach EJ, Clough C, West SE, Thomas K, Eken A, Khim S, Hale M, Oukka M, Jackson SW, Cerosaletti K, Buckner JH, Rawlings DJ. The TYK2-P1104A Autoimmune Protective Variant Limits Coordinate Signals Required to Generate Specialized T Cell Subsets. Front Immunol 2019; 10:44. [PMID: 30740104 PMCID: PMC6355696 DOI: 10.3389/fimmu.2019.00044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
TYK2 is a JAK family member that functions downstream of multiple cytokine receptors. Genome wide association studies have linked a SNP (rs34536443) within TYK2 encoding a Proline to Alanine substitution at amino acid 1104, to protection from multiple autoimmune diseases including systemic lupus erythematosus (SLE) and multiple sclerosis (MS). The protective role of this SNP in autoimmune pathogenesis, however, remains incompletely understood. Here we found that T follicular helper (Tfh) cells, switched memory B cells, and IFNAR signaling were decreased in healthy individuals that expressed the protective variant TYK2 A1104 (TYK2 P ). To study this variant in vivo, we developed a knock-in murine model of this allele. Murine Tyk2 P expressing T cells homozygous for the protective allele, but not cells heterozygous for this change, manifest decreased IL-12 receptor signaling, important for Tfh lineage commitment. Further, homozygous Tyk2 P T cells exhibited diminished in vitro Th1 skewing. Surprisingly, despite these signaling changes, in vivo formation of Tfh and GC B cells was unaffected in two models of T cell dependent immune responses and in two alternative SLE models. TYK2 is also activated downstream of IL-23 receptor engagement. Here, we found that Tyk2 P expressing T cells had reduced IL-23 dependent signaling as well as a diminished ability to skew toward Th17 in vitro. Consistent with these findings, homozygous, but not heterozygous, Tyk2 P mice were fully protected in a murine model of MS. Homozygous Tyk2 P mice had fewer infiltrating CD4+ T cells within the CNS. Most strikingly, homozygous mice had a decreased proportion of IL-17+/IFNγ+, double positive, pathogenic CD4+ T cells in both the draining lymph nodes (LN) and CNS. Thus, in an autoimmune model, such as EAE, impacted by both altered Th1 and Th17 signaling, the Tyk2 P allele can effectively shield animals from disease. Taken together, our findings suggest that TYK2P diminishes IL-12, IL-23, and IFN I signaling and that its protective effect is most likely manifest in the setting of autoimmune triggers that concurrently dysregulate at least two of these important signaling cascades.
Collapse
Affiliation(s)
- Jacquelyn A Gorman
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Christian Hundhausen
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Mackenzie Kinsman
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Eric J Allenspach
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Courtnee Clough
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Samuel E West
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Kerri Thomas
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Ahmet Eken
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Socheath Khim
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | - Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Mohamed Oukka
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| | - Shaun W Jackson
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - Karen Cerosaletti
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, United States
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States.,Department of Pediatrics, University of Washington, Seattle, WA, United States.,Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
127
|
Faliti CE, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, Pellegrini G, De Ponte Conti B, Rossi RL, Idzko M, Mazza EMC, Bicciato S, Traggiai E, Meroni PL, Grassi F. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med 2019; 216:317-336. [PMID: 30655308 PMCID: PMC6363434 DOI: 10.1084/jem.20171976] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 10/22/2018] [Accepted: 01/03/2019] [Indexed: 01/01/2023] Open
Abstract
T follicular helper cells promote the generation of protective antibodies, but can also foster pathogenic antibodies. The ATP-gated P2X7 receptor selectively limits the expansion of Tfh cells that amplify self-reactive antibodies in systemic lupus erythematosus. Altered control of T follicular helper (Tfh) cells can lead to generation of autoantibodies and autoimmune manifestations. Signaling pathways that selectively limit pathogenic responses without affecting the protective function of Tfh cells are unknown. Here we show that the ATP-gated ionotropic P2X7 receptor restricts the expansion of aberrant Tfh cells and the generation of self-reactive antibodies in experimental murine lupus, but its activity is dispensable for the expansion of antigen-specific Tfh cells during vaccination. P2X7 stimulation promotes caspase-mediated pyroptosis of Tfh cells and controls the development of pathogenic ICOS+ IFN-γ–secreting cells. Circulating Tfh cells from patients with systemic lupus erythematosus (SLE) but not primary antiphospholipid syndrome (PAPS), a nonlupus systemic autoimmune disease, were hyporesponsive to P2X7 stimulation and resistant to P2X7-mediated inhibition of cytokine-driven expansion. These data point to the P2X7 receptor as a checkpoint regulator of Tfh cells; thus, restoring P2X7 activity in SLE patients could selectively limit the progressive amplification of pathogenic autoantibodies, which deteriorate patients’ conditions.
Collapse
Affiliation(s)
- Caterina E Faliti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Roberta Gualtierotti
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy.,Lupus Clinic, IASST-Istituto Gaetano Pini, Milan, Italy
| | - Elsa Rottoli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Gerosa
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy.,Lupus Clinic, IASST-Istituto Gaetano Pini, Milan, Italy
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Andrea Romagnani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Giovanni Pellegrini
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Benedetta De Ponte Conti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Riccardo L Rossi
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| | - Marco Idzko
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Pier Luigi Meroni
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy .,Lupus Clinic, IASST-Istituto Gaetano Pini, Milan, Italy.,Istituto Auxologico Italiano, Milan, Italy
| | - Fabio Grassi
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland .,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi," Milan, Italy
| |
Collapse
|
128
|
Gao CY, Yao Y, Li L, Yang SH, Chu H, Tsuneyama K, Li XM, Gershwin ME, Lian ZX. Tissue-Resident Memory CD8+ T Cells Acting as Mediators of Salivary Gland Damage in a Murine Model of Sjögren's Syndrome. Arthritis Rheumatol 2018; 71:121-132. [PMID: 30035379 DOI: 10.1002/art.40676] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 07/17/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Although a role for CD4+ T cells in the pathogenesis of Sjögren's syndrome (SS) has been documented, the pathogenic significance of CD8+ T cells is unclear. The aim of this study was to investigate the role of CD8+ T cells in the development of SS. METHODS Flow cytometry and immunofluorescence analyses were utilized to detect T cell infiltration within the labial salivary glands of patients with primary SS. In parallel, p40-/- CD25-/- mice were used as a murine model of SS. In addition, mice with genetic knockout of CD4, CD8a, or interferon-γ (IFNγ) were crossed with p40-/- CD25-/- mice to study the pathogenic significance of specific lineage subpopulations, including functional salivary gland tests as well as histopathologic and serologic data. A CD8+ T cell-specific depletion antibody was used in this murine SS model to evaluate its potential as a therapeutic strategy. RESULTS CD8+ T cells with a tissue-resident memory phenotype outnumbered CD4+ T cells in the labial salivary glands of patients with SS, and were primarily colocalized with salivary duct epithelial cells and acinar cells. Furthermore, infiltrating CD8+ T cells with a CD69+CD103+/- tissue-resident phenotype and with a significant elevation of IFNγ production were dominant in the submandibular glands of mice in this murine SS model. CD8a knockout abrogated the development of SS in these mice. Knockout of IFNγ decreased CD8+ T cell infiltration and gland destruction. More importantly, depletion of CD8+ T cells fully protected mice against the pathologic manifestations of SS, even after the onset of disease. CONCLUSION These data reveal the pathogenic significance of CD8+ T cells in the development and progression of SS in the salivary glands. Treatment directed against CD8+ T cells may be a rational therapy for the management of SS in human subjects.
Collapse
Affiliation(s)
- Cai-Yue Gao
- Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, China, and Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuan Yao
- Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, China, and Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Li
- Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, China, and Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Shu-Han Yang
- Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, China, and Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Hui Chu
- Anhui Provincial Hospital, Hefei, China
| | - Koichi Tsuneyama
- Institute of Health Biosciences and University of Tokushima Graduate School, Tokushima, Japan
| | | | | | - Zhe-Xiong Lian
- Institute of Immunology and School of Life Sciences, University of Science and Technology of China, Hefei, China, and Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
129
|
Du SW, Arkatkar T, Jacobs HM, Rawlings DJ, Jackson SW. Generation of functional murine CD11c + age-associated B cells in the absence of B cell T-bet expression. Eur J Immunol 2018; 49:170-178. [PMID: 30353919 DOI: 10.1002/eji.201847641] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Abstract
Age-associated B cells (ABC), a novel subset of activated B cells defined by CD11b and CD11c expression, have been linked with both protective anti-viral responses and the pathogenesis of systemic autoimmunity. Expression of the TH 1 lineage transcription factor T-bet has been identified as a defining feature of ABC biology, with B cell-intrinsic expression of this transcription factor proposed to be required for ABC formation. In contrast to this model, we report that Tbx21 (encoding T-bet)-deficient B cells upregulate CD11b and CD11c surface expression in vitro in response to integrated TLR and cytokine signals. Moreover, B cell-intrinsic T-bet deletion in a murine lupus model exerted no impact of ABC generation in vivo, with Tbx21-/- ABCs exhibiting an identical surface phenotype to wild-type (WT) ABCs. Importantly, WT and Tbx21-/- ABCs sorted from autoimmune mice produced equivalent amounts of IgM and IgG ex vivo following TLR stimulation, indicating that T-bet-deficient ABCs are likely functional in vivo. In summary, our data contradict the established literature by demonstrating that T-bet expression is not uniformly required for ABC generation.
Collapse
Affiliation(s)
- Samuel W Du
- Center for Immunity and Immunotherapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - Tanvi Arkatkar
- Center for Immunity and Immunotherapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - Holly M Jacobs
- Center for Immunity and Immunotherapy, Seattle Children's Research Institute, Seattle, WA, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapy, Seattle Children's Research Institute, Seattle, WA, USA.,Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.,Departments of Immunology and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Shaun W Jackson
- Center for Immunity and Immunotherapy, Seattle Children's Research Institute, Seattle, WA, USA.,Departments of Immunology and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
130
|
Innate and adaptive signals enhance differentiation and expansion of dual-antibody autoreactive B cells in lupus. Nat Commun 2018; 9:3973. [PMID: 30266981 PMCID: PMC6162205 DOI: 10.1038/s41467-018-06293-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
Autoreactive B cells have a major function in autoimmunity. A small subset of B cells expressing two distinct B-cell-antigen-receptors (B2R cells) is elevated in many patients with systematic lupus erythematosus (SLE) and in the MRL(/lpr) mouse model of lupus, and is often autoreactive. Here we show, using RNAseq and in vitro and in vivo analyses, signals that are required for promoting B2R cell numbers and effector function in autoimmune mice. Compared with conventional B cells, B2R cells are more responsive to Toll-like receptor 7/9 and type I/II interferon treatment, display higher levels of MHCII and co-receptors, and depend on IL-21 for their homeostasis; moreover they expand better upon T cell-dependent antigen stimulation, and mount a more robust memory response, which are characteristics essential for enhanced (auto)immune responses. Our findings thus provide insights on the stimuli for the expansion of an autoreactive B cell subset that may contribute to the etiology of SLE.
Collapse
|
131
|
Burbage M, Keppler SJ. Shaping the humoral immune response: Actin regulators modulate antigen presentation and influence B-T interactions. Mol Immunol 2018; 101:370-376. [DOI: 10.1016/j.molimm.2018.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/22/2022]
|
132
|
Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, Libert C, Smets I, Goris A, Wouters C, Matthys P. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol 2018; 48:1506-1521. [DOI: 10.1002/eji.201847578] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/28/2018] [Accepted: 06/30/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Maya Imbrechts
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Karlien Fierens
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Ellen Brisse
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | | | - Tania Mitera
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| | - Claude Libert
- VIB Center for Inflammation Research; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Ide Smets
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
- Department of Neurology; University Hospitals Leuven; Leuven Belgium
| | - An Goris
- KU Leuven; Department of Neurosciences; Laboratory for Neuroimmunology; Leuven Belgium
| | - Carine Wouters
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
- Laboratory of Paediatric Immunology; University Hospitals Leuven; Leuven Belgium
| | - Patrick Matthys
- KU Leuven; Rega Institute; Laboratory of Immunobiology; Leuven Belgium
| |
Collapse
|
133
|
Wijdeven RH, van Luijn MM, Wierenga-Wolf AF, Akkermans JJ, van den Elsen PJ, Hintzen RQ, Neefjes J. Chemical and genetic control of IFNγ-induced MHCII expression. EMBO Rep 2018; 19:embr.201745553. [PMID: 30021835 DOI: 10.15252/embr.201745553] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2018] [Accepted: 06/24/2018] [Indexed: 01/05/2023] Open
Abstract
The cytokine interferon-γ (IFNγ) can induce expression of MHC class II (MHCII) on many different cell types, leading to antigen presentation to CD4+ T cells and immune activation. This has also been linked to anti-tumour immunity and graft-versus-host disease. The extent of MHCII upregulation by IFNγ is cell type-dependent and under extensive control of epigenetic regulators and signalling pathways. Here, we identify novel genetic and chemical factors that control this form of MHCII expression. Loss of the oxidative stress sensor Keap1, autophagy adaptor p62/SQSTM1, ubiquitin E3-ligase Cullin-3 and chromatin remodeller BPTF impair IFNγ-mediated MHCII expression. A similar phenotype is observed for arsenite, an oxidative stressor. Effects of the latter can be reversed by the inhibition of HDAC1/2, linking oxidative stress conditions to epigenetic control of MHCII expression. Furthermore, dimethyl fumarate, an antioxidant used for the treatment of several autoimmune diseases, impairs the IFNγ response by manipulating transcriptional control of MHCII We describe novel pathways and drugs related to oxidative conditions in cells impacting on IFNγ-mediated MHCII expression, which provide a molecular basis for the understanding of MHCII-associated diseases.
Collapse
Affiliation(s)
- Ruud H Wijdeven
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jimmy J Akkermans
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| | | | - Rogier Q Hintzen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, LUMC, Leiden, The Netherlands
| |
Collapse
|
134
|
Cauvi DM, Cauvi G, Toomey CB, Jacquinet E, Pollard KM. From the Cover: Interplay Between IFN-γ and IL-6 Impacts the Inflammatory Response and Expression of Interferon-Regulated Genes in Environmental-Induced Autoimmunity. Toxicol Sci 2018; 158:227-239. [PMID: 28453771 DOI: 10.1093/toxsci/kfx083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Gabrielle Cauvi
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92037
| | - Christopher B Toomey
- Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California 92037
| | | | - Kenneth Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
135
|
Patel ZH, Lu X, Miller D, Forney CR, Lee J, Lynch A, Schroeder C, Parks L, Magnusen AF, Chen X, Pujato M, Maddox A, Zoller EE, Namjou B, Brunner HI, Henrickson M, Huggins JL, Williams AH, Ziegler JT, Comeau ME, Marion MC, Glenn SB, Adler A, Shen N, Nath SK, Stevens AM, Freedman BI, Pons-Estel BA, Tsao BP, Jacob CO, Kamen DL, Brown EE, Gilkeson GS, Alarcón GS, Martin J, Reveille JD, Anaya JM, James JA, Sivils KL, Criswell LA, Vilá LM, Petri M, Scofield RH, Kimberly RP, Edberg JC, Ramsey-Goldman R, Bang SY, Lee HS, Bae SC, Boackle SA, Cunninghame Graham D, Vyse TJ, Merrill JT, Niewold TB, Ainsworth HC, Silverman ED, Weisman MH, Wallace DJ, Raj P, Guthridge JM, Gaffney PM, Kelly JA, Alarcón-Riquelme ME, Langefeld CD, Wakeland EK, Kaufman KM, Weirauch MT, Harley JB, Kottyan LC. A plausibly causal functional lupus-associated risk variant in the STAT1-STAT4 locus. Hum Mol Genet 2018; 27:2392-2404. [PMID: 29912393 PMCID: PMC6005081 DOI: 10.1093/hmg/ddy140] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/21/2018] [Accepted: 04/13/2018] [Indexed: 01/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE or lupus) (OMIM: 152700) is a chronic autoimmune disease with debilitating inflammation that affects multiple organ systems. The STAT1-STAT4 locus is one of the first and most highly replicated genetic loci associated with lupus risk. We performed a fine-mapping study to identify plausible causal variants within the STAT1-STAT4 locus associated with increased lupus disease risk. Using complementary frequentist and Bayesian approaches in trans-ancestral Discovery and Replication cohorts, we found one variant whose association with lupus risk is supported across ancestries in both the Discovery and Replication cohorts: rs11889341. In B cell lines from patients with lupus and healthy controls, the lupus risk allele of rs11889341 was associated with increased STAT1 expression. We demonstrated that the transcription factor HMGA1, a member of the HMG transcription factor family with an AT-hook DNA-binding domain, has enriched binding to the risk allele compared with the non-risk allele of rs11889341. We identified a genotype-dependent repressive element in the DNA within the intron of STAT4 surrounding rs11889341. Consistent with expression quantitative trait locus (eQTL) analysis, the lupus risk allele of rs11889341 decreased the activity of this putative repressor. Altogether, we present a plausible molecular mechanism for increased lupus risk at the STAT1-STAT4 locus in which the risk allele of rs11889341, the most probable causal variant, leads to elevated STAT1 expression in B cells due to decreased repressor activity mediated by increased binding of HMGA1.
Collapse
Affiliation(s)
- Zubin H Patel
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoming Lu
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joshua Lee
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Arthur Lynch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Connor Schroeder
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lois Parks
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Albert F Magnusen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mario Pujato
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Avery Maddox
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Erin E Zoller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hermine I Brunner
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael Henrickson
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jennifer L Huggins
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Adrienne H Williams
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie T Ziegler
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Mary E Comeau
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Miranda C Marion
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Stuart B Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Nan Shen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Swapan K Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Anne M Stevens
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Barry I Freedman
- Section on Nephrology, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | | - Betty P Tsao
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Chaim O Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth E Brown
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gary S Gilkeson
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Graciela S Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Javier Martin
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, CSIC, Granada 18001-18016, Spain
| | - John D Reveille
- Rheumatology and Clinical Immunogenetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research (CREA), Universidad del Rosario, Bogota 111711, Colombia
| | - Judith A James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy L Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Lindsey A Criswell
- Department of Medicine, Rosalind Russell/Ephraim P Engleman Rheumatology Research Center, University of California San Francisco, San Francisco, CA 94143-0500, USA
| | - Luis M Vilá
- Division of Rheumatology, Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936, USA
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - R Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- United States Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Robert P Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey C Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Susan A Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Deborah Cunninghame Graham
- Divisions of Genetics/Molecular Medicine and Immunology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Timothy J Vyse
- Divisions of Genetics/Molecular Medicine and Immunology, King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Joan T Merrill
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
| | - Timothy B Niewold
- Division of Rheumatology, Department of Pathology, New York University, New York, NY 10016, USA
| | - Hannah C Ainsworth
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Earl D Silverman
- Division of Rheumatology, The Hospital for Sick Children, Hospital for Sick Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Prithvi Raj
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, United States of America
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Marta E Alarcón-Riquelme
- Unit of Chronic Inflammatory Diseases, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 17167, Sweden
- Center for Genomics and Oncological Research, Pfizer-University of Granada-Junta de Andalucia, Parque Tecnológica de la Salud, Granada 18016, Spain
| | - Carl D Langefeld
- Center for Public Health Genomics and the Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- United States Department of Veterans Affairs Medical Center, Cincinnati, OH 45220, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| |
Collapse
|
136
|
Arkatkar T, Jacobs HM, Du SW, Li QZ, Hudkins KL, Alpers CE, Rawlings DJ, Jackson SW. TACI deletion protects against progressive murine lupus nephritis induced by BAFF overexpression. Kidney Int 2018; 94:728-740. [PMID: 29907458 DOI: 10.1016/j.kint.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 11/26/2022]
Abstract
B cells are known to promote the pathogenesis of systemic lupus erythematosus (SLE) via the production of pathogenic anti-nuclear antibodies. However, the signals required for autoreactive B cell activation and the immune mechanisms whereby B cells impact lupus nephritis pathology remain poorly understood. The B cell survival cytokine B cell activating factor of the TNF Family (BAFF) has been implicated in the pathogenesis of SLE and lupus nephritis in both animal models and human clinical studies. Although the BAFF receptor has been predicted to be the primary BAFF family receptor responsible for BAFF-driven humoral autoimmunity, in the current study we identify a critical role for signals downstream of Transmembrane Activator and CAML Interactor (TACI) in BAFF-dependent lupus nephritis. Whereas transgenic mice overexpressing BAFF develop progressive membranoproliferative glomerulonephritis, albuminuria and renal dysfunction, TACI deletion in BAFF-transgenic mice provided long-term (about 1 year) protection from renal disease. Surprisingly, disease protection in this context was not explained by complete loss of glomerular immune complex deposits. Rather, TACI deletion specifically reduced endocapillary, but not mesangial, immune deposits. Notably, although excess BAFF promoted widespread breaks in B cell tolerance, BAFF-transgenic antibodies were enriched for RNA- relative to DNA-associated autoantigen reactivity. These RNA-associated autoantibody specificities were specifically reduced by TACI or Toll-like receptor 7 deletion. Thus, our study provides important insights into the autoantibody specificities driving proliferative lupus nephritis, and suggests that TACI inhibition may be novel and effective treatment strategy in lupus nephritis.
Collapse
Affiliation(s)
- Tanvi Arkatkar
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Holly M Jacobs
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Samuel W Du
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kelly L Hudkins
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Charles E Alpers
- Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J Rawlings
- Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pathology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shaun W Jackson
- Seattle Children's Research Institute, Seattle, Washington, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
137
|
Mande P, Zirak B, Ko WC, Taravati K, Bride KL, Brodeur TY, Deng A, Dresser K, Jiang Z, Ettinger R, Fitzgerald KA, Rosenblum MD, Harris JE, Marshak-Rothstein A. Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation. J Clin Invest 2018; 128:2966-2978. [PMID: 29889098 PMCID: PMC6025993 DOI: 10.1172/jci98219] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors TLR7 and TLR9 are both implicated in the activation of autoreactive B cells and other cell types associated with systemic lupus erythematosus (SLE) pathogenesis. However, Tlr9-/- autoimmune-prone strains paradoxically develop more severe disease. We have now leveraged the negative regulatory role of TLR9 to develop an inducible rapid-onset murine model of systemic autoimmunity that depends on T cell detection of a membrane-bound OVA fusion protein expressed by MHC class II+ cells, expression of TLR7, expression of the type I IFN receptor, and loss of expression of TLR9. These mice are distinguished by a high frequency of OVA-specific Tbet+, IFN-γ+, and FasL-expressing Th1 cells as well as autoantibody-producing B cells. Unexpectedly, contrary to what occurs in most models of SLE, they also developed skin lesions that are very similar to those of human cutaneous lupus erythematosus (CLE) as far as clinical appearance, histological changes, and gene expression. FasL was a key effector mechanism in the skin, as the transfer of FasL-deficient DO11gld T cells completely failed to elicit overt skin lesions. FasL was also upregulated in human CLE biopsies. Overall, our model provides a relevant system for exploring the pathophysiology of CLE as well as the negative regulatory role of TLR9.
Collapse
Affiliation(s)
- Purvi Mande
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Bahar Zirak
- Department of Dermatology, UCSF, San Francisco, California, USA
| | - Wei-Che Ko
- Department of Dermatology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Keyon Taravati
- Department of Dermatology, UCSF, San Francisco, California, USA
| | - Karen L Bride
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tia Y Brodeur
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - April Deng
- Department of Dermatology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Karen Dresser
- Department of Dermatology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Zhaozhao Jiang
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Rachel Ettinger
- Respiratory, Autoimmunity, and Inflammation Department, MedImmune, Gaithersburg, Maryland, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | | | - John E Harris
- Department of Dermatology, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA
| | - Ann Marshak-Rothstein
- Department of Medicine, University of Massachusetts School of Medicine, Worcester, Massachusetts, USA.,Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
138
|
Naranjo-Gomez M, Lambour J, Piechaczyk M, Pelegrin M. Neutrophils are essential for induction of vaccine-like effects by antiviral monoclonal antibody immunotherapies. JCI Insight 2018; 3:97339. [PMID: 29720574 DOI: 10.1172/jci.insight.97339] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/05/2018] [Indexed: 12/23/2022] Open
Abstract
Using a mouse retroviral model, we have shown that mAb-based immunotherapy can induce life-long endogenous protective immunity (vaccine-like effects). This observation has potentially important consequences for treating life-threatening human viral infections. Here, we investigated the role of neutrophils in this effect. Neutrophils are innate immunity effector cells with well-established microbe-killing activities that are rapidly mobilized upon infection. They are also emerging as orchestrators of innate and adaptive immunities. However, their immunomodulatory activity during antiviral mAb immunotherapies has never been studied. Our data reveal that neutrophils have an essential role in immunotherapy-induced immune protection of infected mice. Unexpectedly, neutrophils have a limited effect in controlling viral propagation upon passive immunotherapy administration, which is mostly mediated by NK cells. Instead, neutrophils operate as essential inducers of a potent host humoral antiviral response. Thus, neutrophils play an unexpected key role in protective immunity induction by antiviral mAbs. Our work opens approaches to improve antiviral immunotherapies, as it suggests that preserving neutrophil functions and counts might be required for achieving mAb-induced protective immunity.
Collapse
|
139
|
Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nat Commun 2018; 9:1628. [PMID: 29691398 PMCID: PMC5915532 DOI: 10.1038/s41467-018-04063-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 03/30/2018] [Indexed: 01/14/2023] Open
Abstract
Germinal centers (GC) are important sites for high-affinity and long-lived antibody induction. Tight regulation of GC responses is critical for maintaining self-tolerance. Here, we show that Galectin-3 (Gal-3) is involved in GC development. Compared with WT mice, Gal-3 KO mice have more GC B cells and T follicular helper cells, increased percentages of antibody-secreting cells and higher concentrations of immunoglobulins and IFN-γ in serum, and develop a lupus-like disease. IFN-γ blockade in Gal-3 KO mice reduces spontaneous GC formation, class-switch recombination, autoantibody production and renal pathology, demonstrating that IFN-γ overproduction sustains autoimmunity. The results from chimeric mice show that intrinsic Gal-3 signaling in B cells controls spontaneous GC formation. Taken together, our data provide evidence that Gal-3 acts directly on B cells to regulate GC responses via IFN-γ and implicate the potential of Gal-3 as a therapeutic target in autoimmunity. Germinal center (GC) is where B cells interact with other immune cells for optimal induction of antibody responses. Here the authors show that galectin-3 regulates GC development by modulating interferon-γ and B cell-intrinsic signaling, such that galectin-3 deficiency mice exhibit lupus-like autoimmune symptoms.
Collapse
|
140
|
Jagasia M, Zeiser R, Arbushites M, Delaite P, Gadbaw B, Bubnoff NV. Ruxolitinib for the treatment of patients with steroid-refractory GVHD: an introduction to the REACH trials. Immunotherapy 2018; 10:391-402. [PMID: 29316837 DOI: 10.2217/imt-2017-0156] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
For patients with hematologic malignancies and disorders, allogeneic hematopoietic stem cell transplantation offers a potentially curative treatment option. Many patients develop graft-versus-host disease (GVHD), a serious complication and leading cause of nonrelapse mortality. Corticosteroids are the standard first-line treatment for GVHD; however, patients often become steroid-refractory or remain corticosteroid-dependent. New second-line treatment options are needed to improve patient outcomes. Here we review the role of JAK1 and JAK2 in acute and chronic GVHD. We also describe the study designs of the Phase II REACH1 (NCT02953678) and the Phase III REACH2 (NCT02913261) and REACH3 (NCT03112603) clinical trials that are currently recruiting patients to evaluate the JAK1/JAK2 inhibitor ruxolitinib in patients with corticosteroid-refractory acute or chronic GVHD.
Collapse
Affiliation(s)
- Madan Jagasia
- Vanderbilt-Ingram Cancer Center, 1301 Medical Center Dr #1710, Nashville, TN, USA 37232
| | - Robert Zeiser
- Department of Hematology, Oncology & Stem Cell Transplantation, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany
| | | | - Patricia Delaite
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, DE, USA 19803
| | - Brian Gadbaw
- Novartis Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, NJ, USA 07936
| | - Nikolas von Bubnoff
- Department of Hematology, Oncology & Stem Cell Transplantation, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg im Breisgau, Germany
| |
Collapse
|
141
|
Good-Jacobson KL, Groom JR. Tailoring Immune Responses toward Autoimmunity: Transcriptional Regulators That Drive the Creation and Collusion of Autoreactive Lymphocytes. Front Immunol 2018; 9:482. [PMID: 29568300 PMCID: PMC5852063 DOI: 10.3389/fimmu.2018.00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/23/2018] [Indexed: 01/07/2023] Open
Abstract
T-dependent humoral immune responses to infection involve a collaboration between B and CD4 T cell activation, migration, and co-stimulation, thereby culminating in the formation of germinal centers (GCs) and eventual differentiation into memory cells and long-lived plasma cells (PCs). CD4 T cell-derived signals drive the formation of a tailored B cell response. Downstream of these signals are transcriptional regulators that are the critical enactors of immune cell programs. In particular, a core group of transcription factors regulate both B and T cell differentiation, identity, and function. The timing and expression levels of these transcription factors are tightly controlled, with dysregulated expression correlated to immune cell dysfunction in autoimmunity and lymphomagenesis. Recent studies have significantly advanced our understanding of both extrinsic and intrinsic regulators of autoreactive B cells and antibody-secreting PCs in systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune conditions. Yet, there are still gaps in our understanding of the causative role these regulators play, as well as the link between lymphoid responses and peripheral damage. This review will focus on the genesis of immunopathogenic CD4 helper and GC B cells. In particular, we will detail the transcriptional regulation of cytokine and chemokine receptor signaling during the pathogenesis of GC-derived autoimmune conditions in both murine models and human patients.
Collapse
Affiliation(s)
- Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
142
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
143
|
Byford ET, Carr M, Ladikou E, Ahearne MJ, Wagner SD. Circulating Tfh1 (cTfh1) cell numbers and PD1 expression are elevated in low-grade B-cell non-Hodgkin's lymphoma and cTfh gene expression is perturbed in marginal zone lymphoma. PLoS One 2018; 13:e0190468. [PMID: 29293620 PMCID: PMC5749831 DOI: 10.1371/journal.pone.0190468] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/17/2017] [Indexed: 02/07/2023] Open
Abstract
CD4+ T-cell subsets are found in the tumour microenvironment (TME) of low-grade B-cell non-Hodgkin’s lymphomas such as marginal zone lymphoma (MZL) or follicular lymphoma (FL). Both numbers and architecture of activating follicular helper T-cells (Tfh) and suppressive Treg in the TME of FL are associated with clinical outcomes. There has been almost no previous work on CD4+ T-cells in MZL. It is now recognised that circulating CD4+CXCR5+ T-cells are the memory compartment of Tfh cells. We determined differences in number of circulating Tfh (cTfh) cells and cTfh subsets between normal subjects and patients with FL or MZL. Lymphoma patients showed increased numbers of cTfh1 and reduced cTfh17 cells due to decreased expression of the subset-defining marker CCR6 in patients. PD1, a surface marker associated with Tfh cells, showed increased expression on cTfh subsets in patients. Focusing on MZL we determined expression of 96 T-cell associated genes by microfluidic qRT-PCR. Analysis of differentially expressed genes showed significant differences between normal subjects and patients both for bulk cTfh (CCL4) and the cTfh1 subset (JAK3). While our findings require confirmation in larger studies we suggest that analysis of number and gene expression of circulating T-cells might be a source of clinically useful information as is the case for T-cells within lymphoma lymph nodes.
Collapse
Affiliation(s)
- Elliot T. Byford
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Matthew Carr
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Eleni Ladikou
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Matthew J. Ahearne
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
| | - Simon D. Wagner
- Leicester Cancer Research Centre and Ernest and Helen Scott Haematology Research Institute, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
144
|
Schroeder MA, Choi J, Staser K, DiPersio JF. The Role of Janus Kinase Signaling in Graft-Versus-Host Disease and Graft Versus Leukemia. Biol Blood Marrow Transplant 2017; 24:1125-1134. [PMID: 29289756 DOI: 10.1016/j.bbmt.2017.12.797] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/20/2017] [Indexed: 12/18/2022]
Abstract
For patients with hematologic malignancies, allogeneic hematopoietic cell transplantation (alloHCT) offers a potential curative treatment option, primarily due to an allogeneic immune response against recipient tumor cells (ie, graft-versus-leukemia [GVL] activity). However, many recipients of alloHCT develop graft-versus-host disease (GVHD), in which allogeneic immune responses lead to the damage of healthy tissue. GVHD is a leading cause of nonrelapse mortality and a key contributor to morbidity among patients undergoing alloHCT. Therefore, improving alloHCT outcomes will require treatment strategies that prevent or mitigate GVHD without disrupting GVL activity. Janus kinases (JAKs) are intracellular signaling molecules that are well positioned to regulate GVHD. A variety of cytokines that signal through the JAK signaling pathways play a role in regulating the development, proliferation, and activation of several immune cell types important for GVHD pathogenesis, including dendritic cells, macrophages, T cells, B cells, and neutrophils. Importantly, despite JAK regulation of GVHD, preclinical evidence suggests that JAK inhibition preserves GVL activity. Here we provide an overview of potential roles for JAK signaling in the pathogenesis of acute and chronic GVHD as well as effects on GVL activity. We also review preclinical and clinical results with JAK inhibitors in acute and chronic GVHD settings, with added focus on those actively being evaluated in patients with acute and chronic GVHD.
Collapse
Affiliation(s)
- Mark A Schroeder
- Washington University School of Medicine, Division of Oncology, Section of Stem Cell Transplantation, St. Louis, Missouri.
| | - Jaebok Choi
- Washington University School of Medicine, Division of Oncology, Section of Stem Cell Transplantation, St. Louis, Missouri
| | - Karl Staser
- Washington University School of Medicine, Division of Oncology, Section of Stem Cell Transplantation, St. Louis, Missouri
| | - John F DiPersio
- Washington University School of Medicine, Division of Oncology, Section of Stem Cell Transplantation, St. Louis, Missouri
| |
Collapse
|
145
|
Abstract
Germinal centers (GCs) are dynamic microenvironments that form in the secondary lymphoid organs and generate somatically mutated high-affinity antibodies necessary to establish an effective humoral immune response. Tight regulation of GC responses is critical for maintaining self-tolerance. GCs can arise in the absence of purposeful immunization or overt infection (called spontaneous GCs, Spt-GCs). In autoimmune-prone mice and patients with autoimmune disease, aberrant regulation of Spt-GCs is thought to promote the development of somatically mutated pathogenic autoantibodies and the subsequent development of autoimmunity. The mechanisms that control the formation of Spt-GCs and promote systemic autoimmune diseases remain an open question and the focus of ongoing studies. Here, we discuss the most current studies on the role of Spt-GCs in autoimmunity.
Collapse
Affiliation(s)
- Phillip P Domeier
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Stephanie L Schell
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| | - Ziaur S M Rahman
- a Department of Microbiology and Immunology, Penn State College of Medicine , USA
| |
Collapse
|
146
|
Chasset F, Arnaud L. Targeting interferons and their pathways in systemic lupus erythematosus. Autoimmun Rev 2017; 17:44-52. [PMID: 29108825 DOI: 10.1016/j.autrev.2017.11.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 01/07/2023]
Abstract
Significant advances in the understanding of the molecular basis of innate immunity have led to the identification of interferons (IFNs), particularly IFN-α, as central mediators in the pathogenesis of Systemic Lupus Erythematosus. Therefore, targeting of IFNs and of their downstream pathways has emerged as important developments for novel drug research in SLE. Based on this, several specific interferon blocking strategies using anti-IFN-α antibodies, anti-type I interferon receptor antibodies, Interferon-α-kinoid, or anti-IFN-γ antibodies have all been assessed in recent clinical trials. Alternative strategies targeting the plasmacytoid dendritic cells (pDCs), Toll-Like Receptors (TLRs)-7/9 or their downstream pathways such as the myeloid differentiation primary-response protein 88 (MYD88), spleen tyrosine kinase (Syk), Janus-kinases (JAKs), interleukin-1 receptor-associated kinase 4 (IRAK4), or the Tyrosine Kinase 2 (TYK2) are also investigated actively in SLE, at more preliminary clinical development stages, except for JAK inhibitors which have reached phase 2 studies. In a near future, in-depth and personalized functional characterization of IFN pathways may provide further guidance for the selection of the most relevant therapeutic strategy in SLE, tailored at the patient-level.
Collapse
Affiliation(s)
- François Chasset
- AP-HP, Service de Dermatologie et d'Allergologie, Hôpital Tenon, F-75020, Paris, France
| | - Laurent Arnaud
- Service de rhumatologie, Centre National de Référence des Maladies Autoimmunes et Systémiques Rares, Université de Strasbourg, INSERM UMR-S 1109, F-67000 Strasbourg, France.
| |
Collapse
|
147
|
Rivera-Correa J, Guthmiller JJ, Vijay R, Fernandez-Arias C, Pardo-Ruge MA, Gonzalez S, Butler NS, Rodriguez A. Plasmodium DNA-mediated TLR9 activation of T-bet + B cells contributes to autoimmune anaemia during malaria. Nat Commun 2017; 8:1282. [PMID: 29101363 PMCID: PMC5670202 DOI: 10.1038/s41467-017-01476-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 09/20/2017] [Indexed: 01/05/2023] Open
Abstract
Infectious pathogens contribute to the development of autoimmune disorders, but the mechanisms connecting these processes are incompletely understood. Here we show that Plasmodium DNA induces autoreactive responses against erythrocytes by activating a population of B cells expressing CD11c and the transcription factor T-bet, which become major producers of autoantibodies that promote malarial anaemia. Additionally, we identify parasite DNA-sensing through Toll-like receptor 9 (TLR9) along with inflammatory cytokine receptor IFN-γ receptor (IFN-γR) as essential signals that synergize to promote the development and appearance of these autoreactive T-bet+ B cells. The lack of any of these signals ameliorates malarial anaemia during infection in a mouse model. We also identify both expansion of T-bet+ B cells and production of anti-erythrocyte antibodies in ex vivo cultures of naive human peripheral blood mononuclear cells (PBMC) exposed to P. falciprum infected erythrocyte lysates. We propose that synergistic TLR9/IFN-γR activation of T-bet+ B cells is a mechanism underlying infection-induced autoimmune-like responses.
Collapse
MESH Headings
- Anemia, Hemolytic, Autoimmune/etiology
- Anemia, Hemolytic, Autoimmune/immunology
- Anemia, Hemolytic, Autoimmune/parasitology
- Animals
- Autoantibodies/biosynthesis
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/parasitology
- DNA, Protozoan/immunology
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Humans
- Lymphocyte Activation
- Malaria, Falciparum/complications
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- T-Box Domain Proteins/deficiency
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Toll-Like Receptor 9/deficiency
- Toll-Like Receptor 9/genetics
- Toll-Like Receptor 9/metabolism
- Interferon gamma Receptor
Collapse
Affiliation(s)
- J Rivera-Correa
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - J J Guthmiller
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - R Vijay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - C Fernandez-Arias
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - M A Pardo-Ruge
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - S Gonzalez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA
| | - N S Butler
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - A Rodriguez
- Department of Microbiology, New York University School of Medicine, New York, NY, 10010, USA.
| |
Collapse
|
148
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiencies (PIDs) are inherited conditions where components of the immune system are missing or dysfunctional. Over 300 genes have been causally linked to monogenic forms of PID, including a number that regulate the actin cytoskeleton. The majority of cytoskeletal defects disrupt assembly and disassembly of filamentous actin in multiple immune cell lineages impacting functions such as cell migration and adhesion, pathogen uptake, intercellular communication, intracellular signalling, and cell division. RECENT FINDINGS In the past 24 months, new actin defects have been identified through next generation sequencing technologies. Substantial progress has also been made in understanding the pathogenic mechanisms that contribute to immunological dysfunction, and also how the cytoskeleton participates in normal physiological immune processes. SUMMARY This review summarises recent advances in the field, raising awareness of these conditions and our current understanding of their presentation. Description of further cases and new conditions will extend the clinical phenotype of actin-related disorders, and will promote the development of more effective and targeted therapies.
Collapse
|
149
|
Singh AK, Eken A, Hagin D, Komal K, Bhise G, Shaji A, Arkatkar T, Jackson SW, Bettelli E, Torgerson TR, Oukka M. DOCK8 regulates fitness and function of regulatory T cells through modulation of IL-2 signaling. JCI Insight 2017; 2:94275. [PMID: 28978795 DOI: 10.1172/jci.insight.94275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Foxp3+ Tregs possess potent immunosuppressive activity, which is critical for maintaining immune homeostasis and self-tolerance. Defects in Treg development or function result in inadvertent immune activation and autoimmunity. Despite recent advances in Treg biology, we still do not completely understand the molecular and cellular mechanisms governing the development and suppressive function of these cells. Here, we have demonstrated an essential role of the dedicator of cytokinesis 8 (DOCK8), guanine nucleotide exchange factors required for cytoskeleton rearrangement, cell migration, and immune cell survival in controlling Treg fitness and their function. Treg-specific DOCK8 deletion led to spontaneous multiorgan inflammation in mice due to uncontrolled T cell activation and production of proinflammatory cytokines. In addition, we show that DOCK8-deficient Tregs are defective in competitive fitness and in vivo suppressive function. Furthermore, DOCK8 controls IL-2 signaling, crucial for maintenance and competitive fitness of Tregs, via a STAT5-dependent manner. Our study provides potentially novel insights into the essential function of DOCK8 in Tregs and immune regulation, and it explains the autoimmune manifestations associated with DOCK8 deficiency.
Collapse
Affiliation(s)
- Akhilesh K Singh
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Ahmet Eken
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - David Hagin
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Khushbu Komal
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Gauri Bhise
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Azima Shaji
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Tanvi Arkatkar
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Shaun W Jackson
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA
| | - Estelle Bettelli
- Benaroya Research Institute, Immunology Program, Seattle, Washington, USA
| | - Troy R Torgerson
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA.,Department of Pediatrics and
| | - Mohamed Oukka
- Seattle Children's Research Institute, Center for Immunity and Immunotherapies, Seattle, Washington, USA.,Department of Pediatrics and.,Department of Immunology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
150
|
Taher TE, Bystrom J, Ong VH, Isenberg DA, Renaudineau Y, Abraham DJ, Mageed RA. Intracellular B Lymphocyte Signalling and the Regulation of Humoral Immunity and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:237-264. [PMID: 28456914 PMCID: PMC5597704 DOI: 10.1007/s12016-017-8609-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
B lymphocytes are critical for effective immunity; they produce antibodies and cytokines, present antigens to T lymphocytes and regulate immune responses. However, because of the inherent randomness in the process of generating their vast repertoire of antigen-specific receptors, B cells can also cause diseases through recognizing and reacting to self. Therefore, B lymphocyte selection and responses require tight regulation at multiple levels and at all stages of their development and activation to avoid diseases. Indeed, newly generated B lymphocytes undergo rigorous tolerance mechanisms in the bone marrow and, subsequently, in the periphery after their migration. Furthermore, activation of mature B cells is regulated through controlled expression of co-stimulatory receptors and intracellular signalling thresholds. All these regulatory events determine whether and how B lymphocytes respond to antigens, by undergoing apoptosis or proliferation. However, defects that alter regulated co-stimulatory receptor expression or intracellular signalling thresholds can lead to diseases. For example, autoimmune diseases can result from altered regulation of B cell responses leading to the emergence of high-affinity autoreactive B cells, autoantibody production and tissue damage. The exact cause(s) of defective B cell responses in autoimmune diseases remains unknown. However, there is evidence that defects or mutations in genes that encode individual intracellular signalling proteins lead to autoimmune diseases, thus confirming that defects in intracellular pathways mediate autoimmune diseases. This review provides a synopsis of current knowledge of signalling proteins and pathways that regulate B lymphocyte responses and how defects in these could promote autoimmune diseases. Most of the evidence comes from studies of mouse models of disease and from genetically engineered mice. Some, however, also come from studying B lymphocytes from patients and from genome-wide association studies. Defining proteins and signalling pathways that underpin atypical B cell response in diseases will help in understanding disease mechanisms and provide new therapeutic avenues for precision therapy.
Collapse
Affiliation(s)
- Taher E Taher
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Jonas Bystrom
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | | | - Yves Renaudineau
- Immunology Laboratory, University of Brest Medical School, Brest, France
| | - David J Abraham
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital, University College London, London, UK
| | - Rizgar A Mageed
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|