101
|
Korkmaz S, Radovits T, Barnucz E, Neugebauer P, Arif R, Hirschberg K, Loganathan S, Seidel B, Karck M, Szabó G. Dose-dependent effects of a selective phosphodiesterase-5-inhibitor on endothelial dysfunction induced by peroxynitrite in rat aorta. Eur J Pharmacol 2009; 615:155-62. [PMID: 19482016 DOI: 10.1016/j.ejphar.2009.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
Reactive oxygen species, such as peroxynitrite, induce oxidative stress and DNA injury leading to endothelial dysfunction. It has been proposed, that elevated intracellular cyclic GMP (cGMP)-levels may contribute to an effective cytoprotection against nitro-oxidative stress. We investigated the dose-dependent effects of vardenafil, an inhibitor of phosphodiesterase-5, on endothelial dysfunction induced by peroxynitrite. In organ bath experiments, we investigated the endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside, SNP) vasorelaxation of isolated aortic rings of rats. Endothelial dysfunction was induced by peroxynitrite. In the treatment groups, rats received low doses (0.01-5 microg/kg) or high doses (5-300 microg/kg) of vardenafil. DNA strand breaks were assessed by the TUNEL method. Immunohistochemical analysis was performed for cGMP and nitrotyrosine. Exposure to peroxynitrite resulted in an impairment of endothelium-dependent vasorelaxation of aortic rings. Pre-treatment with lower doses of vardenafil led to an improvement of endothelial function as reflected by the higher maximal vasorelaxation (R(max)) to acetylcholine. Interestingly, at higher doses, R(max) to acetylcholine was attenuated leading to U-shaped dose-response curves. The endothelium-independent vasorelaxation to SNP under peroxynitrite stress showed a significant left-shift of the SNP concentration-response curves in the vardenafil groups without any alterations of the R(max). Vardenafil-pre-treatment significantly reduced DNA-breakage, reduced nitrosative stress, and increased cGMP score in the aortic wall. Our working hypothesis is that improvement of endothelial function could be mainly due to the cytoprotection of endothelium by vardenafil. This work supports the view that acute PDE5-inhibition might be advantageous in the treatment of endothelial dysfunction induced by disturbed NO-cGMP pathway due to nitro-oxidative stress.
Collapse
Affiliation(s)
- Sevil Korkmaz
- Department of Cardiac Surgery, University of Heidelberg, 2. OG. INF 326., 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Weseler AR, Geraets L, Moonen HJJ, Manders RJF, van Loon LJC, Pennings HJ, Wouters EFM, Bast A, Hageman GJ. Poly (ADP-ribose) polymerase-1-inhibiting flavonoids attenuate cytokine release in blood from male patients with chronic obstructive pulmonary disease or type 2 diabetes. J Nutr 2009; 139:952-7. [PMID: 19321592 DOI: 10.3945/jn.108.102756] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recently, we identified several flavonoids as inhibitors of the nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 in vitro and in vivo. PARP-1 is recognized as coactivator of nuclear factor-kappaB and plays a role in the pathophysiology of diseases with low-grade systemic inflammation, such as chronic obstructive pulmonary disease (COPD) and type 2 diabetes (T2D). In this study, we assessed the antiinflammatory effects of flavonoids with varying PARP-1-inhibiting effects in whole blood from male patients with COPD or T2D and healthy men. A total of 10 COPD, 10 T2D patients, and 10 healthy volunteers matched for age and BMI were recruited. Blood from each participant was exposed to 1 microg/L lipopolysaccharide (LPS) over 16 h with or without preincubation with 10 micromol/L of flavone, fisetin, morin, or tricetin. Concentrations of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, -8, and -10 were measured in the supernatant. Preincubation with fisetin and tricetin strongly attenuated LPS-induced increases in concentrations of TNFalpha in blood from COPD patients [mean (+/- SEM): -41 +/- 4% (fisetin) and -31 +/- 4% (tricetin); P < 0.001] and IL-6 in blood from T2D patients [-31 +/- 5% (fisetin) and -29 +/- 6% (tricetin); P < or = 0.001]. Moreover, LPS-induced changes in TNFalpha and IL-6 concentrations were positively correlated with the extent of reduction by fisetin and tricetin. The PARP-1-inhibiting flavonoids fisetin and tricetin were able to attenuate LPS-induced cytokine release from leukocytes of patients with chronic systemic inflammation, indicating a potential application as nutraceutical agents for these patient groups.
Collapse
Affiliation(s)
- Antje R Weseler
- Department of Health Risk Analysis and Toxicology, Maastricht University Medical Centre+, Maastricht 6200 MD, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Mahrouf-Yorgov M, Marie N, Borderie D, Djelidi R, Bonnefont-Rousselot D, Legrand A, Beaudeux JL, Peynet J. Metformin suppresses high glucose-induced poly(adenosine diphosphate-ribose) polymerase overactivation in aortic endothelial cells. Metabolism 2009; 58:525-33. [PMID: 19303974 DOI: 10.1016/j.metabol.2008.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Accepted: 11/10/2008] [Indexed: 11/22/2022]
Abstract
Overactivation of poly(adenosine diphosphate-ribose) polymerase (PARP), an enzyme involved in cellular response to DNA injury resulting from oxidative and nitrosative stress, is considered to play a key role in the pathogenesis of diabetes complications by promoting numerous vascular dysfunctions. In this study, we examined the ability of metformin, which was reported to possess intrinsic vasculoprotective properties independently of its antihyperglycemic effects, to inhibit PARP activation induced by high glucose concentrations in bovine aortic endothelial cells; and we investigated the potential mechanisms involved in this inhibition. The PARP activity was measured by cellular enzyme-linked immuno-specific assay (CELISA) method; cell poly(ribosyl)ated protein polymer accumulation was evaluated by immunofluorescence. Peroxynitrite anion productions were determined using dihydrorhodamine 123 fluoroprobe; and expression of p47phox subunit of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase was analyzed by Western blot in the absence and presence of protein kinase C and NAD(P)H oxidase inhibitors (calphostin and diphenyleneiodonium chloride, respectively). Our data showed that a therapeutically relevant concentration of metformin (5.10(-5) mol/L) was able to abolish PARP activation, to reduce poly(ribosyl)ated protein polymer accumulation, to decrease intracellular peroxynitrite anion level, and to reverse the overexpression of p47phox in bovine aortic endothelial cells stimulated by 25 mmol/L glucose in a similar manner to that of calphostin or diphenyleneiodonium chloride. Taken together, these results suggest that metformin could inhibit glucose-induced PARP activation through blockade of a protein kinase C-dependent NAD(P)H oxidase activation pathway. We propose that some of the beneficial effects of metformin on vascular endothelial cell functions in diabetes may be related to its inhibitory effect on PARP overactivation and its deleterious consequences.
Collapse
Affiliation(s)
- Meriem Mahrouf-Yorgov
- EA 3617 Biochimie radicalaire et atteintes vasculaires, Université Paris Descartes, UFR des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'Observatoire, F75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Bao X, Wu G, Hu S, Huang F. Poly(ADP-ribose) polymerase activation and brain edema formation by hemoglobin after intracerebral hemorrhage in rats. CEREBRAL HEMORRHAGE 2009; 105:23-7. [DOI: 10.1007/978-3-211-09469-3_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
105
|
Kanwar M, Kowluru RA. Role of glyceraldehyde 3-phosphate dehydrogenase in the development and progression of diabetic retinopathy. Diabetes 2009; 58:227-34. [PMID: 18852331 PMCID: PMC2606877 DOI: 10.2337/db08-1025] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 10/02/2008] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Mitochondrial superoxide levels are elevated in the retina in diabetes, and manganese superoxide dismutase overexpression prevents the development of retinopathy. Superoxide inhibits glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which activates major pathways implicated in diabetic complications, including advanced glycation end products (AGEs), protein kinase C, and hexosamine pathway. Our aim is to investigate the role of GAPDH in the development and progression of diabetic retinopathy and to elucidate the mechanism. RESEARCH DESIGN AND METHODS Rats with streptozotocin-induced diabetes were in a state of poor control (GHb >11%) for 12 months, good control (GHb <7) soon after induction of diabetes, or poor control for 6 months with 6 months' good control. Retinal GAPDH, its ribosylation and nitration, AGEs, and PKC activation were determined and correlated with microvascular histopathology. RESULTS In rats with poor control, retinal GAPDH activity and expressions were subnormal with increased ribosylation and nitration (25-30%). GAPDH activity was subnormal in both cytosol and nuclear fractions, but its protein expression and nitration were significantly elevated in nuclear fraction. Reinstitution of good control failed to protect inactivation of GAPDH, its covalent modification, and translocation to the nucleus. PKC, AGEs, and hexosamine pathways remained activated, and microvascular histopathology was unchanged. However, GAPDH and its translocation in good control rats were similar to those in normal rats. CONCLUSIONS GAPDH plays a significant role in the development of diabetic retinopathy and its progression after cessation of hyperglycemia. Thus, therapies targeted toward preventing its inhibition may inhibit development of diabetic retinopathy and arrest its progression.
Collapse
Affiliation(s)
- Mamta Kanwar
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, USA
| | | |
Collapse
|
106
|
Rajesh M, Mukhopadhyay P, Bátkai S, Mukhopadhyay B, Patel V, Haskó G, Szabó C, Mabley JG, Liaudet L, Pacher P. Xanthine oxidase inhibitor allopurinol attenuates the development of diabetic cardiomyopathy. J Cell Mol Med 2008; 13:2330-2341. [PMID: 19175688 DOI: 10.1111/j.1582-4934.2008.00564.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Sándor Bátkai
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Bani Mukhopadhyay
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Vivek Patel
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ, USA
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas, Galveston, TX, USA
| | - Jon G Mabley
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, United Kingdom
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| |
Collapse
|
107
|
Bai P, Hegedus C, Szabó E, Gyüre L, Bakondi E, Brunyánszki A, Gergely S, Szabó C, Virág L. Poly(ADP-ribose) polymerase mediates inflammation in a mouse model of contact hypersensitivity. J Invest Dermatol 2008; 129:234-8. [PMID: 18633442 DOI: 10.1038/jid.2008.196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
108
|
Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:2-13. [PMID: 18535182 PMCID: PMC2438280 DOI: 10.2353/ajpath.2008.080019] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2008] [Indexed: 01/02/2023]
Abstract
Throughout the last 2 decades, experimental evidence from in vitro studies and preclinical models of disease has demonstrated that reactive oxygen and nitrogen species, including the reactive oxidant peroxynitrite, are generated in parenchymal, endothelial, and infiltrating inflammatory cells during stroke, myocardial and other forms of reperfusion injury, myocardial hypertrophy and heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, atherosclerosis and vascular remodeling after injury, diabetic complications, and neurodegenerative disorders. Peroxynitrite and other reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation depletes its substrate NAD(+), slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to functional impairment or death of cells, as well as up-regulation of various proinflammatory pathways. In related animal models of disease, peroxynitrite neutralization or pharmacological inhibition of PARP provides significant therapeutic benefits. Therefore, novel antioxidants and PARP inhibitors have entered clinical development for the experimental therapy of various cardiovascular and other diseases. This review focuses on the human data available on the pathophysiological relevance of the peroxynitrite-PARP pathway in a wide range of disparate diseases, ranging from myocardial ischemia/reperfusion injury, myocarditis, heart failure, circulatory shock, and diabetic complications to atherosclerosis, arthritis, colitis, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pal Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
109
|
Beneke S. Poly(ADP-ribose) polymerase activity in different pathologies--the link to inflammation and infarction. Exp Gerontol 2008; 43:605-614. [PMID: 18511226 DOI: 10.1016/j.exger.2008.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 12/27/2022]
Abstract
DNA repair and aging are two phenomena closely connected to each other. The poly(ADP-ribosyl)ation reaction has been implicated in both of them. Poly(ADP-ribose) was originally discovered as an enzymatic reaction product after DNA damage. Soon it became evident that it is necessary for regulation of different repair pathways. Also, evidence accumulated that poly(ADP-ribose) formation capacity is at least correlated with the life span of mammalian species. As a NAD(+)-consuming process, poly(ADP-ribosyl)ation can lead to cell death by energy depletion. This finding opened the area for investigation of poly(ADP-ribose) polymerase activity and polymer formation in pathologies. This review provides an introduction into the wide and complex field of poly(ADP-ribosyl)ation in different pathologies with regards of cell death regulation, inflammation and resulting tissue damage.
Collapse
Affiliation(s)
- Sascha Beneke
- University of Konstanz, Molecular Toxicology Group, Universiteatsstr. 10, Box X911, 78457 Konstanz, Germany
| |
Collapse
|
110
|
Obrosova IG, Xu W, Lyzogubov VV, Ilnytska O, Mashtalir N, Vareniuk I, Pavlov IA, Zhang J, Slusher B, Drel VR. PARP inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy. Free Radic Biol Med 2008; 44:972-81. [PMID: 17976390 PMCID: PMC3057075 DOI: 10.1016/j.freeradbiomed.2007.09.013] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 08/31/2007] [Accepted: 09/20/2007] [Indexed: 02/04/2023]
Abstract
Evidence that poly(ADP-ribose) polymerase (PARP) activation plays an important role in diabetic complications is emerging. This study evaluated the role of PARP in rat and mouse models of advanced diabetic neuropathy. The orally active PARP inhibitor 10-(4-methylpiperazin-1-ylmethyl)-2H-7-oxa-1,2-diaza-benzo[de]anthracen-3-one (GPI-15427; formulated as a mesilate salt, 30 mg kg(-1) day(-1) in the drinking water for 10 weeks after the first 2 weeks without treatment) at least partially prevented PARP activation in peripheral nerve and DRG neurons, as well as thermal hypoalgesia, mechanical hyperalgesia, tactile allodynia, exaggerated response to formalin, and, most importantly, intraepidermal nerve fiber degeneration in streptozotocin-diabetic rats. These findings are consistent with the lack of small sensory nerve fiber dysfunction in diabetic PARP -/- mice. Furthermore, whereas diabetic PARP +/+ mice displayed approximately 46% intraepidermal nerve fiber loss, diabetic PARP -/- mice retained completely normal intraepidermal nerve fiber density. In conclusion, PARP activation is an important contributor to intraepidermal nerve fiber degeneration and functional changes associated with advanced Type 1 diabetic neuropathy. The results support a rationale for the development of potent and low-toxicity PARP inhibitors and PARP inhibitor-containing combination therapies.
Collapse
Affiliation(s)
- Irina G Obrosova
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Pacher P. Poly(ADP-ribose) polymerase inhibition as a novel therapeutic approach against intraepidermal nerve fiber loss and neuropathic pain associated with advanced diabetic neuropathy: a commentary on "PARP Inhibition or gene deficiency counteracts intraepidermal nerve fiber loss and neuropathic pain in advanced diabetic neuropathy". Free Radic Biol Med 2008; 44:969-71. [PMID: 18194675 PMCID: PMC2322872 DOI: 10.1016/j.freeradbiomed.2007.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 12/19/2007] [Indexed: 01/21/2023]
Affiliation(s)
- Pal Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, Room 2-N17, MSC 9413, Bethesda, MD 20892-9413, USA.
| |
Collapse
|
112
|
Balakumar P, Kaur T, Singh M. Potential target sites to modulate vascular endothelial dysfunction: Current perspectives and future directions. Toxicology 2008; 245:49-64. [DOI: 10.1016/j.tox.2007.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Revised: 12/13/2007] [Accepted: 12/13/2007] [Indexed: 12/26/2022]
|
113
|
Mathur G, Noronha B, Rodrigues E, Davis G. The role of angiotensin II type 1 receptor blockers in the prevention and management of diabetes mellitus. Diabetes Obes Metab 2007; 9:617-29. [PMID: 17697055 DOI: 10.1111/j.1463-1326.2006.00644.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Angiotensin II Receptor blockers (ARBs) are an important addition to the current range of medications available for treating a wide spectrum of diseases including cardiovascular diseases. Coronary heart disease (CHD) is the most common cause of death in the United Kingdom and worldwide. More importantly, the presence of the metabolic syndrome and the likelihood of diabetes mellitus taking on epidemic proportions in the years to come all threaten to maintain the mortality rate due to CHD. This review article focuses on the clinical studies that have helped define the trends in the usage of these agents in the prevention and treatment of diabetes mellitus and its complications and also explores possible mechanisms of action and future developments.
Collapse
Affiliation(s)
- G Mathur
- Cardiovascular Research Group, Aintree Cardiac Centre, University Hospital Aintree, Liverpool, UK
| | | | | | | |
Collapse
|
114
|
Lenzsér G, Kis B, Snipes JA, Gáspár T, Sándor P, Komjáti K, Szabó C, Busija DW. Contribution of poly(ADP-ribose) polymerase to postischemic blood-brain barrier damage in rats. J Cereb Blood Flow Metab 2007; 27:1318-26. [PMID: 17213862 DOI: 10.1038/sj.jcbfm.9600437] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear enzyme poly(ADP-ribose) polymerase (PARP) is activated by oxidative stress and plays a significant role in postischemic brain injury. We assessed the contribution of PARP activation to the blood-brain barrier (BBB) disruption and edema formation after ischemia-reperfusion. In male Wistar rats, global cerebral ischemia was achieved by occluding the carotid arteries and lowering arterial blood pressure for 20 mins. The animals were treated with saline or with the PARP inhibitor N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-N, N-dimethylacetamide.HCl (PJ34); (10 mg/kg, i.v.) before ischemia. After 40 mins, 24, and 48 h of reperfusion, the permeability of the cortical BBB was determined after Evans Blue (EB) and Na-fluorescein (NaF) administration. The water content of the brain was also measured. The permeability of the BBB for EB increased after ischemia-reperfusion compared with the nonischemic animals after 24 and 48 h reperfusion but PARP inhibition attenuated this increase at 48 h (nonischemic: 170+/-9, saline: 760+/-95, PJ34: 472+/-61 ng/mg tissue). The extravasation of NaF showed similar changes and PJ34 post-treatment attenuated the permeability increase even at 24 h. PARP inhibition decreased the brain edema seen at 48 h. Because PARP has proinflammatory properties, the neutrophil infiltration of the cortex was determined, which showed lower values after PJ34 treatment. Furthermore, PJ34 treatment decreased the loss of the tight junction protein occludin at 24 and 48 h. The inhibition of PARP activity accompanied by reduced post-ischemic BBB disturbance and decreased edema formation suggests a significant role of this enzyme in the development of cerebral vascular malfunction
Collapse
Affiliation(s)
- Gábor Lenzsér
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, North Carolina 27157,
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Seabra AB, Pankotai E, Fehér M, Somlai A, Kiss L, Bíró L, Szabó C, Kollai M, de Oliveira MG, Lacza Z. S-nitrosoglutathione-containing hydrogel increases dermal blood flow in streptozotocin-induced diabetic rats. Br J Dermatol 2007; 156:814-8. [PMID: 17263816 DOI: 10.1111/j.1365-2133.2006.07718.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Endothelial dysfunction is characterized by decreased vasodilatory capacity of the arterioles mainly due to the reduced release of nitric oxide (NO). Application of NO donors may prevent or even reverse the consequences of endothelial dysfunction, such as diabetic leg ulcers. OBJECTIVES To investigate the vasodilatory capacity and the possible side-effects of topical application of an NO donor-containing hydrogel in diabetic rats. METHODS S-nitrosoglutathione (GSNO) was incorporated in Pluronic F127 hydrogel and applied on the foot sole skin of healthy and streptozotocin-induced diabetic rats. Blood flow was monitored using a laser-Doppler probe. Nitrotyrosine formation, a possible side-effect of GSNO action, was evaluated by Western blotting of skin protein extracts. Systemic circulatory side-effects were investigated by monitoring blood pressure and heart rate during the application. RESULTS The hydrogel alone did not induce any changes in microvascular flow, while GSNO-containing hydrogel caused a twofold increase in perfusion. This effect was similar in diabetic and healthy animals. Topical GSNO application did not increase the nitrotyrosine content of skin proteins, nor did it have any effect on blood pressure or heart rate. CONCLUSIONS Dermal application of GSNO may be an effective treatment for promoting the local vasodilation in both healthy and diabetic states, without inducing protein nitration or alterations in blood pressure or heart rate.
Collapse
Affiliation(s)
- A B Seabra
- Department of Human Physiology and Clinical Experimental Research, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Oumouna-Benachour K, Hans CP, Suzuki Y, Naura A, Datta R, Belmadani S, Fallon K, Woods C, Boulares AH. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death. Circulation 2007; 115:2442-50. [PMID: 17438151 DOI: 10.1161/circulationaha.106.668756] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase (PARP) was suggested to play a role in endothelial dysfunction that is associated with a number of cardiovascular diseases. We hypothesized that PARP may play an important role in atherogenesis and that its inhibition may attenuate atherosclerotic plaque development in an experimental model of atherosclerosis. METHODS AND RESULTS Using a mouse (apolipoprotein E [ApoE](-/-)) model of high-fat diet-induced atherosclerosis, we demonstrate an association between cell death and oxidative stress-associated DNA damage and PARP activation within atherosclerotic plaques. PARP inhibition by thieno[2,3-c]isoquinolin-5-one reduced plaque number and size and altered structural composition of plaques in these animals without affecting sera lipid contents. These results were corroborated genetically with the use of ApoE(-/-) mice that are heterozygous for PARP-1. PARP inhibition promoted an increase in collagen content, potentially through an increase in tissue inhibitor of metalloproteinase-2, and transmigration of smooth muscle cells to intima of atherosclerotic plaques as well as a decrease in monocyte chemotactic protein-1 production, all of which are markers of plaque stability. In PARP-1(-/-) macrophages, monocyte chemotactic protein-1 expression was severely inhibited because of a defective nuclear factor-kappaB nuclear translocation in response to lipopolysaccharide. Furthermore, PARP-1 gene deletion not only conferred protection to foam cells against H2O2-induced death but also switched the mode of death from necrosis to apoptosis. CONCLUSIONS Our results suggest that PARP inhibition interferes with plaque development and may promote plaque stability, possibly through a reduction in inflammatory factors and cellular changes related to plaque dynamics. PARP inhibition may prove beneficial for the treatment of atherosclerosis.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Aortic Diseases/drug therapy
- Aortic Diseases/enzymology
- Aortic Diseases/etiology
- Aortic Diseases/genetics
- Aortic Diseases/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis
- Atherosclerosis/drug therapy
- Atherosclerosis/enzymology
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Cholesterol/blood
- Collagen/biosynthesis
- Crosses, Genetic
- Diet, Atherogenic
- Drug Evaluation, Preclinical
- Foam Cells/pathology
- Gene Expression Regulation/drug effects
- Genotype
- Hydrogen Peroxide/pharmacology
- Hypercholesterolemia/blood
- Hypercholesterolemia/complications
- Hypercholesterolemia/genetics
- Hypertriglyceridemia/blood
- Hypertriglyceridemia/complications
- Hypertriglyceridemia/genetics
- Isoquinolines/pharmacology
- Isoquinolines/therapeutic use
- Lipopolysaccharides/pharmacology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Necrosis
- Oxidative Stress
- Poly Adenosine Diphosphate Ribose/physiology
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/physiology
- Specific Pathogen-Free Organisms
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Tissue Inhibitor of Metalloproteinase-2/metabolism
- Triglycerides/blood
Collapse
Affiliation(s)
- Karine Oumouna-Benachour
- Louisiana State University Health Sciences Center, Department of Pharmacology, 1901 Perdido St, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Rajesh M, Mukhopadhyay P, Bátkai S, Haskó G, Liaudet L, Drel VR, Obrosova IG, Pacher P. Cannabidiol attenuates high glucose-induced endothelial cell inflammatory response and barrier disruption. Am J Physiol Heart Circ Physiol 2007; 293:H610-9. [PMID: 17384130 PMCID: PMC2228254 DOI: 10.1152/ajpheart.00236.2007] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A nonpsychoactive cannabinoid cannabidiol (CBD) has been shown to exert potent anti-inflammatory and antioxidant effects and has recently been reported to lower the incidence of diabetes in nonobese diabetic mice and to preserve the blood-retinal barrier in experimental diabetes. In this study we have investigated the effects of CBD on high glucose (HG)-induced, mitochondrial superoxide generation, NF-kappaB activation, nitrotyrosine formation, inducible nitric oxide synthase (iNOS) and adhesion molecules ICAM-1 and VCAM-1 expression, monocyte-endothelial adhesion, transendothelial migration of monocytes, and disruption of endothelial barrier function in human coronary artery endothelial cells (HCAECs). HG markedly increased mitochondrial superoxide generation (measured by flow cytometry using MitoSOX), NF-kappaB activation, nitrotyrosine formation, upregulation of iNOS and adhesion molecules ICAM-1 and VCAM-1, transendothelial migration of monocytes, and monocyte-endothelial adhesion in HCAECs. HG also decreased endothelial barrier function measured by increased permeability and diminished expression of vascular endothelial cadherin in HCAECs. Remarkably, all the above mentioned effects of HG were attenuated by CBD pretreatment. Since a disruption of the endothelial function and integrity by HG is a crucial early event underlying the development of various diabetic complications, our results suggest that CBD, which has recently been approved for the treatment of inflammation, pain, and spasticity associated with multiple sclerosis in humans, may have significant therapeutic benefits against diabetic complications and atherosclerosis.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, MD 20892-9413, USA
| | | | | | | | | | | | | | | |
Collapse
|
118
|
Ceriello A, Kumar S, Piconi L, Esposito K, Giugliano D. Simultaneous control of hyperglycemia and oxidative stress normalizes endothelial function in type 1 diabetes. Diabetes Care 2007; 30:649-54. [PMID: 17327335 DOI: 10.2337/dc06-2048] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Previous studies have shown that in type 1 diabetes endothelial dysfunction persists even when glycemia is normalized. Moreover, oxidative stress has recently been demonstrated to be the mediator of hyperglycemia-induced endothelial dysfunction. RESEARCH DESIGN AND METHODS Thirty-six type 1 diabetic patients and 12 control subjects were enrolled. The diabetic patients were divided into three groups. The first group was treated for 24 h with insulin, achieving a near-normalization of glycemia. After 12 h of this treatment, vitamin C was added for the remaining 12 h. The second group was treated for 24 h with vitamin C. After 12 h of this treatment, insulin was started, with achievement of near-normalization of glycemia for the remaining 12 h. The third group was treated for 24 h with both vitamin C and insulin, achieving near-normalization of glycemia. RESULTS Neither normalization of glycemia nor vitamin C treatment alone was able to normalize endothelial dysfunction or oxidative stress. However, a combination of insulin and vitamin C normalized endothelial dysfunction and decreased oxidative stress to normal levels. CONCLUSIONS This study suggests that long-lasting hyperglycemia in type 1 diabetic patients induces permanent alterations in endothelial cells, which may contribute to endothelial dysfunction by increased oxidative stress even when hyperglycemia is normalized.
Collapse
Affiliation(s)
- Antonio Ceriello
- Centre of Excellence in Diabetes and Endocrinology, University Hospital of Coventry and Warwickshire, Warwick Medical School, University of Warwick, Coventry, UK.
| | | | | | | | | |
Collapse
|
119
|
Abstract
Peripheral neuropathy, and specifically distal peripheral neuropathy (DPN), is one of the most frequent and troublesome complications of diabetes mellitus. It is the major reason for morbidity and mortality among diabetic patients. It is also frequently associated with debilitating pain. Unfortunately, our knowledge of the natural history and pathogenesis of this disease remains limited. For a long time hyperglycemia was viewed as a major, if not the sole factor, responsible for all symptomatic presentations of DPN. Multiple clinical observations and animal studies supported this view. The control of blood glucose as an obligatory step of therapy to delay or reverse DPN is no longer an arguable issue. However, while supporting evidence for the glycemic hypothesis has accumulated, multiple controversies accumulated as well. It is obvious now that DPN cannot be fully understood without considering factors besides hyperglycemia. Some symptoms of DPN may develop with little, if any, correlation with the glycemic status of a patient. It is also clear that identification of these putative non-glycemic mechanisms of DPN is of utmost importance for our understanding of failures with existing treatments and for the development of new approaches for diagnosis and therapy of DPN. In this work we will review the strengths and weaknesses of the glycemic hypothesis, focusing on clinical and animal data and on the pathogenesis of early stages and triggers of DPN other than hyperglycemia.
Collapse
Affiliation(s)
- Maxim Dobretsov
- Department of Anesthesiology, Slot 515, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, United States.
| | | | | |
Collapse
|
120
|
Pacher P, Szabó C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. CARDIOVASCULAR DRUG REVIEWS 2007; 25:235-60. [PMID: 17919258 PMCID: PMC2225457 DOI: 10.1111/j.1527-3466.2007.00018.x] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Accumulating evidence suggests that the reactive oxygen and nitrogen species are generated in cardiomyocytes and endothelial cells during myocardial ischemia/reperfusion injury, various forms of heart failure or cardiomyopathies, circulatory shock, cardiovascular aging, diabetic complications, myocardial hypertrophy, atherosclerosis, and vascular remodeling following injury. These reactive species induce oxidative DNA damage and consequent activation of the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP-1), the most abundant isoform of the PARP enzyme family. PARP overactivation, on the one hand, depletes its substrate, NAD+, slowing the rate of glycolysis, electron transport, and ATP formation, eventually leading to the functional impairment or death of the endothelial cells and cardiomyocytes. On the other hand, PARP activation modulates important inflammatory pathways, and PARP-1 activity can also be modulated by several endogenous factors such as various kinases, purines, vitamin D, thyroid hormones, polyamines, and estrogens, just to mention a few. Recent studies have demonstrated that pharmacological inhibition of PARP provides significant benefits in animal models of cardiovascular disorders, and novel PARP inhibitors have entered clinical development for various cardiovascular indications. Because PARP inhibitors can enhance the effect of anticancer drugs and decrease angiogenesis, their therapeutic potential is also being explored for cancer treatment. This review discusses the therapeutic effects of PARP inhibitors in myocardial ischemia/reperfusion injury, various forms of heart failure, cardiomyopathies, circulatory shock, cardiovascular aging, diabetic cardiovascular complications, myocardial hypertrophy, atherosclerosis, vascular remodeling following injury, angiogenesis, and also summarizes our knowledge obtained from the use of PARP-1 knockout mice in the various preclinical models of cardiovascular diseases.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health, NIAAA, Bethesda MD 20892-9413, USA.
| | | |
Collapse
|
121
|
Abstract
The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.
Collapse
Affiliation(s)
- Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratory of Physiologic Studies, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
122
|
Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S. Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 2006; 55:3104-11. [PMID: 17065349 DOI: 10.2337/db06-0519] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increased fibronectin expression is a key feature of diabetic angiopathy. We have previously shown that nuclear factor-kappaB (NF-kappaB) mediates fibronectin expression in endothelial cells and in organs affected by diabetes complications. p300, a transcription coactivator, may regulate NF-kappaB activity via poly(ADP-ribose) polymerase (PARP) activation. Hence, we examined the role of p300 in fibronectin expression in diabetes. High glucose induced fibronectin expression in the endothelial cells, which was associated with increased p300, PARP activity, and NF-kappaB activation. This p300 alteration is mediated by mitogen-activated protein kinase and protein kinase C and B. We then used p300 small interfering RNA (siRNA) and showed decreased fibronectin and PARP expression, as well as NF-kappaB activation, in the endothelial cells. Examination of the heart tissues of streptozotocin-induced diabetic mice revealed increased fibronectin and p300 mRNA. Intravenous injection of p300 siRNA resulted in decreased p300 levels and normalized fibronectin expression in the heart. We further investigated retinal tissues from streptozotocin-induced diabetic rats treated with intravitreal p300 siRNA injection. Similar to the heart, p300 siRNA inhibited fibronectin expression in the retina of the diabetic animals. These results indicate that transcriptional coactivator p300 may regulate fibronectin expression via PARP and NF-kappaB activation in diabetes.
Collapse
Affiliation(s)
- Harkiran Kaur
- Department of Pathology, 4011 Dental Sciences Building, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
123
|
Szabó C, Biser A, Benko R, Böttinger E, Suszták K. Poly(ADP-ribose) polymerase inhibitors ameliorate nephropathy of type 2 diabetic Leprdb/db mice. Diabetes 2006; 55:3004-12. [PMID: 17065336 DOI: 10.2337/db06-0147] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activation of the poly(ADP-ribose) polymerase (PARP) plays an important role in the pathophysiology of various diseases associated with oxidative stress. We found increased amounts of poly(ADP) ribosylated proteins in diabetic kidneys of Lepr(db/db) (BKsJ) mice, suggesting increased PARP activity. Therefore, we examined the effects of two structurally unrelated PARP inhibitors (INO-1001 and PJ-34) on the development of diabetic nephropathy of Lepr(db/db) (BKsJ) mice, an experimental model of type 2 diabetes. INO-1001 and PJ-34 were administered in the drinking water to Lepr(db/db) mice. Both INO-1001 and PJ-34 treatment ameliorated diabetes-induced albumin excretion and mesangial expansion, which are hallmarks of diabetic nephropathy. PARP inhibitors decreased diabetes-induced podocyte depletion in vivo and blocked hyperglycemia-induced podocyte apoptosis in vitro. High glucose treatment of podocytes in vitro led to an early increase of poly(ADP) ribosylated modified protein levels. Reactive oxygen species (ROS) generation appears to be a downstream target of hyperglycemia-induced PARP activation, as PARP inhibitors blocked the hyperglycemia-induced ROS generation in podocytes. INO-1001 and PJ-34 also normalized the hyperglycemia-induced mitochondrial depolarization. PARP blockade by INO-1001 and PJ-34 prevented hyperglycemia-induced nuclear factor-kappaB (NFkappaB) activation of podocytes, and it was made evident by the inhibitor of kappaBalpha phosphorylation and NFkappaB p50 nuclear translocation. Our results indicate that hyperglycemia-induced PARP activation plays an important role in the pathogenesis of glomerulopathy associated with type 2 diabetes and could serve as a novel therapeutic target.
Collapse
Affiliation(s)
- Csaba Szabó
- Division of Nephrology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
124
|
Szabo C, Pacher P, Swanson RA. Novel modulators of poly(ADP-ribose) polymerase. Trends Pharmacol Sci 2006; 27:626-30. [PMID: 17055069 PMCID: PMC2228253 DOI: 10.1016/j.tips.2006.10.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 09/07/2006] [Accepted: 10/09/2006] [Indexed: 01/24/2023]
Abstract
The nuclear enzyme poly(ADP-ribose) polymerase (PARP)-1 has an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP have entered clinical testing as cytoprotective agents in cardiovascular diseases and as adjunct antitumor therapeutics. Initially, it was assumed that the regulation of PARP occurs primarily at the level of DNA breakage: recognition of DNA breaks was considered to be the primary regulator (activator) or the catalytic activity of PARP. Recent studies have provided evidence that PARP-1 activity can also be modulated by several endogenous factors, including various kinases, purines and caffeine metabolites. There is a gender difference in the contribution of PARP-1 to stroke and inflammatory responses, which is due, at least in part, to endogenous estrogen levels. Several tetracycline antibiotics are also potent PARP-1 inhibitors. In this article, we present an overview of novel PARP-1 modulators.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Surgery, University of Medicine and Dentistry, New Jersey Medical School, 185 South Orange Avenue, University Heights Newark, NJ 07103, USA.
| | | | | |
Collapse
|
125
|
Rajesh M, Mukhopadhyay P, Godlewski G, Bátkai S, Haskó G, Liaudet L, Pacher P. Poly(ADP-ribose)polymerase inhibition decreases angiogenesis. Biochem Biophys Res Commun 2006; 350:1056-62. [PMID: 17046715 PMCID: PMC1820626 DOI: 10.1016/j.bbrc.2006.09.160] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Accepted: 09/29/2006] [Indexed: 11/26/2022]
Abstract
Inhibitors of poly(ADP-ribose)polymerase (PARP), a nuclear enzyme involved in regulating cell death and cellular responses to DNA repair, show considerable promise in the treatment of cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation. We have recently demonstrated that PARP inhibition with 3-aminobenzamide or PJ-34 reduced vascular endothelial growth factor (VEGF)-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro. Here, we show dose-dependent reduction of VEGF- and basic fibroblast growth factor (bFGF)-induced proliferation, migration, and tube formation of HUVECs in vitro by two potent PARP inhibitors 5-aminoisoquinolinone-hydrochloride (5-AIQ) and 1,5-isoquinolinediol (IQD). Moreover, PARP inhibitors prevented the sprouting of rat aortic ring explants in an ex vivo assay of angiogenesis. These results establish the novel concept that PARP inhibitors have antiangiogenic effects, which may have tremendous clinical implications for the treatment of various cancers, tumor metastases, and certain retinopathies.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Partha Mukhopadhyay
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Grzegorz Godlewski
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, 1011 Lausanne, Switzerland
| | - Pál Pacher
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
- Address correspondence to: Pál Pacher M.D., Ph.D., F.A.P.S., Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, Maryland 20892-9413, USA. Phone: (301)443-4830; Fax: (301)480-0257; E-mail: or , Sept 27. 2006
| |
Collapse
|
126
|
Rajesh M, Mukhopadhyay P, Bátkai S, Godlewski G, Haskó G, Liaudet L, Pacher P. Pharmacological inhibition of poly(ADP-ribose) polymerase inhibits angiogenesis. Biochem Biophys Res Commun 2006; 350:352-7. [PMID: 17007818 PMCID: PMC1820627 DOI: 10.1016/j.bbrc.2006.09.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Accepted: 09/09/2006] [Indexed: 11/23/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme which plays an important role in regulating cell death and cellular responses to DNA repair. Pharmacological inhibitors of PARP are being considered as treatment for cancer both in monotherapy as well as in combination with chemotherapeutic agents and radiation, and were also reported to be protective against untoward effects exerted by certain anticancer drugs. Here we show that pharmacological inhibition of PARP with 3-aminobenzamide or PJ-34 dose-dependently reduces VEGF-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro. These results suggest that treatment with PARP inhibitors may exert additional benefits in various cancers and retinopathies by decreasing angiogenesis.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Partha Mukhopadhyay
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Sándor Bátkai
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - Grzegorz Godlewski
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
| | - György Haskó
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA
| | - Lucas Liaudet
- Department of Intensive Care Medicine, University Hospital, 1011 Lausanne, Switzerland
| | - Pál Pacher
- Laboratory of Physiological Studies, NIAAA, National Institutes of Health, Bethesda, Maryland, USA
- Address correspondence to: Pál Pacher M.D., Ph.D., F.A.P.S., Section on Oxidative Stress and Tissue Injury, Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, MSC-9413, Bethesda, Maryland 20892-9413, USA., Phone: (301)443-4830; Fax: (301)480-0257; E-mail: or
| |
Collapse
|
127
|
Abstract
Abstract
Diabetes mellitus (DM) is a metabolic disease affecting the regulation of insulin and glucose causing a disruption in the normal control of counterregulatory hormones and macronutrients, resulting in blood glucose accumulation. Metabolic deregulation leads to the production of noxious substances that have a particular propensity for damaging vascular and nervous structures. Physiological changes observed with aging are correlated with a concomitant increase in DM and its associated complications. Long-term complications, including peripheral and central neuropathies, micro- and macrovascular damage, retinopathy, and nephropathy are the major causes of mortality in diabetics [cardiovascular disease (CVD) being the primary complication causing death in this population]. All-cause mortality is three to four times greater in the DM population; hence, management of DM is of timely importance, particularly with a projected prevalence increase of 134% within the next 25 years among individuals over the age of 65 years. Exercise modalities, including endurance and resistance training, were employed to improve glycemic/metabolic control and to ameliorate the progression of DM-related complications. Several risk factors, including glucose levels, blood pressure, lipid/cholesterol profile, and BMI, are reportedly improved with these modes of exercise. However, not all studies demonstrate an improvement in risk factors, but consistently note improvement in complications and a reduction of DM incidence. There is convincing evidence that exercise, with or without specific improvements to traditional DM-related risk factors, is an effective therapy for the management of DM.
Collapse
|
128
|
Rolo AP, Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212:167-78. [PMID: 16490224 DOI: 10.1016/j.taap.2006.01.003] [Citation(s) in RCA: 638] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 12/21/2022]
Abstract
Hyperglycemia resulting from uncontrolled glucose regulation is widely recognized as the causal link between diabetes and diabetic complications. Four major molecular mechanisms have been implicated in hyperglycemia-induced tissue damage: activation of protein kinase C (PKC) isoforms via de novo synthesis of the lipid second messenger diacylglycerol (DAG), increased hexosamine pathway flux, increased advanced glycation end product (AGE) formation, and increased polyol pathway flux. Hyperglycemia-induced overproduction of superoxide is the causal link between high glucose and the pathways responsible for hyperglycemic damage. In fact, diabetes is typically accompanied by increased production of free radicals and/or impaired antioxidant defense capabilities, indicating a central contribution for reactive oxygen species (ROS) in the onset, progression, and pathological consequences of diabetes. Besides oxidative stress, a growing body of evidence has demonstrated a link between various disturbances in mitochondrial functioning and type 2 diabetes. Mutations in mitochondrial DNA (mtDNA) and decreases in mtDNA copy number have been linked to the pathogenesis of type 2 diabetes. The study of the relationship of mtDNA to type 2 diabetes has revealed the influence of the mitochondria on nuclear-encoded glucose transporters, glucose-stimulated insulin secretion, and nuclear-encoded uncoupling proteins (UCPs) in beta-cell glucose toxicity. This review focuses on a range of mitochondrial factors important in the pathogenesis of diabetes. We review the published literature regarding the direct effects of hyperglycemia on mitochondrial function and suggest the possibility of regulation of mitochondrial function at a transcriptional level in response to hyperglycemia. The main goal of this review is to include a fresh consideration of pathways involved in hyperglycemia-induced diabetic complications.
Collapse
Affiliation(s)
- Anabela P Rolo
- Center for Neurosciences and Cell Biology of Coimbra, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | |
Collapse
|
129
|
Pacher P, Szabó C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 2006; 6:136-41. [PMID: 16483848 PMCID: PMC2228269 DOI: 10.1016/j.coph.2006.01.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/09/2006] [Indexed: 12/28/2022]
Abstract
Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, lead to increased polyol pathway flux, activation of protein kinase C and accelerated non-enzymatic formation of advanced glycation end products. Many of these pathways become activated in response to the production of superoxide anion. Superoxide can interact with nitric oxide, forming the potent cytotoxin peroxynitrite. Peroxynitrite attacks various biomolecules in the vascular endothelium, vascular smooth muscle and myocardium, eventually leading to cardiovascular dysfunction via multiple mechanisms. This review focuses on emerging evidence suggesting that peroxynitrite plays a key role in the pathogenesis of the cardiovascular complications of diabetes, which underlie the development and progression of diabetic retinopathy, neuropathy and nephropathy.
Collapse
Affiliation(s)
- Pál Pacher
- National Institutes of Health, NIAAA, Laboratory of Physiologic Studies, 5625 Fishers Lane MSC 9413, Bethesda, Maryland 20852, USA.
| | | |
Collapse
|
130
|
|
131
|
Pacher P, Obrosova IG, Mabley JG, Szabó C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 2005; 12:267-75. [PMID: 15723618 PMCID: PMC2225483 DOI: 10.2174/0929867053363207] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macro- and microvascular disease are the most common causes of morbidity and mortality in patients with diabetes mellitus. Diabetic cardiovascular dysfunction represents a problem of great clinical importance underlying the development of various severe complications including retinopathy, nephropathy, neuropathy and increase the risk of stroke, hypertension and myocardial infarction. Hyperglycemic episodes, which complicate even well-controlled cases of diabetes, are closely associated with increased oxidative and nitrosative stress, which can trigger the development of diabetic complications. Hyperglycemia stimulates the production of advanced glycosylated end products, activates protein kinase C, and enhances the polyol pathway leading to increased superoxide anion formation. Superoxide anion interacts with nitric oxide, forming the potent cytotoxin peroxynitrite, which attacks various biomolecules in the vascular endothelium, vascular smooth muscle and myocardium, leading to cardiovascular dysfunction. The pathogenetic role of nitrosative stress and peroxynitrite, and downstream mechanisms including poly(ADP-ribose) polymerase (PARP) activation, is not limited to the diabetes-induced cardiovascular dysfunction, but also contributes to the development and progression of diabetic nephropathy, retinopathy and neuropathy. Accordingly, neutralization of peroxynitrite or pharmacological inhibition of PARP is a promising new approach in the therapy and prevention of diabetic complications. This review focuses on the role of nitrosative stress and downstream mechanisms including activation of PARP in diabetic complications and on novel emerging therapeutical strategies offered by neutralization of peroxynitrite and inhibition of PARP.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiologic Studies, National Institutes of Health, NIAAA, Bethesda, MD 20892-9413, USA.
| | | | | | | |
Collapse
|