101
|
Carr SN, Crites BR, Shinde H, Bridges PJ. Transcriptomic Changes in Response to Form of Selenium on the Interferon-Tau Signaling Mechanism in the Caruncular Tissue of Beef Heifers at Maternal Recognition of Pregnancy. Int J Mol Sci 2023; 24:17327. [PMID: 38139156 PMCID: PMC10743408 DOI: 10.3390/ijms242417327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
We have reported that selenium (Se) provided to grazing beef cattle in an inorganic (ISe) form versus a 1:1 mixture (MIX) of inorganic and organic (OSe) forms affects cholesterol biosynthesis in the corpus luteum (CL), the abundance of interferon tau (IFNτ) and progesterone (P4)-induced mRNAs in the caruncular (CAR) tissue of the endometrium, and conceptus length at maternal recognition of pregnancy (MRP). In this study, beef heifers were supplemented with a vitamin-mineral mix containing 35 ppm Se as ISe or MIX to achieve a Se-adequate status. Inseminated heifers were killed at MRP (d 17, n = 6 per treatment) for tissue collection. In CAR samples from MIX versus ISe heifers, qPCR revealed that mRNA encoding the thyroid regulating DIO2 and DIO3 was decreased (p < 0.05) and a complete transcriptomic analysis revealed effects on the interferon JAK-STAT1/2 pathway, including decreased expression of mRNAs encoding the classical interferon stimulated genes IFIT1, IFIT2, IFIT3, IRF1, IRF9, ISG15, OAS2, and RSAD2 (p < 0.05). Treatment also affected the abundance of mRNAs contributing to the immunotolerant environment (p < 0.05). In combination, these findings suggest more advanced preparation of the CAR and developing conceptus for implantation and to evade immune rejection by the maternal system in MIX- vs. ISe-treated heifers.
Collapse
Affiliation(s)
| | | | | | - Phillip J. Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA; (S.N.C.); (B.R.C.); (H.S.)
| |
Collapse
|
102
|
Renard T, Martinet B, De Souza Araujo N, Aron S. DNA methylation extends lifespan in the bumblebee Bombus terrestris. Proc Biol Sci 2023; 290:20232093. [PMID: 38052245 PMCID: PMC10697797 DOI: 10.1098/rspb.2023.2093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/14/2023] [Indexed: 12/07/2023] Open
Abstract
Epigenetic alterations are a primary hallmark of ageing. In mammals, age-related epigenetic changes alter gene expression profiles, disrupt cellular homeostasis and physiological functions and, therefore, promote ageing. It remains unclear whether ageing is also driven by epigenetic mechanisms in invertebrates. Here, we used a pharmacological hypomethylating agent (RG108) to evaluate the effects of DNA methylation (DNAme) on lifespan in an insect-the bumblebee Bombus terrestris. RG108 extended mean lifespan by 43% and induced the differential methylation of genes involved in hallmarks of ageing, including DNA damage repair and chromatin organization. Furthermore, the longevity gene sirt1 was overexpressed following the treatment. Functional experiments demonstrated that SIRT1 protein activity was positively associated with lifespan. Overall, our study indicates that epigenetic mechanisms are conserved regulators of lifespan in both vertebrates and invertebrates and provides new insights into how DNAme is involved in the ageing process in insects.
Collapse
Affiliation(s)
- Thibaut Renard
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| | - Natalia De Souza Araujo
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| | - Serge Aron
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger - CP 160/12, Bruxelles 1000, Belgium
| |
Collapse
|
103
|
Díez-Villanueva A, Martín B, Moratalla-Navarro F, Morón-Duran FD, Galván-Femenía I, Obón-Santacana M, Carreras A, de Cid R, Peinado MA, Moreno V. Identification of intergenerational epigenetic inheritance by whole genome DNA methylation analysis in trios. Sci Rep 2023; 13:21266. [PMID: 38042866 PMCID: PMC10693549 DOI: 10.1038/s41598-023-48517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Genome-wide association studies have identified thousands of loci associated with common diseases and traits. However, a large fraction of heritability remains unexplained. Epigenetic modifications, such as the observed in DNA methylation have been proposed as a mechanism of intergenerational inheritance. To investigate the potential contribution of DNA methylation to the missing heritability, we analysed the methylomes of four healthy trios (two parents and one offspring) using whole genome bisulphite sequencing. Of the 1.5 million CpGs (19%) with over 20% variability between parents in at least one family and compatible with a Mendelian inheritance pattern, only 3488 CpGs (0.2%) lacked correlation with any SNP in the genome, marking them as potential sites for intergenerational epigenetic inheritance. These markers were distributed genome-wide, with some preference to be located in promoters. They displayed a bimodal distribution, being either fully methylated or unmethylated, and were often found at the boundaries of genomic regions with high/low GC content. This analysis provides a starting point for future investigations into the missing heritability of simple and complex traits.
Collapse
Affiliation(s)
- Anna Díez-Villanueva
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Berta Martín
- Germans Trias i Pujol Institute (IGTP), Translational Program in Cancer Research (CARE), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Ferran Moratalla-Navarro
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain
| | - Francisco D Morón-Duran
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain
| | - Iván Galván-Femenía
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Mireia Obón-Santacana
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Anna Carreras
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Rafael de Cid
- Genomes for Life-GCAT lab., Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Miguel A Peinado
- Germans Trias i Pujol Institute (IGTP), Translational Program in Cancer Research (CARE), Camí de les Escoles, s/n, Can Ruti Biomedical Campus, 08916, Badalona, Catalonia, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility (UBS), Oncology Data Analytics Program (ODAP), Catalan Institute of Oncology (ICO), L'Hospitalet del Llobregat, 08908, Barcelona, Spain.
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain.
- Department of Clinical Sciences, Faculty of Medicine and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona, 08907, Barcelona, Spain.
| |
Collapse
|
104
|
Sánchez-Adriá IE, Sanmartín G, Prieto JA, Estruch F, Fortis E, Randez-Gil F. Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol Res 2023; 277:127487. [PMID: 37713908 DOI: 10.1016/j.micres.2023.127487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Acetic acid tolerance of Saccharomyces cerevisiae is an important trait in sourdough fermentation processes, where the accumulation of acid by the growth of lactic acid bacteria reduces the yeast metabolic activity. In this work, we have carried out adaptive laboratory evolution (ALE) experiments in two sourdough isolates of S. cerevisiae exposed to acetic acid, or alternatively to acetic acid and myriocin, an inhibitor of sphingolipid biosynthesis that sped-up the evolutionary adaptation. Evolution approaches resulted in acetic tolerance, and surprisingly, increased lactic susceptibility. Four evolved clones, one from each parental strain and evolutionary scheme, were selected on the basis of their potential for CO2 production in sourdough conditions. Among them, two showed phenotypic instability characterized by strong lactic sensitivity after several rounds of growth under unstressed conditions, while two others, displayed increased constitutive acetic tolerance with no loss of growth in lactic medium. Genome sequencing and ploidy level analysis of all strains revealed aneuploidies, which could account for phenotypic heterogeneity. In addition, copy number variations (CNVs), affecting specially to genes involved in ion transport or flocculation, and single nucleotide polymorphisms (SNPs) were identified. Mutations in several genes, ARG82, KEX1, CTK1, SPT20, IRA2, ASG1 or GIS4, were confirmed as involved in acetic and/or lactic tolerance, and new determinants of these phenotypes, MSN5 and PSP2, identified.
Collapse
Affiliation(s)
- Isabel E Sánchez-Adriá
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Gemma Sanmartín
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Jose A Prieto
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain
| | - Francisco Estruch
- Department of Biochemistry and Molecular Biology, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Estefanía Fortis
- Cereal (Center for Research Europastry Advanced Lab), Europastry S.A., Marie Curie, 6, Sant Joan Despí, 08970 Barcelona, Spain
| | - Francisca Randez-Gil
- Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Avda. Agustín Escardino, 7, Paterna, 46980 Valencia, Spain.
| |
Collapse
|
105
|
Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, Møller JE, Ludvigsen TP, Jespersen T, Olsen LH, Kilpeläinen TO. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 2023; 18:2199374. [PMID: 37032646 PMCID: PMC10088973 DOI: 10.1080/15592294.2023.2199374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Profiling of circulating cell-free DNA (cfDNA) by tissue-specific base modifications, such as 5-methylcytosines (5mC), may enable the monitoring of ongoing pathophysiological processes. Nanopore sequencing allows genome-wide 5mC detection in cfDNA without bisulphite conversion. The aims of this study were: i) to find differentially methylated regions (DMRs) of cfDNA associated with obesity in Göttingen minipigs using Nanopore sequencing, ii) to validate a subset of the DMRs using methylation-specific PCR (MSP-PCR), and iii) to compare the cfDNA DMRs with those from whole blood genomic DNA (gDNA). Serum cfDNA and gDNA were obtained from 10 lean and 7 obese Göttingen Minipigs both with experimentally induced myocardial infarction and sequenced using Oxford Nanopore MinION. A total of 1,236 cfDNA DMRs (FDR<0.01) were associated with obesity. In silico analysis showed enrichment of the adipocytokine signalling, glucagon signalling, and cellular glucose homoeostasis pathways. A strong cfDNA DMR was discovered in PPARGC1B, a gene linked to obesity and type 2 diabetes. The DMR was validated using MSP-PCR and correlated significantly with body weight (P < 0.05). No DMRs intersected between cfDNA and gDNA, suggesting that cfDNA originates from body-wide shedding of DNA. In conclusion, nanopore sequencing detected differential methylation in minute quantities (0.1-1 ng/µl) of cfDNA. Future work should focus on translation into human and comparing 5mC from somatic tissues to pinpoint the exact location of pathology.
Collapse
Affiliation(s)
- Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Conservation, Copenhagen Zoo, Frederiksberg, Denmark
| | | | - Clara Sandkamm Franck
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flethøj
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Mille Kronborg Lyhne
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Copenhagen University Hospital and Odense University Hospital, Odense, Denmark
| | | | - Thomas Jespersen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Høier Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuomas O. Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
106
|
Lawson M, Cureton N, Ros S, Cheraghchi-Bashi A, Urosevic J, D'Arcy S, Delpuech O, DuPont M, Fisher DI, Gangl ET, Lewis H, Trueman D, Wali N, Williamson SC, Moss J, Montaudon E, Derrien H, Marangoni E, Miragaia RJ, Gagrica S, Morentin-Gutierrez P, Moss TA, Maglennon G, Sutton D, Polanski R, Rosen A, Cairns J, Zhang P, Sánchez-Guixé M, Serra V, Critchlow SE, Scott JS, Lindemann JP, Barry ST, Klinowska T, Morrow CJ, S Carnevalli L. The Next-Generation Oral Selective Estrogen Receptor Degrader Camizestrant (AZD9833) Suppresses ER+ Breast Cancer Growth and Overcomes Endocrine and CDK4/6 Inhibitor Resistance. Cancer Res 2023; 83:3989-4004. [PMID: 37725704 PMCID: PMC10690091 DOI: 10.1158/0008-5472.can-23-0694] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/11/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023]
Abstract
Oral selective estrogen receptor degraders (SERD) could become the backbone of endocrine therapy (ET) for estrogen receptor-positive (ER+) breast cancer, as they achieve greater inhibition of ER-driven cancers than current ETs and overcome key resistance mechanisms. In this study, we evaluated the preclinical pharmacology and efficacy of the next-generation oral SERD camizestrant (AZD9833) and assessed ER-co-targeting strategies by combining camizestrant with CDK4/6 inhibitors (CDK4/6i) and PI3K/AKT/mTOR-targeted therapy in models of progression on CDK4/6i and/or ET. Camizestrant demonstrated robust and selective ER degradation, modulated ER-regulated gene expression, and induced complete ER antagonism and significant antiproliferation activity in ESR1 wild-type (ESR1wt) and mutant (ESR1m) breast cancer cell lines and patient-derived xenograft (PDX) models. Camizestrant also delivered strong antitumor activity in fulvestrant-resistant ESR1wt and ESR1m PDX models. Evaluation of camizestrant in combination with CDK4/6i (palbociclib or abemaciclib) in CDK4/6-naive and -resistant models, as well as in combination with PI3Kαi (alpelisib), mTORi (everolimus), or AKTi (capivasertib), indicated that camizestrant was active with CDK4/6i or PI3K/AKT/mTORi and that antitumor activity was further increased by the triple combination. The response was observed independently of PI3K pathway mutation status. Overall, camizestrant shows strong and broad antitumor activity in ER+ breast cancer as a monotherapy and when combined with CDK4/6i and PI3K/AKT/mTORi. SIGNIFICANCE Camizestrant, a next-generation oral SERD, shows promise in preclinical models of ER+ breast cancer alone and in combination with CDK4/6 and PI3K/AKT/mTOR inhibitors to address endocrine resistance, a current barrier to treatment.
Collapse
Affiliation(s)
- Mandy Lawson
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Natalie Cureton
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Susana Ros
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Jelena Urosevic
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Sophie D'Arcy
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Oona Delpuech
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Michelle DuPont
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - David I. Fisher
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Eric T. Gangl
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - Hilary Lewis
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Dawn Trueman
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Neha Wali
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Jennifer Moss
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | | | | | | | - Sladjana Gagrica
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Thomas A. Moss
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Gareth Maglennon
- Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Daniel Sutton
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Radoslaw Polanski
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Alan Rosen
- Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts
| | - Jonathan Cairns
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Pei Zhang
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Mònica Sánchez-Guixé
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Susan E. Critchlow
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - James S. Scott
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | | | - Simon T. Barry
- The Discovery Centre, Biomedical Campus, AstraZeneca, Cambridge, United Kingdom
| | - Teresa Klinowska
- Late Development, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | | |
Collapse
|
107
|
Jensen MG, Svraka L, Baez E, Lund M, Poehlein A, Brüggemann H. Species- and strain-level diversity of Corynebacteria isolated from human facial skin. BMC Microbiol 2023; 23:366. [PMID: 38017392 PMCID: PMC10683109 DOI: 10.1186/s12866-023-03129-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Sequencing of the human skin microbiome revealed that Corynebacterium is an ubiquitous and abundant bacterial genus on human skin. Shotgun sequencing further highlighted the microbial "dark matter" of the skin microbiome, consisting of microorganisms, including corynebacterial species that were not cultivated and genome-sequenced so far. In this pilot project, facial human skin swabs of 13 persons were cultivated to selectively obtain corynebacteria. 54 isolates were collected and 15 of these were genome-sequenced and the pan-genome was determined. The strains were biochemically characterized and antibiotic susceptibility testing (AST) was performed. RESULTS Among the 15 sequenced strains, nine different corynebacterial species were found, including two so far undescribed species, tentatively named "Corynebacterium vikingii" and "Corynebacterium borealis", for which closed genome sequences were obtained. Strain variability beyond the species level was determined in biochemical tests, such as the variable presence of urease activity and the capacity to ferment different sugars. The ability to grow under anaerobic conditions on solid agar was found to be species-specific. AST revealed resistances to clindamycin in seven strains. A Corynebacterium pseudokroppenstedtii strain showed additional resistance towards beta-lactam and fluoroquinolone antibiotics; a chromosomally located 17 kb gene cluster with five antibiotic resistance genes was found in the closed genome of this strain. CONCLUSIONS Taken together, this pilot study identified an astonishing diversity of cutaneous corynebacterial species in a relatively small cohort and determined species- and strain-specific individualities regarding biochemical and resistance profiles. This further emphasizes the need for cultivation-based studies to be able to study these microorganisms in more detail, in particular regarding their host-interacting and, potentially, -beneficial and/or -detrimental properties.
Collapse
Affiliation(s)
| | - Lejla Svraka
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Elena Baez
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Michael Lund
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, University of Göttingen, Göttingen, Germany
| | - Holger Brüggemann
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
108
|
Zheng L, Wang H, Lin J, Zhou Y, Xiao J, Li K. Population genomics provides insights into the genetic diversity and adaptation of the Pieris rapae in China. PLoS One 2023; 18:e0294521. [PMID: 37972203 PMCID: PMC10653512 DOI: 10.1371/journal.pone.0294521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The cabbage white butterfly (Pieris rapae), a major agricultural pest, has become one of the most abundant and destructive butterflies in the world. It is widely distributed in a large variety of climates and terrains of China due to its strong adaptability. To gain insight into the population genetic characteristics of P. rapae in China, we resequenced the genome of 51 individuals from 19 areas throughout China. Using population genomics approaches, a dense variant map of P. rapae was observed, indicating a high level of polymorphism that could result in adaptation to a changing environment. The feature of the genetic structure suggested considerable genetic admixture in different geographical groups. Additionally, our analyses suggest that physical barriers may have played a more important role than geographic distance in driving genetic differentiation. Population history showed the effective population size of P. rapae was greatly affected by global temperature changes, with mild periods (i.e., temperatures warmer than those during glaciation but not excessively hot) leading to an increase in population size. Furthermore, by comparing populations from south and north China, we have identified selected genes related to sensing temperature, growth, neuromodulation and immune response, which may reveal the genetic basis of adaptation to different environments. Our study is the first to illustrate the genetic signatures of P. rapae in China at the population genomic level, providing fundamental knowledge of the genetic diversity and adaptation of P. rapae.
Collapse
Affiliation(s)
- Linlin Zheng
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Huan Wang
- Department of Plant Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
| | - Junjie Lin
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Yuxun Zhou
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Junhua Xiao
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| | - Kai Li
- College of Biological Science and Medical Engineering, Donghua University, Songjiang District, Shanghai, China
| |
Collapse
|
109
|
Protasov E, Nonoh JO, Kästle Silva JM, Mies US, Hervé V, Dietrich C, Lang K, Mikulski L, Platt K, Poehlein A, Köhler-Ramm T, Miambi E, Boga HI, Feldewert C, Ngugi DK, Plarre R, Sillam-Dussès D, Šobotník J, Daniel R, Brune A. Diversity and taxonomic revision of methanogens and other archaea in the intestinal tract of terrestrial arthropods. Front Microbiol 2023; 14:1281628. [PMID: 38033561 PMCID: PMC10684969 DOI: 10.3389/fmicb.2023.1281628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.
Collapse
Affiliation(s)
- Evgenii Protasov
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - James O. Nonoh
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Joana M. Kästle Silva
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Undine S. Mies
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vincent Hervé
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Carsten Dietrich
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Kristina Lang
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lena Mikulski
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Katja Platt
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Tim Köhler-Ramm
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Edouard Miambi
- Evolutionary Ecology Department, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), University of Paris-Est Créteil (UPEC), Créteil, France
| | - Hamadi I. Boga
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Christopher Feldewert
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - David K. Ngugi
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Rudy Plarre
- Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology (LEEC), UR 4443, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Jan Šobotník
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czechia
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg August University of Göttingen, Göttingen, Germany
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
110
|
De Mattia E, Polesel J, Silvestri M, Roncato R, Scarabel L, Calza S, Spina M, Puglisi F, Toffoli G, Cecchin E. The burden of rare variants in DPYS gene is a novel predictor of the risk of developing severe fluoropyrimidine-related toxicity. Hum Genomics 2023; 17:99. [PMID: 37946254 PMCID: PMC10633914 DOI: 10.1186/s40246-023-00546-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Despite a growing number of publications highlighting the potential impact on the therapy outcome, rare genetic variants (minor allele frequency < 1%) in genes associated to drug adsorption, distribution, metabolism, and elimination are poorly studied. Previously, rare germline DPYD missense variants were shown to identify a subset of fluoropyrimidine-treated patients at high risk for severe toxicity. Here, we investigate the impact of rare genetic variants in a panel of 54 other fluoropyrimidine-related genes on the risk of severe toxicity. METHODS The coding sequence and untranslated regions of 54 genes related to fluoropyrimidine pharmacokinetics/pharmacodynamics were analyzed by next-generation sequencing in 120 patients developing grade 3-5 toxicity (NCI-CTC vs3.0) and 104 matched controls. Sequence Kernel Association Test (SKAT) analysis was used to select genes with a burden of genetic variants significantly associated with risk of severe toxicity. The statistical association of common and rare genetic variants in selected genes was further investigated. The functional impact of genetic variants was assessed using two different in silico prediction tools (Predict2SNP; ADME Prediction Framework). RESULTS SKAT analysis highlighted DPYS and PPARD as genes with a genetic mutational burden significantly associated with risk of severe fluoropyrimidine-related toxicity (Bonferroni adjusted P = 0.024 and P = 0.039, respectively). Looking more closely at allele frequency, the burden of rare DPYS variants was significantly higher in patients with toxicity compared with controls (P = 0.047, Mann-Whitney test). Carrying at least one rare DPYS variant was associated with an approximately fourfold higher risk of severe cumulative (OR = 4.08, P = 0.030) and acute (OR = 4.21, P = 0.082) toxicity. The burden of PPARD rare genetic variants was not significantly related to toxicity. Some common variants with predictive value in DPYS and PPARD were also identified: DPYS rs143004875-T and PPARD rs2016520-T variants predicted an increased risk of severe cumulative (P = 0.002 and P = 0.001, respectively) and acute (P = 0.005 and P = 0.0001, respectively) toxicity. CONCLUSION This work demonstrated that the rare mutational burden of DPYS, a gene strictly cooperating with DPYD in the catabolic pathway of fluoropyrimidines, is a promising pharmacogenetic marker for precision dosing of fluoropyrimidines. Additionally, some common genetic polymorphisms in DPYS and PPARD were identified as promising predictive markers that warrant further investigation.
Collapse
Affiliation(s)
- Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Jerry Polesel
- Unit of Cancer Epidemiology, Centro Di Riferimento Oncologico Di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Marco Silvestri
- Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Giacomo Venezian 1, 20133, Milan, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Lucia Scarabel
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Fabio Puglisi
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCSS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
- Department of Medicine, University of Udine, Via Delle Scienze, 206, 33100, Udine, UD, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini n. 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
111
|
Marcoux PÉ, Girard SB, Fournier KC, Tardif CA, Gosselin A, Charette SJ. Interaction of pAsa5 and pAsa8 Plasmids in Aeromonas salmonicida subsp. salmonicida. Microorganisms 2023; 11:2685. [PMID: 38004697 PMCID: PMC10673383 DOI: 10.3390/microorganisms11112685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/21/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
The plasmid known as pAsa5 is present in Aeromonas salmonicida subsp. salmonicida, a fish pathogen. The pAsa5 plasmid carries genes that are essential for the bacterium's virulence. Recombination events are known to occur in pAsa5, resulting in the loss of certain segments or the acquisition of additional genetic elements. For example, the transposon carried by the large pAsa8 plasmid was found to be inserted into the pAsa5 plasmid in the SHY16-3432 strain, enabling the addition of antibiotic resistance genes to this plasmid, which does not normally possess any. In this study, we present the isolation of additional strains carrying pAsa8. Further analyses of these strains revealed that a fusion between pAsa5 and the complete version of pAsa8 is possible. The pAsa8 transposon insertion in pAsa5 seen in the SHY16-3432 strain appears to be an aberrant event compared to the fusion of the two full-length plasmids. A 22-nucleotide sequence, present in both plasmids, serves as the site for the fusion of the two plasmids. Moreover, it is possible to introduce pAsa8 through conjugation into naive strains of A. salmonicida subsp. salmonicida and once the plasmid is within a new strain, the fusion with pAsa5 is detectable. This study reveals a previously unexplored aspect of pAsa5 plasmid biology, highlighting an additional risk for the spread of antibiotic resistance genes in A. salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Pierre-Étienne Marcoux
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah B. Girard
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Kim C. Fournier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Catherine A. Tardif
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Ariane Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (P.-É.M.); (K.C.F.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et de Génie, Université Laval, Quebec City, QC G1V 0A6, Canada
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| |
Collapse
|
112
|
Cheng J, Swarup N, Li F, Kordi M, Lin CC, Yang SC, Huang WL, Aziz M, Kim Y, Chia D, Yeh YM, Wei F, Zheng D, Zhang L, Pellegrini M, Su WC, Wong DT. Distinct Features of Plasma Ultrashort Single-Stranded Cell-Free DNA as Biomarkers for Lung Cancer Detection. Clin Chem 2023; 69:1270-1282. [PMID: 37725931 PMCID: PMC10644908 DOI: 10.1093/clinchem/hvad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Using broad range cell-free DNA sequencing (BRcfDNA-Seq), a nontargeted next-generation sequencing (NGS) methodology, we previously identified a novel class of approximately 50 nt ultrashort single-stranded cell-free DNA (uscfDNA) in plasma that is distinctly different from 167 bp mononucleosomal cell-free DNA (mncfDNA). We hypothesize that uscfDNA possesses characteristics that are useful for disease detection. METHODS Using BRcfDNA-Seq, we examined both cfDNA populations in the plasma of 18 noncancer controls and 14 patients with late-stage nonsmall cell lung carcinoma (NSCLC). In comparison to mncfDNA, we assessed whether functional element (FE) peaks, fragmentomics, end-motifs, and G-Quadruplex (G-Quad) signatures could be useful features of uscfDNA for NSCLC determination. RESULTS In noncancer participants, compared to mncfDNA, uscfDNA fragments showed a 45.2-fold increased tendency to form FE peaks (enriched in promoter, intronic, and exonic regions), demonstrated a distinct end-motif-frequency profile, and presented with a 4.9-fold increase in G-Quad signatures. Within NSCLC participants, only the uscfDNA population had discoverable FE peak candidates. Additionally, uscfDNA showcased different end-motif-frequency candidates distinct from mncfDNA. Although both cfDNA populations showed increased fragmentation in NSCLC, the G-Quad signatures were more discriminatory in uscfDNA. Compilation of cfDNA features using principal component analysis revealed that the first 5 principal components of both cfDNA subtypes had a cumulative explained variance of >80%. CONCLUSIONS These observations indicate that the distinct biological processes of uscfDNA and that FE peaks, fragmentomics, end-motifs, and G-Quad signatures are uscfDNA features with promising biomarker potential. These findings further justify its exploration as a distinct class of biomarker to augment pre-existing liquid biopsy approaches.
Collapse
Affiliation(s)
- Jordan Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Misagh Kordi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Chun Yang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Lun Huang
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
| | - Mohammad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yong Kim
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Chia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yu-Min Yeh
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Zheng
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Liying Zhang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wu-Chou Su
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, Taiwan
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - David T.W. Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
113
|
Bredemeyer KR, Hillier L, Harris AJ, Hughes GM, Foley NM, Lawless C, Carroll RA, Storer JM, Batzer MA, Rice ES, Davis BW, Raudsepp T, O'Brien SJ, Lyons LA, Warren WC, Murphy WJ. Single-haplotype comparative genomics provides insights into lineage-specific structural variation during cat evolution. Nat Genet 2023; 55:1953-1963. [PMID: 37919451 PMCID: PMC10845050 DOI: 10.1038/s41588-023-01548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Graham M Hughes
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Colleen Lawless
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brian W Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
114
|
van den Ende T, van der Pol Y, Creemers A, Moldovan N, Boers D, van Berge Henegouwen MI, Hulshof MC, Cillessen SA, van Grieken NC, Pegtel DM, Derks S, Bijlsma MF, Mouliere F, van Laarhoven HW. Genome-wide and panel-based cell-free DNA characterization of patients with resectable esophageal adenocarcinoma. J Pathol 2023; 261:286-297. [PMID: 37615198 DOI: 10.1002/path.6175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Circulating tumor DNA (ctDNA) holds promise in resectable esophageal adenocarcinoma (EAC) to predict patient outcome but is not yet sensitive enough to be clinically applicable. Our aim was to combine ctDNA mutation data with shallow whole-genome sequencing (sWGS)-derived copy number tumor fraction estimates (ichorCNA) to improve pathological response and survival prediction in EAC. In total, 111 stage II/III EAC patients with baseline (n = 111), post-neoadjuvant chemoradiotherapy (nCRT) (n = 68), and pre-surgery (n = 92) plasma samples were used for ctDNA characterization. sWGS (<5× coverage) was performed on all time-point samples, and copy number aberrations were estimated using ichorCNA. Baseline and pre-surgery samples were sequenced using a custom amplicon panel for mutation detection. Detection of baseline ctDNA was successful in 44.3% of patients by amplicon sequencing and 10.5% by ichorCNA. Combining both, ctDNA could be detected in 50.5% of patients. Baseline ctDNA positivity was related to higher T stage (cT3, 4) (p = 0.017). There was no relationship between pathological response and baseline ctDNA positivity. However, baseline ctDNA metrics (variant allele frequency > 1% or ichorCNA > 3%) were associated with a high risk of disease progression [HR = 2.23 (95% CI 1.22-4.07), p = 0.007]. The non-clearance of a baseline variant or ichorCNA > 3% in pre-surgery samples was related to early progression [HR = 4.58 (95% CI 2.22-9.46), p < 0.001]. Multi-signal analysis improves detection of ctDNA and can be used for prognostication of resectable EAC patients. Future studies should explore the potential of multi-modality sequencing for risk stratification and treatment adaptation based on ctDNA results. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tom van den Ende
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Ymke van der Pol
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Aafke Creemers
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Norbert Moldovan
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Dries Boers
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Mark I van Berge Henegouwen
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
| | - Maarten Ccm Hulshof
- Cancer Center Amsterdam, Cancer Treatment and Quality of Life, Amsterdam, The Netherlands
- Department of Radiotherapy, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Saskia Agm Cillessen
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Nicole Ct van Grieken
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Sarah Derks
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Department of Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Florent Mouliere
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Amsterdam, The Netherlands
| | - Hanneke Wm van Laarhoven
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
115
|
Cascone T, Kar G, Spicer JD, García-Campelo R, Weder W, Daniel DB, Spigel DR, Hussein M, Mazieres J, Oliveira J, Yau EH, Spira AI, Anagnostou V, Mager R, Hamid O, Cheng LY, Zheng Y, Blando J, Tan TH, Surace M, Rodriguez-Canales J, Gopalakrishnan V, Sellman BR, Grenga I, Soo-Hoo Y, Kumar R, McGrath L, Forde PM. Neoadjuvant Durvalumab Alone or Combined with Novel Immuno-Oncology Agents in Resectable Lung Cancer: The Phase II NeoCOAST Platform Trial. Cancer Discov 2023; 13:2394-2411. [PMID: 37707791 PMCID: PMC10618740 DOI: 10.1158/2159-8290.cd-23-0436] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
Neoadjuvant chemoimmunotherapy improves pathologic complete response rate and event-free survival in patients with resectable non-small cell lung cancer (NSCLC) versus chemotherapy alone. NeoCOAST was the first randomized, multidrug platform trial to examine novel neoadjuvant immuno-oncology combinations for patients with resectable NSCLC, using major pathologic response (MPR) rate as the primary endpoint. Eighty-three patients received a single cycle of treatment: 26 received durvalumab (anti-PD-L1) monotherapy, 21 received durvalumab plus oleclumab (anti-CD73), 20 received durvalumab plus monalizumab (anti-NKG2A), and 16 received durvalumab plus danvatirsen (anti-STAT3 antisense oligonucleotide). MPR rates were higher for patients in the combination arms versus durvalumab alone. Safety profiles for the combinations were similar to those of durvalumab alone. Multiplatform immune profiling suggested that improved MPR rates in the durvalumab plus oleclumab and durvalumab plus monalizumab arms were associated with enhanced effector immune infiltration of tumors, interferon responses and markers of tertiary lymphoid structure formation, and systemic functional immune cell activation. SIGNIFICANCE A neoadjuvant platform trial can rapidly generate clinical and translational data using candidate surrogate endpoints like MPR. In NeoCOAST, patients with resectable NSCLC had improved MPR rates after durvalumab plus oleclumab or monalizumab versus durvalumab alone and tumoral transcriptomic signatures indicative of augmented immune cell activation and function. See related commentary by Cooper and Yu, p. 2306. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
- Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gozde Kar
- AstraZeneca, Translational Medicine, Research and Early Development, Oncology Research and Development, Cambridge, United Kingdom
| | - Jonathan D. Spicer
- Department of Thoracic Surgery, McGill University, Montreal, Quebec, Canada
| | | | - Walter Weder
- Thoracic Surgery, Clinic Bethanien, Zurich, Switzerland
| | - Davey B. Daniel
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - David R. Spigel
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, Tennessee
| | - Maen Hussein
- Sarah Cannon Research Institute, Florida Cancer Specialists, Leesburg, Florida
| | - Julien Mazieres
- Thoracic Oncology Department, Toulouse University Hospital, Toulouse, France
| | - Julio Oliveira
- Medical Oncology Department, Portuguese Oncology Institute (IPO-PORTO), Porto, Portugal
| | - Edwin H. Yau
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Alexander I. Spira
- Virginia Cancer Specialists, US Oncology Research, NEXT Oncology Virginia, Fairfax, Virginia
| | - Valsamo Anagnostou
- Bloomberg–Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Patrick M. Forde
- Bloomberg–Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
116
|
Hong X, Luo AC, Doulamis I, Oh N, Im GB, Lin CY, del Nido PJ, Lin RZ, Melero-Martin JM. Photopolymerizable Hydrogel for Enhanced Intramyocardial Vascular Progenitor Cell Delivery and Post-Myocardial Infarction Healing. Adv Healthc Mater 2023; 12:e2301581. [PMID: 37611321 PMCID: PMC10840685 DOI: 10.1002/adhm.202301581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cell transplantation success for myocardial infarction (MI) treatment is often hindered by low engraftment due to washout effects during myocardial contraction. A clinically viable biomaterial that enhances cell retention can optimize intramyocardial cell delivery. In this study, a therapeutic cell delivery method is developed for MI treatment utilizing a photocrosslinkable gelatin methacryloyl (GelMA) hydrogel. Human vascular progenitor cells, capable of forming functional vasculatures upon transplantation, are combined with an in situ photopolymerization approach and injected into the infarcted zones of mouse hearts. This strategy substantially improves acute cell retention and promotes long-term post-MI cardiac healing, including stabilized cardiac functions, preserved viable myocardium, and reduced cardiac fibrosis. Additionally, engrafted vascular cells polarize recruited bone marrow-derived neutrophils toward a non-inflammatory phenotype via transforming growth factor beta (TGFβ) signaling, fostering a pro-regenerative microenvironment. Neutrophil depletion negates the therapeutic benefits generated by cell delivery in ischemic hearts, highlighting the essential role of non-inflammatory, pro-regenerative neutrophils in cardiac remodeling. In conclusion, this GelMA hydrogel-based intramyocardial vascular cell delivery approach holds promise for enhancing the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Xuechong Hong
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Allen Chilun Luo
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ilias Doulamis
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Oh
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Gwang-Bum Im
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chun-Yen Lin
- Department of Lymphoma and Myeloma, The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ruei-Zeng Lin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Juan M. Melero-Martin
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
117
|
Li S, Yang M, Zhao R, Peng L, Liu W, Jiang X, He Y, Dai E, Zhang L, Yang Y, Shi Y, Zhao P, Yang Z, Zhu X. Defective EMC1 drives abnormal retinal angiogenesis via Wnt/β-catenin signaling and may be associated with the pathogenesis of familial exudative vitreoretinopathy. Genes Dis 2023; 10:2572-2585. [PMID: 37554197 PMCID: PMC10404869 DOI: 10.1016/j.gendis.2022.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/10/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER) membrane protein complex (EMC) is required for the co-translational insertion of newly synthesized multi-transmembrane proteins. Compromised EMC function in different cell types has been implicated in multiple diseases. Using inducible genetic mouse models, we revealed defects in retinal vascularization upon endothelial cell (EC) specific deletion of Emc1, the largest subunit of EMC. Loss of Emc1 in ECs led to reduced vascular progression and vascular density, diminished tip cell sprouts, and vascular leakage. We then performed an unbiased transcriptomic analysis on human retinal microvascular endothelial cells (HRECs) and revealed a pivotal role of EMC1 in the β-catenin signaling pathway. Further in-vitro and in-vivo experiments proved that loss of EMC1 led to compromised β-catenin signaling activity through reduced expression of Wnt receptor FZD4, which could be restored by lithium chloride (LiCl) treatment. Driven by these findings, we screened genomic DNA samples from familial exudative vitreoretinopathy (FEVR) patients and identified one heterozygous variant in EMC1 that co-segregated with FEVR phenotype in the family. In-vitro expression experiments revealed that this variant allele failed to facilitate the expression of FZD4 on the plasma membrane and activate the β-catenin signaling pathway, which might be a main cause of FEVR. In conclusion, our findings reveal that variants in EMC1 gene cause compromised β-catenin signaling activity, which may be associated with the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Rulian Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Li Peng
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yunqi He
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Erkuan Dai
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Shi
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, Qinghai 810008, China
| |
Collapse
|
118
|
Kirankumar SI, Balaji R, Tanuja, Parani M. The complete chloroplast genome of Ocimum basilicum L. var. basilicum (Lamiaceae) and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1169-1173. [PMID: 38188439 PMCID: PMC10769543 DOI: 10.1080/23802359.2023.2275835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/20/2023] [Indexed: 01/09/2024] Open
Abstract
Ocimum basilicum L. var. basilicum (Sweet Basil) is an aromatic herb belonging to the family Lamiaceae and is known for its medicinal uses. It is commonly used in traditional medicine for its therapeutic value, including anti-allergic, anti-inflammatory, antioxidant, antitumor, and antimicrobial properties. In this study, we generated the complete chloroplast genome sequence of O. basilicum var. basilicum using Illumina paired-end sequencing data. The chloroplast genome was 152,407 bp in length, containing a large single-copy (LSC) region of 83,409 bp and a small single-copy region (SSC) of 17,604 bp, separated by a pair of inverted repeats (IRs) of 25,697 bp. The genome contained 134 genes, including 89 protein-coding, 37 tRNA, and eight rRNA genes. Nine genes had one intron, two genes had two introns, and others did not have any intron. Overall GC content of the chloroplast genome was 38%, while that of LSC, SSC, and IR regions was 35.9%, 31.6%, and 43.1%, respectively. Phylogenetic analysis of the chloroplast genomes revealed that O. basilicum var. basilicum was closely related to Ocimum basilicum from the Ocimum species.
Collapse
Affiliation(s)
- Sriramulu Indhukumar Kirankumar
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Raju Balaji
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India
| |
Collapse
|
119
|
Koutsioumpa C, Santiago C, Jacobs K, Lehnert BP, Barrera V, Hutchinson JN, Schmelyun D, Lehoczky JA, Paul DL, Ginty DD. Skin-type-dependent development of murine mechanosensory neurons. Dev Cell 2023; 58:2032-2047.e6. [PMID: 37607547 PMCID: PMC10615785 DOI: 10.1016/j.devcel.2023.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.
Collapse
Affiliation(s)
- Charalampia Koutsioumpa
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kiani Jacobs
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brendan P Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John N Hutchinson
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dhane Schmelyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David L Paul
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
120
|
Reščenko R, Brīvība M, Atava I, Rovīte V, Pečulis R, Silamiķelis I, Ansone L, Megnis K, Birzniece L, Leja M, Xu L, Shi X, Zhou Y, Slaitas A, Hou Y, Kloviņš J. Whole-Genome Sequencing of 502 Individuals from Latvia: The First Step towards a Population-Specific Reference of Genetic Variation. Int J Mol Sci 2023; 24:15345. [PMID: 37895026 PMCID: PMC10607061 DOI: 10.3390/ijms242015345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Despite rapid improvements in the accessibility of whole-genome sequencing (WGS), understanding the extent of human genetic variation is limited by the scarce availability of genome sequences from underrepresented populations. Developing the population-scale reference database of Latvian genetic variation may fill the gap in European genomes and improve human genomics research. In this study, we analysed a high-coverage WGS dataset comprising 502 individuals selected from the Genome Database of the Latvian Population. An assessment of variant type, location in the genome, function, medical relevance, and novelty was performed, and a population-specific imputation reference panel (IRP) was developed. We identified more than 18.2 million variants in total, of which 3.3% so far are not represented in gnomAD and dbSNP databases. Moreover, we observed a notable though distinct clustering of the Latvian cohort within the European subpopulations. Finally, our findings demonstrate the improved performance of imputation of variants using the Latvian population-specific reference panel in the Latvian population compared to established IRPs. In summary, our study provides the first WGS data for a regional reference genome that will serve as a resource for the development of precision medicine and complement the global genome dataset, improving the understanding of human genetic variation.
Collapse
Affiliation(s)
- Raimonds Reščenko
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Monta Brīvība
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Ivanna Atava
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Vita Rovīte
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Raitis Pečulis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Ivars Silamiķelis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Laura Ansone
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Līga Birzniece
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| | - Mārcis Leja
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia;
- Institute of Clinical and Preventive Medicine, University of Latvia, LV-1079 Riga, Latvia
| | - Liqin Xu
- Latvia MGI Tech, LV-2167 Mārupe, Latvia; (L.X.); (X.S.); (Y.Z.); (A.S.); (Y.H.)
| | - Xulian Shi
- Latvia MGI Tech, LV-2167 Mārupe, Latvia; (L.X.); (X.S.); (Y.Z.); (A.S.); (Y.H.)
| | - Yan Zhou
- Latvia MGI Tech, LV-2167 Mārupe, Latvia; (L.X.); (X.S.); (Y.Z.); (A.S.); (Y.H.)
| | - Andis Slaitas
- Latvia MGI Tech, LV-2167 Mārupe, Latvia; (L.X.); (X.S.); (Y.Z.); (A.S.); (Y.H.)
| | - Yong Hou
- Latvia MGI Tech, LV-2167 Mārupe, Latvia; (L.X.); (X.S.); (Y.Z.); (A.S.); (Y.H.)
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (M.B.); (I.A.); (V.R.); (R.P.); (I.S.); (L.A.); (K.M.); (L.B.); (J.K.)
| |
Collapse
|
121
|
Sharmishtha R, Tanuja T, Balaji R, Parani M. The complete chloroplast genome of Phyla nodiflora (Linnaeus) Greene (1899) from the Verbenaceae family and its phylogenetic analysis. Mitochondrial DNA B Resour 2023; 8:1097-1101. [PMID: 37869568 PMCID: PMC10588534 DOI: 10.1080/23802359.2023.2266877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/29/2023] [Indexed: 10/24/2023] Open
Abstract
Phyla nodiflora (Linnaeus) Greene (1899) is a perennial creeping herb belonging to the family Verbenaceae. It has numerous pharmacological properties, including anti-dandruff, anti-inflammatory, anti-oxidant, anti-melanogenesis, anti-hypertensive, and anti-hyperuricemic properties. We generated the complete chloroplast genome sequence of P. nodiflora using Illumina paired-end sequencing data. The P. nodiflora chloroplast genome is 154,341 bp in length, containing a large single copy (LSC) region of 85,185 bp and a small single copy (SSC) region of 17,222 bp, separated by a pair of inverted repeats (IRs) of 25,967 bp. The genome contained 128 genes, including 86 protein-coding, 34 tRNA, and eight rRNA genes. Six genes had one intron, one gene had two introns, and the others did not have an intron. Overall GC content of the chloroplast genome was 39%, while those of LSC, SSC, and IR regions were 38.2%, 33.7%, and 44%, respectively. Phylogenetic analysis of the chloroplast genome revealed that P. nodiflora is closely related to the other species from Verbenaceae.
Collapse
Affiliation(s)
- Ray Sharmishtha
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Tanuja Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raju Balaji
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
122
|
Davis KN, Qu PP, Ma S, Lin L, Plastini M, Dahl N, Plazzi G, Pizza F, O’Hara R, Wong WH, Hallmayer J, Mignot E, Zhang X, Urban AE. Mutations in human DNA methyltransferase DNMT1 induce specific genome-wide epigenomic and transcriptomic changes in neurodevelopment. Hum Mol Genet 2023; 32:3105-3120. [PMID: 37584462 PMCID: PMC10586194 DOI: 10.1093/hmg/ddad123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 08/17/2023] Open
Abstract
DNA methyltransferase type 1 (DNMT1) is a major enzyme involved in maintaining the methylation pattern after DNA replication. Mutations in DNMT1 have been associated with autosomal dominant cerebellar ataxia, deafness and narcolepsy (ADCA-DN). We used fibroblasts, induced pluripotent stem cells (iPSCs) and induced neurons (iNs) generated from patients with ADCA-DN and controls, to explore the epigenomic and transcriptomic effects of mutations in DNMT1. We show cell type-specific changes in gene expression and DNA methylation patterns. DNA methylation and gene expression changes were negatively correlated in iPSCs and iNs. In addition, we identified a group of genes associated with clinical phenotypes of ADCA-DN, including PDGFB and PRDM8 for cerebellar ataxia, psychosis and dementia and NR2F1 for deafness and optic atrophy. Furthermore, ZFP57, which is required to maintain gene imprinting through DNA methylation during early development, was hypomethylated in promoters and exhibited upregulated expression in patients with ADCA-DN in both iPSC and iNs. Our results provide insight into the functions of DNMT1 and the molecular changes associated with ADCA-DN, with potential implications for genes associated with related phenotypes.
Collapse
Affiliation(s)
- Kasey N Davis
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Ping-Ping Qu
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Shining Ma
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
| | - Ling Lin
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Center for Narcolepsy, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Melanie Plastini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology Sciences for Life Laboratory, Uppsala University BMC, Uppsala 75122, Sweden
| | - Giuseppe Plazzi
- IRCCS—Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Fabio Pizza
- IRCCS—Istituto delle Scienze Neurologiche di Bologna, Bologna 40139, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Ruth O’Hara
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Wing Hung Wong
- Department of Statistics, Stanford University, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joachim Hallmayer
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Emmanuel Mignot
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Center for Narcolepsy, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Xianglong Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto CA 94304, USA
| |
Collapse
|
123
|
Vineesh S, Balaji R, Tanuja, Parani M. The complete chloroplast genome of Ocimum americanum Linnaeus 1755 and phylogenetic analysis among the Lamiaceae family. Mitochondrial DNA B Resour 2023; 8:1077-1081. [PMID: 37859799 PMCID: PMC10583627 DOI: 10.1080/23802359.2023.2264545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023] Open
Abstract
Ocimum americanum Linnaeus 1755 (Lemon basil) is an essential medicinal species in the Ocimum genus. Its leaf decoction is traditionally used to treat diabetes, constipation, diarrhea, piles, and dysentery. The essential oils from this species have intense fungicidal activity. The complete chloroplast genome sequence of O. americanum was assembled from Illumina paired-end sequencing data. The O. americanum chloroplast genome was 152,460 bp in length, containing a large single copy (LSC) region of 83,459 bp and a small single copy (SSC) region of 17,607 bp, separated by a pair of inverted repeats (IRs) of 25,697 bp. The genome contained 134 unique genes, including 89 protein-coding, 37 tRNA, and eight rRNA genes. Among them, nine genes had a single intron, and two genes contained two introns. The overall GC content of the chloroplast genome was 38%, while the corresponding values of LSC, SSC, and IR regions were 35.8%, 31.7%, and 43.1%, respectively. In the phylogenetic analysis, all the Ocimum species formed a group closely related to Plectranthus barbatus. O. americanum was more closely related to O. gratissimum and O. basilicum than the other species of Ocimum included in this study.
Collapse
Affiliation(s)
- Suresh Vineesh
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raju Balaji
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Tanuja
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madasamy Parani
- Department of Genetic Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
124
|
Corraliza-Gomez M, Bermejo T, Lilue J, Rodriguez-Iglesias N, Valero J, Cozar-Castellano I, Arranz E, Sanchez D, Ganfornina MD. Insulin-degrading enzyme (IDE) as a modulator of microglial phenotypes in the context of Alzheimer's disease and brain aging. J Neuroinflammation 2023; 20:233. [PMID: 37817156 PMCID: PMC10566021 DOI: 10.1186/s12974-023-02914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
The insulin-degrading enzyme (IDE) is an evolutionarily conserved zinc-dependent metallopeptidase highly expressed in the brain, where its specific functions remain poorly understood. Besides insulin, IDE is able to cleave many substrates in vitro, including amyloid beta peptides, making this enzyme a candidate pathophysiological link between Alzheimer's disease (AD) and type 2 diabetes (T2D). These antecedents led us to address the impact of IDE absence in hippocampus and olfactory bulb. A specific induction of microgliosis was found in the hippocampus of IDE knockout (IDE-KO) mice, without any effects in neither hippocampal volume nor astrogliosis. Performance on hippocampal-dependent memory tests is influenced by IDE gene dose in 12-month-old mice. Furthermore, a comprehensive characterization of the impact of IDE haploinsufficiency and total deletion in metabolic, behavioral, and molecular parameters in the olfactory bulb, a site of high insulin receptor levels, reveals an unambiguous barcode for IDE-KO mice at that age. Using wildtype and IDE-KO primary microglial cultures, we performed a functional analysis at the cellular level. IDE absence alters microglial responses to environmental signals, resulting in impaired modulation of phenotypic states, with only transitory effects on amyloid-β management. Collectively, our results reveal previously unknown physiological functions for IDE in microglia that, due to cell-compartment topological reasons, cannot be explained by its enzymatic activity, but instead modulate their multidimensional response to various damaging conditions relevant to aging and AD conditions.
Collapse
Affiliation(s)
- Miriam Corraliza-Gomez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain.
| | - Teresa Bermejo
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | | | - Noelia Rodriguez-Iglesias
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Jorge Valero
- Institute of Neuroscience of Castilla y León-INCyL, University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, Salamanca, Spain
| | - Irene Cozar-Castellano
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Eduardo Arranz
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Diego Sanchez
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| | - Maria Dolores Ganfornina
- Instituto de Biomedicina y Genética Molecular, Excellence Unit, University of Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
125
|
Wang XY, Xu YM, Lau ATY. Proteogenomics in Cancer: Then and Now. J Proteome Res 2023; 22:3103-3122. [PMID: 37725793 DOI: 10.1021/acs.jproteome.3c00196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
For years, the paths of sequencing technologies and mass spectrometry have occurred in isolation, with each developing its own unique culture and expertise. These two technologies are crucial for inspecting complementary aspects of the molecular phenotype across the central dogma. Integrative multiomics strives to bridge the analysis gap among different fields to complete more comprehensive mechanisms of life events and diseases. Proteogenomics is one integrated multiomics field. Here in this review, we mainly summarize and discuss three aspects: workflow of proteogenomics, proteogenomics applications in cancer research, and the SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis of proteogenomics in cancer research. In conclusion, proteogenomics has a promising future as it clarifies the functional consequences of many unannotated genomic abnormalities or noncanonical variants and identifies driver genes and novel therapeutic targets across cancers, which would substantially accelerate the development of precision oncology.
Collapse
Affiliation(s)
- Xiu-Yun Wang
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| |
Collapse
|
126
|
Magrin C, Bellafante M, Sola M, Piovesana E, Bolis M, Cascione L, Napoli S, Rinaldi A, Papin S, Paganetti P. Tau protein modulates an epigenetic mechanism of cellular senescence in human SH-SY5Y neuroblastoma cells. Front Cell Dev Biol 2023; 11:1232963. [PMID: 37842084 PMCID: PMC10569482 DOI: 10.3389/fcell.2023.1232963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Progressive Tau deposition in neurofibrillary tangles and neuropil threads is the hallmark of tauopathies, a disorder group that includes Alzheimer's disease. Since Tau is a microtubule-associated protein, a prevalent concept to explain the pathogenesis of tauopathies is that abnormal Tau modification contributes to dissociation from microtubules, assembly into multimeric β-sheets, proteotoxicity, neuronal dysfunction and cell loss. Tau also localizes in the cell nucleus and evidence supports an emerging function of Tau in DNA stability and epigenetic modulation. Methods: To better characterize the possible role of Tau in regulation of chromatin compaction and subsequent gene expression, we performed a bioinformatics analysis of transcriptome data obtained from Tau-depleted human neuroblastoma cells. Results: Among the transcripts deregulated in a Tau-dependent manner, we found an enrichment of target genes for the polycomb repressive complex 2. We further describe decreased cellular amounts of the core components of the polycomb repressive complex 2 and lower histone 3 trimethylation in Tau deficient cells. Among the de-repressed polycomb repressive complex 2 target gene products, IGFBP3 protein was found to be linked to increased senescence induction in Tau-deficient cells. Discussion: Our findings propose a mechanism for Tau-dependent epigenetic modulation of cell senescence, a key event in pathologic aging.
Collapse
Affiliation(s)
- Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Martina Bellafante
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Marco Bolis
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Luciano Cascione
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sara Napoli
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Rinaldi
- Lymphoma and Genomics Research Program, Institute of Oncology Research, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Cantonale Ospedaliero, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, PhD Program in Neurosciences, Università Della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
127
|
Verdikt R, Armstrong AA, Cheng J, Hwang YS, Clark AT, Yang X, Allard P. Metabolic memory of Δ9-tetrahydrocannabinol exposure in pluripotent stem cells and primordial germ cells-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.531968. [PMID: 36993751 PMCID: PMC10054962 DOI: 10.1101/2023.03.13.531968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cannabis, the most consumed illicit psychoactive drug in the world, is increasingly used by pregnant women. However, while cannabinoid receptors are expressed in the early embryo, the impact of phytocannabinoids exposure on early embryonic processes is lacking. Here, we leverage a stepwise in vitro differentiation system that captures early embryonic developmental cascade to investigate the impact of exposure to the most abundant phytocannabinoid, Δ9-tetrahydrocannabinol (Δ9-THC). We demonstrate that Δ9-THC increases the proliferation of naïve mouse embryonic stem cells (ESCs) but not of their primed counterpart. Surprisingly, this increased proliferation, dependent on the CB1 receptor binding, is only associated with moderate transcriptomic changes. Instead, Δ9-THC capitalizes on ESCs' metabolic bivalence by increasing their glycolytic rates and anabolic capabilities. A memory of this metabolic rewiring is retained throughout differentiation to Primordial Germ Cell-Like Cells in the absence of direct exposure and is associated with an alteration of their transcriptional profile. These results represent the first in-depth molecular characterization of the impact of Δ9-THC exposure on early stages of germline development.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Abigail A. Armstrong
- Department of Obstetrics/Gynecology and Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, USA
| | - Jenny Cheng
- Molecular, Cellular, and Integrative Physiology Graduate Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Young Sun Hwang
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Amander T. Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Center for Reproductive Science, Health and Education, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xia Yang
- Integrative Biology and Physiology Department, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
128
|
Zhang J, Feng Y, Li G, Zhang J, Zhang X, Zhang Y, Qin Z, Zhuang D, Qiu T, Shi Z, Zhu W, Zhang R, Wu Y, Liu H, Cao D, Hua W, Mao Y. Distinct aneuploid evolution of astrocytoma and glioblastoma during recurrence. NPJ Precis Oncol 2023; 7:97. [PMID: 37741941 PMCID: PMC10517995 DOI: 10.1038/s41698-023-00453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023] Open
Abstract
Astrocytoma and glioblastoma (GB) are reclassified subtypes of adult diffuse gliomas based on distinct isocitrate dehydrogenase (IDH) mutation in the fifth edition of the WHO Classification of Tumors of the Central Nervous System. The recurrence of gliomas is a common and inevitable challenge, and analyzing the distinct genomic alterations in astrocytoma and GB could provide insights into their progression. This study conducted a longitudinal investigation, utilizing whole-exome sequencing, on 65 paired primary/recurrent gliomas. It examined chromosome arm aneuploidies, copy number variations (CNVs) of cancer-related genes and pathway enrichments during the relapse. The veracity of these findings was verified through the integration of our data with multiple public resources and by corroborative immunohistochemistry (IHC). The results revealed a greater prevalence of aneuploidy changes and acquired CNVs in recurrent lower grade astrocytoma than in relapsed grade 4 astrocytoma and GB. Larger aneuploidy changes were predictive of an unfavorable prognosis in lower grade astrocytoma (P < 0.05). Further, patients with acquired gains of 1q, 6p or loss of 13q at recurrence had a shorter overall survival in lower grade astrocytoma (P < 0.05); however, these prognostic effects were confined in grade 4 astrocytoma and GB. Moreover, acquired gains of 12 genes (including VEGFA) on 6p during relapse were associated with unfavorable prognosis for lower grade astrocytoma patients. Notably, elevated VEGFA expression during recurrence corresponded to poorer survival, validated through IHC and CGGA data. To summarize, these findings offer valuable insights into the progression of gliomas and have implications for guiding therapeutic approaches during recurrence.
Collapse
Affiliation(s)
- Jinsen Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Yuan Feng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Guanghao Li
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Jianhua Zhang
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Yi Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 200040, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China
| | - Rui Zhang
- Shanghai KR Pharmtech, Inc., Ltd, Shanghai, 201805, China
| | - Yonghe Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Haikun Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Dandan Cao
- Genetron Health (Beijing) Co. Ltd., Beijing, 102206, China.
| | - Wei Hua
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, 200040, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200040, China.
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, 200040, China.
| |
Collapse
|
129
|
Hooker JC, Smith M, Zapata G, Charette M, Luckert D, Mohr RM, Daba KA, Warkentin TD, Hadinezhad M, Barlow B, Hou A, Lefebvre F, Golshani A, Cober ER, Samanfar B. Differential gene expression provides leads to environmentally regulated soybean seed protein content. FRONTIERS IN PLANT SCIENCE 2023; 14:1260393. [PMID: 37790790 PMCID: PMC10544915 DOI: 10.3389/fpls.2023.1260393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Soybean is an important global source of plant-based protein. A persistent trend has been observed over the past two decades that soybeans grown in western Canada have lower seed protein content than soybeans grown in eastern Canada. In this study, 10 soybean genotypes ranging in average seed protein content were grown in an eastern location (control) and three western locations (experimental) in Canada. Seed protein and oil contents were measured for all lines in each location. RNA-sequencing and differential gene expression analysis were used to identify differentially expressed genes that may account for relatively low protein content in western-grown soybeans. Differentially expressed genes were enriched for ontologies and pathways that included amino acid biosynthesis, circadian rhythm, starch metabolism, and lipid biosynthesis. Gene ontology, pathway mapping, and quantitative trait locus (QTL) mapping collectively provide a close inspection of mechanisms influencing nitrogen assimilation and amino acid biosynthesis between soybeans grown in the East and West. It was found that western-grown soybeans had persistent upregulation of asparaginase (an asparagine hydrolase) and persistent downregulation of asparagine synthetase across 30 individual differential expression datasets. This specific difference in asparagine metabolism between growing environments is almost certainly related to the observed differences in seed protein content because of the positive correlation between seed protein content at maturity and free asparagine in the developing seed. These results provided pointed information on seed protein-related genes influenced by environment. This information is valuable for breeding programs and genetic engineering of geographically optimized soybeans.
Collapse
Affiliation(s)
- Julia C. Hooker
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Myron Smith
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Gerardo Zapata
- Canadian Centre for Computational Genomics, Montréal, QC, Canada
| | - Martin Charette
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Doris Luckert
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Ramona M. Mohr
- Brandon Research Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Ketema A. Daba
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Mehri Hadinezhad
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Brent Barlow
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anfu Hou
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | | | - Ashkan Golshani
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| | - Elroy R. Cober
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Bahram Samanfar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
130
|
García-Olivares V, Muñoz-Barrera A, Rubio-Rodríguez LA, Jáspez D, Díaz-de Usera A, Iñigo-Campos A, Veeramah KR, Alonso S, Thomas MG, Lorenzo-Salazar JM, González-Montelongo R, Flores C. Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data. Comput Struct Biotechnol J 2023; 21:4613-4618. [PMID: 37817776 PMCID: PMC10560978 DOI: 10.1016/j.csbj.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023] Open
Abstract
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
Collapse
Affiliation(s)
- Víctor García-Olivares
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Adrián Muñoz-Barrera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Luis A. Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - David Jáspez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Ana Díaz-de Usera
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Antonio Iñigo-Campos
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Krishna R. Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
- María Goyri Building, Biotechnology Center, Human Molecular Evolution Lab 2.08 UPV/EHU Science Park, 48940 Leioa, Bizkaia, Spain
| | - Mark G. Thomas
- UCL Genetics Institute, University College London (UCL), Gower Street, London WC1E 6BT, United Kingdom
- Research Department of Genetics, Evolution & Environment, University College London (UCL), Darwin Building, Gower Street, London WC1E 6BT, United Kingdom
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - Rafaela González-Montelongo
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
| | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
- Plataforma Genómica de Alto Rendimiento para el Estudio de la Biodiversidad, Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas, San Cristóbal de La Laguna, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Ciencias de la Salud, Universidad Fernando de Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
131
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Nuaimi MA, Sudalaimuthuasari N, Nath VS, Mishra AK, Hazzouri KM, Shah I, Amiri KMA. Ticarcillin degradation product thiophene acetic acid is a novel auxin analog that promotes organogenesis in tomato. FRONTIERS IN PLANT SCIENCE 2023; 14:1182074. [PMID: 37731982 PMCID: PMC10507259 DOI: 10.3389/fpls.2023.1182074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 09/22/2023]
Abstract
Efficient regeneration of transgenic plants from explants after transformation is one of the crucial steps in developing genetically modified plants with desirable traits. Identification of novel plant growth regulators and developmental regulators will assist to enhance organogenesis in culture. In this study, we observed enhanced shoot regeneration from tomato cotyledon explants in culture media containing timentin, an antibiotic frequently used to prevent Agrobacterium overgrowth after transformation. Comparative transcriptome analysis of explants grown in the presence and absence of timentin revealed several genes previously reported to play important roles in plant growth and development, including Auxin Response Factors (ARFs), GRF Interacting Factors (GIFs), Flowering Locus T (SP5G), Small auxin up-regulated RNAs (SAUR) etc. Some of the differentially expressed genes were validated by quantitative real-time PCR. We showed that ticarcillin, the main component of timentin, degrades into thiophene acetic acid (TAA) over time. TAA was detected in plant tissue grown in media containing timentin. Our results showed that TAA is indeed a plant growth regulator that promotes root organogenesis from tomato cotyledons in a manner similar to the well-known auxins, indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA). In combination with the cytokinin 6-benzylaminopurine (BAP), TAA was shown to promote shoot organogenesis from tomato cotyledon in a concentration-dependent manner. To the best of our knowledge, the present study reports for the first time demonstrating the function of TAA as a growth regulator in a plant species. Our work will pave the way for future studies involving different combinations of TAA with other plant hormones which may play an important role in in vitro organogenesis of recalcitrant species. Moreover, the differentially expressed genes and long noncoding RNAs identified in our transcriptome studies may serve as contender genes for studying molecular mechanisms of shoot organogenesis.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | | | - Vishnu Sukumari Nath
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ajay Kumar Mishra
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled Michel Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Iltaf Shah
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
132
|
Ahmad S, Drag MH, Mohamad Salleh S, Cai Z, Nielsen MO. Gene coexpression network analysis reveals perirenal adipose tissue as an important target of prenatal malnutrition in sheep. Physiol Genomics 2023; 55:392-413. [PMID: 37458462 PMCID: PMC10642927 DOI: 10.1152/physiolgenomics.00128.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023] Open
Abstract
We have previously demonstrated that pre- and early postnatal malnutrition in sheep induced depot- and sex-specific changes in adipose morphological features, metabolic outcomes, and transcriptome in adulthood, with perirenal (PER) as the major target followed by subcutaneous (SUB) adipose tissue. We aimed to identify coexpressed and hub genes in SUB and PER to identify the underlying molecular mechanisms contributing to the early nutritional programming of adipose-related phenotypic outcomes. Transcriptomes of SUB and PER of male and female adult sheep with different pre- and early postnatal nutrition histories were used to construct networks of coexpressed genes likely to be functionally associated with pre- and early postnatal nutrition histories and phenotypic traits using weighted gene coexpression network analysis. The modules from PER showed enrichment of cell cycle regulation, gene expression, transmembrane transport, and metabolic processes associated with both sexes' prenatal nutrition. In SUB (only males), a module of enriched adenosine diphosphate metabolism and development correlated with prenatal nutrition. Sex-specific module enrichments were found in PER, such as chromatin modification in the male network but histone modification and mitochondria- and oxidative phosphorylation-related functions in the female network. These sex-specific modules correlated with prenatal nutrition and adipocyte size distribution patterns. Our results point to PER as a primary target of prenatal malnutrition compared to SUB, which played only a minor role. The prenatal programming of gene expression and cell cycle, potentially through epigenetic modifications, might be underlying mechanisms responsible for observed changes in PER expandability and adipocyte-size distribution patterns in adulthood in both sexes.
Collapse
Affiliation(s)
- Sharmila Ahmad
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Research Unit of Nutrition, Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| | - Markus Hodal Drag
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Zoo, Frederiksberg, Denmark
| | - Suraya Mohamad Salleh
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Zexi Cai
- Centre for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Mette Olaf Nielsen
- Research Unit of Nutrition, Department of Animal and Veterinary Sciences, Aarhus University, Tjele, Denmark
| |
Collapse
|
133
|
Ribarski-Chorev I, Schudy G, Strauss C, Schlesinger S. Short heat shock has a long-term effect on mesenchymal stem cells' transcriptome. iScience 2023; 26:107305. [PMID: 37529103 PMCID: PMC10387575 DOI: 10.1016/j.isci.2023.107305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/03/2023] Open
Abstract
The adverse effects of heat stress (HS) on physiological systems are well documented, yet the underlying molecular mechanisms behind it remain poorly understood. To address this knowledge gap, we conducted a comprehensive investigation into the impact of HS on mesenchymal stem cells (MSCs), focusing on their morphology, phenotype, proliferative capacity, and fate determination. Our in-depth analysis of the MSCs' transcriptome revealed a significant influence of HS on the transcriptional landscape. Notably, even after a short period of stress, we observed a persistent alteration in cell identity, potentially mediated by the activation of bivalent genes. Furthermore, by comparing the differentially expressed genes following short HS with their transcriptional state after recovery, we identified the transient upregulation of MLL and other histone modifiers, providing a potential mechanistic explanation for the stable activation of bivalent genes. This could be used to predict and modify the long-term effect of HS on cell identity.
Collapse
Affiliation(s)
- Ivana Ribarski-Chorev
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gisele Schudy
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Carmit Strauss
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sharon Schlesinger
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
134
|
Flynn JM, Ahmed-Braimah YH, Long M, Wing RA, Clark AG. High quality genome assemblies reveal evolutionary dynamics of repetitive DNA and structural rearrangements in the Drosophila virilis sub-group. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553086. [PMID: 37645834 PMCID: PMC10462019 DOI: 10.1101/2023.08.13.553086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
High-quality genome assemblies across a range of non-traditional model organisms can accelerate the discovery of novel aspects of genome evolution. The Drosophila virilis group has several attributes that distinguish it from more highly studied species in the Drosophila genus, such as an unusual abundance of repetitive elements and extensive karyotype evolution, in addition to being an attractive model for speciation genetics. Here we used long-read sequencing to assemble five genomes of three virilis group species and characterized sequence and structural divergence and repetitive DNA evolution. We find that our contiguous genome assemblies allow characterization of chromosomal arrangements with ease and can facilitate analysis of inversion breakpoints. We also leverage a small panel of resequenced strains to explore the genomic pattern of divergence and polymorphism in this species and show that known demographic histories largely predicts the extent of genome-wide segregating polymorphism. We further find that a neo-X chromosome in D. americana displays X-like levels of nucleotide diversity. We also found that unusual repetitive elements were responsible for much of the divergence in genome composition among species. Helitron-derived tandem repeats tripled in abundance on the Y chromosome in D. americana compared to D. novamexicana, accounting for most of the difference in repeat content between these sister species. Repeats with characteristics of both transposable elements and satellite DNAs expanded by three-fold, mostly in euchromatin, in both D. americana and D. novamexicana compared to D. virilis. Our results represent a major advance in our understanding of genome biology in this emerging model clade.
Collapse
Affiliation(s)
- Jullien M. Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Manyuan Long
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Rod A. Wing
- School of Plant Sciences, Arizona Genomics Institute, University of Arizona, Tucson, AZ
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
135
|
Wang J, Sun L, Zhang H, Jiao B, Wang H, Zhou S. Transcriptome analysis during vernalization in wheat (Triticum aestivum L.). BMC Genom Data 2023; 24:43. [PMID: 37563565 PMCID: PMC10416481 DOI: 10.1186/s12863-023-01144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Vernalization, as a vital process in the life cycle of winter cereal, has important effects on floral organ formation and flowering time. Many morphological changes together with molecular changes occur during the vernalization period. Here, we used transcriptome sequencing to analyze the transcriptomic changes in wheat leaves before, during and after vernalization using the winter wheat cultivar 'Shiluan02-1'. RESULTS A total of 16,370 differentially expressed genes were obtained across different vernalization periods. Gene Ontology enrichment analysis revealed that photoperiodism, photoprotection, photosynthesis, lipid transport and biosynthetic process, and chlorophyll metabolic process were closely related to vernalization. In addition, AP2/ERF, C2H2, bHLH, WRKY, MYB, MYB-related, and NAC transcription factors were significantly enriched during vernalization, and the transcription factor expression patterns suggested the intricate regulation of transcription factor modules in plant vernalization pathways. Analysis of gene expression patterns of the MADS-box transcription factor genes showed different expression patterns during vernalization phases, among which VERNALIZATION1 (VRN1) genes were found to gradually increase during vernalization periods from V0 to V35, while decline in the V42 phase, then increase after vernalization. The Tavrt-2 gene cooperated with Tavrn1 to regulate flowering induced by vernalization, and its expression level was rapidly increased by vernalization but declined in the V42 phase and then increased after vernalization. Some genes from the ICE-CBF-COR pathway were also identified, and additional analysis indicated that some key genes related to phytohormone biosynthesis and signal transduction were enriched during the vernalization period, such as gibberellic acid, ethylene, abscisic acid and jasmonic acid biosynthesis and signaling pathway genes. CONCLUSIONS Our study provides valuable molecular information for future studies on wheat vernalization regulation and also serves as an excellent reference for future wheat breeding.
Collapse
Affiliation(s)
- Jiao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Lei Sun
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Hongwei Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Bo Jiao
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Haibo Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Shuo Zhou
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China.
| |
Collapse
|
136
|
Yang Z, Guarracino A, Biggs PJ, Black MA, Ismail N, Wold JR, Merriman TR, Prins P, Garrison E, de Ligt J. Pangenome graphs in infectious disease: a comprehensive genetic variation analysis of Neisseria meningitidis leveraging Oxford Nanopore long reads. Front Genet 2023; 14:1225248. [PMID: 37636268 PMCID: PMC10448961 DOI: 10.3389/fgene.2023.1225248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Whole genome sequencing has revolutionized infectious disease surveillance for tracking and monitoring the spread and evolution of pathogens. However, using a linear reference genome for genomic analyses may introduce biases, especially when studies are conducted on highly variable bacterial genomes of the same species. Pangenome graphs provide an efficient model for representing and analyzing multiple genomes and their variants as a graph structure that includes all types of variations. In this study, we present a practical bioinformatics pipeline that employs the PanGenome Graph Builder and the Variation Graph toolkit to build pangenomes from assembled genomes, align whole genome sequencing data and call variants against a graph reference. The pangenome graph enables the identification of structural variants, rearrangements, and small variants (e.g., single nucleotide polymorphisms and insertions/deletions) simultaneously. We demonstrate that using a pangenome graph, instead of a single linear reference genome, improves mapping rates and variant calling for both simulated and real datasets of the pathogen Neisseria meningitidis. Overall, pangenome graphs offer a promising approach for comparative genomics and comprehensive genetic variation analysis in infectious disease. Moreover, this innovative pipeline, leveraging pangenome graphs, can bridge variant analysis, genome assembly, population genetics, and evolutionary biology, expanding the reach of genomic understanding and applications.
Collapse
Affiliation(s)
- Zuyu Yang
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Patrick J. Biggs
- Molecular Biosciences Group, School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Molecular Epidemiology and Public Health Laboratory, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nuzla Ismail
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Jana Renee Wold
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Tony R. Merriman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joep de Ligt
- Institute of Environmental Science and Research, Porirua, New Zealand
| |
Collapse
|
137
|
Abdelrahman S, Ge R, Susapto HH, Liu Y, Samkari F, Moretti M, Liu X, Hoehndorf R, Emwas AH, Jaremko M, Rawas RH, Hauser CAE. The Impact of Mechanical Cues on the Metabolomic and Transcriptomic Profiles of Human Dermal Fibroblasts Cultured in Ultrashort Self-Assembling Peptide 3D Scaffolds. ACS NANO 2023; 17:14508-14531. [PMID: 37477873 DOI: 10.1021/acsnano.3c01176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Cells' interactions with their microenvironment influence their morphological features and regulate crucial cellular functions including proliferation, differentiation, metabolism, and gene expression. Most biological data available are based on in vitro two-dimensional (2D) cellular models, which fail to recapitulate the three-dimensional (3D) in vivo systems. This can be attributed to the lack of cell-matrix interaction and the limitless access to nutrients and oxygen, in contrast to in vivo systems. Despite the emergence of a plethora of 3D matrices to address this challenge, there are few reports offering a proper characterization of these matrices or studying how the cell-matrix interaction influences cellular metabolism in correlation with gene expression. In this study, two tetrameric ultrashort self-assembling peptide sequences, FFIK and FIIK, were used to create in vitro 3D models using well-described human dermal fibroblast cells. The peptide sequences are derived from naturally occurring amino acids that are capable of self-assembling into stable hydrogels without UV or chemical cross-linking. Our results showed that 2D cultured fibroblasts exhibited distinct metabolic and transcriptomic profiles compared to 3D cultured cells. The observed changes in the metabolomic and transcriptomic profiles were closely interconnected and influenced several important metabolic pathways including the TCA cycle, glycolysis, MAPK signaling cascades, and hemostasis. Data provided here may lead to clearer insights into the influence of the surrounding microenvironment on human dermal fibroblast metabolic patterns and molecular mechanisms, underscoring the importance of utilizing efficient 3D in vitro models to study such complex mechanisms.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Rui Ge
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Hepi H Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Yang Liu
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Manola Moretti
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xinzhi Liu
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computer, Electrical and Mathematical Sciences & Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ranim H Rawas
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A E Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
138
|
Latkovskis G, Rescenko-Krums R, Nesterovics G, Briviba M, Saripo V, Gilis D, Terauda E, Meiere R, Skudrina G, Erglis A, Chora JR, Bourbon M, Klovins J. Genetic Characteristics of Latvian Patients with Familial Hypercholesterolemia: The First Analysis from Genome-Wide Sequencing. J Clin Med 2023; 12:5160. [PMID: 37568561 PMCID: PMC10419451 DOI: 10.3390/jcm12155160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND There is limited data on the genetic characteristics of patients with familial hypercholesterolemia (FH) in Latvia. We aim to describe monogenic variants in patients from the Latvian Registry of FH (LRFH). METHODS Whole genome sequencing with 30× coverage was performed in unrelated index cases from the LRFH and the Genome Database of Latvian Population. LDLR, APOB, PCSK9, LDLRAP1, ABCG5, ABCG8, LIPA, LPA, CYP27A1, and APOE genes were analyzed. Only variants annotated as pathogenic (P) or likely pathogenic (LP) using the FH Variant Curation Expert Panel guidelines for LDLR and adaptations for APOB and PCSK9 were reported. RESULTS Among 163 patients, the mean highest documented LDL-cholesterol level was 7.47 ± 1.60 mmol/L, and 79.1% of patients had LDL-cholesterol ≥6.50 mmol/L. A total of 15 P/LP variants were found in 34 patients (diagnostic yield: 20.9%): 14 in the LDLR gene and 1 in the APOB gene. Additionally, 24, 54, and 13 VUS were detected in LDLR, APOB, and PCSK9, respectively. No P/LP variants were identified in the other tested genes. CONCLUSIONS Despite the high clinical likelihood of FH, confirmed P/LP variants were detected in only 20.9% of patients in the Latvian cohort when assessed with genome-wide next generation sequencing.
Collapse
Affiliation(s)
- Gustavs Latkovskis
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | | | - Georgijs Nesterovics
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Monta Briviba
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| | - Vita Saripo
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Dainus Gilis
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Elizabete Terauda
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Ruta Meiere
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Gunda Skudrina
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
| | - Andrejs Erglis
- Institute of Cardiology and Regenerative Medicine, University of Latvia, LV-1004 Riga, Latvia (V.S.); (E.T.)
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, LV-1002 Riga, Latvia
- Faculty of Medicine, University of Latvia, LV-1004 Riga, Latvia
| | - Joana Rita Chora
- Department of Health Promotion and Prevention of Noncommunicable Diseases, National Institute of Health Dr. Ricardo Jorge, 164-9016 Lisbon, Portugal
- Department of Chemistry and Biochemistry, BioISI—BioSystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Mafalda Bourbon
- Department of Health Promotion and Prevention of Noncommunicable Diseases, National Institute of Health Dr. Ricardo Jorge, 164-9016 Lisbon, Portugal
- Department of Chemistry and Biochemistry, BioISI—BioSystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1649-004 Lisbon, Portugal
| | - Janis Klovins
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia
| |
Collapse
|
139
|
Sansbury SE, Serebrenik YV, Lapidot T, Burslem GM, Shalem O. Pooled tagging and hydrophobic targeting of endogenous proteins for unbiased mapping of unfolded protein responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548611. [PMID: 37503003 PMCID: PMC10370017 DOI: 10.1101/2023.07.13.548611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
System-level understanding of proteome organization and function requires methods for direct visualization and manipulation of proteins at scale. We developed an approach enabled by high-throughput gene tagging for the generation and analysis of complex cell pools with endogenously tagged proteins. Proteins are tagged with HaloTag to enable visualization or direct perturbation. Fluorescent labeling followed by in situ sequencing and deep learning-based image analysis identifies the localization pattern of each tag, providing a bird's-eye-view of cellular organization. Next, we use a hydrophobic HaloTag ligand to misfold tagged proteins, inducing spatially restricted proteotoxic stress that is read out by single cell RNA sequencing. By integrating optical and perturbation data, we map compartment-specific responses to protein misfolding, revealing inter-compartment organization and direct crosstalk, and assigning proteostasis functions to uncharacterized genes. Altogether, we present a powerful and efficient method for large-scale studies of proteome dynamics, function, and homeostasis.
Collapse
|
140
|
Barbosa CFC, Asunto JC, Koh RBL, Santos DMC, Zhang D, Cao EP, Galvez LC. Genome-Wide SNP and Indel Discovery in Abaca ( Musa textilis Née) and among Other Musa spp. for Abaca Genetic Resources Management. Curr Issues Mol Biol 2023; 45:5776-5797. [PMID: 37504281 PMCID: PMC10377871 DOI: 10.3390/cimb45070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Abaca (Musa textilis Née) is an economically important fiber crop in the Philippines. Its economic potential, however, is hampered by biotic and abiotic stresses, which are exacerbated by insufficient genomic resources for varietal identification vital for crop improvement. To address these gaps, this study aimed to discover genome-wide polymorphisms among abaca cultivars and other Musa species and analyze their potential as genetic marker resources. This was achieved through whole-genome Illumina resequencing of abaca cultivars and variant calling using BCFtools, followed by genetic diversity and phylogenetic analyses. A total of 20,590,381 high-quality single-nucleotide polymorphisms (SNP) and DNA insertions/deletions (InDels) were mined across 16 abaca cultivars. Filtering based on linkage disequilibrium (LD) yielded 130,768 SNPs and 13,620 InDels, accounting for 0.396 ± 0.106 and 0.431 ± 0.111 of gene diversity across these cultivars. LD-pruned polymorphisms across abaca, M. troglodytarum, M. acuminata and M. balbisiana enabled genetic differentiation within abaca and across the four Musa spp. Phylogenetic analysis revealed the registered varieties Abuab and Inosa to accumulate a significant number of mutations, eliciting further studies linking mutations to their advantageous phenotypes. Overall, this study pioneered in producing marker resources in abaca based on genome-wide polymorphisms vital for varietal authentication and comparative genotyping with the more studied Musa spp.
Collapse
Affiliation(s)
- Cris Francis C Barbosa
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Jayson C Asunto
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
| | - Rhosener Bhea L Koh
- National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Daisy May C Santos
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Dapeng Zhang
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ernelea P Cao
- Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Leny C Galvez
- Philippine Fiber Industry Development Authority (PhilFIDA), PCAF Building, Department of Agriculture (DA) Compound, Quezon City 1101, Philippines
| |
Collapse
|
141
|
Moehlman AT, Kanfer G, Youle RJ. Loss of STING in parkin mutant flies suppresses muscle defects and mitochondria damage. PLoS Genet 2023; 19:e1010828. [PMID: 37440574 PMCID: PMC10368295 DOI: 10.1371/journal.pgen.1010828] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/25/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The early pathogenesis and underlying molecular causes of motor neuron degeneration in Parkinson's Disease (PD) remains unresolved. In the model organism Drosophila melanogaster, loss of the early-onset PD gene parkin (the ortholog of human PRKN) results in impaired climbing ability, damage to the indirect flight muscles, and mitochondrial fragmentation with swelling. These stressed mitochondria have been proposed to activate innate immune pathways through release of damage associated molecular patterns (DAMPs). Parkin-mediated mitophagy is hypothesized to suppress mitochondrial damage and subsequent activation of the cGAS/STING innate immunity pathway, but the relevance of this interaction in the fly remains unresolved. Using a combination of genetics, immunoassays, and RNA sequencing, we investigated a potential role for STING in the onset of parkin-null phenotypes. Our findings demonstrate that loss of Drosophila STING in flies rescues the thorax muscle defects and the climbing ability of parkin-/- mutants. Loss of STING also suppresses the disrupted mitochondrial morphology in parkin-/- flight muscles, suggesting unexpected feedback of STING on mitochondria integrity or activation of a compensatory mitochondrial pathway. In the animals lacking both parkin and sting, PINK1 is activated and cell death pathways are suppressed. These findings support a unique, non-canonical role for Drosophila STING in the cellular and organismal response to mitochondria stress.
Collapse
Affiliation(s)
- Andrew T. Moehlman
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Gil Kanfer
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Youle
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
142
|
ElGindi M, Sapudom J, Garcia Sabate A, Chesney Quartey B, Alatoom A, Al-Sayegh M, Li R, Chen W, Teo J. Effects of an aged tissue niche on the immune potency of dendritic cells using simulated microgravity. NPJ AGING 2023; 9:14. [PMID: 37393393 DOI: 10.1038/s41514-023-00111-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 07/03/2023]
Abstract
Microgravity accelerates the aging of various physiological systems, and it is well acknowledged that aged individuals and astronauts both have increased susceptibility to infections and poor response to vaccination. Immunologically, dendritic cells (DCs) are the key players in linking innate and adaptive immune responses. Their distinct and optimized differentiation and maturation phases play a critical role in presenting antigens and mounting effective lymphocyte responses for long-term immunity. Despite their importance, no studies to date have effectively investigated the effects of microgravity on DCs in their native microenvironment, which is primarily located within tissues. Here, we address a significantly outstanding research gap by examining the effects of simulated microgravity via a random positioning machine on both immature and mature DCs cultured in biomimetic collagen hydrogels, a surrogate for tissue matrices. Furthermore, we explored the effects of loose and dense tissues via differences in collagen concentration. Under these various environmental conditions, the DC phenotype was characterized using surface markers, cytokines, function, and transcriptomic profiles. Our data indicate that aged or loose tissue and exposure to RPM-induced simulated microgravity both independently alter the immunogenicity of immature and mature DCs. Interestingly, cells cultured in denser matrices experience fewer effects of simulated microgravity at the transcriptome level. Our findings are a step forward to better facilitate healthier future space travel and enhance our understanding of the aging immune system on Earth.
Collapse
Affiliation(s)
- Mei ElGindi
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Anna Garcia Sabate
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Brian Chesney Quartey
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Aseel Alatoom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Rui Li
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA
| | - Jeremy Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, PO Box 129188, United Arab Emirates.
- Department of Biomedical Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
- Department of Mechanical and Aerospace Engineering, New York University, 6 MetroTech Center, Brooklyn, NY, 11201, USA.
| |
Collapse
|
143
|
Grether GF, Beninde J, Beraut E, Chumchim N, Escalona M, MacDonald ZG, Miller C, Sahasrabudhe R, Shedlock AM, Toffelmier E, Shaffer HB. Reference genome for the American rubyspot damselfly, Hetaerina americana. J Hered 2023; 114:385-394. [PMID: 37195415 PMCID: PMC10287145 DOI: 10.1093/jhered/esad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 05/07/2023] [Indexed: 05/18/2023] Open
Abstract
Damselflies and dragonflies (Order: Odonata) play important roles in both aquatic and terrestrial food webs and can serve as sentinels of ecosystem health and predictors of population trends in other taxa. The habitat requirements and limited dispersal of lotic damselflies make them especially sensitive to habitat loss and fragmentation. As such, landscape genomic studies of these taxa can help focus conservation efforts on watersheds with high levels of genetic diversity, local adaptation, and even cryptic endemism. Here, as part of the California Conservation Genomics Project (CCGP), we report the first reference genome for the American rubyspot damselfly, Hetaerina americana, a species associated with springs, streams and rivers throughout California. Following the CCGP assembly pipeline, we produced two de novo genome assemblies. The primary assembly includes 1,630,044,487 base pairs, with a contig N50 of 5.4 Mb, a scaffold N50 of 86.2 Mb, and a BUSCO completeness score of 97.6%. This is the seventh Odonata genome to be made publicly available and the first for the subfamily Hetaerininae. This reference genome fills an important phylogenetic gap in our understanding of Odonata genome evolution, and provides a genomic resource for a host of interesting ecological, evolutionary, and conservation questions for which the rubyspot damselfly genus Hetaerina is an important model system.
Collapse
Affiliation(s)
- Gregory F Grether
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095-7239, United States
| | - Joscha Beninde
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095-7239, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Noravit Chumchim
- DNA Technologies and Expression Analysis Core Laboratory, University of California Davis, Davis, CA 95616, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| | - Zachary G MacDonald
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095-7239, United States
| | - Courtney Miller
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095-7239, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, University of California Davis, Davis, CA 95616, United States
| | - Andrew M Shedlock
- Department of Biology, College of Charleston, Charleston, SC 29424, United States
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095-7239, United States
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095-1606, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California Los Angeles, Los Angeles, CA 90095-7239, United States
| |
Collapse
|
144
|
Loy CJ, Sotomayor-Gonzalez A, Servellita V, Nguyen J, Lenz J, Bhattacharya S, Williams ME, Cheng AP, Bliss A, Saldhi P, Brazer N, Streithorst J, Suslovic W, Hsieh CJ, Bahar B, Wood N, Foresythe A, Gliwa A, Bhakta K, Perez MA, Hussaini L, Anderson EJ, Chahroudi A, Delaney M, Butte AJ, DeBiasi RL, Rostad CA, De Vlaminck I, Chiu CY. Nucleic acid biomarkers of immune response and cell and tissue damage in children with COVID-19 and MIS-C. Cell Rep Med 2023; 4:101034. [PMID: 37279751 PMCID: PMC10121104 DOI: 10.1016/j.xcrm.2023.101034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/28/2022] [Accepted: 04/11/2023] [Indexed: 06/08/2023]
Abstract
Differential host responses in coronavirus disease 2019 (COVID-19) and multisystem inflammatory syndrome in children (MIS-C) remain poorly characterized. Here, we use next-generation sequencing to longitudinally analyze blood samples from pediatric patients with COVID-19 or MIS-C across three hospitals. Profiling of plasma cell-free nucleic acids uncovers distinct signatures of cell injury and death between COVID-19 and MIS-C, with increased multiorgan involvement in MIS-C encompassing diverse cell types, including endothelial and neuronal cells, and an enrichment of pyroptosis-related genes. Whole-blood RNA profiling reveals upregulation of similar pro-inflammatory pathways in COVID-19 and MIS-C but also MIS-C-specific downregulation of T cell-associated pathways. Profiling of plasma cell-free RNA and whole-blood RNA in paired samples yields different but complementary signatures for each disease state. Our work provides a systems-level view of immune responses and tissue damage in COVID-19 and MIS-C and informs future development of new disease biomarkers.
Collapse
Affiliation(s)
- Conor J Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Sotomayor-Gonzalez
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Venice Servellita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jenny Nguyen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joan Lenz
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Sanchita Bhattacharya
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Alexandre P Cheng
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Bliss
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Prachi Saldhi
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Noah Brazer
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jessica Streithorst
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Charlotte J Hsieh
- Division of Pediatric Infectious Diseases and Global Health, Department of Pediatrics, University of California San Francisco, Oakland, CA 94609
| | - Burak Bahar
- Children's National Hospital, Washington, DC 20010, USA
| | - Nathan Wood
- UCSF Benioff Children's Hospital, Oakland, CA 94609, USA
| | - Abiodun Foresythe
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Amelia Gliwa
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kushmita Bhakta
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Maria A Perez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Laila Hussaini
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Evan J Anderson
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA; Department of Medicine, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Meghan Delaney
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Roberta L DeBiasi
- Children's National Hospital, Washington, DC 20010, USA; The George Washington University School of Medicine, Washington, DC 20052, USA
| | - Christina A Rostad
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
145
|
Ruperao P, Bajaj P, Subramani R, Yadav R, Reddy Lachagari VB, Lekkala SP, Rathore A, Archak S, Angadi UB, Singh R, Singh K, Mayes S, Rangan P. A pilot-scale comparison between single and double-digest RAD markers generated using GBS strategy in sesame (Sesamum indicum L.). PLoS One 2023; 18:e0286599. [PMID: 37267340 DOI: 10.1371/journal.pone.0286599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
To reduce the genome sequence representation, restriction site-associated DNA sequencing (RAD-seq) protocols is being widely used either with single-digest or double-digest methods. In this study, we genotyped the sesame population (48 sample size) in a pilot scale to compare single and double-digest RAD-seq (sd and ddRAD-seq) methods. We analysed the resulting short-read data generated from both protocols and assessed their performance impacting the downstream analysis using various parameters. The distinct k-mer count and gene presence absence variation (PAV) showed a significant difference between the sesame samples studied. Additionally, the variant calling from both datasets (sdRAD-seq and ddRAD-seq) exhibits a significant difference between them. The combined variants from both datasets helped in identifying the most diverse samples and possible sub-groups in the sesame population. The most diverse samples identified from each analysis (k-mer, gene PAV, SNP count, Heterozygosity, NJ and PCA) can possibly be representative samples holding major diversity of the small sesame population used in this study. The best possible strategies with suggested inputs for modifications to utilize the RAD-seq strategy efficiently on a large dataset containing thousands of samples to be subjected to molecular analysis like diversity, population structure and core development studies were discussed.
Collapse
Affiliation(s)
- Pradeep Ruperao
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Prasad Bajaj
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rajkumar Subramani
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Rashmi Yadav
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | | | | | | | - Sunil Archak
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Ulavappa B Angadi
- ICAR-Indian Agricultural Statistical Research Institute, New Delhi, India
| | - Rakesh Singh
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
| | - Kuldeep Singh
- Genebank, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Sean Mayes
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Parimalan Rangan
- ICAR-National Bureau of Plant Genetic Resources, PUSA Campus, New Delhi, India
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
146
|
Azad P, Zhou D, Tu HC, Villafuerte FC, Traver D, Rana TM, Haddad GG. Long noncoding RNA HIKER regulates erythropoiesis in Monge's disease via CSNK2B. J Clin Invest 2023; 133:e165831. [PMID: 37022795 PMCID: PMC10231995 DOI: 10.1172/jci165831] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/04/2023] [Indexed: 04/07/2023] Open
Abstract
Excessive erythrocytosis (EE) is a major hallmark of patients suffering from chronic mountain sickness (CMS, also known as Monge's disease) and is responsible for major morbidity and even mortality in early adulthood. We took advantage of unique populations, one living at high altitude (Peru) showing EE, with another population, at the same altitude and region, showing no evidence of EE (non-CMS). Through RNA-Seq, we identified and validated the function of a group of long noncoding RNAs (lncRNAs) that regulate erythropoiesis in Monge's disease, but not in the non-CMS population. Among these lncRNAs is hypoxia induced kinase-mediated erythropoietic regulator (HIKER)/LINC02228, which we showed plays a critical role in erythropoiesis in CMS cells. Under hypoxia, HIKER modulated CSNK2B (the regulatory subunit of casein kinase 2). A downregulation of HIKER downregulated CSNK2B, remarkably reducing erythropoiesis; furthermore, an upregulation of CSNK2B on the background of HIKER downregulation rescued erythropoiesis defects. Pharmacologic inhibition of CSNK2B drastically reduced erythroid colonies, and knockdown of CSNK2B in zebrafish led to a defect in hemoglobinization. We conclude that HIKER regulates erythropoiesis in Monge's disease and acts through at least one specific target, CSNK2B, a casein kinase.
Collapse
Affiliation(s)
- Priti Azad
- Division of Respiratory Medicine, Department of Pediatrics, and
| | - Dan Zhou
- Division of Respiratory Medicine, Department of Pediatrics, and
| | - Hung-Chi Tu
- Department of Cell and Developmental Biology, UCSD, La Jolla, California, USA
| | - Francisco C. Villafuerte
- Oxygen Transport Physiology Laboratory/Comparative Physiology, Faculty of Sciences and Philosophy, Cayetano Heredia University, Lima, Peru
| | - David Traver
- Department of Cell and Developmental Biology, UCSD, La Jolla, California, USA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in Immunology, Institute for Genomic Medicine, and
| | - Gabriel G. Haddad
- Division of Respiratory Medicine, Department of Pediatrics, and
- Department of Neurosciences, UCSD, La Jolla, California, USA
- Rady Children’s Hospital, San Diego, California, USA
| |
Collapse
|
147
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
148
|
Drazdauskienė U, Kapustina Ž, Medžiūnė J, Dubovskaja V, Sabaliauskaitė R, Jarmalaitė S, Lubys A. Fusion sequencing via terminator-assisted synthesis (FTAS-seq) identifies TMPRSS2 fusion partners in prostate cancer. Mol Oncol 2023; 17:993-1006. [PMID: 37300660 DOI: 10.1002/1878-0261.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/26/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023] Open
Abstract
Genetic rearrangements that fuse an androgen-regulated promoter area with a protein-coding portion of an originally androgen-unaffected gene are frequent in prostate cancer, with the fusion between transmembrane serine protease 2 (TMPRSS2) and ETS transcription factor ERG (ERG) (TMPRSS2-ERG fusion) being the most prevalent. Conventional hybridization- or amplification-based methods can test for the presence of expected gene fusions, but the exploratory analysis of currently unknown fusion partners is often cost-prohibitive. Here, we developed an innovative next-generation sequencing (NGS)-based approach for gene fusion analysis termed fusion sequencing via terminator-assisted synthesis (FTAS-seq). FTAS-seq can be used to enrich the gene of interest while simultaneously profiling the whole spectrum of its 3'-terminal fusion partners. Using this novel semi-targeted RNA-sequencing technique, we were able to identify 11 previously uncharacterized TMPRSS2 fusion partners and capture a range of TMPRSS2-ERG isoforms. We tested the performance of FTAS-seq with well-characterized prostate cancer cell lines and utilized the technique for the analysis of patient RNA samples. FTAS-seq chemistry combined with appropriate primer panels holds great potential as a tool for biomarker discovery that can support the development of personalized cancer therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Sonata Jarmalaitė
- National Cancer Institute, Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, Vilnius, Lithuania
| |
Collapse
|
149
|
Araki Y, Gerber EE, Rajkovich KE, Hong I, Johnson RC, Lee HK, Kirkwood A, Huganir RL. Mouse models of SYNGAP1 -related intellectual disability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542312. [PMID: 37293116 PMCID: PMC10245951 DOI: 10.1101/2023.05.25.542312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
SYNGAP1 is a Ras-GTPase activating protein highly enriched at excitatory synapses in the brain. De novo loss-of-function mutations in SYNGAP1 are a major cause of genetically defined neurodevelopmental disorders (NDD). These mutations are highly penetrant and cause SYNGAP1 -related intellectual disability (SRID), a NDD characterized by cognitive impairment, social deficits, early-onset seizures, and sleep disturbances (1-5). Studies in rodent neurons have shown that Syngap1 regulates developing excitatory synapse structure and function (6-11), and heterozygous Syngap1 knockout mice have deficits in synaptic plasticity, learning and memory, and have seizures (9, 12-14). However, how specific SYNGAP1 mutations found in humans lead to disease has not been investigated in vivo. To explore this, we utilized the CRISPR-Cas9 system to generate knock-in mouse models with two distinct known causal variants of SRID: one with a frameshift mutation leading to a premature stop codon, SYNGAP1; L813RfsX22, and a second with a single-nucleotide mutation in an intron that creates a cryptic splice acceptor site leading to premature stop codon, SYNGAP1; c.3583-9G>A . While reduction in Syngap1 mRNA varies from 30-50% depending on the specific mutation, both models show ∼50% reduction in Syngap1 protein, have deficits in synaptic plasticity, and recapitulate key features of SRID including hyperactivity and impaired working memory. These data suggest that half the amount of SYNGAP1 protein is key to the pathogenesis of SRID. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies for this disorder. Significance Statement SYNGAP1 is a protein enriched at excitatory synapses in the brain that is an important regulator of synapse structure and function. SYNGAP1 mutations cause SYNGAP1 -related intellectual disability (SRID), a neurodevelopmental disorder with cognitive impairment, social deficits, seizures, and sleep disturbances. To explore how SYNGAP1 mutations found in humans lead to disease, we generated the first knock-in mouse models with causal SRID variants: one with a frameshift mutation and a second with an intronic mutation that creates a cryptic splice acceptor site. Both models show decreased Syngap1 mRNA and Syngap1 protein and recapitulate key features of SRID including hyperactivity and impaired working memory. These results provide a resource to study SRID and establish a framework for the development of therapeutic strategies. Highlights Two mouse models with SYNGAP1 -related intellectual disability (SRID) mutations found in humans were generated: one with a frameshift mutation that results in a premature stop codon and the other with an intronic mutation resulting in a cryptic splice acceptor site and premature stop codon. Both SRID mouse models show 35∼50% reduction in mRNA and ∼50% reduction in Syngap1 protein.Both SRID mouse models display deficits in synaptic plasticity and behavioral phenotypes found in people. RNA-seq confirmed cryptic splice acceptor activity in one SRID mouse model and revealed broad transcriptional changes also identified in Syngap1 +/- mice. Novel SRID mouse models generated here provide a resource and establish a framework for development of future therapeutic intervention.
Collapse
Affiliation(s)
- Yoichi Araki
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Elizabeth E Gerber
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Kacey E Rajkovich
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Ingie Hong
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Richard C Johnson
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Hey-Kyoung Lee
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Alfredo Kirkwood
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| | - Richard L Huganir
- Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine
| |
Collapse
|
150
|
Huang G, Wu W, Chen Y, Zhi X, Zou P, Ning Z, Fan Q, Liu Y, Deng S, Zeng K, Zhou R. Balancing selection on an MYB transcription factor maintains the twig trichome color variation in Melastoma normale. BMC Biol 2023; 21:122. [PMID: 37226197 DOI: 10.1186/s12915-023-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.
Collapse
Affiliation(s)
- Guilian Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongmei Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China
| | - Xueke Zhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zulin Ning
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|