101
|
Rebelos E, Rinne JO, Nuutila P, Ekblad LL. Brain Glucose Metabolism in Health, Obesity, and Cognitive Decline-Does Insulin Have Anything to Do with It? A Narrative Review. J Clin Med 2021; 10:jcm10071532. [PMID: 33917464 PMCID: PMC8038699 DOI: 10.3390/jcm10071532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
Imaging brain glucose metabolism with fluorine-labelled fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) has long been utilized to aid the diagnosis of memory disorders, in particular in differentiating Alzheimer’s disease (AD) from other neurological conditions causing cognitive decline. The interest for studying brain glucose metabolism in the context of metabolic disorders has arisen more recently. Obesity and type 2 diabetes—two diseases characterized by systemic insulin resistance—are associated with an increased risk for AD. Along with the well-defined patterns of fasting [18F]-FDG-PET changes that occur in AD, recent evidence has shown alterations in fasting and insulin-stimulated brain glucose metabolism also in obesity and systemic insulin resistance. Thus, it is important to clarify whether changes in brain glucose metabolism are just an epiphenomenon of the pathophysiology of the metabolic and neurologic disorders, or a crucial determinant of their pathophysiologic cascade. In this review, we discuss the current knowledge regarding alterations in brain glucose metabolism, studied with [18F]-FDG-PET from metabolic disorders to AD, with a special focus on how manipulation of insulin levels affects brain glucose metabolism in health and in systemic insulin resistance. A better understanding of alterations in brain glucose metabolism in health, obesity, and neurodegeneration, and the relationships between insulin resistance and central nervous system glucose metabolism may be an important step for the battle against metabolic and cognitive disorders.
Collapse
Affiliation(s)
- Eleni Rebelos
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
| | - Juha O. Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
- Department of Endocrinology, Turku University Hospital, 20520 Turku, Finland
| | - Laura L. Ekblad
- Turku PET Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland; (E.R.); (J.O.R.); (P.N.)
- Correspondence: ; Tel.: +358-2-3138721
| |
Collapse
|
102
|
Mullin S, Stokholm MG, Hughes D, Mehta A, Parbo P, Hinz R, Pavese N, Brooks DJ, Schapira AH. Brain Microglial Activation Increased in Glucocerebrosidase (GBA) Mutation Carriers without Parkinson's disease. Mov Disord 2021; 36:774-779. [PMID: 33278043 PMCID: PMC8048428 DOI: 10.1002/mds.28375] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glucocerebrosidase gene mutations are a common genetic risk factor for Parkinson's disease. They exhibit incomplete penetrance. The objective of the present study was to measure microglial activation and dopamine integrity in glucocerebrosidase gene mutation carriers without Parkinson's disease compared to controls. METHODS We performed PET scans on 9 glucocerebrosidase gene mutation carriers without Parkinson's disease and 29 age-matched controls. We measured microglial activation as 11 C-(R)-PK11195 binding potentials, and dopamine terminal integrity with 18 F-dopa influx constants. RESULTS The 11 C-(R)-PK11195 binding potential was increased in the substantia nigra of glucocerebrosidase gene carriers compared with controls (Student t test; right, t = -4.45, P = 0.0001). Statistical parametric mapping also localized significantly increased 11 C-(R)-PK11195 binding potential in the occipital and temporal lobes, cerebellum, hippocampus, and mesencephalon. The degree of hyposmia correlated with nigral 11 C-(R)-PK11195 regional binding potentials (Spearman's rank, P = 0.0066). Mean striatal 18 F-dopa uptake was similar to healthy controls. CONCLUSIONS In vivo 11 C-(R)-PK11195 PET imaging detects neuroinflammation in brain regions susceptible to Lewy pathology in glucocerebrosidase gene mutation carriers without Parkinson's. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Stephen Mullin
- Department of Clinical and Movement Neurosciences, Institute of NeurologyUCLLondonUK
- Institute of Health and Care ResearchUniversity of Plymouth Peninsula School of MedicinePlymouthUK
| | | | - Derralyn Hughes
- Department of Haematology, Institute of Immunity and TransplantationUCLLondonUK
| | - Atul Mehta
- Department of Haematology, Institute of Immunity and TransplantationUCLLondonUK
| | - Peter Parbo
- Department of Nuclear Medicine & PET CentreAarhus University HospitalAarhusDenmark
| | - Rainer Hinz
- Wolfson Molecular Imaging CentreUniversity of ManchesterManchesterUK
| | - Nicola Pavese
- Department of Nuclear Medicine & PET CentreAarhus University HospitalAarhusDenmark
- Institute of Translational and Clinical ResearchNewcastle UniversityNewcastleUK
| | - David J. Brooks
- Department of Nuclear Medicine & PET CentreAarhus University HospitalAarhusDenmark
- Institute of Translational and Clinical ResearchNewcastle UniversityNewcastleUK
| | - Anthony H.V. Schapira
- Department of Clinical and Movement Neurosciences, Institute of NeurologyUCLLondonUK
- Lysosomal storage disease unitRoyal Free HospitalLondonUK
| |
Collapse
|
103
|
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 2021; 17:157-172. [PMID: 33318676 DOI: 10.1038/s41582-020-00435-y] [Citation(s) in RCA: 1512] [Impact Index Per Article: 378.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer disease (AD) is the most common form of neurodegenerative disease, estimated to contribute 60-70% of all cases of dementia worldwide. According to the prevailing amyloid cascade hypothesis, amyloid-β (Aβ) deposition in the brain is the initiating event in AD, although evidence is accumulating that this hypothesis is insufficient to explain many aspects of AD pathogenesis. The discovery of increased levels of inflammatory markers in patients with AD and the identification of AD risk genes associated with innate immune functions suggest that neuroinflammation has a prominent role in the pathogenesis of AD. In this Review, we discuss the interrelationships between neuroinflammation and amyloid and tau pathologies as well as the effect of neuroinflammation on the disease trajectory in AD. We specifically focus on microglia as major players in neuroinflammation and discuss the spatial and temporal variations in microglial phenotypes that are observed under different conditions. We also consider how these cells could be modulated as a therapeutic strategy for AD.
Collapse
Affiliation(s)
- Fangda Leng
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Paul Edison
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
104
|
Jorge L, Martins R, Canário N, Xavier C, Abrunhosa A, Santana I, Castelo-Branco M. Investigating the Spatial Associations Between Amyloid-β Deposition, Grey Matter Volume, and Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2021; 80:113-132. [PMID: 33523050 PMCID: PMC8075404 DOI: 10.3233/jad-200840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: It has been proposed that amyloid-β (Aβ) plays a causal role in Alzheimer’s disease (AD) by triggering a series of pathologic events—possibly including neuroinflammation—which culminate in progressive brain atrophy. However, the interplay between the two pathological molecular events and how both are associated with neurodegeneration is still unclear. Objective: We aimed to estimate the spatial inter-relationship between neurodegeneration, neuroinflammation and Aβ deposition in a cohort of 20 mild AD patients and 17 healthy controls (HC). Methods: We resorted to magnetic resonance imaging to measure cortical atrophy, using the radiotracer 11C-PK11195 PET to measure neuroinflammation levels and 11C-PiB PET to assess Aβ levels. Between-group comparisons were computed to explore AD-related changes in the three types of markers. To examine the effects of each one of the molecular pathologic mechanisms on neurodegeneration we computed: 1) ANCOVAs with the anatomic data, controlling for radiotracer uptake differences between groups and 2) voxel-based multiple regression analysis between-modalities. In addition, associations in anatomically defined regions of interests were also investigated. Results: We found significant differences between AD and controls in the levels of atrophy, neuroinflammation, and Aβ deposition. Associations between Aβ aggregation and brain atrophy were detected in AD in a widely distributed pattern, whereas associations between microglia activation and structural measures of neurodegeneration were restricted to few anatomically regions. Conclusion: In summary, Aβ deposition, as opposed to neuroinflammation, was more associated with cortical atrophy, suggesting a prominent role of Aβ in neurodegeneration at a mild stage of the AD.
Collapse
Affiliation(s)
- Lília Jorge
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Ricardo Martins
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Nádia Canário
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Carolina Xavier
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Antero Abrunhosa
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Department of Neurology, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal.,Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
105
|
Toppala S, Ekblad LL, Tuisku J, Helin S, Johansson JJ, Laine H, Löyttyniemi E, Marjamäki P, Blennow K, Zetterberg H, Jula A, Viitanen M, Rinne JO. Association of Early β-Amyloid Accumulation and Neuroinflammation Measured With [ 11C]PBR28 in Elderly Individuals Without Dementia. Neurology 2021; 96:e1608-e1619. [PMID: 33514647 PMCID: PMC8032368 DOI: 10.1212/wnl.0000000000011612] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To examine whether early β–amyloid (Aβ) accumulation and metabolic risk factors are associated with neuroinflammation in elderly individuals without dementia. Methods We examined 54 volunteers (mean age 70.0 years, 56% women, 51% APOE ɛ4 carriers) with the translocator protein (TSPO) tracer [11C]PBR28 to assess neuroinflammation and with [11C] Pittsburgh compound B (PiB) to assess cerebral Aβ accumulation. [11C]PBR28 and [11C]PiB standardized uptake value ratios (SUVRs) were quantified in 6 regions of interests by using the cerebellar cortex as a pseudo-reference and reference region, respectively. Fasting venous glucose, insulin, and high-sensitivity C-reactive protein (hs-CRP) values were determined. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. A subset of individuals (n = 11) underwent CSF sampling, and Aβ40, Aβ42, total tau, phospho-tau, soluble TREM2, and YKL-40 levels were measured. Results Among the whole study group, no significant association was found between [11C]PiB and [11C]PBR28 SUVR composite scores (slope 0.02, p = 0.30). However, higher [11C]PiB binding was associated with higher [11C]PBR28 binding among amyloid-negative ([11C]PiB composite score ≤1.5) (TSPO genotype–, age- and sex-adjusted slope 0.26, p = 0.008) but not among amyloid-positive (slope −0.004, p = 0.88) participants. Higher CSF soluble TREM2 (rs = 0.72, p = 0.01) and YKL-40 (rs = 0.63, p = 0.04) concentrations were associated with a higher [11C]PBR28 composite score. Higher body mass index, HOMA-IR, and hs-CRP were associated with higher [11C]PBR28 binding in brain regions where Aβ accumulation is first detected in Alzheimer disease. Conclusions While there was no association between amyloid and neuroinflammation in the overall study group, neuroinflammation was associated with amyloid among the subgroup at early stages of amyloid pathology.
Collapse
Affiliation(s)
- Sini Toppala
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland.
| | - Laura L Ekblad
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Jouni Tuisku
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Semi Helin
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Jarkko J Johansson
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Hanna Laine
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Eliisa Löyttyniemi
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Päivi Marjamäki
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Kaj Blennow
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Henrik Zetterberg
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Antti Jula
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Matti Viitanen
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| | - Juha O Rinne
- From the Turku PET Centre (S.T., L.L.E., J.T., S.H., J.J., P.M., J.O.R.) and Department of Biostatistics (E.L.), University of Turku; Kuopio City Home Care (S.T.), Rehabilitation and Medical Services for Elderly, Kuopio, Finland; Amsterdam Alzheimer Center (L.L.E.), Amsterdam UMC, the Netherlands; Department of Radiation Sciences (J.J.), Umeå University, Sweden; City of Turku (H.L.), Welfare Division, Turku City Hospital, Turku, Finland; Department of Medicine (H.L.), University of Turku, Turku University Hospital, Finland; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London; National Institute for Health and Welfare (A.J.); Department of Geriatrics (M.V.), Turku City Hospital; University of Turku (M.V.), Finland; Division of Clinical Geriatrics (M.V.), NVS, Karolinska Institutet, Stockholm, Sweden; and Division of Clinical Neurosciences (J.O.R.), Turku University Hospital, Finland
| |
Collapse
|
106
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
107
|
Abstract
The history of Alzheimer's disease (AD) started in 1907, but we needed to wait until the end of the century to identify the components of pathological hallmarks and genetic subtypes and to formulate the first pathogenic hypothesis. Thanks to biomarkers and new technologies, the concept of AD then rapidly changed from a static view of an amnestic dementia of the presenium to a biological entity that could be clinically manifested as normal cognition or dementia of different types. What is clearly emerging from studies is that AD is heterogeneous in each aspect, such as amyloid composition, tau distribution, relation between amyloid and tau, clinical symptoms, and genetic background, and thus it is probably impossible to explain AD with a single pathological process. The scientific approach to AD suffers from chronological mismatches between clinical, pathological, and technological data, causing difficulty in conceiving diagnostic gold standards and in creating models for drug discovery and screening. A recent mathematical computer-based approach offers the opportunity to study AD in real life and to provide a new point of view and the final missing pieces of the AD puzzle.
Collapse
Affiliation(s)
- Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research, and Child Health (NEUROFARBA), University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
108
|
Cao S, Fisher DW, Rodriguez G, Yu T, Dong H. Comparisons of neuroinflammation, microglial activation, and degeneration of the locus coeruleus-norepinephrine system in APP/PS1 and aging mice. J Neuroinflammation 2021; 18:10. [PMID: 33407625 PMCID: PMC7789762 DOI: 10.1186/s12974-020-02054-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The role of microglia in Alzheimer's disease (AD) pathogenesis is becoming increasingly important, as activation of these cell types likely contributes to both pathological and protective processes associated with all phases of the disease. During early AD pathogenesis, one of the first areas of degeneration is the locus coeruleus (LC), which provides broad innervation of the central nervous system and facilitates norepinephrine (NE) transmission. Though the LC-NE is likely to influence microglial dynamics, it is unclear how these systems change with AD compared to otherwise healthy aging. METHODS In this study, we evaluated the dynamic changes of neuroinflammation and neurodegeneration in the LC-NE system in the brain and spinal cord of APP/PS1 mice and aged WT mice using immunofluorescence and ELISA. RESULTS Our results demonstrated increased expression of inflammatory cytokines and microglial activation observed in the cortex, hippocampus, and spinal cord of APP/PS1 compared to WT mice. LC-NE neuron and fiber loss as well as reduced norepinephrine transporter (NET) expression was more evident in APP/PS1 mice, although NE levels were similar between 12-month-old APP/PS1 and WT mice. Notably, the degree of microglial activation, LC-NE nerve fiber loss, and NET reduction in the brain and spinal cord were more severe in 12-month-old APP/PS1 compared to 12- and 24-month-old WT mice. CONCLUSION These results suggest that elevated neuroinflammation and microglial activation in the brain and spinal cord of APP/PS1 mice correlate with significant degeneration of the LC-NE system.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 563000, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington Medical Center, 1959 NE Pacific St, Seattle, WA, 98195, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tian Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 6 West Xuefu Street, Zunyi, 563002, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
109
|
Ohm DT, Fought AJ, Martersteck A, Coventry C, Sridhar J, Gefen T, Weintraub S, Bigio E, Mesulam M, Rogalski E, Geula C. Accumulation of neurofibrillary tangles and activated microglia is associated with lower neuron densities in the aphasic variant of Alzheimer's disease. Brain Pathol 2021; 31:189-204. [PMID: 33010092 PMCID: PMC7855834 DOI: 10.1111/bpa.12902] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The neurofibrillary tangles (NFT) and amyloid-ß plaques (AP) that comprise Alzheimer's disease (AD) neuropathology are associated with neurodegeneration and microglial activation. Activated microglia exist on a dynamic spectrum of morphologic subtypes that include resting, surveillant microglia capable of converting to activated, hypertrophic microglia closely linked to neuroinflammatory processes and AD neuropathology in amnestic AD. However, quantitative analyses of microglial subtypes and neurons are lacking in non-amnestic clinical AD variants, including primary progressive aphasia (PPA-AD). PPA-AD is a language disorder characterized by cortical atrophy and NFT densities concentrated to the language-dominant hemisphere. Here, a stereologic investigation of five PPA-AD participants determined the densities and distributions of neurons and microglial subtypes to examine how cellular changes relate to AD neuropathology and may contribute to cortical atrophy. Adjacent series of sections were immunostained for neurons (NeuN) and microglia (HLA-DR) from bilateral language and non-language regions where in vivo cortical atrophy and Thioflavin-S-positive APs and NFTs were previously quantified. NeuN-positive neurons and morphologic subtypes of HLA-DR-positive microglia (i.e., resting [ramified] microglia and activated [hypertrophic] microglia) were quantified using unbiased stereology. Relationships between neurons, microglia, AD neuropathology, and cortical atrophy were determined using linear mixed models. NFT densities were positively associated with hypertrophic microglia densities (P < 0.01) and inversely related to neuron densities (P = 0.01). Hypertrophic microglia densities were inversely related to densities of neurons (P < 0.01) and ramified microglia (P < 0.01). Ramified microglia densities were positively associated with neuron densities (P = 0.02) and inversely related to cortical atrophy (P = 0.03). Our findings provide converging evidence of divergent roles for microglial subtypes in patterns of neurodegeneration, which includes hypertrophic microglia likely driving a neuroinflammatory response more sensitive to NFTs than APs in PPA-AD. Moreover, the accumulation of both NFTs and activated hypertrophic microglia in association with low neuron densities suggest they may collectively contribute to focal neurodegeneration characteristic of PPA-AD.
Collapse
Affiliation(s)
- Daniel T. Ohm
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Angela J. Fought
- Department of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Adam Martersteck
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Jaiashre Sridhar
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Eileen Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of PathologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - M.‐Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of NeurologyNorthwestern University Feinberg School of MedicineChicagoIL
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIL
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s DiseaseNorthwestern University Feinberg School of MedicineChicagoIL
| |
Collapse
|
110
|
Vacinova G, Vejražkova D, Rusina R, Holmerová I, Vaňková H, Jarolímová E, Včelák J, Bendlová B, Vaňková M. Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer's disease. Neural Regen Res 2021; 16:796-800. [PMID: 33063745 PMCID: PMC8067920 DOI: 10.4103/1673-5374.295340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, but it is very difficult to diagnose with certainty, so many AD studies have attempted to find early and relevant diagnostic markers. Regulated upon activation, normal T cell expressed and secreted (RANTES, also known as C-C chemokine ligand) is a chemokine involved in the migration of T cells and other lymphoid cells. Changes in RANTES levels and its expression in blood or in cerebrospinal fluid have been reported in some neurodegenerative diseases, such as Parkinson’s disease and multiple sclerosis, but also in metabolic diseases in which inflammation plays a role. The aim of this observational study was to assess RANTES levels in peripheral blood as clinical indicators of AD. Plasma levels of RANTES were investigated in 85 AD patients in a relatively early phase of AD (median 8.5 months after diagnosis; 39 men and 46 women; average age 75.7 years), and in 78 control subjects (24 men and 54 women; average age 66 years). We found much higher plasma levels of RANTES in AD patients compared to controls. A negative correlation of RANTES levels with age, disease duration, Fazekas scale score, and the medial temporal lobe atrophy (MTA) score (Scheltens’s scale) was found in AD patients, i.e., the higher levels corresponded to earlier stages of the disease. Plasma RANTES levels were not correlated with cognitive scores. In AD patients, RANTES levels were positively correlated with the levels of pro-inflammatory cytokines interleukin-6 and tumor necrosis factor-α, which is consistent with the well-known fact that AD is associated with inflammatory processes. RANTES levels were also positively correlated with insulin levels in AD patients, with insulin resistance (HOMA-R) and pancreatic beta cell function (HOMA-F). This study evaluated several clinical and metabolic factors that may affect plasma levels of RANTES, but these factors could not explain the increases in RANTES levels observed in AD patients. Plasma levels of RANTES appear to be an interesting peripheral marker for early stages of AD. The study was approved by the Ethics Committee of Institute of Endocrinology, Prague, Czech Republic on July 22, 2011.
Collapse
Affiliation(s)
- Gabriela Vacinova
- Department of Molecular Endocrinology, Institute of Endocrinology; Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniela Vejražkova
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Robert Rusina
- Department of Neurology, Third Faculty of Medicine of Charles University and Thomayer Hospital Prague, Czech Republic
| | - Iva Holmerová
- II. Internal Medicine Clinic, Third Faculty of Medicine, Charles University, Prague; Faculty of Humanitites, Charles University Prague, Czech Republic
| | - Hana Vaňková
- II. Internal Medicine Clinic, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Jarolímová
- II. Internal Medicine Clinic, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Josef Včelák
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Běla Bendlová
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| | - Markéta Vaňková
- Department of Molecular Endocrinology, Institute of Endocrinology, Prague, Czech Republic
| |
Collapse
|
111
|
Kong Y, Liu K, Hua T, Zhang C, Sun B, Guan Y. PET Imaging of Neutrophils Infiltration in Alzheimer's Disease Transgenic Mice. Front Neurol 2020; 11:523798. [PMID: 33362678 PMCID: PMC7758535 DOI: 10.3389/fneur.2020.523798] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/29/2020] [Indexed: 12/04/2022] Open
Abstract
Neutrophils are important components in the innate immune system. Neutrophil hyperactivation is regarded as a characteristic of Alzheimer's disease (AD). But in vivo imaging tools observing neutrophil activity in AD dynamically is lacking. This study aimed to identify neutrophil infiltration in AD transgenic mice. We used the AD triple-mutant transgenic mouse model and identified the genotype with RT-PCR. Behavioral experiments including an open-field test, a Morris water maze, and a Y-maze test were performed to evaluate the status of this AD model. 18F-AV45, 18F-PM-PBB3, 68Ga-PEG-cFLFLFK, and 18F-DPA714 were synthesized according to previous reports. We employed microPET to detect tracer uptake in the AD model and the control mice at different stages. Western blotting was used to observe the expression of functional proteins. We proved the successful establishment of AD models by RT-PCR, behavioral tests, and 18F-AV45 and 18F-PM-PBB3 PET imaging. We found an increased neutrophil accumulation in the brains of the AD mice through 68Ga-PEG-cFLFLFK PET imaging and Western blot assay. Our studies also demonstrated an elevated level of CAP37, which is produced by neutrophils, in the AD brain, and treatment with CAP37 promoted the expression of Iba1, iNOS, and COX-2 in BV2 cultures. Furthermore, our 18F-DPA714 PET imaging studies verified the raised activation of microglia in the brain of transgenic AD mice. Collectively, our findings indicate the increased activity of neutrophils in the brain and heart of AD model mice, 68Ga-PEG-cFLFLFK PET imaging represents a sensitive method to observe the status of neutrophils in AD, and infiltrated neutrophils can induce the activation of microglia by releasing CAP37 and blocking the activity of neutrophils may be beneficial for the control of AD progression.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kawai Liu
- Department of Mathematics, The Shanghai SMIC Private School, Shanghai, China
| | - Tao Hua
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
112
|
Hepp Rehfeldt SC, Majolo F, Goettert MI, Laufer S. c-Jun N-Terminal Kinase Inhibitors as Potential Leads for New Therapeutics for Alzheimer's Diseases. Int J Mol Sci 2020; 21:E9677. [PMID: 33352989 PMCID: PMC7765872 DOI: 10.3390/ijms21249677] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's Disease (AD) is becoming more prevalent as the population lives longer. For individuals over 60 years of age, the prevalence of AD is estimated at 40.19% across the world. Regarding the cognitive decline caused by the disease, mitogen-activated protein kinases (MAPK) pathways such as the c-Jun N-terminal kinase (JNK) pathway are involved in the progressive loss of neurons and synapses, brain atrophy, and augmentation of the brain ventricles, being activated by synaptic dysfunction, oxidative stress, and excitotoxicity. Nowadays, AD symptoms are manageable, but the disease itself remains incurable, thus the inhibition of JNK3 has been explored as a possible therapeutic target, considering that JNK is best known for its involvement in propagating pro-apoptotic signals. This review aims to present biological aspects of JNK, focusing on JNK3 and how it relates to AD. It was also explored the recent development of inhibitors that could be used in AD treatment since several drugs/compounds in phase III clinical trials failed. General aspects of the MAPK family, therapeutic targets, and experimental treatment in models are described and discussed throughout this review.
Collapse
Affiliation(s)
- Stephanie Cristine Hepp Rehfeldt
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
| | - Fernanda Majolo
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre CEP 90619-900, Rio Grande do Sul, Brazil
| | - Márcia Inês Goettert
- Graduate Program in Biotechnology, University of Vale do Taquari (Univates), Lajeado CEP 95914-014, Rio Grande do Sul, Brazil; (S.C.H.R.); (F.M.)
| | - Stefan Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Faculty of Sciences, University of Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
113
|
Dardiotis E, Bogdanos DP. Searching for Possible Links between Alzheimer's Disease and Systemic Sclerosis. Mediterr J Rheumatol 2020; 31:378-381. [PMID: 33521567 PMCID: PMC7841100 DOI: 10.31138/mjr.31.4.378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 11/04/2022] Open
Affiliation(s)
- Efthymios Dardiotis
- Department of Neurology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University General Hospital of Larissa, Larissa, Greece
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University General Hospital of Larissa, Larissa, Greece
| |
Collapse
|
114
|
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Transl Neurodegener 2020; 9:42. [PMID: 33239064 PMCID: PMC7689983 DOI: 10.1186/s40035-020-00221-2] [Citation(s) in RCA: 1235] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Microglia and astrocytes are key regulators of inflammatory responses in the central nervous system. The activation of microglia and astrocytes is heterogeneous and traditionally categorized as neurotoxic (M1-phenotype microglia and A1-phenotype astrocytes) or neuroprotective (M2-phenotype microglia and A2-phenotype astrocytes). However, this dichotomized classification may not reflect the various phenotypes of microglia and astrocytes. The relationship between these activated glial cells is also very complicated, and the phenotypic distribution can change, based on the progression of neurodegenerative diseases. A better understanding of the roles of microglia and astrocytes in neurodegenerative diseases is essential for developing effective therapies. In this review, we discuss the roles of inflammatory response in neurodegenerative diseases, focusing on the contributions of microglia and astrocytes and their relationship. In addition, we discuss biomarkers to measure neuroinflammation and studies on therapeutic drugs that can modulate neuroinflammation.
Collapse
Affiliation(s)
- Hyuk Sung Kwon
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University College of Medicine, Seoul, Republic of Korea.
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Republic of Korea.
| |
Collapse
|
115
|
Fluid Candidate Biomarkers for Alzheimer's Disease: A Precision Medicine Approach. J Pers Med 2020; 10:jpm10040221. [PMID: 33187336 PMCID: PMC7712586 DOI: 10.3390/jpm10040221] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
A plethora of dynamic pathophysiological mechanisms underpins highly heterogeneous phenotypes in the field of dementia, particularly in Alzheimer's disease (AD). In such a faceted scenario, a biomarker-guided approach, through the implementation of specific fluid biomarkers individually reflecting distinct molecular pathways in the brain, may help establish a proper clinical diagnosis, even in its preclinical stages. Recently, ultrasensitive assays may detect different neurodegenerative mechanisms in blood earlier. ß-amyloid (Aß) peptides, phosphorylated-tau (p-tau), and neurofilament light chain (NFL) measured in blood are gaining momentum as candidate biomarkers for AD. P-tau is currently the more convincing plasma biomarker for the diagnostic workup of AD. The clinical role of plasma Aβ peptides should be better elucidated with further studies that also compare the accuracy of the different ultrasensitive techniques. Blood NFL is promising as a proxy of neurodegeneration process tout court. Protein misfolding amplification assays can accurately detect α-synuclein in cerebrospinal fluid (CSF), thus representing advancement in the pathologic stratification of AD. In CSF, neurogranin and YKL-40 are further candidate biomarkers tracking synaptic disruption and neuroinflammation, which are additional key pathophysiological pathways related to AD genesis. Advanced statistical analysis using clinical scores and biomarker data to bring together individuals with AD from large heterogeneous cohorts into consistent clusters may promote the discovery of pathophysiological causes and detection of tailored treatments.
Collapse
|
116
|
Trojan E, Bryniarska N, Leśkiewicz M, Regulska M, Chamera K, Szuster-Głuszczak M, Leopoldo M, Lacivita E, Basta-Kaim A. The Contribution of Formyl Peptide Receptor Dysfunction to the Course of Neuroinflammation: A Potential Role in the Brain Pathology. Curr Neuropharmacol 2020; 18:229-249. [PMID: 31629396 PMCID: PMC7327951 DOI: 10.2174/1570159x17666191019170244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammatory processes within the central nervous system (CNS) are in part responsible for the development of neurodegenerative and psychiatric diseases. These processes are associated with, among other things, the increased and disturbed activation of microglia and the elevated production of proinflammatory factors. Recent studies indicated that the disruption of the process of resolution of inflammation (RoI) may be the cause of CNS disorders. It is shown that the RoI is regulated by endogenous molecules called specialized pro-resolving mediators (SPMs), which interact with specific membrane receptors. Some SPMs activate formyl peptide receptors (FPRs), which belong to the family of seven-transmembrane G protein-coupled receptors. These receptors take part not only in the proinflammatory response but also in the resolution of the inflammation process. Therefore, the activation of FPRs might have complex consequences. This review discusses the potential role of FPRs, and in particular the role of FPR2 subtype, in the brain under physiological and pathological conditions and their involvement in processes underlying neurodegenerative and psychiatric disorders as well as ischemia, the pathogenesis of which involves the dysfunction of inflammatory processes.
Collapse
Affiliation(s)
- Ewa Trojan
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Natalia Bryniarska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Monika Leśkiewicz
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Regulska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Katarzyna Chamera
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Magdalena Szuster-Głuszczak
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| | - Marcello Leopoldo
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy - Drug Sciences, University of Bari, via Orabona 4, 70125 Bari, Italy
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St. 31-343 Krakow, Poland
| |
Collapse
|
117
|
Kreisl WC, Kim MJ, Coughlin JM, Henter ID, Owen DR, Innis RB. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol 2020; 19:940-950. [PMID: 33098803 PMCID: PMC7912433 DOI: 10.1016/s1474-4422(20)30346-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
A growing need exists for reliable in-vivo measurement of neuroinflammation to better characterise the inflammatory processes underlying various diseases and to inform the development of novel therapeutics that target deleterious glial activity. PET is well suited to quantify neuroinflammation and has the potential to discriminate components of the neuroimmune response. However, there are several obstacles to the reliable quantification of neuroinflammation by PET imaging. Despite these challenges, PET studies have consistently identified associations between neuroimmune responses and pathophysiology in brain disorders such as Alzheimer's disease. Tissue studies have also begun to clarify the meaning of changes in PET signal in some diseases. Furthermore, although PET imaging of neuroinflammation does not have an established clinical application, novel targets are under investigation and a small but growing number of studies have suggested that this imaging modality could have a role in drug development. Future studies are needed to further improve our knowledge of the cellular mechanisms that underlie changes in PET signal, how immune response contributes to neurological disease, and how it might be therapeutically modified.
Collapse
Affiliation(s)
- William C Kreisl
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Min-Jeong Kim
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Jennifer M Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
118
|
Air Pollution-Related Brain Metal Dyshomeostasis as a Potential Risk Factor for Neurodevelopmental Disorders and Neurodegenerative Diseases. ATMOSPHERE 2020. [DOI: 10.3390/atmos11101098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increasing evidence links air pollution (AP) exposure to effects on the central nervous system structure and function. Particulate matter AP, especially the ultrafine (nanoparticle) components, can carry numerous metal and trace element contaminants that can reach the brain in utero and after birth. Excess brain exposure to either essential or non-essential elements can result in brain dyshomeostasis, which has been implicated in both neurodevelopmental disorders (NDDs; autism spectrum disorder, schizophrenia, and attention deficit hyperactivity disorder) and neurodegenerative diseases (NDGDs; Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis). This review summarizes the current understanding of the extent to which the inhalational or intranasal instillation of metals reproduces in vivo the shared features of NDDs and NDGDs, including enlarged lateral ventricles, alterations in myelination, glutamatergic dysfunction, neuronal cell death, inflammation, microglial activation, oxidative stress, mitochondrial dysfunction, altered social behaviors, cognitive dysfunction, and impulsivity. Although evidence is limited to date, neuronal cell death, oxidative stress, and mitochondrial dysfunction are reproduced by numerous metals. Understanding the specific contribution of metals/trace elements to this neurotoxicity can guide the development of more realistic animal exposure models of human AP exposure and consequently lead to a more meaningful approach to mechanistic studies, potential intervention strategies, and regulatory requirements.
Collapse
|
119
|
Nicastro N, Malpetti M, Mak E, Williams GB, Bevan-Jones WR, Carter SF, Passamonti L, Fryer TD, Hong YT, Aigbirhio FI, Rowe JB, O'Brien JT. Gray matter changes related to microglial activation in Alzheimer's disease. Neurobiol Aging 2020; 94:236-242. [PMID: 32663716 PMCID: PMC7456794 DOI: 10.1016/j.neurobiolaging.2020.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Neuroinflammation is increasingly recognized as playing a key pathogenetic role in Alzheimer's disease (AD). We examined the relationship between in vivo neuroinflammation and gray matter (GM) changes. Twenty-eight subjects with clinically probable AD (n = 14) and amyloid-positive mild cognitive impairment (n = 14) (age 71.9 ± 8.4 years, 46% female) and 24 healthy controls underwent structural 3T brain MRI. AD/mild cognitive impairment participants exhibited GM atrophy and cortical thinning in AD-related temporoparietal regions (false discovery rate-corrected p < 0.05). Patients also showed increased microglial activation in temporal cortices. Higher 11C-PK11195 binding in these regions was associated with reduced volume and cortical thickness in parietal, occipital, and cingulate areas (false discovery rate p < 0.05). Hippocampal GM atrophy and parahippocampal cortical thinning were related to worse cognition (p < 0.05), but these effects were not mediated by microglial activation. This study demonstrates an association between in vivo microglial activation and markers of GM damage in AD, positioning neuroinflammation as a potential target for immunotherapeutic strategies.
Collapse
Affiliation(s)
- Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, Geneva University Hospitals, Switzerland.
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Guy B Williams
- Wolfson Brain Imaging Centre, Cognition University of Cambridge, Cambridge, UK
| | | | - Stephen F Carter
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Consiglio Nazionale delle Ricerche (CNR), Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Milano, Italy
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, Cognition University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Wolfson Brain Imaging Centre, Cognition University of Cambridge, Cambridge, UK
| | | | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
120
|
Chandran R, Li W, Ahmed HA, Dong G, Ward RA, He L, Doueiry C, Ergul A. Diabetic rats are more susceptible to cognitive decline in a model of microemboli-mediated vascular contributions to cognitive impairment and dementia. Brain Res 2020; 1749:147132. [PMID: 33002484 DOI: 10.1016/j.brainres.2020.147132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
Vascular disease plays an important role in all kinds of cognitive impairment and dementia. Diabetes increases the risk of vascular disease and dementia. However, it is not clear how existing vascular disease in the brain accelerates the development of small vessel disease and promotes cognitive dysfunction in diabetes. We used microemboli (ME) injection model in the current study to test the hypothesis that cerebrovascular dysfunction in diabetes facilitates entrapment of ME leading to inflammation and cognitive decline. We investigated cognitive function, axonal/white matter (WM) changes, neurovascular coupling, and microglial activation in control and diabetic male and female Wistar rats subjected to sham or low/high dose ME injection. Diabetic male animals had cognitive deficits, WM demyelination and greater microglial activation than the control animals even at baseline. Functional hyperemia gradually declined in diabetic male animals after ME injection. Both low and high ME injection worsened WM damage and increased microglial activation in diabetic male and female animals. Low ME did not cause cognitive decline in controls, while promoting learning/memory deficits in diabetic female rats and no further decline in diabetic male animals. High ME led to cognitive decline in control male rats and exacerbated the deficits in diabetic cohort. These results suggest that the existing cerebrovascular dysfunction in diabetes may facilitate ME-mediated demyelination leading to cognitive decline. It is important to integrate comorbidities/sex as a biological variable into experimental models for the development of preventive or therapeutic targets.
Collapse
Affiliation(s)
- Raghavendar Chandran
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Weiguo Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States.
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Guangkuo Dong
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Rebecca A Ward
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Lianying He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Caren Doueiry
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Adviye Ergul
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, United States
| |
Collapse
|
121
|
Bjorkli C, Sandvig A, Sandvig I. Bridging the Gap Between Fluid Biomarkers for Alzheimer's Disease, Model Systems, and Patients. Front Aging Neurosci 2020; 12:272. [PMID: 32982716 PMCID: PMC7492751 DOI: 10.3389/fnagi.2020.00272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease characterized by the accumulation of two proteins in fibrillar form: amyloid-β (Aβ) and tau. Despite decades of intensive research, we cannot yet pinpoint the exact cause of the disease or unequivocally determine the exact mechanism(s) underlying its progression. This confounds early diagnosis and treatment of the disease. Cerebrospinal fluid (CSF) biomarkers, which can reveal ongoing biochemical changes in the brain, can help monitor developing AD pathology prior to clinical diagnosis. Here we review preclinical and clinical investigations of commonly used biomarkers in animals and patients with AD, which can bridge translation from model systems into the clinic. The core AD biomarkers have been found to translate well across species, whereas biomarkers of neuroinflammation translate to a lesser extent. Nevertheless, there is no absolute equivalence between biomarkers in human AD patients and those examined in preclinical models in terms of revealing key pathological hallmarks of the disease. In this review, we provide an overview of current but also novel AD biomarkers and how they relate to key constituents of the pathological cascade, highlighting confounding factors and pitfalls in interpretation, and also provide recommendations for standardized procedures during sample collection to enhance the translational validity of preclinical AD models.
Collapse
Affiliation(s)
- Christiana Bjorkli
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Axel Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute of Neuromedicine and Movement Science, Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Pharmacology and Clinical Neurosciences, Division of Neuro, Head, and Neck, University Hospital of Umeå, Umeå, Sweden
| | - Ioanna Sandvig
- Sandvig Group, Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
122
|
Michalska P, Mayo P, Fernández-Mendívil C, Tenti G, Duarte P, Buendia I, Ramos MT, López MG, Menéndez JC, León R. Antioxidant, Anti-inflammatory and Neuroprotective Profiles of Novel 1,4-Dihydropyridine Derivatives for the Treatment of Alzheimer's Disease. Antioxidants (Basel) 2020; 9:antiox9080650. [PMID: 32708053 PMCID: PMC7463999 DOI: 10.3390/antiox9080650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease is a chronic and irreversible pathological process that has become the most prevalent neurodegenerative disease. Currently, it is considered a multifactorial disease where oxidative stress and chronic neuroinflammation play a crucial role in its onset and development. Its characteristic neuronal loss has been related to the formation of neurofibrillary tangles mainly composed by hyperphosphorylated tau protein. Hyperphosphorylation of tau protein is related to the over-activity of GSK-3β, a kinase that participates in several pathological mechanisms including neuroinflammation. Neuronal loss is also related to cytosolic Ca2+ homeostasis dysregulation that triggers apoptosis and free radicals production, contributing to oxidative damage and, finally, neuronal death. Under these premises, we have obtained a new family of 4,7-dihydro-2H-pyrazolo[3–b]pyridines as multitarget directed ligands showing potent antioxidant properties and able to scavenge both oxygen and nitrogen radical species, and also, with anti-inflammatory properties. Further characterization has demonstrated their capacity to inhibit GSK-3β and to block L-type voltage dependent calcium channels. Novel derivatives have also demonstrated an interesting neuroprotective profile on in vitro models of neurodegeneration. Finally, compound 4g revokes cellular death induced by tau hyperphosphorylation in hippocampal slices by blocking reactive oxygen species (ROS) production. In conclusion, the multitarget profile exhibited by these compounds is a novel therapeutic strategy of potential interest in the search of novel treatments for Alzheimer’s disease.
Collapse
Affiliation(s)
- Patrycja Michalska
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Paloma Mayo
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Giammarco Tenti
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - María Teresa Ramos
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Manuela G. López
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain; (G.T.); (M.T.R.); (J.C.M.)
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (P.M.); (P.M.); (C.F.-M.); (P.D.); (I.B.); (M.G.L.)
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-914-972-766
| |
Collapse
|
123
|
Eckenweber F, Medina-Luque J, Blume T, Sacher C, Biechele G, Wind K, Deussing M, Briel N, Lindner S, Boening G, von Ungern-Sternberg B, Unterrainer M, Albert NL, Zwergal A, Levin J, Bartenstein P, Cumming P, Rominger A, Höglinger GU, Herms J, Brendel M. Longitudinal TSPO expression in tau transgenic P301S mice predicts increased tau accumulation and deteriorated spatial learning. J Neuroinflammation 2020; 17:208. [PMID: 32660586 PMCID: PMC7358201 DOI: 10.1186/s12974-020-01883-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/30/2020] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO μPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. METHODS Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO μPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) μPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO μPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-β mouse models. RESULTS TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-β mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. CONCLUSIONS Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by μPET indicates a delayed time course when compared to amyloid-β mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-β mouse models. The contribution of microglial response to pathology accompanying amyloid-β and tau over-expression merits further investigation.
Collapse
Affiliation(s)
- Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Jose Medina-Luque
- Center of Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Tanja Blume
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- Center of Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
| | - Christian Sacher
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Nils Briel
- Center of Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Guido Boening
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | | | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
- Department of Nuclear Medicine, Inselspital Bern, Bern, Switzerland
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Jochen Herms
- Center of Neuropathology and Prion Research, University Hospital of Munich, LMU Munich, 81377, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany.
| |
Collapse
|
124
|
Joly-Amado A, Hunter J, Quadri Z, Zamudio F, Rocha-Rangel PV, Chan D, Kesarwani A, Nash K, Lee DC, Morgan D, Gordon MN, Selenica MLB. CCL2 Overexpression in the Brain Promotes Glial Activation and Accelerates Tau Pathology in a Mouse Model of Tauopathy. Front Immunol 2020; 11:997. [PMID: 32508844 PMCID: PMC7251073 DOI: 10.3389/fimmu.2020.00997] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Innate immune activation is a major contributor to Alzheimer's Disease (AD) pathophysiology, although the mechanisms involved are poorly understood. Chemokine C-C motif ligand (CCL) 2 is produced by neurons and glial cells and is upregulated in the AD brain. Transgene expression of CCL2 in mouse models of amyloidosis produces microglia-induced amyloid β oligomerization, a strong indication of the role of these activation pathways in the amyloidogenic processes of AD. We have previously shown that CCL2 polarizes microglia in wild type mice. However, how CCL2 signaling contributes to tau pathogenesis remains unknown. To address this question, CCL2 was delivered via recombinant adeno-associated virus serotype 9 into both cortex and hippocampus of a mouse model with tau pathology (rTg4510). We report that CCL2 overexpression aggravated tau pathology in rTg4510 as shown by the increase in Gallyas stained neurofibrillary tangles as well as phosphorylated tau-positive inclusions. In addition, biochemical analysis showed a reduction in the levels of detergent-soluble tau species followed by increase in the insoluble fraction, indicating a shift toward larger tau aggregates. Indeed, increased levels of high molecular weight species of phosphorylated tau were found in the mice injected with CCL2. We also report that worsening of tau pathology following CCL2 overexpression was accompanied by a distinct inflammatory response. We report an increase in leukocyte common antigen (CD45) and Cluster of differentiation 68 (CD68) expression in the brain of rTg4510 mice without altering the expression levels of a cell-surface protein Transmembrane Protein 119 (Tmem119) and ionized calcium-binding adaptor molecule 1 (Iba-1) in resident microglia. Furthermore, the analysis of cytokines in brain extract showed a significant increase in interleukin (IL)-6 and CCL3, while CCL5 levels were decreased in CCL2 mice. No changes were observed in IL-1α, IL-1β, TNF-α. IL-4, Vascular endothelial growth factor-VEGF, IL-13 and CCL11. Taken together our data report for the first time that overexpression of CCL2 promotes the increase of pathogenic tau species and is associated with glial neuroinflammatory changes that are deleterious. We propose that these events may contribute to the pathogenesis of Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Aurelie Joly-Amado
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jordan Hunter
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Zainuddin Quadri
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Frank Zamudio
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Patricia V Rocha-Rangel
- Michigan State University, Department of Translational Neuroscience, Grand Rapids, MI, United States
| | - Deanna Chan
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anisha Kesarwani
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kevin Nash
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Daniel C Lee
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Dave Morgan
- Michigan State University, Department of Translational Neuroscience, Grand Rapids, MI, United States
| | - Marcia N Gordon
- Michigan State University, Department of Translational Neuroscience, Grand Rapids, MI, United States
| | - Maj-Linda B Selenica
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
125
|
Malpetti M, Kievit RA, Passamonti L, Jones PS, Tsvetanov KA, Rittman T, Mak E, Nicastro N, Bevan-Jones WR, Su L, Hong YT, Fryer TD, Aigbirhio FI, O’Brien JT, Rowe JB. Microglial activation and tau burden predict cognitive decline in Alzheimer's disease. Brain 2020; 143:1588-1602. [PMID: 32380523 PMCID: PMC7241955 DOI: 10.1093/brain/awaa088] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 02/07/2020] [Indexed: 11/12/2022] Open
Abstract
Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer's disease. Understanding whether these features predict cognitive decline, alone or in combination, is crucial to develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how baseline assessments of in vivo tau pathology (measured by 18F-AV-1451 PET), neuroinflammation (measured by 11C-PK11195 PET) and brain atrophy (derived from structural MRI) predicted longitudinal cognitive changes in patients with Alzheimer's disease pathology. Twenty-six patients (n = 12 with clinically probable Alzheimer's dementia and n = 14 with amyloid-positive mild cognitive impairment) and 29 healthy control subjects underwent baseline assessment with 18F-AV-1451 PET, 11C-PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 years using the revised Addenbrooke's Cognitive Examination. Regional grey matter volumes, and regional binding of 18F-AV-1451 and 11C-PK11195 were derived from 15 temporo-parietal regions characteristically affected by Alzheimer's disease pathology. A principal component analysis was used on each imaging modality separately, to identify the main spatial distributions of pathology. A latent growth curve model was applied across the whole sample on longitudinal cognitive scores to estimate the rate of annual decline in each participant. We regressed the individuals' estimated rate of cognitive decline on the neuroimaging components and examined univariable predictive models with single-modality predictors, and a multi-modality predictive model, to identify the independent and combined prognostic value of the different neuroimaging markers. Principal component analysis identified a single component for the grey matter atrophy, while two components were found for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant correlations between the rate of cognitive decline and the first component of each imaging modality. In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal predictive model that included both components of 18F-AV-1451 and the first (i.e. anterior temporal) component for 11C-PK11195. However, the MRI-derived atrophy component and demographic variables were excluded from the optimal predictive model of cognitive decline. We conclude that temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in patients with symptomatic Alzheimer's disease pathology. This indicates the added value of PET biomarkers in predicting cognitive decline in Alzheimer's disease, over and above MRI measures of brain atrophy and demographic data. Our findings also support the strategy for targeting tau and neuroinflammation in disease-modifying therapy against Alzheimer's disease.
Collapse
Affiliation(s)
- Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Rogier A Kievit
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Institute of Molecular Bioimaging and Physiology, National Research Council, Milano, Italy
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Elijah Mak
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Nicolas Nicastro
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Geneva University Hospitals, Switzerland
| | | | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Young T Hong
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim D Fryer
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - John T O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Trust, Cambridge, UK
| |
Collapse
|
126
|
Vilaplana E, Rodriguez-Vieitez E, Ferreira D, Montal V, Almkvist O, Wall A, Lleó A, Westman E, Graff C, Fortea J, Nordberg A. Cortical microstructural correlates of astrocytosis in autosomal-dominant Alzheimer disease. Neurology 2020; 94:e2026-e2036. [PMID: 32291295 PMCID: PMC7282881 DOI: 10.1212/wnl.0000000000009405] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 11/18/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE To study the macrostructural and microstructural MRI correlates of brain astrocytosis, measured with 11C-deuterium-L-deprenyl (11C-DED)-PET, in familial autosomal-dominant Alzheimer disease (ADAD). METHODS The total sample (n = 31) comprised ADAD mutation carriers (n = 10 presymptomatic, 39.2 ± 10.6 years old; n = 3 symptomatic, 55.5 ± 2.0 years old) and noncarriers (n = 18, 44.0 ± 13.7 years old) belonging to families with mutations in either the presenilin-1 or amyloid precursor protein genes. All participants underwent structural and diffusion MRI and neuropsychological assessment, and 20 participants (6 presymptomatic and 3 symptomatic mutation carriers and 11 noncarriers) also underwent 11C-DED-PET. RESULTS Vertex-wise interaction analyses revealed a differential relationship between carriers and noncarriers in the association between 11C-DED binding and estimated years to onset (EYO) and between cortical mean diffusivity (MD) and EYO. These differences were due to higher 11C-DED binding in presymptomatic carriers, with lower binding in symptomatic carriers compared to noncarriers, and to lower cortical MD in presymptomatic carriers, with higher MD in symptomatic carriers compared to noncarriers. Using a vertex-wise local correlation approach, 11C-DED binding was negatively correlated with cortical MD and positively correlated with cortical thickness. CONCLUSIONS Our proof-of-concept study is the first to show that microstructural and macrostructural changes can reflect underlying neuroinflammatory mechanisms in early stages of Alzheimer disease (AD). The findings support a role for neuroinflammation in AD pathogenesis, with potential implications for the correct interpretation of neuroimaging biomarkers as surrogate endpoints in clinical trials.
Collapse
Affiliation(s)
- Eduard Vilaplana
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Elena Rodriguez-Vieitez
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Daniel Ferreira
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Victor Montal
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Ove Almkvist
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Anders Wall
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Alberto Lleó
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Eric Westman
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Caroline Graff
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Juan Fortea
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Agneta Nordberg
- From the Memory Unit, Department of Neurology (E.V., V.M., A.L., J.F.), Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, CIBERNED (E.V., V.M., A.L., J.F.), Madrid, Spain; Department of Neurobiology (E.R.-V., D.F., O.A., E.W., A.N.), Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, and Division of Neurogeriatrics (C.G.), Karolinska Institutet, Stockholm Department of Psychology (O.A.), Stockholm University; The Aging Brain Unit (O.A., A.N.) and Unit for Hereditary Dementias (C.G.), Theme Aging, Karolinska University Hospital, Stockholm; Department of Surgical Sciences, Section of Nuclear Medicine & PET (A.W.), Uppsala University, Sweden; and Department of Neuroimaging (E.W.), Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| |
Collapse
|
127
|
Hampel H, Caraci F, Cuello AC, Caruso G, Nisticò R, Corbo M, Baldacci F, Toschi N, Garaci F, Chiesa PA, Verdooner SR, Akman-Anderson L, Hernández F, Ávila J, Emanuele E, Valenzuela PL, Lucía A, Watling M, Imbimbo BP, Vergallo A, Lista S. A Path Toward Precision Medicine for Neuroinflammatory Mechanisms in Alzheimer's Disease. Front Immunol 2020; 11:456. [PMID: 32296418 PMCID: PMC7137904 DOI: 10.3389/fimmu.2020.00456] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation commences decades before Alzheimer's disease (AD) clinical onset and represents one of the earliest pathomechanistic alterations throughout the AD continuum. Large-scale genome-wide association studies point out several genetic variants—TREM2, CD33, PILRA, CR1, MS4A, CLU, ABCA7, EPHA1, and HLA-DRB5-HLA-DRB1—potentially linked to neuroinflammation. Most of these genes are involved in proinflammatory intracellular signaling, cytokines/interleukins/cell turnover, synaptic activity, lipid metabolism, and vesicle trafficking. Proteomic studies indicate that a plethora of interconnected aberrant molecular pathways, set off and perpetuated by TNF-α, TGF-β, IL-1β, and the receptor protein TREM2, are involved in neuroinflammation. Microglia and astrocytes are key cellular drivers and regulators of neuroinflammation. Under physiological conditions, they are important for neurotransmission and synaptic homeostasis. In AD, there is a turning point throughout its pathophysiological evolution where glial cells sustain an overexpressed inflammatory response that synergizes with amyloid-β and tau accumulation, and drives synaptotoxicity and neurodegeneration in a self-reinforcing manner. Despite a strong therapeutic rationale, previous clinical trials investigating compounds with anti-inflammatory properties, including non-steroidal anti-inflammatory drugs (NSAIDs), did not achieve primary efficacy endpoints. It is conceivable that study design issues, including the lack of diagnostic accuracy and biomarkers for target population identification and proof of mechanism, may partially explain the negative outcomes. However, a recent meta-analysis indicates a potential biological effect of NSAIDs. In this regard, candidate fluid biomarkers of neuroinflammation are under analytical/clinical validation, i.e., TREM2, IL-1β, MCP-1, IL-6, TNF-α receptor complexes, TGF-β, and YKL-40. PET radio-ligands are investigated to accomplish in vivo and longitudinal regional exploration of neuroinflammation. Biomarkers tracking different molecular pathways (body fluid matrixes) along with brain neuroinflammatory endophenotypes (neuroimaging markers), can untangle temporal–spatial dynamics between neuroinflammation and other AD pathophysiological mechanisms. Robust biomarker–drug codevelopment pipelines are expected to enrich large-scale clinical trials testing new-generation compounds active, directly or indirectly, on neuroinflammatory targets and displaying putative disease-modifying effects: novel NSAIDs, AL002 (anti-TREM2 antibody), anti-Aβ protofibrils (BAN2401), and AL003 (anti-CD33 antibody). As a next step, taking advantage of breakthrough and multimodal techniques coupled with a systems biology approach is the path to pursue for developing individualized therapeutic strategies targeting neuroinflammation under the framework of precision medicine.
Collapse
Affiliation(s)
- Harald Hampel
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.,Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | | | - Robert Nisticò
- Laboratory of Neuropharmacology, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.,School of Pharmacy, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Milan, Italy
| | - Filippo Baldacci
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Department of Radiology, "Athinoula A. Martinos" Center for Biomedical Imaging, Boston, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy.,Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Patrizia A Chiesa
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | | | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | | | - Alejandro Lucía
- Faculty of Sport Sciences, Universidad Europea de Madrid, Madrid, Spain.,Research Institute of the Hospital 12 de Octubre ("imas"), Madrid, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | | | - Bruno P Imbimbo
- Research & Development Department, Chiesi Farmaceutici, Parma, Italy
| | - Andrea Vergallo
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France
| | - Simone Lista
- Sorbonne University, GRC no. 21, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Boulevard de l'hôpital, Paris, France.,Brain & Spine Institute (ICM), INSERM U 1127, CNRS UMR 7225, Boulevard de l'hôpital, Paris, France.,Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| |
Collapse
|
128
|
Lim SL, Tran DN, Kieu Z, Chen C, Villanueva E, Ghiaar S, Gallup V, Zumkehr J, Cribbs DH, Rodriguez-Ortiz CJ, Kitazawa M. Genetic Ablation of Hematopoietic Cell Kinase Accelerates Alzheimer's Disease-Like Neuropathology in Tg2576 Mice. Mol Neurobiol 2020; 57:2447-2460. [PMID: 32146679 DOI: 10.1007/s12035-020-01894-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 01/31/2023]
Abstract
Microglial dysregulation, pertaining to impairment in phagocytosis, clearance and containment of amyloid-β (Aβ), and activation of neuroinflammation, has been posited to contribute to the pathogenesis of Alzheimer's disease (AD). Detailed cellular mechanisms that are disrupted during the disease course to display such impairment in microglia, however, remain largely undetermined. We hypothesize that loss of hematopoietic cell kinase (HCK), a phagocytosis-regulating member of the Src family tyrosine kinases that mediate signals from triggering receptor expressed on myeloid cells 2 and other immunoreceptors, impairs microglial homeostasis and Aβ clearance, leading to the accelerated buildup of Aβ pathology and cognitive decline during the early stage of neuropathological development. To elucidate the pivotal role of HCK in AD, we generated a constitutive knockout of HCK in the Tg2576 mouse model of AD. We found that HCK deficiency accelerated cognitive decline along with elevated Aβ level and plaque burden, attenuated microglial Aβ phagocytosis, induced iNOS expression in microglial clusters, and reduced pre-synaptic protein at the hippocampal regions. Our findings substantiate that HCK plays a prominent role in regulating microglial neuroprotective functions and attenuating early AD neuropathology.
Collapse
Affiliation(s)
- Siok Lam Lim
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Diana Nguyen Tran
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Zanett Kieu
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Christine Chen
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Emmanuel Villanueva
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Sagar Ghiaar
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Victoria Gallup
- Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Joannee Zumkehr
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - David H Cribbs
- Department of Neurology, University of California, Irvine, CA, 92697, USA
| | - Carlos J Rodriguez-Ortiz
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA.,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA
| | - Masashi Kitazawa
- Department of Medicine, Center for Occupational and Environmental Health, University of California, Irvine, CA, 92617, USA. .,Molecular and Cell Biology, University of California, Merced, CA, 95343, USA.
| |
Collapse
|
129
|
Borchert T, Hess A, Lukačević M, Ross TL, Bengel FM, Thackeray JT. Angiotensin-converting enzyme inhibitor treatment early after myocardial infarction attenuates acute cardiac and neuroinflammation without effect on chronic neuroinflammation. Eur J Nucl Med Mol Imaging 2020; 47:1757-1768. [PMID: 32125488 PMCID: PMC7248052 DOI: 10.1007/s00259-020-04736-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Purpose Myocardial infarction (MI) triggers a local inflammatory response which orchestrates cardiac repair and contributes to concurrent neuroinflammation. Angiotensin-converting enzyme (ACE) inhibitor therapy not only attenuates cardiac remodeling by interfering with the neurohumoral system, but also influences acute leukocyte mobilization from hematopoietic reservoirs. Here, we seek to dissect the anti-inflammatory and anti-remodeling contributions of ACE inhibitors to the benefit of heart and brain outcomes after MI. Methods C57BL/6 mice underwent permanent coronary artery ligation (n = 41) or sham surgery (n = 9). Subgroups received ACE inhibitor enalapril (20 mg/kg, oral) either early (anti-inflammatory strategy; 10 days treatment beginning 3 days prior to surgery; n = 9) or delayed (anti-remodeling; continuous from 7 days post-MI; n = 16), or no therapy (n = 16). Cardiac and neuroinflammation were serially investigated using whole-body macrophage- and microglia-targeted translocator protein (TSPO) PET at 3 days, 7 days, and 8 weeks. In vivo PET signal was validated by autoradiography and histopathology. Results Myocardial infarction evoked higher TSPO signal in the infarct region at 3 days and 7 days compared with sham (p < 0.001), with concurrent elevation in brain TSPO signal (+ 18%, p = 0.005). At 8 weeks after MI, remote myocardium TSPO signal was increased, consistent with mitochondrial stress, and corresponding to recurrent neuroinflammation. Early enalapril treatment lowered the acute TSPO signal in the heart and brain by 55% (p < 0.001) and 14% (p = 0.045), respectively. The acute infarct signal predicted late functional outcome (r = 0.418, p = 0.038). Delayed enalapril treatment reduced chronic myocardial TSPO signal, consistent with alleviated mitochondrial stress. Early enalapril therapy tended to lower TSPO signal in the failing myocardium at 8 weeks after MI (p = 0.090) without an effect on chronic neuroinflammation. Conclusions Whole-body TSPO PET identifies myocardial macrophage infiltration and neuroinflammation after MI, and altered cardiomyocyte mitochondrial density in chronic heart failure. Improved chronic cardiac outcome by enalapril treatment derives partially from acute anti-inflammatory activity with complementary benefits in later stages. Whereas early ACE inhibitor therapy lowers acute neuroinflammation, chronic alleviation is not achieved by early or delayed ACE inhibitor therapy, suggesting a more complex mechanism underlying recurrent neuroinflammation in ischemic heart failure. Electronic supplementary material The online version of this article (10.1007/s00259-020-04736-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Borchert
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Annika Hess
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Mario Lukačević
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Carl Neuberg-Str. 1, D-30625, Hannover, Germany.
| |
Collapse
|
130
|
Chen HL, Yamada K, Sakai K, Lu CH, Chen MH, Lin WC. Alteration of brain temperature and systemic inflammation in Parkinson's disease. Neurol Sci 2020; 41:1267-1276. [PMID: 31925613 PMCID: PMC7196953 DOI: 10.1007/s10072-019-04217-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/20/2019] [Indexed: 01/15/2023]
Abstract
Objectives Parkinson’s disease (PD) is known to be related to various factors, including neuroinflammation, increased oxidative stress, and brain temperature alteration. We aimed to evaluate the correlation between these factors using diffusion-weighted imaging (DWI) thermometry and blood tests of systemic inflammation. Methods From July 2012 to Jun 2017, 103 patients with PD (44 men and 59 women; mean age, 60.43 ± 9.12 years) and 106 sex- and age-matched healthy volunteers (48 men and 58 women; mean age, 58.16 ± 8.45 years) retrospectively underwent magnetic resonance DWI thermometry to estimate brain intraventricular temperature (Tv). Subjects were divided into three subgroups in light of their ages. The tested inflammatory markers included plasma nuclear DNA, mitochondrial DNA, apoptotic leukocytes, and serum adhesion molecules. The correlations among the Tv values, clinical severity, and systemic inflammatory markers were then calculated. Results The PD patients did not show a natural trend of decline in Tv with age. Comparisons among the different age groups revealed that the younger PD subjects had significantly lower Tv values than the younger controls, but the older subjects had no significant group differences. Overall, the PD patients exhibited lower Tv values than the controls, as well as increased oxidative stress. The brain temperature showed positive correlations with inflammatory markers, including plasma nuclear DNA and L-selectin levels, in all the subjects. Conclusions Possible pathophysiological correlations between systemic inflammation and brain temperature were indicated by the results of this study, a finding which may aid us in investigating the underlying pathogenesis of PD. Electronic supplementary material The online version of this article (10.1007/s10072-019-04217-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hsiu-Ling Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| | - Kei Yamada
- Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Koji Sakai
- Department of Radiology, Kyoto Prefectural University of Medicine, Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566 Japan
| | - Cheng-Hsien Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| | - Meng-Hsiang Chen
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| | - Wei-Che Lin
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, No. 123, Dapi Rd. Niaosong Dist, Kaohsiung City, 83301 Taiwan Republic of China
| |
Collapse
|
131
|
Parbo P, Madsen LS, Ismail R, Zetterberg H, Blennow K, Eskildsen SF, Vorup-Jensen T, Brooks DJ. Low plasma neurofilament light levels associated with raised cortical microglial activation suggest inflammation acts to protect prodromal Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2020; 12:3. [PMID: 31898549 PMCID: PMC6941285 DOI: 10.1186/s13195-019-0574-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Plasma and cerebrospinal fluid levels of neurofilament light (NfL), a marker of axonal degeneration, have previously been reported to be raised in patients with clinically diagnosed Alzheimer's disease (AD). Activated microglia, an intrinsic inflammatory response to brain lesions, are also known to be present in a majority of Alzheimer or mild cognitive impaired (MCI) subjects with raised β-amyloid load on their positron emission tomography (PET) imaging. It is now considered that the earliest phase of inflammation may be protective to the brain, removing amyloid plaques and remodelling synapses. Our aim was to determine whether the cortical inflammation/microglial activation load, measured with the translocator protein marker 11C-PK11195 PET, was correlated with plasma NfL levels in prodromal and early Alzheimer subjects. METHODS Twenty-seven MCI or early AD cases with raised cortical β-amyloid load had 11C-(R)-PK11195 PET, structural and diffusion magnetic resonance imaging, and levels of their plasma NfL measured. Correlation analyses were performed using surface-based cortical statistics. RESULTS Statistical maps localised areas in MCI cases where levels of brain inflammation correlated inversely with plasma NfL levels. These areas were localised in the frontal, parietal, precuneus, occipital, and sensorimotor cortices. Brain inflammation correlated negatively with mean diffusivity (MD) of water with regions overlapping. CONCLUSION We conclude that an inverse correlation between levels of inflammation in cortical areas and plasma NfL levels indicates that microglial activation may initially be protective to axons in AD. This is supported by the finding of an inverse association between cortical water diffusivity and microglial activation in the same regions. Our findings suggest a rationale for stimulating microglial activity in early and prodromal Alzheimer cases-possibly using immunotherapy. Plasma NfL levels could be used as a measure of the protective efficacy of immune stimulation and for monitoring efficacy of putative neuroprotective agents.
Collapse
Affiliation(s)
- Peter Parbo
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark. .,Department of Clinical Physiology, Viborg Regional Hospital, Viborg, Denmark.
| | - Lasse Stensvig Madsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Rola Ismail
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon F Eskildsen
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine/Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Institute of Neuroscience, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| |
Collapse
|
132
|
Katayama H. Anti-interleukin-17A and anti-interleukin-23 antibodies may be effective against Alzheimer's disease: Role of neutrophils in the pathogenesis. Brain Behav 2020; 10:e01504. [PMID: 31849180 PMCID: PMC6955921 DOI: 10.1002/brb3.1504] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Despite the remarkable progress achieved in the research on Alzheimer's disease (AD), its exact pathogenesis is not fully understood and effective therapies do not currently exist. In order to find effective therapy for AD, I ranged extensively over the literature and found an important paper by Tiffany and colleagues. RESULTS AND CONCLUSION Neuroinflammation has been proposed as a possible cause or driving force of AD. The discovery by Tiffany et al. that amyloid β (Aβ) is a formylpeptide receptor 2 agonist indicated that Aβ is a potent chemoattractant for phagocytic leukocytes. Therefore, in all likelihood Aβ attracts peripheral blood neutrophils, monocytes, as well as microglia cells in brain parenchyma, and activates them. However, the role of microglia cells and their precursor monocytes in AD pathogenesis remains elusive. Recently, neutrophils were found to be present in areas with Aβ deposits in AD brain and in transgenic AD model mice. Because brain is vulnerable to the effects of reactive oxygen species (ROS) and neutrophils secrete a large amount of ROS, neutrophils look like a driving force of AD. Therefore, a possibility arises that anti-IL-17A and anti-IL-23 antibodies are effective against AD, because these antibodies can be thought to interfere with neutrophil trafficking from the bone marrow to the blood circulation and thus inhibit neutrophil infiltration into AD brain. Clinical studies using anti-IL-17A and anti-IL-23 antibodies in patients with AD are required.
Collapse
|
133
|
Milà-Alomà M, Suárez-Calvet M, Molinuevo JL. Latest advances in cerebrospinal fluid and blood biomarkers of Alzheimer's disease. Ther Adv Neurol Disord 2019; 12:1756286419888819. [PMID: 31897088 PMCID: PMC6920596 DOI: 10.1177/1756286419888819] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and its diagnosis has classically been based on clinical symptoms. Recently, a biological rather than a syndromic definition of the disease has been proposed that is based on biomarkers that reflect neuropathological changes. In AD, there are two main biomarker categories, namely neuroimaging and fluid biomarkers [cerebrospinal fluid (CSF) and blood]. As a complex and multifactorial disease, AD biomarkers are important for an accurate diagnosis and to stage the disease, assess the prognosis, test target engagement, and measure the response to treatment. In addition, biomarkers provide us with information that, even if it does not have a current clinical use, helps us to understand the mechanisms of the disease. In addition to the pathological hallmarks of AD, which include amyloid-β and tau deposition, there are multiple concomitant pathological events that play a key role in the disease. These include, but are not limited to, neurodegeneration, inflammation, vascular dysregulation or synaptic dysfunction. In addition, AD patients often have an accumulation of other proteins including α-synuclein and TDP-43, which may have a pathogenic effect on AD. In combination, there is a need to have biomarkers that reflect different aspects of AD pathogenesis and this will be important in the future to establish what are the most suitable applications for each of these AD-related biomarkers. It is unclear whether sex, gender, or both have an effect on the causes of AD. There may be differences in fluid biomarkers due to sex but this issue has often been neglected and warrants further research. In this review, we summarize the current state of the principal AD fluid biomarkers and discuss the effect of sex on these biomarkers.
Collapse
Affiliation(s)
- Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC),
Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- Department of Neurology, Hospital del Mar,
Barcelona
| | - José Luís Molinuevo
- Scientific Director, Alzheimer’s Prevention
Program, Barcelonaβeta Brain Research Center, Wellington 30, Barcelona,
08005, Spain
- IMIM (Hospital del Mar Medical Research
Institute), Barcelona
- CIBER Fragilidad y Envejecimiento Saludable,
Madrid, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
134
|
Chandra A, Valkimadi PE, Pagano G, Cousins O, Dervenoulas G, Politis M. Applications of amyloid, tau, and neuroinflammation PET imaging to Alzheimer's disease and mild cognitive impairment. Hum Brain Mapp 2019; 40:5424-5442. [PMID: 31520513 PMCID: PMC6864887 DOI: 10.1002/hbm.24782] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/29/2019] [Accepted: 08/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating and progressive neurodegenerative disease for which there is no cure. Mild cognitive impairment (MCI) is considered a prodromal stage of the disease. Molecular imaging with positron emission tomography (PET) allows for the in vivo visualisation and tracking of pathophysiological changes in AD and MCI. PET is a very promising methodology for differential diagnosis and novel targets of PET imaging might also serve as biomarkers for disease-modifying therapeutic interventions. This review provides an overview of the current status and applications of in vivo molecular imaging of AD pathology, specifically amyloid, tau, and microglial activation. PET imaging studies were included and evaluated as potential biomarkers and for monitoring disease progression. Although the majority of radiotracers showed the ability to discriminate AD and MCI patients from healthy controls, they had various limitations that prevent the recommendation of a single technique or tracer as an optimal biomarker. Newer research examining amyloid, tau, and microglial PET imaging in combination suggest an alternative approach in studying the disease process.
Collapse
Affiliation(s)
- Avinash Chandra
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Polytimi-Eleni Valkimadi
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Oliver Cousins
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - George Dervenoulas
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| | - Marios Politis
- Neurodegeneration Imaging Group (NIG), Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London (KCL), London, UK
| |
Collapse
|
135
|
Metaxas A, Thygesen C, Briting SRR, Landau AM, Darvesh S, Finsen B. Increased Inflammation and Unchanged Density of Synaptic Vesicle Glycoprotein 2A (SV2A) in the Postmortem Frontal Cortex of Alzheimer's Disease Patients. Front Cell Neurosci 2019; 13:538. [PMID: 31866830 PMCID: PMC6906198 DOI: 10.3389/fncel.2019.00538] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 01/29/2023] Open
Abstract
Sections from the middle frontal gyrus (Brodmann area 46) of autopsy-confirmed Alzheimer's disease (AD) patients and non-demented subjects were examined for the prevalence of hallmark AD pathology, including amyloid-β (Aβ) plaques, phosphorylated tau (pTau) tangles, neuroinflammation and synaptic loss (n = 7 subjects/group). Dense-core deposits of Aβ were present in all AD patients (7/7) and some non-demented subjects (3/7), as evidenced by 6E10 immunohistochemistry. Levels of Aβ immunoreactivity were higher in AD vs. non-AD cases. For pTau, AT8-positive neurofibrillary tangles and threads were exclusively observed in AD patient tissue. Levels of [3H]PK11195 binding to the translocator protein (TSPO), a marker of inflammatory processes, were elevated in the gray matter of AD patients compared to non-demented subjects. Levels of [3H]UCB-J binding to synaptic vesicle glycoprotein 2A (SV2A), a marker of synaptic density, were not different between groups. In AD patients, pTau immunoreactivity was positively correlated with [3H]PK11195, and negatively correlated with [3H]UCB-J binding levels. No correlation was observed between Aβ immunoreactivity and markers of neuroinflammation or synaptic density. These data demonstrate a close interplay between tau pathology, inflammation and SV2A density in AD, and provide useful information on the ability of neuroimaging biomarkers to diagnose AD dementia.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Camilla Thygesen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sanne R R Briting
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark.,Department of Nuclear Medicine and PET-Center, Aarhus University, Aarhus, Denmark
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Medicine, Neurology, and Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Bente Finsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
136
|
Lancaster TM. Associations between rare microglia-linked Alzheimer's disease risk variants and subcortical brain volumes in young individuals. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2019; 11:368-373. [PMID: 31080872 PMCID: PMC6501059 DOI: 10.1016/j.dadm.2019.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Recent exome sequencing studies have identified three novel risk variants associated with Alzheimer's disease (AD). However, the mechanisms by which these variants confer risk are largely unknown. METHODS In the present study, the impact of these rare coding variants (in ABI3, PLCG2, and TREM2) on all subcortical volumes is determined in a large sample of young healthy individuals (N = 756-765; aged 22-35 years). RESULTS After multiple testing correction (P CORRECTED < .05), rare variants were associated with basal ganglia volumes (TREM2 and PLCG2 effects within the putamen and pallidum, respectively). Nominal associations between TREM2 and reduced hippocampal and thalamic volumes were also observed. DISCUSSION Our observations suggest that rare variants in microglia-mediated immunity pathway may contribute to the subcortical alterations observed in AD cases. These observations provide further evidence that genetic risk for AD may influence the volume of subcortical volumes and increase AD risk in early life processes.
Collapse
Affiliation(s)
- Thomas M. Lancaster
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- UK Dementia Research Institute, School of Medicine, Cardiff University, UK
| |
Collapse
|
137
|
Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C, Janelidze S, Stomrud E, Lee J, Fitz L, Samad TA, Ramaswamy G, Margolin RA, Malarstig A, Hansson O. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer's disease. Acta Neuropathol Commun 2019; 7:169. [PMID: 31694701 PMCID: PMC6836495 DOI: 10.1186/s40478-019-0795-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
To date, the development of disease-modifying therapies for Alzheimer’s disease (AD) has largely focused on the removal of amyloid beta Aβ fragments from the CNS. Proteomic profiling of patient fluids may help identify novel therapeutic targets and biomarkers associated with AD pathology. Here, we applied the Olink™ ProSeek immunoassay to measure 270 CSF and plasma proteins across 415 Aβ- negative cognitively normal individuals (Aβ- CN), 142 Aβ-positive CN (Aβ+ CN), 50 Aβ- mild cognitive impairment (MCI) patients, 75 Aβ+ MCI patients, and 161 Aβ+ AD patients from the Swedish BioFINDER study. A validation cohort included 59 Aβ- CN, 23 Aβ- + CN, 44 Aβ- MCI and 53 Aβ+ MCI. To compare protein concentrations in patients versus controls, we applied multiple linear regressions adjusting for age, gender, medications, smoking and mean subject-level protein concentration, and corrected findings for false discovery rate (FDR, q < 0.05). We identified, and replicated, altered levels of ten CSF proteins in Aβ+ individuals, including CHIT1, SMOC2, MMP-10, LDLR, CD200, EIF4EBP1, ALCAM, RGMB, tPA and STAMBP (− 0.14 < d < 1.16; q < 0.05). We also identified and replicated alterations of six plasma proteins in Aβ+ individuals OSM, MMP-9, HAGH, CD200, AXIN1, and uPA (− 0.77 < d < 1.28; q < 0.05). Multiple analytes associated with cognitive performance and cortical thickness (q < 0.05). Plasma biomarkers could distinguish AD dementia (AUC = 0.94, 95% CI = 0.87–0.98) and prodromal AD (AUC = 0.78, 95% CI = 0.68–0.87) from CN. These findings reemphasize the contributions of immune markers, phospholipids, angiogenic proteins and other biomarkers downstream of, and potentially orthogonal to, Aβ- and tau in AD, and identify candidate biomarkers for earlier detection of neurodegeneration.
Collapse
|
138
|
Cao S, Fisher DW, Yu T, Dong H. The link between chronic pain and Alzheimer's disease. J Neuroinflammation 2019; 16:204. [PMID: 31694670 PMCID: PMC6836339 DOI: 10.1186/s12974-019-1608-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain often occurs in the elderly, particularly in the patients with neurodegenerative disorders such as Alzheimer's disease (AD). Although studies indicate that chronic pain correlates with cognitive decline, it is unclear whether chronic pain accelerates AD pathogenesis. In this review, we provide evidence that supports a link between chronic pain and AD and discuss potential mechanisms underlying this connection based on currently available literature from human and animal studies. Specifically, we describe two intertwined processes, locus coeruleus noradrenergic system dysfunction and neuroinflammation resulting from microglial pro-inflammatory activation in brain areas mediating the affective component of pain and cognition that have been found to influence both chronic pain and AD. These represent a pathological overlap that likely leads chronic pain to accelerate AD pathogenesis. Further, we discuss potential therapeutic interventions targeting noradrenergic dysfunction and microglial activation that may improve patient outcomes for those with chronic pain and AD.
Collapse
Affiliation(s)
- Song Cao
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Daniel W Fisher
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA
| | - Tain Yu
- Guizhou Key Lab of Anesthesia and Organ Protection, Affiliated Hospital of Zunyi Medical University, 149 Dalian Street, Zunyi, 56300, Guizhou, China
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
139
|
Microglial activation, but not tau pathology, is independently associated with amyloid positivity and memory impairment. Neurobiol Aging 2019; 85:11-21. [PMID: 31698286 DOI: 10.1016/j.neurobiolaging.2019.09.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
We sought to determine if upstream amyloid accumulation and downstream cognitive impairment have independent relationships with microglial activation and tau pathology. Fifty-eight older adults were stratified by amyloid and cognitive status based on 18F-florbetaben PET, history, and neuropsychological testing. Of these, 57 had 11C-PBR28 PET to measure microglial activation and 43 had 18F-MK-6240 PET to measure tau pathology. Amyloid and cognitive status were associated with increased overall binding for both 11C-PBR28 and 18F-MK-6240 (p's < 0.01). While there was no interaction between amyloid and cognitive status in their association with 11C-PBR28 binding (p = 0.6722), there was an interaction in their association with 18F-MK-6240 binding (p = 0.0115). Binding of both radioligands was greater in amyloid-positive controls than in amyloid-negative controls; however, this difference was seen in neocortical regions for 11C-PBR28 and only in medial temporal cortex for 18F-MK-6240. We conclude that, in the absence of cognitive symptoms, amyloid deposition has a greater association with microglial activation than with tau pathology.
Collapse
|
140
|
Wang LS, Tao X, Liu XM, Zhou YF, Zhang MD, Liao YH, Pan RL, Chang Q. Cajaninstilbene Acid Ameliorates Cognitive Impairment Induced by Intrahippocampal Injection of Amyloid-β 1-42 Oligomers. Front Pharmacol 2019; 10:1084. [PMID: 31680939 PMCID: PMC6798059 DOI: 10.3389/fphar.2019.01084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.
Collapse
Affiliation(s)
- Li-Sha Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Tao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Min Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,National Key Laboratory of Human Factors Engineering and the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yun-Feng Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng-Di Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Le Pan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
141
|
Tang RH, Qi RQ, Liu HY. Interleukin-4 affects microglial autophagic flux. Neural Regen Res 2019; 14:1594-1602. [PMID: 31089059 PMCID: PMC6557092 DOI: 10.4103/1673-5374.255975] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/24/2019] [Indexed: 12/15/2022] Open
Abstract
Interleukin-4 plays an important protective role in Alzheimer's disease by regulating microglial phenotype, phagocytosis of amyloid-β, and secretion of anti-inflammatory and neurotrophic cytokines. Recently, increasing evidence has suggested that autophagy regulates innate immunity by affecting M1/M2 polarization of microglia/macrophages. However, the role of interleukin-4 in microglial autophagy is unknown. In view of this, BV2 microglia were treated with 0, 10, 20 or 50 ng/mL interleukin-4 for 24, 48, or 72 hours. Subsequently, light chain 3-II and p62 protein expression levels were detected by western blot assay. BV2 microglia were incubated with interleukin-4 (20 ng/mL, experimental group), 3-methyladenine (500 μM, autophagy inhibitor, negative control group), rapamycin (100 nM, autophagy inductor, positive control group), 3-methyladenine + interleukin-4 (rescue group), or without treatment for 24 hours, and then exposed to amyloid-β (1 μM, model group) or vehicle control (control) for 24 hours. LC3-II and p62 protein expression levels were again detected by western blot assay. In addition, expression levels of multiple markers of M1 and M2 phenotype were assessed by real-time fluorescence quantitative polymerase chain reaction, while intracellular and supernatant amyloid-β protein levels were measured by enzyme-linked immunosorbent assay. Our results showed that interleukin-4 induced microglial autophagic flux, most significantly at 20 ng/mL for 48 hours. Interleukin-4 pretreated microglia inhibited blockade of amyloid-β-induced autophagic flux, and promoted amyloid-β uptake and degradation partly through autophagic flux, but inhibited switching of amyloid-β-induced M1 phenotype independent on autophagic flux. These results indicate that interleukin-4 pretreated microglia increases uptake and degradation of amyloid-β in a process partly mediated by autophagy, which may play a protective role against Alzheimer's disease.
Collapse
Affiliation(s)
- Run-Hong Tang
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Rui-Qun Qi
- Department of Dermatology, Key Laboratory of Immunodermatology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hua-Yan Liu
- Department of Neurology, the First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
142
|
Hemonnot AL, Hua J, Ulmann L, Hirbec H. Microglia in Alzheimer Disease: Well-Known Targets and New Opportunities. Front Aging Neurosci 2019; 11:233. [PMID: 31543810 PMCID: PMC6730262 DOI: 10.3389/fnagi.2019.00233] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Microglia are the resident macrophages of the central nervous system. They play key roles in brain development, and physiology during life and aging. Equipped with a variety of molecular sensors and through the various functions they can fulfill, they are critically involved in maintaining the brain’s homeostasis. In Alzheimer disease (AD), microglia reaction was initially thought to be incidental and triggered by amyloid deposits and dystrophic neurites. However, recent genome-wide association studies have established that the majority of AD risk loci are found in or near genes that are highly and sometimes uniquely expressed in microglia. This leads to the concept of microglia being critically involved in the early steps of the disease and identified them as important potential therapeutic targets. Whether microglia reaction is beneficial, detrimental or both to AD progression is still unclear and the subject of intense debate. In this review, we are presenting a state-of-knowledge report intended to highlight the variety of microglial functions and pathways shown to be critically involved in AD progression. We first address both the acquisition of new functions and the alteration of their homeostatic roles by reactive microglia. Second, we propose a summary of new important parameters currently emerging in the field that need to be considered to identify relevant microglial targets. Finally, we discuss the many obstacles in designing efficient therapeutic strategies for AD and present innovative technologies that may foster our understanding of microglia roles in the pathology. Ultimately, this work aims to fly over various microglial functions to make a general and reliable report of the current knowledge regarding microglia’s involvement in AD and of the new research opportunities in the field.
Collapse
Affiliation(s)
- Anne-Laure Hemonnot
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Jennifer Hua
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Lauriane Ulmann
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| | - Hélène Hirbec
- Institute for Functional Genomics (IGF), University of Montpellier, Centre National de la Recherche Scientififique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
| |
Collapse
|
143
|
Ewers M, Franzmeier N, Suárez-Calvet M, Morenas-Rodriguez E, Caballero MAA, Kleinberger G, Piccio L, Cruchaga C, Deming Y, Dichgans M, Trojanowski JQ, Shaw LM, Weiner MW, Haass C. Increased soluble TREM2 in cerebrospinal fluid is associated with reduced cognitive and clinical decline in Alzheimer's disease. Sci Transl Med 2019; 11:11/507/eaav6221. [PMID: 31462511 PMCID: PMC7050285 DOI: 10.1126/scitranslmed.aav6221] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/24/2018] [Accepted: 04/27/2019] [Indexed: 01/05/2023]
Abstract
Loss of function of TREM2, a key receptor selectively expressed by microglia in the brain, contributes to the development of Alzheimer's disease (AD). We therefore examined whether soluble TREM2 (sTREM2) concentrations in cerebrospinal fluid (CSF) were associated with reduced rates of cognitive decline and clinical progression in subjects with AD or mild cognitive impairment (MCI). We measured sTREM2 in CSF samples from 385 elderly subjects, including cognitively normal controls, individuals with MCI, and subjects with AD dementia (follow-up period: mean, 4 years; range 1.5 to 11.5 years). In subjects with AD defined by evidence of CSF Aβ1-42 (amyloid β-peptide 1 to 42; A+) and CSF p-tau181 (tau phosphorylated on amino acid residue 181; T+), higher sTREM2 concentrations in CSF at baseline were associated with attenuated decline in memory and cognition. When analyzed in clinical subgroups, an association between higher CSF sTREM2 concentrations and subsequent reduced memory decline was consistently observed in individuals with MCI or AD dementia, who were positive for CSF Aβ1-42 and CSF p-tau181 (A+T+). Regarding clinical progression, a higher ratio of CSF sTREM2 to CSF p-tau181 concentrations predicted slower conversion from cognitively normal to symptomatic stages or from MCI to AD dementia in the subjects who were positive for CSF Aβ1-42 and CSF p-tau181. These results suggest that sTREM2 is associated with attenuated cognitive and clinical decline, a finding with important implications for future clinical trials targeting the innate immune response in AD.
Collapse
Affiliation(s)
- Michael Ewers
- Institute for Stroke and Dementia Research, University Hospital Munich, LMU, Munich, Germany,Corresponding author. (M.E.); (C.H.)
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, University Hospital Munich, LMU, Munich, Germany
| | - Marc Suárez-Calvet
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany,Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation. Barcelona, Catalonia, Spain,Department of Neurology, Hospital del Mar, Barcelona, Catalonia, Spain
| | - Estrella Morenas-Rodriguez
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany,Department of Neurology, Institut d’Investigacions Biomèdiques, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Gernot Kleinberger
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany,ISAR Bioscience GmbH, 82152 Planegg, Germany
| | - Laura Piccio
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA,Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Carlos Cruchaga
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Yuetiva Deming
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin Dichgans
- Institute for Stroke and Dementia Research, University Hospital Munich, LMU, Munich, Germany,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - John Q. Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M. Shaw
- Center for Neurodegenerative Disease Research, Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christian Haass
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany,German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany,Corresponding author. (M.E.); (C.H.)
| | | |
Collapse
|
144
|
Colon-Perez LM, Ibanez KR, Suarez M, Torroella K, Acuna K, Ofori E, Levites Y, Vaillancourt DE, Golde TE, Chakrabarty P, Febo M. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. Neuroimage 2019; 202:116138. [PMID: 31472250 DOI: 10.1016/j.neuroimage.2019.116138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular β-amyloid (Aβ) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aβ and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aβ deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aβ production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristen R Ibanez
- Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States
| | - Mallory Suarez
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristin Torroella
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kelly Acuna
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Edward Ofori
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Yona Levites
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - David E Vaillancourt
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Todd E Golde
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - Paramita Chakrabarty
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| | - Marcelo Febo
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| |
Collapse
|
145
|
Weisenbach SL, Kim J, Hammers D, Konopacki K, Koppelmans V. Linking late life depression and Alzheimer's disease: mechanisms and resilience. Curr Behav Neurosci Rep 2019; 6:103-112. [PMID: 33134032 PMCID: PMC7597973 DOI: 10.1007/s40473-019-00180-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature linking Alzheimer's disease (AD) and late life depression (LLD). It describes shared neurobiological features associated with both conditions, as well as factors that may increase resilience to onset and severity of cognitive decline and AD. Finally, we pose a number of future research directions toward improving detection, management, and treatment of both conditions. RECENT FINDINGS Epidemiological studies have consistently shown a significant relationship between LLD and AD, with support for depression as a prodromal feature of AD, a risk factor for AD, and observation of some shared risk factors underlying both disease processes. Three major neurobiological features shared by LLD and AD include neurodegeneration, disruption to cerebrovascular functioning, and increased levels of neuroinflammation. There are also potentially modifiable factors that can increase resilience to AD and LLD, including social support, physical and cognitive engagement, and cognitive reserve. SUMMARY We propose that, in the context of depression, neurobiological events, such as neurodegeneration, cerebrovascular disease, and neuroinflammation result in a brain that is more vulnerable to the consequences of the pathophysiological features of AD, lowering the threshold for the onset of the behavioral presentation of AD (i.e., cognitive decline and dementia). We discuss factors that can increase resilience to AD and LLD, including social support, physical and cognitive engagement, and cognitive reserve. We conclude with a discussion of future research directions.
Collapse
|
146
|
Massa F, Meli R, Morbelli S, Nobili F, Pardini M. Serum neurofilament light chain rate of change in Alzheimer's disease: potentials applications and notes of caution. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S133. [PMID: 31576340 DOI: 10.21037/atm.2019.05.81] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Riccardo Meli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Nuclear Medicine Unit, Department of Health Sciences (DISSAL), University of Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
147
|
Rahayel S, Bocti C, Sévigny Dupont P, Joannette M, Lavallée MM, Nikelski J, Chertkow H, Joubert S. Subcortical amyloid load is associated with shape and volume in cognitively normal individuals. Hum Brain Mapp 2019; 40:3951-3965. [PMID: 31148327 DOI: 10.1002/hbm.24680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/09/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023] Open
Abstract
Amyloid-beta (Aβ) deposition is one of the main hallmarks of Alzheimer's disease. The study assessed the associations between cortical and subcortical 11 C-Pittsburgh Compound B (PiB) retention, namely, in the hippocampus, amygdala, putamen, caudate, pallidum, and thalamus, and subcortical morphology in cognitively normal individuals. We recruited 104 cognitive normal individuals who underwent extensive neuropsychological assessment, PiB-positron emission tomography (PET) scan, and 3-T magnetic resonance imaging (MRI) acquisition of T1-weighted images. Global, cortical, and subcortical regional PiB retention values were derived from each scan and subcortical morphology analyses were performed to investigate vertex-wise local surface and global volumes, including the hippocampal subfields volumes. We found that subcortical regional Aβ was associated with the surface of the hippocampus, thalamus, and pallidum, with changes being due to volume and shape. Hippocampal Aβ was marginally associated with volume of the whole hippocampus as well as with the CA1 subfield, subiculum, and molecular layer. Participants showing higher subcortical Aβ also showed worse cognitive performance and smaller hippocampal volumes. In contrast, global and cortical PiB uptake did not associate with any subcortical metrics. This study shows that subcortical Aβ is associated with subcortical surface morphology in cognitively normal individuals. This study highlights the importance of quantifying subcortical regional PiB retention values in these individuals.
Collapse
Affiliation(s)
- Shady Rahayel
- Department of Psychology, Université de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| | - Christian Bocti
- Department of Neurology, Université de Sherbrooke, Sherbrooke, Canada
| | - Pénélope Sévigny Dupont
- Department of Psychology, Université de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| | - Maude Joannette
- Department of Psychology, Université de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| | - Marie Maxime Lavallée
- Department of Psychology, Université de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| | - Jim Nikelski
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Canada
| | - Howard Chertkow
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Sven Joubert
- Department of Psychology, Université de Montréal, Montreal, Canada.,Research Centre, Institut universitaire de gériatrie de Montréal, Montreal, Canada
| |
Collapse
|
148
|
Angelucci F, Cechova K, Amlerova J, Hort J. Antibiotics, gut microbiota, and Alzheimer's disease. J Neuroinflammation 2019; 16:108. [PMID: 31118068 PMCID: PMC6530014 DOI: 10.1186/s12974-019-1494-4] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/30/2019] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease whose various pathophysiological aspects are still being investigated. Recently, it has been hypothesized that AD may be associated with a dysbiosis of microbes in the intestine. In fact, the intestinal flora is able to influence the activity of the brain and cause its dysfunctions.Given the growing interest in this topic, the purpose of this review is to analyze the role of antibiotics in relation to the gut microbiota and AD. In the first part of the review, we briefly review the role of gut microbiota in the brain and the various theories supporting the hypothesis that dysbiosis can be associated with AD pathophysiology. In the second part, we analyze the possible role of antibiotics in these events. Antibiotics are normally used to remove or prevent bacterial colonization in the human body, without targeting specific types of bacteria. As a result, broad-spectrum antibiotics can greatly affect the composition of the gut microbiota, reduce its biodiversity, and delay colonization for a long period after administration. Thus, the action of antibiotics in AD could be wide and even opposite, depending on the type of antibiotic and on the specific role of the microbiome in AD pathogenesis.Alteration of the gut microbiota can induce changes in brain activity, which raise the possibility of therapeutic manipulation of the microbiome in AD and other neurological disorders. This field of research is currently undergoing great development, but therapeutic applications are still far away. Whether a therapeutic manipulation of gut microbiota in AD could be achieved using antibiotics is still not known. The future of antibiotics in AD depends on the research progresses in the role of gut bacteria. We must first understand how and when gut bacteria act to promote AD. Once the role of gut microbiota in AD is well established, one can think to induce modifications of the gut microbiota with the use of pre-, pro-, or antibiotics to produce therapeutic effects.
Collapse
Affiliation(s)
- Francesco Angelucci
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Cechova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Amlerova
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
149
|
Tang R, Liu H. Identification of Temporal Characteristic Networks of Peripheral Blood Changes in Alzheimer's Disease Based on Weighted Gene Co-expression Network Analysis. Front Aging Neurosci 2019; 11:83. [PMID: 31178714 PMCID: PMC6537635 DOI: 10.3389/fnagi.2019.00083] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease. The study of blood-based biomarkers has lasted for a long time in AD, because it supports the concept that peripheral changes are involved in AD pathology. But it is still unclear how peripheral blood is involved in the temporal characteristic molecular mechanisms of AD from aging to mild cognitive impairment (MCI) and which cells are responsible for the molecular mechanisms. The main purpose of our study is to gain a systematic and comprehensive understanding of temporal characteristic networks of peripheral blood in AD using whole blood samples with 329 case-control samples, including 104 normal elderly control subjects (CTL), 80 MCI who are susceptible to AD, and 145 AD, by the weighted gene co-expression network analysis (WGCNA). The module-trait relationships were constructed and module preservation was validated with independent datasets GSE63061, GSE97760, GSE18309, GSE29378, GSE28146, and GSE29652. Our results indicate that the down-regulated protein modification and ubiquitin degradation systems, and the up-regulated insulin resistance both play a major role in MCI, while the up-regulated inflammatory cascade dominates in AD, which is mainly mediated by monocytes, macrophages. Although there is mixed activation of M1 and M2 macrophages in all stages of AD, the immune neutral state or M2 polarization may predominate in MCI, and M1 polarization may predominate in AD. Moreover, we found that TRPV2, NDUFV1, ATF4, HSPA8, STAT3 and LUC7L3 may mediate the pathological changes in MCI, while SIRPA, LAMP-2, NDUFB5, HSPA8, STAT3 and FPR2 may mediate the conversion from MCI-AD or the pathological changes in AD, which provide a basis for the treatment based on the peripheral blood system. In addition, we also found that the combined diagnosis based on a panel of genes from the red, blue, and brown modules have a moderate diagnostic effect on distinguishing MCI and AD from CTL, suggesting that those panels of genes may be used for detection of MCI and prediction of this conversion from MCI to AD. Our research emphasizes that pathological changes, based on temporal characteristics of peripheral blood, provide a theoretical basis for targeted peripheral treatment based on appropriate times and identified several diagnostic markers.
Collapse
Affiliation(s)
- Runhong Tang
- Department of Neurology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Huayan Liu
- Department of Neurology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
150
|
White matter microstructural abnormalities and default network degeneration are associated with early memory deficit in Alzheimer's disease continuum. Sci Rep 2019; 9:4749. [PMID: 30894627 PMCID: PMC6426923 DOI: 10.1038/s41598-019-41363-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Instead of assuming a constant relationship between brain abnormalities and memory impairment, we aimed to examine the stage-dependent contributions of multimodal brain structural and functional deterioration to memory impairment in the Alzheimer’s disease (AD) continuum. We assessed grey matter volume, white matter (WM) microstructural measures (free-water (FW) and FW-corrected fractional anisotropy), and functional connectivity of the default mode network (DMN) in 54 amnestic mild cognitive impairment (aMCI) and 46 AD. We employed a novel sparse varying coefficient model to investigate how the associations between abnormal brain measures and memory impairment varied throughout disease continuum. We found lower functional connectivity in the DMN was related to worse memory across AD continuum. Higher widespread white matter FW and lower fractional anisotropy in the fornix showed a stronger association with memory impairment in the early aMCI stage; such WM-memory associations then decreased with increased dementia severity. Notably, the effect of the DMN atrophy occurred in early aMCI stage, while the effect of the medial temporal atrophy occurred in the AD stage. Our study provided evidence to support the hypothetical progression models underlying memory dysfunction in AD cascade and underscored the importance of FW increases and DMN degeneration in early stage of memory deficit.
Collapse
|