101
|
Zykova TA, Zhu F, Zhai X, Ma WY, Ermakova SP, Lee KW, Bode AM, Dong Z. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol Carcinog 2008; 47:797-805. [PMID: 18381589 PMCID: PMC2562941 DOI: 10.1002/mc.20437] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Targeted molecular cancer therapies can potentially deliver treatment directly to a specific protein or gene to optimize efficacy and reduce adverse side effects often associated with traditional chemotherapy. Key oncoprotein and oncogene targets are rapidly being identified based on their expression, pathogenesis and clinical outcome. One such protein target is cyclooxygenase-2 (COX-2), which is highly expressed in various cancers. Research findings suggest that resveratrol (RSVL; 3,5,4'-trihydroxy-trans-stilbene) demonstrates nonselective COX-2 inhibition. We report herein that RSVL directly binds with COX-2 and this binding is absolutely required for RSVL's inhibition of the ability of human colon adenocarcinoma HT-29 cells to form colonies in soft agar. Binding of COX-2 with RSVL was compared with two RSVL analogues, 3,3',4',5',5-pentahydroxy-trans-stilbene (RSVL-2) or 3,4',5-trimethoxy-trans-stilbene (RSVL-3). The results indicated that COX-2 binds with RSVL-2 more strongly than with RSVL, but does not bind with RSVL-3. RSVL or RSVL-2, but not RSVL-3, inhibited COX-2-mediated PGE(2) production in vitro and ex vivo. HT-29 human colon adenocarcinoma cells express high levels of COX-2 and either RSVL or RSVL-2, but not RSVL-3, suppressed anchorage independent growth of these cells in soft agar. RSVL or RSVL-2 (not RSVL-3) suppressed growth of COX-2(+/+) cells by 60% or 80%, respectively. Notably, cells deficient in COX-2 were unresponsive to RSVL or RSVL-2. These data suggest that the anticancer effects of RSVL or RSLV-2 might be mediated directly through COX-2.
Collapse
Affiliation(s)
- Tatyana A. Zykova
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Feng Zhu
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Xiuhong Zhai
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Wei-ya Ma
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | - Ki Won Lee
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| |
Collapse
|
102
|
Hofseth LJ. Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett 2008; 268:10-30. [PMID: 18440130 PMCID: PMC2680023 DOI: 10.1016/j.canlet.2008.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) and associated reactive nitrogen species (RNS) are involved in many physiological functions. There has been an ongoing debate to whether RNS can inhibit or perpetuate chronic inflammation and associated carcinogenesis. Although the final outcome depends on the genetic make-up of its target, the surrounding microenvironment, the activity and localization of nitric oxide synthase (NOS) isoforms, and overall levels of NO/RNS, evidence is accumulating that in general, RNS drive inflammation and cancers associated with inflammation. To this end, many complementary and alternative medicines (CAMs) that work in chemoprevention associated with chronic inflammation, are inhibitors of excessive NO observed in inflammatory conditions. Here, we review recent literature outlining a role of NO/RNS in chronic inflammation and cancer, and point toward NO as one of several targets for the success of CAMs in treating chronic inflammation and cancer associated with this inflammation.
Collapse
Affiliation(s)
- Lorne J Hofseth
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, 770 Sumter Street, Coker Life Sciences, Room 513C, Columbia, SC 29208, USA.
| |
Collapse
|
103
|
Katsoulas A, Rachid Z, McNamee JP, Williams C, Jean-Claude BJ. Combi-targeting concept: an optimized single-molecule dual-targeting model for the treatment of chronic myelogenous leukemia. Mol Cancer Ther 2008; 7:1033-43. [PMID: 18483293 DOI: 10.1158/1535-7163.mct-07-0179] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blockade of Bcr-Abl by the inhibitor Imatinib has proven efficacious in the therapy of chronic myelogenous leukemia (CML). However resistance to the drug emerges at the advanced phases of the disease. Therefore, novel therapy models remained to be designed. We have developed a novel dual targeted agent termed "combi-molecule" designed to not only block Bcr-Abl but also damage DNA. ZRF1, the first optimized prototype of the approach, was "programmed" to degrade into another inhibitor ZRF0 plus a methyl diazonium species. It was approximately 2-fold stronger Abl tyrosine kinase inhibitor than Imatinib and a more potent DNA-damaging agent than Temodal. In the p53 wild-type Mo7p210 cells, the potency of ZRF1 was approximately 1,000-fold superior to that of the equieffective combinations of Imatinib plus Temodal. More importantly, its superior potency over Imatinib was more pronounced in Bcr-Abl-positive cells coexpressing wild-type p53. Studies to rationalize these results showed that, through its Bcr-Abl inhibitory function, it down-regulated p53. However, sufficient level of the latter protein was available for transactivating p21 and Bax, which are required for cell cycle arrest and apoptosis. The results suggest that, in p53 wild-type cells, apoptosis is induced not only through Bcr-Abl inhibition but also through the p53-controlled DNA-damaging pathway, leading to an additive effect that translates into enhanced cell death. The study conclusively showed that p53 is a major determinant for the cytotoxic advantages of the novel combi-molecular approach in CML, a disease in which 70% to 85% of all the cases express wild-type p53.
Collapse
Affiliation(s)
- Athanasia Katsoulas
- Cancer Drug Research Laboratory, Department of Medicine, Division of Medical Oncology, McGill University Health Center/Royal Victoria Hospital, 687 Pine Avenue West, M7.19, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | |
Collapse
|
104
|
Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 2008; 269:243-61. [PMID: 18550275 DOI: 10.1016/j.canlet.2008.03.057] [Citation(s) in RCA: 322] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 02/11/2008] [Accepted: 03/28/2008] [Indexed: 12/11/2022]
Abstract
A plant kingdom is considered as a gold mine for the discovery of many biologically active substances with therapeutic values. Resveratrol (3,5,4'-trihydroxystilbene), a naturally occurring polyphenol, exhibits pleiotropic health beneficial effects including anti-oxidant, anti-inflammatory, cardioprotective and anti-tumor activities. Currently, numerous preclinical findings suggest resveratrol as a promising nature's arsenal for cancer prevention and treatment. A remarkable progress in dissecting the molecular mechanisms underlying anti-cancer properties of resveratrol has been achieved in the past decade. As a potential anti-cancer agent, resveratrol has been shown to inhibit or retard the growth of various cancer cells in culture and implanted tumors in vivo. The compound significantly inhibits experimental tumorigenesis in a wide range of animal models. Resveratrol targets many components of intracellular signaling pathways including pro-inflammatory mediators, regulators of cell survival and apoptosis, and tumor angiogenic and metastatic switches by modulating a distinct set of upstream kinases, transcription factors and their regulators. This review summarizes the diverse molecular targets of resveratrol with a special focus on those involved in fine-tuning of orchestrated intracellular signal transduction.
Collapse
|
105
|
Gene induction by glycyrol to apoptosis through endonuclease G in tumor cells and prediction of oncogene function by microarray analysis. Anticancer Drugs 2008; 19:503-15. [DOI: 10.1097/cad.0b013e3282fba582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
106
|
Gosslau A, Pabbaraja S, Knapp S, Chen KY. Trans- and cis-stilbene polyphenols induced rapid perinuclear mitochondrial clustering and p53-independent apoptosis in cancer cells but not normal cells. Eur J Pharmacol 2008; 587:25-34. [DOI: 10.1016/j.ejphar.2008.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 02/26/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022]
|
107
|
Carsten RE, Bachand AM, Bailey SM, Ullrich RL. Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells. Radiat Res 2008; 169:633-8. [PMID: 18494544 PMCID: PMC2692544 DOI: 10.1667/rr1190.1] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 01/10/2008] [Indexed: 11/03/2022]
Abstract
Resveratrol, a polyphenol compound with reported antioxidant and anticarcinogenic effects, a wide range of molecular targets, and toxicity only at extreme doses, has received considerable attention. We evaluated the radioprotective effect of orally administered resveratrol on the frequencies of chromosome aberrations in irradiated mouse bone marrow cells. CBA/CaJ mice were divided into four groups: (1) no treatment, (2) resveratrol only, (3) radiation only, and (4) resveratrol and radiation. Resveratrol treatment (100 mg/kg daily) was initiated 2 days prior to irradiation. Bone marrow was then harvested at 1 and 30 days after a single dose of 3 Gy whole-body gamma radiation. A statistically significant (P < 0.05) reduction in the mean total chromosome aberration frequency per metaphase at both times postirradiation in the resveratrol and radiation group compared to the radiation-only group was observed. This study is the first to demonstrate that resveratrol has radioprotective effects in vivo. These results support the use of resveratrol as a radioprotector with the potential for widespread application.
Collapse
Affiliation(s)
- Ronald E. Carsten
- Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Annette M. Bachand
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Susan M. Bailey
- Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert L. Ullrich
- Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
108
|
Kaur J, Sharma M, Sharma PD, Bansal MP. Chemopreventive activity of lantadenes on two-stage carcinogenesis model in Swiss albino mice: AP-1 (c-jun), NFκB (p65) and P53 expression by ELISA and immunohistochemical localization. Mol Cell Biochem 2008; 314:1-8. [DOI: 10.1007/s11010-008-9758-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 04/01/2008] [Indexed: 01/06/2023]
|
109
|
Sun W, Wang W, Kim J, Keng P, Yang S, Zhang H, Liu C, Okunieff P, Zhang L. Anti-cancer effect of resveratrol is associated with induction of apoptosis via a mitochondrial pathway alignment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 614:179-86. [PMID: 18290328 DOI: 10.1007/978-0-387-74911-2_21] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Resveratrol, a phytoalexin found in the skin of grapes, is believed to have multiple bioactivities including anti-cancer, anti-carcinogenesis and antiinflammatory. The mechanisms by which resveratrol might produce these effects are not well understood. In this study, malignant human pancreatic cancer cells were treated without or with resveratrol in combination with ionizing radiation (IR), and then the mitochondrial function of treated cells was evaluated using several standardized assays. They include the Calcein AM method for mitochondria transition pore; the JC-1 staining method for mitochondria membrane potential; the CM-H2DCFDA method for reactive oxygen species; and the Annexin V/propidium iodide (PI) method for apoptosis/cell death. Our results indicated that (1) pore function was partially intact after resveratrol, but resveratrol probably interfered with the accumulation of intracellular Calcein AM; (2) depolarization of the mitochondria membrane was increased in the resveratrol treated cells, consistent with mitochondrial dysfunction; (3) ROS was slightly increased with resveratrol, a phenomenon that was greatly increased when this agent was combined with IR; and (4) in parallel with the above changes in mitochondrial and drug transport, cells treated with resveratrol showed increased apoptosis as measured by Annexin V/PI staining. In summary, the anti-cancer effect of resveratrol is associated with the damage of mitochondrial function that leads to increased ROS, apoptosis, and possibly intracellular drug accumulation via inhibition of proteins involved in multi-drug resistance (MDR).
Collapse
Affiliation(s)
- Weimin Sun
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Han MK, Song EK, Guo Y, Ou X, Mantel C, Broxmeyer HE. SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2008; 2:241-51. [PMID: 18371449 PMCID: PMC2819008 DOI: 10.1016/j.stem.2008.01.002] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 10/25/2007] [Accepted: 01/02/2008] [Indexed: 12/12/2022]
Abstract
Nuclear tumor suppressor p53 transactivates proapoptotic genes or antioxidant genes depending on stress severity, while cytoplasmic p53 induces mitochondrial-dependent apoptosis without gene transactivation. Although SIRT1, a p53 deacetylase, inhibits p53-mediated transactivation, how SIRT1 regulates these p53 multifunctions is unclear. Here we show that SIRT1 blocks nuclear translocation of cytoplasmic p53 in response to endogenous reactive oxygen species (ROS) and triggers mitochondrial-dependent apoptosis in mouse embryonic stem (mES) cells. ROS generated by antioxidant-free culture caused p53 translocation into mitochondria in wild-type mES cells but induced p53 translocation into the nucleus in SIRT1(-/-) mES cells. Endogenous ROS triggered apoptosis of wild-type mES through mitochondrial translocation of p53 and BAX but inhibited Nanog expression of SIRT1(-/-) mES, indicating that SIRT1 makes mES cells sensitive to ROS and inhibits p53-mediated suppression of Nanog expression. Our results suggest that endogenous ROS control is important for mES cell maintenance in culture.
Collapse
Affiliation(s)
- Myung-Kwan Han
- Walther Oncology Center, and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju 561-182, South Korea
| | - Eun-Kyung Song
- Department of Microbiology and Immunology, Chonbuk National University Medical School, Jeonju 561-182, South Korea
| | - Ying Guo
- Walther Oncology Center, and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xuan Ou
- Walther Oncology Center, and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Charlie Mantel
- Walther Oncology Center, and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hal E. Broxmeyer
- Walther Oncology Center, and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
111
|
Huang LH, Shiao NH, Hsuuw YD, Chan WH. Protective effects of resveratrol on ethanol-induced apoptosis in embryonic stem cells and disruption of embryonic development in mouse blastocysts. Toxicology 2007; 242:109-22. [DOI: 10.1016/j.tox.2007.09.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 02/03/2023]
|
112
|
Deorukhkar A, Krishnan S, Sethi G, Aggarwal BB. Back to basics: how natural products can provide the basis for new therapeutics. Expert Opin Investig Drugs 2007; 16:1753-73. [PMID: 17970636 DOI: 10.1517/13543784.16.11.1753] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phytochemicals have potent antitumor properties and have provided multiple active compounds in the past. Although there is an increasing focus on 'designer' targeted therapeutic anticancer agents, the broad spectrum of activity of natural products across multiple signaling pathways remains inadequately explored. The chemical diversity, structural complexity, affordability, lack of substantial toxic effects and inherent biologic activity of natural products makes them ideal candidates for new therapeutics. Natural products not only disrupt aberrant signaling pathways leading to cancer (i.e., proliferation, deregulation of apoptosis, angiogenesis, invasion and metastasis) but also synergize with chemotherapy and radiotherapy. This review focuses on the mechanism of action of key natural products and promising preclinical data on their efficacy as anticancer agents, as single agents and in combination with standard therapies.
Collapse
Affiliation(s)
- Amit Deorukhkar
- The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, 1515 Holcombe Boulevard, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
113
|
Lee SK, Chae AR, Chun YJ. Mechanism of Apoptotic Cell Death by 2,4,3',5'-Tetramethoxystilbene in Human Promyelocytic Leukemic HL-60 Cells. Biomol Ther (Seoul) 2007. [DOI: 10.4062/biomolther.2007.15.3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
114
|
Howells LM, Moiseeva EP, Neal CP, Foreman BE, Andreadi CK, Sun YY, Hudson EA, Manson MM. Predicting the physiological relevance of in vitro cancer preventive activities of phytochemicals. Acta Pharmacol Sin 2007; 28:1274-304. [PMID: 17723163 DOI: 10.1111/j.1745-7254.2007.00690.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There is growing interest in the ability of phytochemicals to prevent chronic diseases, such as cancer and heart disease. However, some of these agents have poor bioavailability and many of the in-depth studies into their mechanisms of action have been carried out in vitro using doses which are unachievable in humans. In order to optimize the design of chemopreventive treatment, it is important to determine which of the many reported mechanisms of action are clinically relevant. In this review we consider the physiologically achievable doses for a few of the best studied agents (indole-3-carbinol, diindolylmethane, curcumin, epigallocatechin-3-gallate and resveratrol) and summarize the data derived from studies using these low concentrations in cell culture. We then cite examples of in vitro effects which have been observed in vivo. Finally, the ability of agent combinations to act synergistically or antagonistically is considered. We conclude that each of the compounds shows an encouraging range of activities in vitro at concentrations which are likely to be physiologically relevant. There are also many examples of in vivo studies which validate in vitro observations. An important consideration is that combinations of agents can result in significant activity at concentrations where any single agent is inactive. Thus, for each of the compounds reviewed here, in vitro studies have provided useful insights into their mechanisms of action in humans. However, data are lacking on the full range of activities at low doses in vitro and the benefits or otherwise of combinations in vivo.
Collapse
Affiliation(s)
- Lynne M Howells
- Cancer Biomarkers and Prevention Group, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Saiko P, Szakmary A, Jaeger W, Szekeres T. Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 2007; 658:68-94. [PMID: 17890139 DOI: 10.1016/j.mrrev.2007.08.004] [Citation(s) in RCA: 328] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 08/09/2007] [Accepted: 08/13/2007] [Indexed: 01/30/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene; RV), a dietary constituent found in grapes and wine, exerts a wide variety of pharmacological activities. Because the grape skins are not fermented in the production process of white wines, only red wines contain considerable amounts of this compound. RV is metabolized into sulfated and glucuronidated forms within approximately 15min of entering the bloodstream, and moderate consumption of red wine results in serum levels of RV that barely reach the micromolar concentrations. In contrast, its metabolites, which may be the active principle, circulate in serum for up to 9h. RV has been identified as an effective candidate for cancer chemoprevention due its ability to block each step in the carcinogenesis process by inhibiting several molecular targets such as kinases, cyclooxygenases, ribonucleotide reductase, and DNA polymerases. In addition, RV protects the cardiovascular system by a large number of mechanisms, including defense against ischemic-reperfusion injury, promotion of vasorelaxation, protection and maintenance of intact endothelium, anti-atherosclerotic properties, inhibition of low-density lipoprotein oxidation, and suppression of platelet aggregation, thereby strongly supporting its role in the prevention of coronary disease. Promising data within the use of RV have also been obtained regarding progressive neurodegenerative maladies such as Alzheimer's, Huntington's, and Parkinson's diseases. Because neurotoxicity is often related to mitochondrial dysfunction and may be ameliorated through the inclusion of metabolic modifiers and/or antioxidants, RV may provide an alternative (and early) intervention approach that could prevent further damage. RV induces a multitude of effects that depend on the cell type (e.g., NF-kappaB modulation in cancer cells vs. neural cells), cellular condition (normal, stressed, or malignant), and concentration (proliferative vs. growth arrest), and it can have opposing activities. RV affects whole pathways and sets of intracellular events rather than a single enzyme and, therefore, may be an effective therapy to restore homoestasis. Nonetheless, the question of whether RV or its metabolites can accumulate to bioactive levels in target organs remains to be addressed.
Collapse
Affiliation(s)
- Philipp Saiko
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| | - Akos Szakmary
- Department of Medicine I, Division of Cancer Research, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Walter Jaeger
- Department of Clinical Pharmacy and Diagnostics, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Thomas Szekeres
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Vienna, General Hospital of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
116
|
Lin LL, Lien CY, Cheng YC, Ku KL. An effective sample preparation approach for screening the anticancer compound piceatannol using HPLC coupled with UV and fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 853:175-82. [PMID: 17409035 DOI: 10.1016/j.jchromb.2007.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/26/2007] [Accepted: 03/07/2007] [Indexed: 11/28/2022]
Abstract
Piceatannol, compared with the renowned resveratrol, is a better anticancer agent and a superior agent with other biological activities. However, as there are only few plants reported to contain minute quantity of piceatannol, the scarcity of sources greatly impedes the piceatannol-related researches. To explore new sources of piceatannol, we established a sample preparation approach for screening the piceatannol in plants using HPLC-UV-fluorescence detection. When the HPLC is coupled with UV and fluorescence detectors, the decrease of signals in interferences and increase of signal in piceatannol in the fluorescence chromatogram mark clearly the position of the piceatannol peak; ultimately, it allows identification without standards. In this study, we systematically evaluated the factors affecting the extraction efficiency of piceatannol in sample preparation. Of the sample preparation strategies studied, direct solvent extraction and liquid nitrogen treatment followed by solvent extraction gave satisfactory recoveries for both piceatannol and resveratrol. These approaches avoided time-consuming lyophilization procedure. In addition, all procedures must be done in the dark to avoid negative impact of irradiation from fluorescence light on the recoveries of piceatannol and resveratrol. With the present method, we re-examined the plants previously claimed to contain only resveratrol for their piceatannol contents. The species examined included Polygonum cuspidatum, Arachis hypogaea, Vitis thunbergii, and Ampelopsis brevipedunculaata. The results showed, for the first time, all these plants contain piceatannol. The finding implies that the resveratrol-containing plants may also contain piceatannol. The results demonstrate the feasibility of these sample preparation approaches and may further the understanding for the distribution of piceatannol in plants.
Collapse
Affiliation(s)
- Li-Lian Lin
- Department of Applied Chemistry, National Chiayi University, 300 University Rd., Chiayi 60004, Taiwan
| | | | | | | |
Collapse
|
117
|
Alkhalaf M. Resveratrol-induced apoptosis is associated with activation of p53 and inhibition of protein translation in T47D human breast cancer cells. Pharmacology 2007; 80:134-43. [PMID: 17534123 DOI: 10.1159/000103253] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 01/15/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Trans-resveratrol (RSVL; 3,4',5-trihydroxystilbene), a natural compound found in grapes, berries, peanuts and red wine exerts certain anticancer roles in different human cancer types. However, the exact molecular mechanism(s) behind such a role remains to be elucidated, thus the aim of this study. EXPERIMENTAL APPROACH T47D human breast cancer cells were treated with RSVL and cell proliferation was measured by cell counting. Apoptosis was analyzed by Giemsa staining, poly(ADP-ribose) polymerase (PARP) fragmentation analysis and annexin V assay. Regulation of p53 tumor suppressor protein, p70S6K, and pS6 ribosomal protein was measured by detecting their phosphorylated active forms using ECL-immunoblot analysis. RESULTS The present results show that RSVL-induced growth inhibition in T47D cells is caused by apoptosis as demonstrated by morphological changes and PARP fragmentation. RSVL-induced apoptosis is associated with the activation of the p53 in a dose- and a time-dependent manner. Phosphatidylinositol 3-kinase (PI3K) inhibitors, wortmannin and LY294002 abolished the effect of RSVL on p53 activation. Interestingly, RSVL inhibits the expression of p70S6K and the phosphorylation of pS6RP. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that RSVL affects multiple intracellular signaling transduction pathways such as p53 activation/protein translation inhibition/apoptosis, and strongly support a contemplated use of this natural compound as a preventive and/or an adjuvant therapeutic drug for breast cancer. The data indicate that these proteins may be used as predictive biomarkers to evaluate the treatment efficacy of RSVL in clinical trials.
Collapse
Affiliation(s)
- Moussa Alkhalaf
- Department of Biochemistry, Faculty of Medicine, Kuwait University, Kuwait, Kuwait.
| |
Collapse
|
118
|
Mokni M, Elkahoui S, Limam F, Amri M, Aouani E. Effect of Resveratrol on Antioxidant Enzyme Activities in the Brain of Healthy Rat. Neurochem Res 2007; 32:981-7. [PMID: 17401679 DOI: 10.1007/s11064-006-9255-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 12/12/2006] [Indexed: 11/29/2022]
Abstract
We have studied the effect of resveratrol on lipoperoxidation and antioxidant enzyme activity level in the brain of healthy rats. When intraperitoneally administered, resveratrol significantly and dose dependently decreased brain malondialdehyde level. Resveratrol also increased in a dose-dependent way brain superoxide dismutase, catalase and peroxidase activities. Optimal effect on antioxidant enzyme and lipoperoxidation products were obtained with resveratrol concentration of 12.5 mg/kg body wt. Native polyacrylamide gel electrophoresis analysis of antioxidant isoenzymes revealed that resveratrol up regulated at least two acidic superoxide dismutase isoforms called A(1) and A(2), two basic isoforms called B(1) and B(2). Resveratrol also up regulated two catalase isoforms and a broad peroxidase band corresponding to several isoforms. All these findings suggest that resveratrol is able to cross the blood brain barrier and exerts potent antioxidant features. Resveratrol also exerts neuroprotective properties by up regulating several detoxifying enzymes, most of which are iron proteins.
Collapse
Affiliation(s)
- Meherzia Mokni
- Laboratoire de Physiologie de la Nutrition, Faculté des Sciences de Tunis, Campus Universitaire El Manar II, Tunis, Tunisia
| | | | | | | | | |
Collapse
|
119
|
Hu Y, Rahlfs S, Mersch-Sundermann V, Becker K. Resveratrol modulates mRNA transcripts of genes related to redox metabolism and cell proliferation in non-small-cell lung carcinoma cells. Biol Chem 2007; 388:207-19. [PMID: 17261084 DOI: 10.1515/bc.2007.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resveratrol is a polyphenolic chemopreventive agent that has been shown to influence cellular redox reactions. As a systematic approach to elucidating the complex effects of resveratrol on eukaryotic cells, we studied its dose-dependent effects on the transcript levels of genes and activities of enzymes related to redox metabolism, cell cycle regulation, and apoptotic cascades in the cancer cell line A549. Glutathione peroxidase (GPx)1 mRNA levels, as well as GPx and thioredoxin reductase (TrxR) activities, were significantly increased after resveratrol treatment, whereas total glutathione concentrations decreased. Increased transcript levels were also detected for selenophosphate synthetase 2 and superoxide dismutase 2. However, mRNA levels of thioredoxin, TrxR, glutathione reductase, glutathione S-transferase, superoxide dismutase 1, and catalase were not altered. Among the 12 genes studied that are related to the cell cycle, differentiation and apoptosis, mRNA levels of six genes, including P53, FAS, and BCL2, were upregulated, while the mRNA level of survivin was reduced. The results suggest that GPx and other selenoproteins are important targets of resveratrol. Furthermore, genes supporting cell survival and differentiation, as well as genes involved in proliferation inhibition and apoptosis, are induced by resveratrol, resulting in a delicate balance that is likely to contribute to the chemopreventive effects of resveratrol.
Collapse
Affiliation(s)
- Ying Hu
- Nutritional Biochemistry, Interdisciplinary Research Center, Justus-Liebig-University Giessen, and Faculty of Medicine, Institute of Indoor and Environmental Toxicology, University Hospital of Giessen and Marburg, Germany
| | | | | | | |
Collapse
|
120
|
Shibata MA, Akao Y, Shibata E, Nozawa Y, Ito T, Mishima S, Morimoto J, Otsuki Y. Vaticanol C, a novel resveratrol tetramer, reduces lymph node and lung metastases of mouse mammary carcinoma carrying p53 mutation. Cancer Chemother Pharmacol 2007; 60:681-91. [PMID: 17256131 DOI: 10.1007/s00280-007-0414-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Accepted: 12/29/2006] [Indexed: 12/15/2022]
Abstract
PURPOSE The effects of vaticanol C (Vat-C), a novel resveratrol tetramer, were studied in a mouse metastatic mammary cancer model carrying mutations in p53 that produce a metastatic spectrum similar to that seen in human breast cancers. METHODS Mammary tumors, induced by inoculation of syngeneic BALB/c mice with BJMC3879 cells, were subsequently treated with Vat-C at 0, 100 and 200 ppm in their diet. RESULTS The in vitro study demonstrated that Vat-C induced apoptosis, as inferred by morphological changes, nucleosomal DNA fragmentation and elevated activities of caspases. Although tumor volumes were not apparently suppressed in mice treated with Vat-C, the multiplicity of lymph node metastasis was significantly decreased in the 200-ppm group. Furthermore, the multiplicity of lung metastasis was also significantly lower in the 200-ppm group. In any category of organ metastasis, the number of organs with metastasis tended to be lower in the 200-ppm group, but these findings were not statistically significant. The levels of apoptosis were significantly higher in the 200-ppm group, but DNA synthesis only a tended to be lower in this group. Microvessel density in tumors also tended to be lower in the Vat-C-treated groups. Moreover, the numbers of lymphatic vessels having intraluminal tumor cells was significantly lower in mammary tumors of mice given 100 and 200-ppm Vat-C, indicating a reduction in migrating tumor cells into the lymphatic vessels of tumor tissue. CONCLUSIONS These results suggest that the observed antimetastatic activity of Vat-C may be of clinical significance as an adjuvant therapy in metastatic human breast cancer having p53 mutations, and may also be useful as a chemopreventative of breast cancer development.
Collapse
Affiliation(s)
- Masa-Aki Shibata
- Department of Anatomy and Cell Biology, Division of Basic Medicine I, Osaka Medical College, 2-7, Daigaku-machi, Takatsuki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Fedorov SN, Radchenko OS, Shubina LK, Balaneva NN, Bode AM, Stonik VA, Dong Z. Evaluation of cancer-preventive activity and structure-activity relationships of 3-demethylubiquinone Q2, isolated from the ascidian Aplidium glabrum, and its synthetic analogs. Pharm Res 2006; 23:70-81. [PMID: 16320003 PMCID: PMC2227315 DOI: 10.1007/s11095-005-8813-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Accepted: 09/28/2005] [Indexed: 01/03/2023]
Abstract
PURPOSE 3-Demethylubiquinone Q2 was isolated from the ascidian Aplidium glabrum. The cancer-preventive properties and the structure-activity relationship for 3-demethylubiquinone Q2 and 12 of its synthetic analogs are reported. METHODS Compounds, having one or several di- or triprenyl substitutions and quinone moieties with methoxyls in different positions, were synthesized. The cancer-preventive properties of compounds and were tested in JB6 Cl41 mouse skin cells, using a variety of assessments, including the methanethiosulfonate (MTS) assay, flow cytometry, and soft agar assay. Statistical nonparametric methods were used to confirm statistical significance. RESULTS All quinones tested were shown to inhibit JB6 Cl41 cell transformation, to induce apoptosis, AP-1, and NF-kappaB activity, and to inhibit p53 activity. The most promising effects were indicated for compounds containing two isoprene units in a side chain and a methoxyl group at the para-position to a polyprenyl substitution. CONCLUSIONS Quinones and demonstrated cancer-preventive activity in JB6 Cl41 cells, which may be attributed to the induction of p53-independent apoptosis. These activities depended on the length of side chains and on the positions of the methoxyl groups in the quinone part of the molecule.
Collapse
Affiliation(s)
- Sergey N. Fedorov
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
- Pacific Institute of Bioorganic Chemistry, 159 Prospect 100-let Vladivostoku, Vladivostok, 690022, Russia
| | - Oleg S. Radchenko
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
| | - Larisa K. Shubina
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
| | - Nadezhda N. Balaneva
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
| | - Ann M. Bode
- Pacific Institute of Bioorganic Chemistry, 159 Prospect 100-let Vladivostoku, Vladivostok, 690022, Russia
| | - Valentin A. Stonik
- Hormel Institute, University of Minnesota, 801 16 Avenue NE, Austin, Minnesota 55912, USA
- To whom correspondence should be addressed. (e-mail: )
| | - Zigang Dong
- Pacific Institute of Bioorganic Chemistry, 159 Prospect 100-let Vladivostoku, Vladivostok, 690022, Russia
- To whom correspondence should be addressed. (e-mail: )
| |
Collapse
|
122
|
Notas G, Nifli AP, Kampa M, Vercauteren J, Kouroumalis E, Castanas E. Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation. Biochim Biophys Acta Gen Subj 2006; 1760:1657-66. [PMID: 17052855 DOI: 10.1016/j.bbagen.2006.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/25/2006] [Accepted: 09/15/2006] [Indexed: 01/17/2023]
Abstract
The stilbene resveratrol exerts antiproliferative and proapoptotic actions on a number of different cancer cell lines, through diverse mechanisms, including antioxidant effects, enzyme, growth factor and hormone receptor binding, and nucleic acid direct or indirect interactions. Although resveratrol accumulates in the liver, its effect on hepatocellular carcinoma has not been extensively studied. We have used the human hepatocyte-derived cancer cell line HepG2 to address the possible action of resveratrol on cell growth and to examine some possible mechanisms of action. Our results indicate that the stilbene inhibits potently cell proliferation, reduces the production of reactive oxygen species and induces apoptosis, through cell cycle arrest in G1 and G2/M phases. Furthermore it modulates the NO/NOS system, by increasing iNOS and eNOS expression, NOS activity and NO production. Inhibition of NOS enzymes attenuates its antiproliferative effect. These data could be of value in possible prevention or adjuvant treatment of hepatocellular carcinoma, through an increased consumption of resveratrol-rich foods and beverages.
Collapse
Affiliation(s)
- George Notas
- Laboratories of Gastroenterology, University of Crete School of Medicine, Heraklion, Greece
| | | | | | | | | | | |
Collapse
|
123
|
Ray RS, Rana B, Swami B, Venu V, Chatterjee M. Vanadium mediated apoptosis and cell cycle arrest in MCF7 cell line. Chem Biol Interact 2006; 163:239-47. [PMID: 16970931 DOI: 10.1016/j.cbi.2006.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/31/2006] [Accepted: 08/07/2006] [Indexed: 11/30/2022]
Abstract
Vanadium is a metal widely distributed in the environment. It is also a dietary micronutrient. It has shown insulin mimetic and chemopreventive properties and has been considered as an important pharmacological agent. In this study, we evaluated the apoptogenic role of vanadium on human breast cancer cell line MCF7. Exposure of MCF7 cells to vanadium led to the induction of apoptosis in a dose-dependent manner. Percentage of apoptosis was maximum (42.5%) at the highest non-toxic dose (250 microM). It was found that vanadium treatment brought about a prominent chromatin condensation, cell cycle arrest leading to apoptosis. These apoptosis based assays demonstrate that vanadium has the potential to be developed into an anti-cancer drug in the near future.
Collapse
Affiliation(s)
- Rajarshi Sankar Ray
- Department of Pharmaceutical Technology, Jadavpur University, P.O. Box 17028, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
124
|
Riles WL, Erickson J, Nayyar S, Atten MJ, Attar BM, Holian O. Resveratrol engages selective apoptotic signals in gastric adenocarcinoma cells. World J Gastroenterol 2006; 12:5628-34. [PMID: 17007014 PMCID: PMC4088162 DOI: 10.3748/wjg.v12.i35.5628] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the intracellular apoptotic signals engaged by resveratrol in three gastric adenocarcinoma cancer cell lines, two of which (AGS and SNU-1) express p53 and one (KATO-III) with deleted p53.
METHODS: Nuclear fragmentation was used to quanti-tate apoptotic cells; caspase activity was determined by photometric detection of cleaved substrates; formation of oxidized cytochrome C was used to measure cytochrome C activity, and Western blot analysis was used to determine protein expression.
RESULTS: Gastric cancer cells, irrespective of their p53 status, responded to resveratrol with fragmentation of DNA and cleavage of nuclear lamins A and B and PARP. Resveratrol, however, has no effect on mitochondria-associated apoptotic proteins Bcl-2, Bcl-xl, Bax, Bid or Smac/Diablo, and did not promote sub-cellular redistribution of cytochrome C, indicating that resveratrol-induced apoptosis of gastric carcinoma cells does not require breakdown of mitochondrial membrane integrity. Resveratrol up-regulated p53 protein in SNU-1 and AGS cells but there was a difference in response of intracellular apoptotic signals between these cell lines. SNU-1 cells responded to resveratrol treatment with down-regulation of survivin, whereas in AGS and KATO-III cells resveratrol stimulated caspase 3 and cytochrome C oxidase activities.
CONCLUSION: These findings indicate that even within a specific cancer the intracellular apoptotic signals engaged by resveratrol are cell type dependent and suggest that such differences may be related to differentiation or lack of differentiation of these cells.
Collapse
Affiliation(s)
- William L Riles
- Division of Gastroenterology, John H. Stroger Hospital of Cook County, 1901 W. Harrison Street Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
125
|
Zhang W, Fei Z, Zhen HN, Zhang JN, Zhang X. Resveratrol inhibits cell growth and induces apoptosis of rat C6 glioma cells. J Neurooncol 2006; 81:231-40. [PMID: 17031560 DOI: 10.1007/s11060-006-9226-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2006] [Accepted: 07/21/2006] [Indexed: 01/29/2023]
Abstract
Resveratrol (Res) has been reported to inhibit tumor initiation, promotion, and progression in a variety of cell culture systems depending on the specific cell type and cellular environment. In the present study, we determined the effect of Res on the cell growth and apoptosis of rat glioma C6 cell line as well as mouse fibroblast 3T3 cell line, in vitro. Concurrently, we investigated whether caspase-3 is involved in the Res-induced apoptosis of rat glioma cells. Exposure to Res exhibits a significant anti-proliferative effect and induces an increase in the population of apoptotic cells on C6 cells in a concentration- and time-dependent manner, but not for normal 3T3 fibroblast cells, as measured by methyl thiazolyl tetrazolium assay and flow cytometer. Distinguished increase of C6 cells in S phase is observed after the treatment of Res as compared to insignificant change in cell cycle distribution of 3T3 cells. TdT-mediated dUTP nick end labeling fluorescence staining, HE staining, and scanning electron microscope revealed abnormal morphology and ultrastructure in C6 cells treated with Res. Our data showed that Res can increase the expression and induced the activation of caspase-3 in rat glioma C6 cells. These results suggest that Res has significant apoptosis-inducing effect on C6 glioma cells other than normal fibroblast 3T3 cells in vitro and caspase-3 may act as a potential mediator in the process.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Neurosurgery, Neurosurgical Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, No. 127 West Chang'le Road, Xi'an, 710032, Shaanxi Province, People's Republic of China
| | | | | | | | | |
Collapse
|
126
|
Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006; 46:161-83. [PMID: 16431408 DOI: 10.1080/10408390591000541] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper is a comprehensive review of the effects of bioactive polyphenolic compounds commonly found in many fruits and vegetables on cancer. These include the pheniolic acids, anthocyanins, catechins, stilbenes and several other flavonoids. We have attempted to compile information from most of the major studies in this area into one source. The review encompasses the occurrence and bioavailability of the polyphenolics, the in vitro and in vivo evidence for their effects on cancer, both positive and negative, and the various mechanisms by which the chemicals may exert their effects. Although most of the work done to date indicates a chemopreventative activity of these compounds, there are some studies that show cancer-inducing or no effects. There are several common mechanisms by which these chemicals exert their effects that could be conducive to additive, synergistic, or antagonistic interactions. These include effects on cellular differentiation, proliferation, and apoptosis, effects on proteins and enzymes that are involved in these processes at a molecular level, and other various effects through altered immune function and chemical metabolism.
Collapse
|
127
|
|
128
|
Lee SC, Chan J, Clement MV, Pervaiz S. Functional proteomics of resveratrol-induced colon cancer cell apoptosis: caspase-6-mediated cleavage of lamin A is a major signaling loop. Proteomics 2006; 6:2386-94. [PMID: 16518869 DOI: 10.1002/pmic.200500366] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study investigated the molecular basis of resveratrol (RSV)-evoked apoptosis in four (Bax+/-, Bax-/-, p53+/+, and p53-/-) HCT116 colon cancer cell lines. RSV induced apoptosis in all the cells in a dose-dependent manner; however, Bax+/- and p53+/+ cells were more susceptible than their knockout counterparts (Bax-/- and p53-/-, respectively). Using Bax+/- cells as a model, proteomic analysis revealed four RSV-responsive events: fragmentation of lamin A/C protein; increase in concentration of a more basic isoelectric variant of the ribosomal protein P0; and decrease in concentration of dUTPase as well as stathmin 1. Lamin A cleavage in response to RSV treatment was confirmed using Western blot analysis. Caspase-6 was activated, which was evidenced by cleavage and accumulation in active form of caspase-6 as well as upregulation of the protease activity. RSV-elicited lamin A cleavage and apoptosis were entirely abrogated by the peptide inhibitors of caspase-6. Likewise, partial knockdown of caspase-6 expression using small interfering RNA resulted in significant inhibition of RSV-elicited lamin A cleavage and apoptosis. Furthermore, the lower apoptosis sensitivity of the knockout cells (Bax-/- and p53-/-) correlated with the relatively reduced processing of caspase-6 and lamin A cleavage. Taken together, these data highlight the critical role of caspase-6 and its cleavage of lamin A in apoptotic signaling triggered by RSV in the colon carcinoma cells, which can be activated in the absence of Bax or p53.
Collapse
Affiliation(s)
- Shao Chin Lee
- National University Medical Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
129
|
Simoni D, Roberti M, Invidiata FP, Aiello E, Aiello S, Marchetti P, Baruchello R, Eleopra M, Di Cristina A, Grimaudo S, Gebbia N, Crosta L, Dieli F, Tolomeo M. Stilbene-based anticancer agents: Resveratrol analogues active toward HL60 leukemic cells with a non-specific phase mechanism. Bioorg Med Chem Lett 2006; 16:3245-8. [PMID: 16580204 DOI: 10.1016/j.bmcl.2006.03.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 03/13/2006] [Accepted: 03/13/2006] [Indexed: 01/14/2023]
Abstract
Several stilbenes, related to known resveratrol, have been synthesized and tested for their anticancer effect on HL60 leukemia cell line, taking particular care of the cell cycle analysis. The most potent compound was the known (Z)-3,4',5-trimethoxystilbene (6b) which was active as apoptotic agent at 0.24 microM. Differently from other stilbenes (including resveratrol) that induced a prevalent recruitment of cells in S phase of cell cycle, we found a peculiar behavior of 6b that caused a decrease of cells in all phases of cell cycle (G0-G1, S, and G2-M) and a proportional increase of apoptotic cells. The potent pro-apoptotic activity shown by compound 6b and its effects on cell cycle make this compound of great interest for further investigations.
Collapse
Affiliation(s)
- Daniele Simoni
- Dipartimento di Scienze Farmaceutiche, Via Fossato di Mortara 17-19, Università di Ferrara, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Rezk YA, Balulad SS, Keller RS, Bennett JA. Use of resveratrol to improve the effectiveness of cisplatin and doxorubicin: study in human gynecologic cancer cell lines and in rodent heart. Am J Obstet Gynecol 2006; 194:e23-6. [PMID: 16647892 DOI: 10.1016/j.ajog.2005.11.030] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/02/2005] [Accepted: 11/15/2005] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate whether resveratrol adds to the growth inhibitory effects of cisplatin and doxorubicin on ovarian and uterine cancer cells and to evaluate whether resveratrol diminishes the cardiac toxicity of doxorubicin in rodent heart. STUDY DESIGN Human ovarian (OVCAR-3) and uterine (Ishikawa) cancer cells in culture were treated with cisplatin and doxorubicin, respectively, with and without resveratrol; and cell growth and viability were evaluated. Neonatal rat ventricular myocytes received doxorubicin in the presence and absence of resveratrol, and cell viability was evaluated. Mice received doxorubicin +/- resveratrol, and electrocardiograms were evaluated. Data were analyzed with analysis of variance and Scheffe's test. RESULTS Resveratrol combined with cisplatin or with doxorubicin demonstrated an additive growth-inhibitory anticancer effect with a left shift of the cisplatin and doxorubicin dose/response curves. Resveratrol increased the viability of neonatal rat ventricular myocytes that were treated with doxorubicin and reduced doxorubicin-induced bradycardia and QTc interval prolongation in mice. CONCLUSION Resveratrol adds to the growth inhibitory/anticancer activity of cisplatin and doxorubicin in vitro and protects against doxorubicin-induced cardiac toxicity both in vitro and in mice.
Collapse
Affiliation(s)
- Youssef A Rezk
- Department of Obstetrics and Gynecology, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
131
|
Mohan J, Gandhi AA, Bhavya BC, Rashmi R, Karunagaran D, Indu R, Santhoshkumar TR. Caspase-2 triggers Bax-Bak-dependent and -independent cell death in colon cancer cells treated with resveratrol. J Biol Chem 2006; 281:17599-611. [PMID: 16617056 DOI: 10.1074/jbc.m602641200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.
Collapse
Affiliation(s)
- John Mohan
- Department of Cancer Biology, Rajiv Gandhi Centre for Biotechnology, Poojappura, Trivandrum-695 014, Kerala, India
| | | | | | | | | | | | | |
Collapse
|
132
|
Pöhland T, Wagner S, Mahyar-Roemer M, Roemer K. Bax and Bak are the critical complementary effectors of colorectal cancer cell apoptosis by chemopreventive resveratrol. Anticancer Drugs 2006; 17:471-8. [PMID: 16550006 DOI: 10.1097/01.cad.0000203387.29916.8e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Resveratrol (RS) exerts a large number of cell-protective and anti-tumor effects, among them the induction of tumor cell apoptosis. Since the bioavailability of ingested RS at distant organs is low and apoptosis induction often requires relatively high RS levels (above 20 micromol/l), this polyphenolic food ingredient might be particularly effective as a chemopreventive in the digestive tract. Previous studies have suggested that chemoprevention by non-steroidal anti-inflammatory drugs (NSAIDs) is blunted by the loss of a single component of the apoptotic machinery - the Bax protein. Here, we report that RS efficiently provokes apoptosis in human colorectal carcinoma cells deficient for Bax, although at a reduced rate compared to the parental cells, through the activation of the mitochondrial death pathway. Knockdown of pro-apoptotic Bak by RNA interference reduced the apoptotic response to a similar extent as Bax deficiency in the parental cells and completely abolished apoptosis in Bax-null cells. Notably, although negative for RS-induced, mitochondria-mediated apoptosis, Bax+Bak double-deficient cells were sensitized by RS to ligand-induced, death receptor-mediated apoptosis. Thus, in contrast to NSAIDs, RS may remain effective as a pro-apoptotic chemopreventive as long as Bax and Bak have not both been inactivated during clonal selection.
Collapse
Affiliation(s)
- Thorsten Pöhland
- Department of Virology, University of Saarland Medical School, Homburg/Saar, Germany
| | | | | | | |
Collapse
|
133
|
Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71:1397-421. [PMID: 16563357 DOI: 10.1016/j.bcp.2006.02.009] [Citation(s) in RCA: 1095] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 02/06/2006] [Indexed: 12/11/2022]
Abstract
While fruits and vegetables are recommended for prevention of cancer and other diseases, their active ingredients (at the molecular level) and their mechanisms of action less well understood. Extensive research during the last half century has identified various molecular targets that can potentially be used not only for the prevention of cancer but also for treatment. However, lack of success with targeted monotherapy resulting from bypass mechanisms has forced researchers to employ either combination therapy or agents that interfere with multiple cell-signaling pathways. In this review, we present evidence that numerous agents identified from fruits and vegetables can interfere with several cell-signaling pathways. The agents include curcumin (turmeric), resveratrol (red grapes, peanuts and berries), genistein (soybean), diallyl sulfide (allium), S-allyl cysteine (allium), allicin (garlic), lycopene (tomato), capsaicin (red chilli), diosgenin (fenugreek), 6-gingerol (ginger), ellagic acid (pomegranate), ursolic acid (apple, pears, prunes), silymarin (milk thistle), anethol (anise, camphor, and fennel), catechins (green tea), eugenol (cloves), indole-3-carbinol (cruciferous vegetables), limonene (citrus fruits), beta carotene (carrots), and dietary fiber. For instance, the cell-signaling pathways inhibited by curcumin alone include NF-kappaB, AP-1, STAT3, Akt, Bcl-2, Bcl-X(L), caspases, PARP, IKK, EGFR, HER2, JNK, MAPK, COX2, and 5-LOX. The active principle identified in fruit and vegetables and the molecular targets modulated may be the basis for how these dietary agents not only prevent but also treat cancer and other diseases. This work reaffirms what Hippocrates said 25 centuries ago, let food be thy medicine and medicine be thy food.
Collapse
Affiliation(s)
- Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Box 143, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
134
|
Young LF, Martin KR. Time-dependent resveratrol-mediated mRNA and protein expression associated with cell cycle in WR-21 cells containing mutated human c-Ha-Ras. Mol Nutr Food Res 2006; 50:70-7. [PMID: 16369916 DOI: 10.1002/mnfr.200500149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer results from an undesirable imbalance between cellular proliferation and apoptosis. Both processes may be modulated at the level of gene expression, viz., p53 and c-Ha-ras, by dietary bioactive components such as resveratrol. We tested the time-dependent effect of resveratrol on gene and protein expression in WR-21 cells containing a mutated human c-Ha-ras oncogene. We demonstrate cyclic resveratrol-mediated expression of p53, mdm2, p21(cip/waf), Rb, and cyclin G at both the RNA and the protein level at <8 h. However, ras was not differentially expressed at either the RNA or the protein level. p53 was upregulated followed by p21cip/waf, then mdm2, and cyclin G, all downstream p53-activated targets. RNA transcription increased at >8 h for all genes except p53, but protein levels did not suggest uncoupling of transcription and translation. At 24 h, both p53 and Rb expression returned to baseline, suggesting collapse of DNA structure and spindle assembly checkpoints characteristic of mitotic catastrophe. In summary, resveratrol at <8 h induced p53-mediated effects, including apoptosis and cell-cycle arrest (G2/M). However, later, it induced cell-cycle checkpoint dysfunction, indicative of mitotic catastrophe. Thus, future studies should better elucidate the temporal mechanism of the dietary bioactive agent resveratrol on cancer cells.
Collapse
Affiliation(s)
- Leeanne F Young
- Nutrition and Cancer Laboratory, Department of Nutritional Sciences, Pennsylvania State University, University Park, USA
| | | |
Collapse
|
135
|
Kundu T, Dey S, Roy M, Siddiqi M, Bhattacharya RK. Induction of apoptosis in human leukemia cells by black tea and its polyphenol theaflavin. Cancer Lett 2005; 230:111-21. [PMID: 16253767 DOI: 10.1016/j.canlet.2004.12.035] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/18/2004] [Accepted: 12/20/2004] [Indexed: 10/25/2022]
Abstract
Treatment of human leukemic cell lines HL-60 and K-562 with extracts of green and black tea and their polyphenols epigallocatechin gallate and theaflavins, respectively, showed a dose dependent inhibition of growth as a result of cytotoxicity and suppression of cell proliferation. Based on the IC50 values obtained from cytotoxicity data it was clearly evident that black tea was as efficient as green tea. Analysis of polyphenol contents of tea extracts revealed that not only epigallocatechin gallate, which is a predominant polyphenol of green tea, but also theaflavin that is abundantly present in black tea affords significant chemotherapeutic action by imparting cytotoxicity to human leukemic cells. Electrophoretic analysis of fragmented DNA from treated cells displayed characteristic ladder pattern. Flow cytometric analysis revealed the dose dependent increase in sub-G1 peak. These criteria confirmed that cytotoxic activity of green and black tea was due to induction of apoptosis. Such induction was found to be mediated through activation of caspases 3 and 8, particularly caspase 3 and by altering apoptosis related genes as evident by down-regulation of Bcl-2 and up-regulation of Bax proteins.
Collapse
Affiliation(s)
- Trina Kundu
- Department of Environmental Carcinogenesis and Toxicology, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata 700 026, India
| | | | | | | | | |
Collapse
|
136
|
Chun YJ, Lee SK, Kim MY. Modulation of human cytochrome P450 1B1 expression by 2,4,3',5'-tetramethoxystilbene. Drug Metab Dispos 2005; 33:1771-6. [PMID: 16120791 DOI: 10.1124/dmd.105.006502] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that 2,4,3',5'-tetramethoxystilbene (TMS), a synthetic trans-stilbene analog, is one of the most potently selective inhibitors of recombinant human cytochrome P450 1B1 (CYP1B1) in vitro. In the present studies, the effects of TMS on CYP1B1 expression were investigated in human cancer cells. TMS significantly inhibited CYP1-mediated 7-ethoxyresorufin O-deethylation activity in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced MCF-7 cells or lung microsomes of Sprague-Dawley rats treated with 7,12-dimethylbenz[a]anthracene. TCDD-stimulated CYP1B1 protein and mRNA expression was significantly suppressed by TMS in a concentration-dependent manner in MCF-7, MCF-10A, and HL-60 cells. Whereas TMS down-regulated TCDD-induced CYP1B1 gene expression, the levels of aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator mRNA expression were not changed by TMS treatment. In human cancer cells, TMS induced apoptotic cell death, and the cytotoxic effects of TMS were significant when the cells were incubated with TCDD. CYP1B1 was able to convert TMS to a metabolite(s) when incubated with NADPH. Metabolic activation of TMS by CYP1B1 induced by TCDD may mediate cellular toxicity of TMS in human cancer cells because the sensitivity to TMS in MCF-7 cells treated with TCDD was more significant than in HL-60 cells treated with TCDD. Taken together, our results indicate that TMS acts as a strong modulator of CYP1B1 gene expression as well as a potent selective inhibitor in vitro. The ability of TMS to induce apoptotic cell death in tumor cells, as well as CYP1B1 inhibition, may contribute to its usefulness for cancer chemoprevention.
Collapse
Affiliation(s)
- Young-Jin Chun
- College of Pharmacy, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Gu, Seoul 156-756, South Korea.
| | | | | |
Collapse
|
137
|
Young JE, Zhao X, Carey EE, Welti R, Yang SS, Wang W. Phytochemical phenolics in organically grown vegetables. Mol Nutr Food Res 2005; 49:1136-42. [PMID: 16302198 DOI: 10.1002/mnfr.200500080] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fruit and vegetable intake is inversely correlated with risks for several chronic diseases in humans. Phytochemicals, and in particular, phenolic compounds, present in plant foods may be partly responsible for these health benefits through a variety of mechanisms. Since environmental factors play a role in a plant's production of secondary metabolites, it was hypothesized that an organic agricultural production system would increase phenolic levels. Cultivars of leaf lettuce, collards, and pac choi were grown either on organically certified plots or on adjacent conventional plots. Nine prominent phenolic agents were quantified by HPLC, including phenolic acids (e. g. caffeic acid and gallic acid) and aglycone or glycoside flavonoids (e. g. apigenin, kaempferol, luteolin, and quercetin). Statistically, we did not find significant higher levels of phenolic agents in lettuce and collard samples grown organically. The total phenolic content of organic pac choi samples as measured by the Folin-Ciocalteu assay, however, was significantly higher than conventional samples (p < 0.01), and seemed to be associated with a greater attack the plants in organic plots by flea beetles. These results indicated that although organic production method alone did not enhance biosynthesis of phytochemicals in lettuce and collards, the organic system provided an increased opportunity for insect attack, resulting in a higher level of total phenolic agents in pac choi.
Collapse
Affiliation(s)
- Janice E Young
- Department of Human Nutrition, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
138
|
Young LF, Hantz HL, Martin KR. Resveratrol modulates gene expression associated with apoptosis, proliferation and cell cycle in cells with mutated human c-Ha-Ras, but does not alter c-Ha-Ras mRNA or protein expression. J Nutr Biochem 2005; 16:663-74. [PMID: 16081268 DOI: 10.1016/j.jnutbio.2005.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 03/15/2005] [Accepted: 03/16/2005] [Indexed: 11/16/2022]
Abstract
An accumulating body of evidence suggests that resveratrol can inhibit carcinogenesis through antiproliferative and apoptotic effects. One proposed mechanism for this is the modulation of genes, for example, Ras and p53, frequently associated with human cancer. To test the effect of resveratrol on gene expression, we used the WR-21 cell line because it contains a mutated human c-Ha-ras gene. Cells at > or =70% confluency were incubated with media alone or with increasing concentrations of trans-resveratrol (0.1-1000 microM) for 24 h. Resveratrol (30-100 microM) decreased cellular proliferation by 80% (bromodeoxyuridine incorporation) and increased apoptosis by 60% (TUNEL). Cells were then treated with media alone or with 50-microM resveratrol for 24 h. RNA was isolated for nylon-based macroarray analyses and protein for immunoblotting. Resveratrol increased (+) and decreased (-) gene expression associated with apoptosis (Birc5+, Cash+, Mcl-1+, Mdm2+, Rpa-like+), cellular proliferation (Ctsd+, Mdm2+, Egr1+, ODC+) and cell cycle (cyclin D+, cyclin g+, Gadd45a-, Mad2l-, Mdm2+). Resveratrol consistently increased by > or =6-fold Mdm2 expression and other downstream p53 effectors, but not p53 itself at 24 h. Subsequent cell cycle analysis indicated a significant accumulation of cells in G2/M, and a decrease in G1/G0 suggesting a G2/M blockade. Further RT-PCR and Western blot analyses indicated no differential changes in Ras mRNA expression or p21(ras) protein levels, respectively. These results suggest that resveratrol potently inhibits cellular proliferation, increases apoptosis, alters cell cycle dynamics and modulates associated gene expression. Furthermore, these effects appear mediated, in part, by p53 without direct modulation of mutant c-Ha-ras expression.
Collapse
Affiliation(s)
- Leeanne F Young
- Nutrition and Cancer Laboratory, Pennsylvania State University, University Park, 16802, USA
| | | | | |
Collapse
|
139
|
Gagliano N, Moscheni C, Torri C, Magnani I, Bertelli AA, Gioia M. Effect of resveratrol on matrix metalloproteinase-2 (MMP-2) and Secreted Protein Acidic and Rich in Cysteine (SPARC) on human cultured glioblastoma cells. Biomed Pharmacother 2005; 59:359-64. [PMID: 16084059 DOI: 10.1016/j.biopha.2005.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 06/14/2005] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Glioblastoma is a highly malignant brain tumor with a high-invasive phenotype, so the prognosis is unfavorable, even in response to multidisciplinary treatment strategies. Obviously, therefore, a better therapeutic strategy is needed. Resveratrol has been reported to be one of the most potent chemopreventive agents inhibiting the cellular processes associated with tumor development, including initiation, promotion, and progression. MATERIALS AND METHODS In this study we used RT-PCR, western blot and SDS-zymography to investigate the effect of resveratrol on the expression of genes and proteins involved in the extracellular matrix remodeling associated with tumor invasion in human cultured glioblastoma cells treated for 24, 48 and 72 h. We analyzed the expression of matrix metalloproteinase-2 (MMP-2), the main mediator of glioblastoma invasiveness, and the Secreted Protein Acidic and Rich in Cysteine (SPARC), involved in the regulation of cell-matrix interactions. RESULTS Our results show a dose-related decrease of MMP-2 mRNA and protein levels 72 h after resveratrol treatment, and lower SPARC gene and protein expression 72 h after resveratrol treatment. This indicates that resveratrol may influence the two major factors in the ECM remodeling occurring with tumor invasion, suggesting it may have uses as a therapeutic agent for brain tumors.
Collapse
Affiliation(s)
- Nicoletta Gagliano
- Department of Human Morphology, University of Milan, Via Fratelli Cervi 93, 20090 LITA Segrate, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
140
|
Jiang H, Zhang L, Kuo J, Kuo K, Gautam SC, Groc L, Rodriguez AI, Koubi D, Hunter TJ, Corcoran GB, Seidman MD, Levine RA. Resveratrol-induced apoptotic death in human U251 glioma cells. Mol Cancer Ther 2005; 4:554-61. [PMID: 15827328 DOI: 10.1158/1535-7163.mct-04-0056] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resveratrol (trans-3,4',5-trihydroxystilbene) is a naturally occurring polyphenolic compound highly enriched in grapes, peanuts, red wine, and a variety of food sources. Resveratrol has antiinflammatory and antioxidant properties, and also has potent anticancer properties. Human glioma U251 cells were used to understand the molecular mechanisms by which resveratrol acts as an anticancer agent, since glioma is a particularly difficult cancer to treat and eradicate. Our data show that resveratrol induces dose- and time-dependent death of U251 cells, as measured by lactate dehydrogenase release and internucleosomal DNA fragmentation assays. Resveratrol induces activation of caspase-3 and increases the cleavage of the downstream caspase substrate, poly(ADP-ribose) polymerase. Resveratrol-induced DNA fragmentation can be completely blocked by either a general caspase inhibitor (Z-VAD-FMK) or a selective caspase-3 inhibitor (Z-DEVD-FMK), but not by a selective caspase-1 inhibitor. Resveratrol induces cytochrome c release from mitochondria to the cytoplasm and activation of caspase-9. Resveratrol also increases expression of proapoptotic Bax and its translocation to the mitochondria. Resveratrol inhibits U251 proliferation, as measured by MTS assay [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt], and induces G0/G1 growth arrest, as determined by flow cytometry. The cyclin-dependent kinase inhibitor, olomoucine, prevents cell cycle progression and resveratrol-induced apoptosis. These results suggest that multiple signaling pathways may underlie the apoptotic death of U251 glioma induced by resveratrol, which warrants further exploration as an anticancer agent in human glioma.
Collapse
Affiliation(s)
- Hao Jiang
- William T. Gossett Neurology Laboratories, Henry Ford Health System, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N, Vescovi PP, Fogliano V, Marchelli R. Bioavailability of trans-resveratrol from red wine in humans. Mol Nutr Food Res 2005; 49:495-504. [PMID: 15830336 DOI: 10.1002/mnfr.200500002] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many in vitro studies demonstrated significant biological effects of trans-resveratrol. Thus, understanding the rate of intestinal absorption and metabolization in vivo of trans-resveratrol is the prerequisite to evaluate its potential health impact. Bioavailability studies mainly in animals or in humans using the pure compound at very high doses were performed. In this work, trans-resveratrol bioavailability from a moderate consumption of red wine in 25 healthy humans has been studied by three different experiments. The wine ingestion was associated to three different dietary approaches: fasting, a standard meal, a meal with high and low amount of lipids. Trans-resveratrol 3- and 4'-glucuronides were synthesized, purified, and characterized as pure standards. Bioavailability data were obtained by measuring the concentration of free, 3-glucuronide and 4'-glucuronide trans-resveratrol by high-performance liquid chromatography (HPLC), both with ultraviolet (UV) and mass spectrometry (MS) detection, in serum samples taken at different times after red wine administration. Free trans-resveratrol was found, in trace amounts, only in some serum samples collected 30 min after red wine ingestion while after longer times resveratrol glucuronides predominated. Trans-resveratrol bioavailability was shown to be independent from the meal or its lipid content. The finding in human serum of trans-resveratrol glucuronides, rather than the free form of the compound, with a high interindividual variability, raises some doubts about the health effects of dietary resveratrol consumption and suggests that the benefits associated to red wine consumption could be probably due to the whole antioxidant pool present in red wine.
Collapse
Affiliation(s)
- Paola Vitaglione
- Dipartimento di Scienza degli Alimenti, Università degli Studi di Napoli Federico II, Portici NA, Italy
| | | | | | | | | | | | | | | |
Collapse
|
142
|
de la Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 2005; 49:405-30. [PMID: 15832402 DOI: 10.1002/mnfr.200500022] [Citation(s) in RCA: 504] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resveratrol is a phytoalexin polyphenolic compound found in various plants, including grapes, berries, and peanuts. Multiple lines of compelling evidence indicate its beneficial effects on neurological, hepatic, and cardiovascular systems. Also one of the most striking biological activities of resveratrol soundly investigated during the late years has been its cancer-chemopreventive potential. In fact, recently it has been demonstrated that this stilbene blocks the multistep process of carcinogenesis at various stages: tumor initiation, promotion, and progression. One of the possible mechanisms for its biological activities involves downregulation of the inflammatory response through inhibition of synthesis and release of pro-inflammatory mediators, modification of eicosanoid synthesis, inhibition of activated immune cells, or inhibiting such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) via its inhibitory effects on nuclear factor (kappa)B (NF-(kappa)B) or the activator protein-1 (AP-1). More recent data provide interesting insights into the effect of this compound on the lifespan of yeast and flies, implicating the potential of resveratrol as an anti-aging agent in treating age-related human diseases. It is worthy to note that the phenolic compound possesses a low bioavailability and rapid clearance from the plasma. As the positive effects of resveratrol on inflammatory response regulation may comprise relevant clinical implications, the purpose of this article is to review its strong anti-inflammatory activity and the plausible mechanisms of these effects. Also, this review is intended to provide the reader an up-date of the bioavailability and pharmacokinetics of resveratrol and its impact on lifespan.
Collapse
|
143
|
Chan WH, Chang YJ. Dosage effects of resveratrol on ethanol-induced cell death in the human K562 cell line. Toxicol Lett 2005; 161:1-9. [PMID: 16125344 DOI: 10.1016/j.toxlet.2005.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 07/21/2005] [Accepted: 07/21/2005] [Indexed: 10/25/2022]
Abstract
Previous studies have established that ethanol induces cell apoptosis and necrosis. However, the precise molecular mechanisms are currently unclear. Here, we show that higher concentrations of ethanol (250-400 mM) induced a shift from apoptotic to necrotic cell death in human K562 cells, and that resveratrol, a grape-derived phytoalexin with known antioxidant and anti-inflammatory properties, inhibited or enhanced ethanol-induced apoptosis/necrosis depending on the treatment dosage. Using the cell permeable dye 2',7'-dichlorofluorescin diacetate (DCF-DA) as an indicator of reactive oxygen species (ROS) generation, we showed that ethanol treatment directly increased intracellular oxidative stress. This intracellular oxidative stress increased in response to high concentrations (100-200 microM) of resveratrol, but remained unchanged following treatment with low concentrations (10-25 microM) of resveratrol. Further studies showed that resveratrol could attenuate or enhance ethanol-induced intracellular oxidative stress generation-dependent on treatment dosage, and that this effect could be correlated with cell apoptosis or necrosis. Importantly, ethanol-induced changes in intracellular ATP levels were also correlated with resveratrol dosage. Taken together, these results indicate that the treatment dosage may determine the effect of resveratrol on ethanol-induced ROS generation, intracellular ATP levels, and cell apoptosis or necrosis. Thus our findings support the possibility that appropriate dosage of resveratrol aids in decreasing the toxic effect of ethanol.
Collapse
Affiliation(s)
- Wen-Hsiung Chan
- Department of Bioscience Technology and Center for Nanotechnology, Chung Yuan Christian University, 200 Chung Pai Road, 32023 Chung Li, Taiwan.
| | | |
Collapse
|
144
|
Wang J, Ouyang W, Li J, Wei L, Ma Q, Zhang Z, Tong Q, He J, Huang C. Loss of Tumor Suppressor p53 Decreases PTEN Expression and Enhances Signaling Pathways Leading to Activation of Activator Protein 1 and Nuclear Factor κB Induced by UV Radiation. Cancer Res 2005; 65:6601-11. [PMID: 16061640 DOI: 10.1158/0008-5472.can-04-4184] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transcription factor p53 and phosphatase PTEN are two tumor suppressors that play essential roles in suppression of carcinogenesis. However, the mechanisms by which p53 mediates anticancer activity and the relationship between p53 and PTEN are not well understood. In the present study, we found that pretreatment of mouse epidermal Cl41 cells with pifithrin-alpha, an inhibitor for p53-dependent transcriptional activation, resulted in a marked increase in UV-induced activation of activator protein 1 (AP-1) and nuclear factor kappaB (NF-kappaB). Consistent with activation of AP-1 and NF-kappaB, pifithrin-alpha was also able to enhance the UV-induced phosphorylation of c-Jun-NH2-kinases (JNK) and p38 kinase, whereas it did not show any effect on phosphorylation of extracellular signal-regulated kinases. Furthermore, the UV-induced signal activation, including phosphorylation of JNK, p38 kinase, Akt, and p70S6K, was significantly enhanced in p53-deficient cells (p53-/-), which can be reversed by p53 reconstitution. In addition, knockdown of p53 expression by its small interfering RNA also caused the elevation of AP-1 activation and Akt phosphorylation induced by UV radiation. These results show that p53 has a suppressive activity on the cell signaling pathways leading to activation of AP-1 and NF-kappaB in cell response to UV radiation. More importantly, deficiency of p53 expression resulted in a decrease in PTEN protein expression, suggesting that p53 plays a critical role in the regulation of PTEN expression. In addition, overexpression of wild-type PTEN resulted in inhibition of UV-induced AP-1 activity. Because PTEN is a well-known phosphatase involved in the regulation of phosphatidylinositol 3-kinase (PI-3K)/Akt signaling pathway, taken together with the evidence that PI-3K/Akt plays an important role in the activation of AP-1 and NF-kappaB during tumor development, we anticipate that inhibition of AP-1 and NF-kappaB by tumor suppressor p53 seems to be mediated via PTEN, which may be a novel mechanism involved in anticancer activity of p53 protein.
Collapse
Affiliation(s)
- Jian Wang
- Nelson Institute of Environmental Medicine, School of Medicine, New York University, Tuxedo, New York 10987, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Cao Y, Wang F, Liu HY, Fu ZD, Han R. Resveratrol induces apoptosis and differentiation in acute promyelocytic leukemia (NB4) cells. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2005; 7:633-41. [PMID: 16087638 DOI: 10.1080/1028602032000169523] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a naturally occurring phytoalexin found in grapes and wine, and has been reported to exert a variety of important pharmacological effects. We have investigated the activity of resveratrol on proliferation and differentiation of the acute promyelocytic leukemia cell line NB4. The growth inhibitory properties of resveratrol appear to be due to its induction of apoptotic cell death, as determined by morphological changes, DNA fragmentation, increased proportion of the subdiploid cell population and decreased mitochondrial transmembrane potential (Deltapsi(m)). Colorimetric assay for activity of caspase-3 showed an obvious increase in caspase-3 activity in cells after treatment with resveratrol. However, the expression levels of protein Bcl-2 and Bax show no significant change in response to resveratrol treatment. These results suggest that apoptosis of NB4 cells induced by resveratrol requires caspase-3 activation and is related to the mitochondrial transmembrane potential. The combination of resveratrol and all-tran-retinoic acid (ATRA) induced 100% of the NB4 cells to become NBT-positive, whereas only a small part of cells became positive for NBT after a similar exposure to either resveratrol or ATRA alone. Thus, resveratrol may be useful in treating acute promyelocytic leukemia.
Collapse
Affiliation(s)
- Yu Cao
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China.
| | | | | | | | | |
Collapse
|
146
|
Jones SB, DePrimo SE, Whitfield ML, Brooks JD. Resveratrol-induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomarkers Prev 2005; 14:596-604. [PMID: 15767336 PMCID: PMC3889115 DOI: 10.1158/1055-9965.epi-04-0398] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The transhydroxystilbene resveratrol is found at high levels in red wine and grapes, and red wine consumption may be inversely associated with prostate cancer risk. To gain insights into the possible mechanisms of action of resveratrol in human prostate cancer, we did DNA microarray analysis of the temporal transcriptional program induced by treatment of the human prostate cancer cell line LNCaP with resveratrol. METHODS Spotted DNA microarrays containing over 42,000 elements were used to obtain a global view of the effects of resveratrol on gene expression. Prostate-specific antigen (PSA) and androgen receptor (AR) expression were determined by Northern blot and immunoblot analyses. Cell proliferation was determined by the 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay and cell cycle analysis by flow cytometry. RESULTS We observed time-dependent expression changes in >1,600 transcripts as early as 6 hours after treatment with resveratrol. Most striking was the modulation of a number of important genes in the androgen pathway including PSA and AR. Resveratrol also down-regulated expression of cell cycle and proliferation-specific genes involved in all phases of the cell cycle, induced negative regulators of proliferation, caused accumulation of cells at the sub-G1 and S phases of the cell cycle, and inhibited cell proliferation in a time- and dose-dependent manner. CONCLUSION Resveratrol produces gene expression changes in the androgen axis and cell cycle regulators that may underlie its putative anticancer activities in prostate cancer.
Collapse
Affiliation(s)
- Sunita B. Jones
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Samuel E. DePrimo
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Michael L. Whitfield
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
147
|
Ulrich S, Wolter F, Stein JM. Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol Nutr Food Res 2005; 49:452-461. [PMID: 15830333 DOI: 10.1002/mnfr.200400081] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene), a phytoalexin found in grape skins, peanuts, and red wine, has been reported to exhibit a wide range of biological and pharmacological properties. It has been speculated that dietary resveratrol could be an explanation for the so-called 'French paradox' as it may act as an antioxidant, promote nitric oxide production, inhibit platelet aggregation, and increase high-density lipoprotein cholesterol, and thereby serve as a cardioprotective agent. Recently, it has been demonstrated that resveratrol can function as a cancer chemopreventive agent, and there has been a great deal of experimental effort directed toward defining this effect. It has been shown that resveratrol and some of its analogs interfere with signal transduction pathways, modulate cell cycle-regulating proteins, and is a potent inducer of apoptosis in multiple carcinoma cell lines. This review summarizes the recent advances that have provided new insights into the molecular mechanisms underlying the promising properties of resveratrol.
Collapse
Affiliation(s)
- Sandra Ulrich
- 1st Department of Medicine, ZAFES, JW Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
148
|
Tolomeo M, Grimaudo S, Di Cristina A, Roberti M, Pizzirani D, Meli M, Dusonchet L, Gebbia N, Abbadessa V, Crosta L, Barucchello R, Grisolia G, Invidiata F, Simoni D. Pterostilbene and 3'-hydroxypterostilbene are effective apoptosis-inducing agents in MDR and BCR-ABL-expressing leukemia cells. Int J Biochem Cell Biol 2005; 37:1709-26. [PMID: 15878840 DOI: 10.1016/j.biocel.2005.03.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 12/22/2022]
Abstract
Pterostilbene and 3,5-hydroxypterostilbene are the natural 3,5-dimethoxy analogs of trans-resveratrol and piceatannol, two compounds which can induce apoptosis in tumor cells. In previous studies we demonstrated the importance of a 3,5-dimethoxy motif in conferring pro-apoptotic activity to stilbene based compounds so we now wanted to evaluate the ability of pterostilbene and 3,5-hydroxypterostilbene in inducing apoptosis in sensitive and resistant leukemia cells. When tested in sensitive cell lines, HL60 and HUT78, 3'-hydroxypterostilbene was 50-97 times more potent than trans-resveratrol in inducing apoptosis, while pterostilbene appeared barely active. However, both compounds, but not trans-resveratrol and piceatannol, were able to induce apoptosis in the two Fas-ligand resistant lymphoma cell lines, HUT78B1 and HUT78B3, and the multi drug-resistant leukemia cell lines HL60-R and K562-ADR (a Bcr-Abl-expressing cell line resistant to imatinib mesylate). Of note, pterostilbene-induced apoptosis was not inhibited by the pancaspase-inhibitor Z-VAD-fmk, suggesting that this compound acts through a caspase-independent pathway. On the contrary, 3'-hydroxypterostilbene seemed to trigger apoptosis through the intrinsic apoptotic pathway: indeed, it caused a marked disruption of the mitochondrial membrane potential delta psi and its apoptotic effects were inhibited by Z-VAD-fmk and the caspase-9-inhibitor Z-LEHD-fmk. Moreover, pterostilbene and 3'-hydroxypterostilbene, when used at concentrations that elicit significant apoptotic effects in tumor cell lines, did not show any cytotoxicity in normal hemopoietic stem cells. In conclusion, our data show that pterostilbene and particularly 3'-hydroxypterostilbene are interesting antitumor natural compounds that may be useful in the treatment of resistant hematological malignancies, including imatinib, non-responsive neoplasms.
Collapse
Affiliation(s)
- Manlio Tolomeo
- Dipartimento di Ematologia, Policlinico, Università di Palermo, via del Vespro 129, 90127 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Gosslau A, Chen M, Ho CT, Chen KY. A methoxy derivative of resveratrol analogue selectively induced activation of the mitochondrial apoptotic pathway in transformed fibroblasts. Br J Cancer 2005; 92:513-21. [PMID: 15668717 PMCID: PMC2362082 DOI: 10.1038/sj.bjc.6602300] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (R-3), a trihydroxy trans-stilbene from grape, inhibits multistage carcinogenesis in animal models. A resveratrol derivative 3,4,5,4′-tetrahydroxystilbene (R-4) exhibits potent growth inhibitory effect against transformed human cells. Here we report that 3,4,5,4′-tetramethoxystilbene (MR-4), converted from R-4, was more potent against cancer cell lines (WI38VA, IMR-90SV, HeLa, LNCaP, HT-29, and HepG2), but had almost no inhibitory effect on the growth of normal cells (WI38, IMR-90, BJ-T) at the concentrations tested. The IC50 value of MR-4 on the growth inhibition of transformed WI38VA human cells was 0.5 μM, as compared to the value of greater than 50 μM for the normal WI38 cells. Resveratrol, however, did not exhibit such clear differential effect and the IC50 value of R-3 for WI38VA cells was about 50 μM. The growth inhibitory effect of MR-4 correlated with the induction of apoptosis in the transformed cells. When normal WI38 cells and transformed WI38VA cells were compared, MR-4 induced increases of the Bax/Bcl-2 mRNA ratio, p53 and Bax protein level, activation of caspases, and DNA fragmentation in transformed, but not in normal cells. Further analysis revealed that MR-4 caused a rapid appearance of perinuclear aggregation of mitochondria in WI38VA but not in WI38 cells, suggesting that the mitochondria could serve as an early target of MR-4. R-3 also induced apoptosis and mitochondrial clustering but only at a much higher concentration, close to 500 μM. Taken together, the specific activation of the mitochondria-mediated apoptotic pathway could be a major reason for the striking differential growth inhibitory effect of MR-4.
Collapse
Affiliation(s)
- A Gosslau
- Department of Chemistry and Chemical Biology, Center for Advanced Food Technology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8087, USA
- New Jersey Cancer Institute, New Brunswick, NJ 08901, USA
| | - M Chen
- Department of Chemistry and Chemical Biology, Center for Advanced Food Technology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8087, USA
- New Jersey Cancer Institute, New Brunswick, NJ 08901, USA
| | - Ci-T Ho
- Department of Chemistry and Chemical Biology, Center for Advanced Food Technology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8087, USA
- New Jersey Cancer Institute, New Brunswick, NJ 08901, USA
| | - K Y Chen
- Department of Chemistry and Chemical Biology, Center for Advanced Food Technology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8087, USA
- New Jersey Cancer Institute, New Brunswick, NJ 08901, USA
- Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854-8087, USA. E-mail:
| |
Collapse
|
150
|
Katiyar SK, Roy AM, Baliga MS. Silymarin induces apoptosis primarily through a p53-dependent pathway involving Bcl-2/Bax, cytochrome c release, and caspase activation. Mol Cancer Ther 2005. [DOI: 10.1158/1535-7163.207.4.2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Silymarin, a plant flavonoid, has been shown to inhibit skin carcinogenesis in mice. However, the mechanism responsible for the anti-skin carcinogenic effects of silymarin is not clearly understood. Here, we report that treatment of JB6 C141 cells (preneoplastic epidermal keratinocytes) and p53+/+ fibroblasts with silymarin and silibinin (a major constituent of silymarin) resulted in a dose-dependent inhibition of cell viability and induction of apoptosis in an identical manner. Silymarin-induced apoptosis was determined by fluorescence staining (8–64% apoptosis) and flow cytometry (12–76% apoptosis). The silymarin-induced apoptosis was primarily p53 dependent because apoptosis occurred to a much greater extent in the cells expressing wild-type p53 (p53+/+, 9–61%) than in p53-deficient cells (p53−/−, 6–20%). The induction of apoptosis in JB6 C141 cells was associated with increased expression of the tumor suppressor protein, p53, and its phosphorylation at Ser15. The constitutive expression of antiapoptotic proteins Bcl-2 and Bcl-xl were decreased after silymarin treatment, whereas the expression of the proapoptotic protein Bax was increased. There was a shift in Bax/Bcl-2 ratio in favor of apoptotic signal in silymarin-treated cells, which resulted in increased levels of cytochrome c release, apoptotic protease-activating factor-1, and cleaved caspase-3 and poly(ADP-ribose) polymerase in JB6 C141 cells. The shift in Bax/Bcl-2 ratio was more prominent in p53+/+ fibroblasts than in p53−/− cells. Silymarin-induced apoptosis was blocked by the caspase inhibitor (Z-VAD-FMK) in JB6 C141 cells which suggested the role of caspase activation in the induction of apoptosis. These observations show that silymarin-induced apoptosis is primarily p53 dependent and mediated through the activation of caspase-3.
Collapse
Affiliation(s)
- Santosh K. Katiyar
- 1Dermatology, and Departments of
- 2Environmental Health Sciences,
- 3Clinical Nutrition Research Center, and
- 4Comprehensive Cancer Center, University of Alabama at Birmingham and
- 5Veterans Administration Medical Center, Birmingham, Alabama
| | | | | |
Collapse
|