101
|
Coones RT, Karonen M, Green RJ, Frazier R. Interactions of Galloylated Polyphenols with a Simple Gram-Negative Bacterial Membrane Lipid Model. MEMBRANES 2024; 14:47. [PMID: 38392674 PMCID: PMC10890094 DOI: 10.3390/membranes14020047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Differential scanning calorimetry (DSC) was used to explore the interactions of isolated polyphenolic compounds, including (-)-epigallocatechin gallate ((-)-EGCg), tellimagrandins I and II (Tel-I and Tel-II), and 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG), with a model Gram-negative bacterial membrane with a view to investigating their antimicrobial properties. The model membranes comprised 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), fabricated to mimic the domain formation observed in natural membranes, as well as ideally mixed lipid vesicles for the interaction with (-)-EGCg. Polyphenols induced changes in lipid mixing/de-mixing depending on the method of vesicle preparation, as was clearly evidenced by alterations in the lipid transition temperatures. There was a distinct affinity of the polyphenols for the DPPG lipid component, which was attributed to the electrostatic interactions between the polyphenolic galloyl moieties and the lipid headgroups. These interactions were found to operate through either the stabilization of the lipid headgroups by the polyphenols or the insertion of the polyphenols into the membrane itself. Structural attributes of the polyphenols, including the number of galloyl groups, the hydrophobicity quantified by partition coefficients (logP), and structural flexibility, exhibited a correlation with the temperature transitions observed in the DSC measurements. This study furthers our understanding of the intricate interplay between the structural features of polyphenolic compounds and their interactions with model bacterial membrane vesicles towards the exploitation of polyphenols as antimicrobials.
Collapse
Affiliation(s)
- Ryan T Coones
- School of Chemistry, Food and Pharmacy, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| | - Maarit Karonen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, 20014 Turku, Finland
| | - Rebecca J Green
- School of Chemistry, Food and Pharmacy, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| | - Richard Frazier
- School of Chemistry, Food and Pharmacy, University of Reading, Harry Nursten Building, Pepper Lane, Whiteknights, Reading RG6 6DZ, UK
| |
Collapse
|
102
|
Vasilopoulos G, Heflik L, Czolkoss S, Heinrichs F, Kleetz J, Yesilyurt C, Tischler D, Westhoff P, Exterkate M, Aktas M, Narberhaus F. Characterization of multiple lysophosphatidic acid acyltransferases in the plant pathogen Xanthomonas campestris. FEBS J 2024; 291:705-721. [PMID: 37943159 DOI: 10.1111/febs.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Phosphatidic acid (PA) is the precursor of most phospholipids like phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. In bacteria, its biosynthesis begins with the acylation of glycerol-3-phosphate to lysophosphatidic acid (LPA), which is further acylated to PA by the PlsC enzyme. Some bacteria, like the plant pathogen Xanthomonas campestris, use a similar pathway to acylate lysophosphatidylcholine to phosphatidylcholine (PC). Previous studies assigned two acyltransferases to PC formation. Here, we set out to study their activity and found a second much more prominent function of these enzymes in LPA to PA conversion. This PlsC-like activity was supported by the functional complementation of a temperature-sensitive plsC-deficient Escherichia coli strain. Biocomputational analysis revealed two further PlsC homologs in X. campestris. The cellular levels of the four PlsC-like proteins varied with respect to growth phase and growth temperature. To address the question whether these enzymes have redundant or specific functions, we purified two recombinant, detergent-solubilized enzymes in their active form, which enabled the first direct biochemical comparison of PlsC isoenzymes from the same organism. Overlapping but not identical acyl acceptor and acyl donor preferences suggest redundant and specialized functions of the X. campestris PlsC enzymes. The altered fatty acid composition in plsC mutant strains further supports the functional differentiation of these enzymes.
Collapse
Affiliation(s)
- Georgios Vasilopoulos
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Lukas Heflik
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Simon Czolkoss
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Florian Heinrichs
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Julia Kleetz
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Cansel Yesilyurt
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Dirk Tischler
- Faculty of Biology and Biotechnology, Microbial Biotechnology, Ruhr University Bochum, Germany
| | - Philipp Westhoff
- Metabolomics and Metabolism Laboratory, Cluster of Excellence for Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
| | - Marten Exterkate
- Faculty of Mathematics and Natural Sciences, Membrane Biogenesis and Lipidomics, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Germany
| | - Meriyem Aktas
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| | - Franz Narberhaus
- Faculty of Biology and Biotechnology, Microbial Biology, Ruhr University Bochum, Germany
| |
Collapse
|
103
|
Behera LM, Ghosh M, Gupta PK, Rana S. A rationally engineered small antimicrobial peptide with potent antibacterial activity. J Cell Biochem 2024; 125:e30503. [PMID: 37992185 DOI: 10.1002/jcb.30503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Antimicrobial resistance (AMR) is a silent pandemic declared by the WHO that requires urgent attention in the post-COVID world. AMR is a critical public health concern worldwide, potentially affecting people at different stages of life, including the veterinary and agriculture industries. Notably, very few new-age antimicrobial agents are in the current developmental pipeline. Thus, the design, discovery, and development of new antimicrobial agents are required to address the menace of AMR. Antimicrobial peptides (AMPs) are an important class of antimicrobial agents for combating AMR due to their broad-spectrum activity and ability to evade AMR through a multimodal mechanism of action. However, molecular size, aggregability, proteolytic degradation, cytotoxicity, and hemolysis activity significantly limit the clinical application of natural AMPs. The de novo design and engineering of a short synthetic amphipathic AMP (≤16 aa, Mol. Wt. ≤ 2 kDa) with an unusual architecture comprised of coded and noncoded amino acids (NCAAs) is presented here, which demonstrates potent antibacterial activity against a few selected bacterial strains mentioned in the WHO priority list. The designer AMP is conformationally ordered in solution and effectively permeabilizes the outer and inner membranes, leading to bacterial growth inhibition and death. Additionally, the peptide is resistant to proteolysis and has negligible cytotoxicity and hemolysis activity up to 150 μM toward cultured human cell lines and erythrocytes. The designer AMP is unique and appears to be a potent therapeutic candidate, which can be subsequently subjected to preclinical studies to explicitly understand and address the menace of AMR.
Collapse
Affiliation(s)
- Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
104
|
Davies JS, Currie MJ, Dobson RCJ, Horne CR, North RA. TRAPs: the 'elevator-with-an-operator' mechanism. Trends Biochem Sci 2024; 49:134-144. [PMID: 38102017 DOI: 10.1016/j.tibs.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are nutrient-uptake systems found in bacteria and archaea. These evolutionary divergent transporter systems couple a substrate-binding protein (SBP) to an elevator-type secondary transporter, which is a first-of-its-kind mechanism of transport. Here, we highlight breakthrough TRAP transporter structures and recent functional data that probe the mechanism of transport. Furthermore, we discuss recent structural and biophysical studies of the ion transporter superfamily (ITS) members and highlight mechanistic principles that are relevant for further exploration of the TRAP transporter system.
Collapse
Affiliation(s)
- James S Davies
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, Christchurch 8140, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, Christchurch 8140, New Zealand; School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, VIC 3052, Australia.
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
105
|
Aquib M, Schaefer S, Gmedhin H, Corrigan N, Bobrin VA, Boyer C. Shape matters: Effect of amphiphilic polymer topology on antibacterial activity and hemocompatibility. Eur Polym J 2024; 205:112698. [DOI: 10.1016/j.eurpolymj.2023.112698] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
106
|
Santos AL, Liu D, van Venrooy A, Beckham JL, Oliver A, Tegos GP, Tour JM. Nonlethal Molecular Nanomachines Potentiate Antibiotic Activity Against Gram-Negative Bacteria by Increasing Cell Permeability and Attenuating Efflux. ACS NANO 2024; 18:3023-3042. [PMID: 38241477 DOI: 10.1021/acsnano.3c08041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Antibiotic resistance is a pressing public health threat. Despite rising resistance, antibiotic development, especially for Gram-negative bacteria, has stagnated. As the traditional antibiotic research and development pipeline struggles to address this growing concern, alternative solutions become imperative. Synthetic molecular nanomachines (MNMs) are molecular structures that rotate unidirectionally in a controlled manner in response to a stimulus, such as light, resulting in a mechanical action that can propel molecules to drill into cell membranes, causing rapid cell death. Due to their broad destructive capabilities, clinical translation of MNMs remains challenging. Hence, here, we explore the ability of nonlethal visible-light-activated MNMs to potentiate conventional antibiotics against Gram-negative bacteria. Nonlethal MNMs enhanced the antibacterial activity of various classes of conventional antibiotics against Gram-negative bacteria, including those typically effective only against Gram-positive strains, reducing the antibiotic concentration required for bactericidal action. Our study also revealed that MNMs bind to the negatively charged phospholipids of the bacterial inner membrane, leading to permeabilization of the cell envelope and impairment of efflux pump activity following light activation of MNMs. The combined effects of MNMs on membrane permeability and efflux pumps resulted in increased antibiotic accumulation inside the cell, reversing antibiotic resistance and attenuating its development. These results identify nonlethal MNMs as pleiotropic antibiotic enhancers or adjuvants. The combination of MNMs with traditional antibiotics is a promising strategy against multidrug-resistant Gram-negative infections. This approach can reduce the amount of antibiotics needed and slow down antibiotic resistance development, thereby preserving the effectiveness of our current antibiotics.
Collapse
Affiliation(s)
- Ana L Santos
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, 07120 Palma, Spain
| | - Dongdong Liu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Alexis van Venrooy
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jacob L Beckham
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Antonio Oliver
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, 07120 Palma, Spain
- Servicio de Microbiologia, Hospital Universitari Son Espases, 07120 Palma, Spain
- Centro de Investigación Biomédica en Red, Enfermedades Infecciosas (CIBERINFEC), Av. Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - George P Tegos
- Office of Research, Faxton St. Luke's Healthcare, Mohawk Valley Health System, 1676 Sunset Avenue, Utica, New York 13502, United States
| | - James M Tour
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- NanoCarbon Center and Rice Advanced Materials Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
107
|
He S, Deber CM. Interaction of designed cationic antimicrobial peptides with the outer membrane of gram-negative bacteria. Sci Rep 2024; 14:1894. [PMID: 38253659 PMCID: PMC10803810 DOI: 10.1038/s41598-024-51716-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The outer membrane (OM) is a hallmark feature of gram-negative bacteria that provides the species with heightened resistance against antibiotic threats while cationic antimicrobial peptides (CAPs) are natural antibiotics broadly recognized for their ability to disrupt bacterial membranes. It has been well-established that lipopolysaccharides present on the OM are among major targets of CAP activity against gram-negative species. Here we investigate how the relative distribution of charged residues along the primary peptide sequence, in conjunction with its overall hydrophobicity, affects such peptide-OM interactions in the natural CAP Ponericin W1. Using a designed peptide library derived from Ponericin W1, we determined that the consecutive placement of Lys residues at the peptide N- or C-terminus (ex. "PonN": KKKKKKWLGSALIGALLPSVVGLFQ) enhances peptide binding affinity to OM lipopolysaccharides compared to constructs where Lys residues are interspersed throughout the primary sequence (ex. "PonAmp": WLKKALKIGAKLLPSVVKLFKGSGQ). Antimicrobial activity against multidrug resistant strains of Pseudomonas aeruginosa was similarly found to be highest among Lys-clustered sequences. Our findings suggest that while native Ponericin W1 exerts its initial activity at the OM, Lys-clustering may be a promising means to enhance potency towards this interface, thereby augmenting peptide entry and activity at the IM, with apparent advantage against multidrug-resistant species.
Collapse
Affiliation(s)
- Shelley He
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Charles M Deber
- Program in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada.
| |
Collapse
|
108
|
Lanai V, Chen Y, Naumovska E, Pandit S, Schröder E, Mijakovic I, Rahimi S. Differences in interaction of graphene/graphene oxide with bacterial and mammalian cell membranes. NANOSCALE 2024; 16:1156-1166. [PMID: 38126749 DOI: 10.1039/d3nr05354g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Graphene, a single layer, hexagonally packed two-dimensional carbon sheet is an attractive candidate for diverse applications including antibacterial potential and drug delivery. One of the knowledge gaps in biomedical application of graphene is the interaction of these materials with the cells. To address this, we investigated the interaction between graphene materials (graphene and graphene oxide) and plasma membranes of cells (bacterial and mammalian cells). The interactions of four of the most abundant phospholipids in bacteria and mammalian plasma membranes with graphene materials were studied using density functional theory (DFT) at the atomic level. The calculations showed that the mammalian phospholipids have stronger bonding to each other compared to bacterial phospholipids. When the graphene/graphene oxide sheet is approaching the phospholipid pairs, the bacterial pairs exhibit less repulsive interactions, thereby a more stable system with the sheets was found. We also assembled bacterial and mammalian phospholipids into liposomes. We further observed that the bacterial liposomes and cells let the graphene flakes penetrate the membrane. The differential scanning calorimetry measurements of liposomes revealed that the bacterial liposomes have the lowest heat capacity; this strengthens the theoretical predictions of weaker interaction between the bacterial phospholipids compared to the mammalian phospholipids. We further demonstrated that graphene oxide could be internalized into the mammalian liposomes without disrupting the membrane integrity. The results suggest that the weak bonding among bacteria phospholipids and less repulsive force when graphene materials approach, result in graphene materials interacting differently with the bacteria compared to mammalian cells.
Collapse
Affiliation(s)
- Victor Lanai
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Yanyan Chen
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Elena Naumovska
- Energy and Materials division, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Santosh Pandit
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Elsebeth Schröder
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| |
Collapse
|
109
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
110
|
Stoorza AM, Duerfeldt AS. Guiding the Way: Traditional Medicinal Chemistry Inspiration for Rational Gram-Negative Drug Design. J Med Chem 2024; 67:65-80. [PMID: 38134355 PMCID: PMC11342810 DOI: 10.1021/acs.jmedchem.3c01831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The discovery and development of small-molecule therapeutics effective against Gram-negative pathogens are highly challenging tasks. Most compounds that are active in biochemical settings fail to exhibit whole-cell activity. The major reason for this lack of activity is the effectiveness of bacterial cell envelopes as permeability barriers. These barriers originate from the nutrient-selective outer membranes, which act synergistically with polyspecific efflux pumps. Guiding principles to enable rational optimization of small molecules for efficient penetration and intracellular accumulation in Gram-negative bacteria would have a transformative impact on the discovery and design of chemical probes and therapeutics. In this Perspective, we draw on inspiration from traditional medicinal chemistry approaches for eukaryotic drug design to present a broader call for action in developing comparable approaches for Gram-negative bacteria.
Collapse
Affiliation(s)
- Alexis M Stoorza
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Adam S Duerfeldt
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
111
|
Sanders G, Borbat PP, Georgieva ER. A comparative study of influenza A M2 protein conformations in DOPC/DOPS liposomes and in native E. coli membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574681. [PMID: 38260371 PMCID: PMC10802500 DOI: 10.1101/2024.01.08.574681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We compared the conformations of the transmembrane domain (TMD) of influenza A M2 (IAM2) protein reconstituted at pH 7.4 in DOPC/DOPS bilayers to those in isolated E. coli membranes, having preserved its native proteins and lipids. IAM2 is a single-pass transmembrane protein known to assemble into homo-tetrameric proton channel. To represent this channel, we made a construct containing the IAM2's TMD region flanked by the juxtamembrane residues. The single cysteine substitute, L43C, of leucine located in the bilayer polar region was paramagnetically tagged with a methanethiosulfonate nitroxide label for the ESR (electron spin resonance) study. We compared the conformations of the spin-labeled IAM2 residing in DOPC/DOPS and native E. coli membranes using continuous-wave (CW) ESR and double electron-electron resonance (DEER) spectroscopy. The total protein-to-lipid molar ratio spanned the range from 1:230 to 1:10,400⩦ The CW ESR spectra corresponded to a nearly rigid limit spin label dynamics in both environments. In all cases, the DEER data were reconstructed into the distance distributions showing well-resolved peaks at 1.68 nm and 2.37 nm. The peak distance ratio was 1.41±0.2 and the amplitude ratio was 2:1. This is what one expects from four nitroxide spin-labels located at the corners of a square, indicative of an axially symmetric tetramer. Distance modeling of DEER data with molecular modeling software applied to the NMR molecular structures (PDB: 2L0J) confirmed the symmetry and closed state of the C-terminal exit pore of the IAM2 tetramer in agreement with the NMR model. Thus, we can conclude that IAM2 TMD has similar conformations in model and native E. coli membranes of comparable thickness and fluidity, notwithstanding the complexity of the E. coli membranes caused by their lipid diversity and the abundance of integral and peripheral membrane proteins.
Collapse
Affiliation(s)
- Griffin Sanders
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| | - Peter P. Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca NY 14853
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409
| |
Collapse
|
112
|
Ding S, von Meijenfeldt FAB, Bale NJ, Sinninghe Damsté JS, Villanueva L. Production of structurally diverse sphingolipids by anaerobic marine bacteria in the euxinic Black Sea water column. THE ISME JOURNAL 2024; 18:wrae153. [PMID: 39113610 PMCID: PMC11334938 DOI: 10.1093/ismejo/wrae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Microbial lipids, used as taxonomic markers and physiological indicators, have mainly been studied through cultivation. However, this approach is limited due to the scarcity of cultures of environmental microbes, thereby restricting insights into the diversity of lipids and their ecological roles. Addressing this limitation, here we apply metalipidomics combined with metagenomics in the Black Sea, classifying and tentatively identifying 1623 lipid-like species across 18 lipid classes. We discovered over 200 novel, abundant, and structurally diverse sphingolipids in euxinic waters, including unique 1-deoxysphingolipids with long-chain fatty acids and sulfur-containing groups. Sphingolipids were thought to be rare in bacteria and their molecular and ecological functions in bacterial membranes remain elusive. However, genomic analysis focused on sphingolipid biosynthesis genes revealed that members of 38 bacterial phyla in the Black Sea can synthesize sphingolipids, representing a 4-fold increase from previously known capabilities and accounting for up to 25% of the microbial community. These sphingolipids appear to be involved in oxidative stress response, cell wall remodeling, and are associated with the metabolism of nitrogen-containing molecules. Our findings underscore the effectiveness of multi-omics approaches in exploring microbial chemical ecology.
Collapse
Affiliation(s)
- Su Ding
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
| | - F A Bastiaan von Meijenfeldt
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ 't Horntje, Texel, The Netherlands
- Department of Biology, Faculty of Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
113
|
Liu S, Silvano E, Li M, Mausz M, Rihtman B, Guillonneau R, Geiger O, Scanlan DJ, Chen Y. Aminolipids in bacterial membranes and the natural environment. THE ISME JOURNAL 2024; 18:wrae229. [PMID: 39520271 PMCID: PMC11631085 DOI: 10.1093/ismejo/wrae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Our comprehension of membrane function has predominantly advanced through research on glycerophospholipids, also known as phosphoglycerides, which are glycerol phosphate-based lipids found across all three domains of life. However, in bacteria, a perplexing group of lipids distinct from glycerol phosphate-based ones also exists. These are amino acid-containing lipids that form an amide bond between an amino acid and a fatty acid. Subsequently, a second fatty acid becomes linked, often via the 3-hydroxy group on the first fatty acid. These amide-linked aminolipids have, as of now, been exclusively identified in bacteria. Several hydrophilic head groups have been discovered in these aminolipids including ornithine, glutamine, glycine, lysine, and more recently, a sulfur-containing non-proteinogenic amino acid cysteinolic acid. Here, we aim to review current advances in the genetics, biochemistry and function of these aminolipids as well as giving an ecological perspective. We provide evidence for their potential significance in the ecophysiology of all major microbiomes, i.e. gut, soil, and aquatic as well as highlighting their important roles in influencing biological interactions.
Collapse
Affiliation(s)
- Shengwei Liu
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Eleonora Silvano
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mingyu Li
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Michaela Mausz
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Richard Guillonneau
- Faculty of Science and Technology, Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Colonia Chamilpa, Cuernavaca, Morelos 62210, México
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yin Chen
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
114
|
Wang X, Wang J, Liu S, Dou M, Gao B. Sterilization mechanism and nanotoxicity of visible light-driven defective carbon nitride and UV-excited TiO 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132109. [PMID: 37734307 DOI: 10.1016/j.jhazmat.2023.132109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 09/23/2023]
Abstract
The sterilization effect of photocatalysis and biotoxicity of nanomaterial catalysts have attracted high attention. In this study, the novel visible-driven defective carbon nitride (VL/DCN) system exhibits non-photoreactivation, non-toxic superior performance compared with traditional ultraviolet radiation (UV) and UV/titanium dioxide (UV/TiO2). The inactivation of antibiotic-resistant bacteria (ARB) by novel VL/DCN still reached 7 log within 4 h, and the reduction rates of aminoglycoside gene strB and tetracycline gene tetA exceeded 0.8 log and 1.2 log, respectively. Further, the sterilization mechanism and nanotoxicity were contrastively and systematically analyzed among above three systems as following. Firstly, in the VL/DCN system, reactive oxygen species (ROSs) generated from photocatalytic process leads to the destruction of cell membranes, resulting in dissolving out of potassium ion (K+), protein and cell membrane ATP content. Thus, resistant bacteria were completely inactivated and photoreactivation disappears. In contrast, the UV only acted on bacterial DNA and existed the light resurrection. The UV/TiO2 strictly dependent on ultraviolet light and can be used in limited scenarios. Secondly, in cell viability analysis by human lung cell line BEAS-2B experiments, the 10% inhibition of cell growth when DCN was 600 mg/L much lower than 28% inhibition of cell growth when TiO2 was only 200 mg/L. The expression of pro-inflammatory cytokines ((Interleukin, IL) -6), IL-8, IL-1β) under the effect of DCN was 1.5-fold, 5.7-fold and 3.7-fold lower than TiO2, respectively. Meanwhile, DCN induced cells to produce less ROSs, malondialdehyde (MDA), and more superoxide dismutase (SOD). Above results demonstrated that DCN has far lower cytotoxicity than TiO2. This study provides theoretical support for the application of photocatalytic sterilization technology and the exploration of the toxicity of nanomaterials.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China.
| | - Shanjun Liu
- Jinan Environmental Research Academy, Jinan 250102, China
| | - Mengmeng Dou
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Haidian District, Beijing 100044, China
| | - Boru Gao
- China International Engineering Consulting Corporation, Beijing 100048, China
| |
Collapse
|
115
|
Xu Y, Guan X, Wang S. Synergistic bactericidal mechanisms of RF energy simultaneously combined with cinnamon essential oil or epsilon-polylysine against Salmonella revealed at cellular and metabolic levels. Int J Food Microbiol 2024; 408:110447. [PMID: 37907022 DOI: 10.1016/j.ijfoodmicro.2023.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Radio frequency (RF) heating and antimicrobials are considered to be effective methods for inactivating food pathogens. This study explored the bactericidal effects against Salmonella of RF heating combined with two kinds of natural antimicrobials possessing different hydrophobic properties and their synergistic bactericidal mechanisms. Results showed that RF heating caused sublethal damage to bacterial cells and enhanced the interaction of cells and antimicrobials, leading to synergistic bactericidal effects of the simultaneous combination of RF heating and antimicrobials. The combination of RF heating and ε-polylysine (ε-PL) further promoted cell morphological alteration, raised membrane permeability, intracellular adenosine triphosphate (ATP) leakage and intracellular reactive oxygen species (ROS) accumulation compared to individual treatment. The simultaneous combination of RF heating and cinnamon essential oil nanoemulsion (CEON) also further enhanced membrane permeability and ROS accumulation compared to individual treatment, but impacts were less than those in the combination of RF heating and ε-PL. The major synergistic bactericidal mechanism of RF heating and CEON was significantly inhibiting intracellular ATP synthesis. The untargeted metabolomics analysis revealed that the combined treatments enhanced disturbances to multiple intracellular metabolisms compared to individual treatment, thus leading to synergistic bactericidal effects against Salmonella. These results provide an in-depth understanding of the synergistic bactericidal mechanisms of the combination of RF heating and natural antimicrobials from cellular and metabolic levels.
Collapse
Affiliation(s)
- Yuanmei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, China
| | - Xiangyu Guan
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China; Washington State University, Department of Biological Systems Engineering, Pullman, WA 99164-6120, USA.
| |
Collapse
|
116
|
Tan SW, Yoon BK, Jackman JA. Membrane-Disruptive Effects of Fatty Acid and Monoglyceride Mitigants on E. coli Bacteria-Derived Tethered Lipid Bilayers. Molecules 2024; 29:237. [PMID: 38202820 PMCID: PMC10780109 DOI: 10.3390/molecules29010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We report electrochemical impedance spectroscopy measurements to characterize the membrane-disruptive properties of medium-chain fatty acid and monoglyceride mitigants interacting with tethered bilayer lipid membrane (tBLM) platforms composed of E. coli bacterial lipid extracts. The tested mitigants included capric acid (CA) and monocaprin (MC) with 10-carbon long hydrocarbon chains, and lauric acid (LA) and glycerol monolaurate (GML) with 12-carbon long hydrocarbon chains. All four mitigants disrupted E. coli tBLM platforms above their respective critical micelle concentration (CMC) values; however, there were marked differences in the extent of membrane disruption. In general, CA and MC caused larger changes in ionic permeability and structural damage, whereas the membrane-disruptive effects of LA and GML were appreciably smaller. Importantly, the distinct magnitudes of permeability changes agreed well with the known antibacterial activity levels of the different mitigants against E. coli, whereby CA and MC are inhibitory and LA and GML are non-inhibitory. Mechanistic insights obtained from the EIS data help to rationalize why CA and MC are more effective than LA and GML at disrupting E. coli membranes, and these measurement capabilities support the potential of utilizing bacterial lipid-derived tethered lipid bilayers for predictive assessment of antibacterial drug candidates and mitigants.
Collapse
Affiliation(s)
- Sue Woon Tan
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
117
|
Arendowski A, Sibińska E, Miśta W, Fijałkowski P, Złoch M, Gabryś D, Pomastowski P. Study of sample preparation influence on bacterial lipids profile in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Lipids 2024; 59:13-26. [PMID: 38062798 DOI: 10.1002/lipd.12383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
Lipids are one of the cell components therefore it is important to be able to accurately assess them. One of the analytical techniques used to study lipid profiles is matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The present study attempted to select optimal conditions for sample preparation and MALDI MS analysis of bacterial lipidome in both positive and negative ion modes using different extraction protocols-Folch, Matyash, and Bligh & Dyer, solvents used to apply samples, and matrices such as 9-aminoacridine (9-AA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (DHB), 2-mercaptobenzothiazole (MBT), and 2,4,6-trihydroxyacetophenone (THAP). The obtained results allowed concluding that DHB or CHCA matrices are suitable for lipid analysis in the positive mode, and in the negative mode THAP or 9-AA. The most appropriate protocol for extracting lipids from bacterial cells was the Bligh & Dyer method in both ionization modes. The use of the solvent TA30, which was a mixture of acetonitrile and 0.1% trifluoroacetic acid in water, provided on the spectra a significant number of signals from lipids in all groups analyzed, such as fatty acyls, glycerolipids, and glycerophospholipids.
Collapse
Affiliation(s)
- Adrian Arendowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Ewelina Sibińska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Wioletta Miśta
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Piotr Fijałkowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
- Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
| | - Dorota Gabryś
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
118
|
Kobayashi K, Jimbo H, Nakamura Y, Wada H. Biosynthesis of phosphatidylglycerol in photosynthetic organisms. Prog Lipid Res 2024; 93:101266. [PMID: 38040200 DOI: 10.1016/j.plipres.2023.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Phosphatidylglycerol (PG) is a unique phospholipid class with its indispensable role in photosynthesis and growth in land plants, algae, and cyanobacteria. PG is the only major phospholipid in the thylakoid membrane of cyanobacteria and plant chloroplasts and a main lipid component in photosynthetic protein-cofactor complexes such as photosystem I and photosystem II. In plants and algae, PG is also essential as a substrate for the biosynthesis of cardiolipin, which is a unique lipid present only in mitochondrial membranes and crucial for the functions of mitochondria. PG biosynthesis pathways in plants include three membranous organelles, plastids, mitochondria, and the endoplasmic reticulum in a complex manner. While the molecular biology underlying the role of PG in photosynthetic functions is well established, many enzymes responsible for the PG biosynthesis are only recently cloned and functionally characterized in the model plant species including Arabidopsis thaliana and Chlamydomonas reinhardtii and cyanobacteria such as Synechocystis sp. PCC 6803. The characterization of those enzymes helps understand not only the metabolic flow for PG production but also the crosstalk of biosynthesis pathways between PG and other lipids. This review aims to summarize recent advances in the understanding of the PG biosynthesis pathway and functions of involved enzymes.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, Sakai, Japan.
| | - Haruhiko Jimbo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Nakamura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hajime Wada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
119
|
Zhang H, Xie Y, Cao F, Song X. Gut microbiota-derived fatty acid and sterol metabolites: biotransformation and immunomodulatory functions. Gut Microbes 2024; 16:2382336. [PMID: 39046079 PMCID: PMC11271093 DOI: 10.1080/19490976.2024.2382336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/26/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Commensal microorganisms in the human gut produce numerous metabolites by using small molecules derived from the host or diet as precursors. Host or dietary lipid molecules are involved in energy metabolism and maintaining the structural integrity of cell membranes. Notably, gut microbes can convert these lipids into bioactive signaling molecules through their biotransformation and synthesis pathways. These microbiota-derived lipid metabolites can affect host physiology by influencing the body's immune and metabolic processes. This review aims to summarize recent advances in the microbial transformation and host immunomodulatory functions of these lipid metabolites, with a special focus on fatty acids and steroids produced by our gut microbiota.
Collapse
Affiliation(s)
- Haohao Zhang
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yadong Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Fei Cao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xinyang Song
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
120
|
Oana K, Shimizu K, Takada T, Makino H, Yamazaki M, Katto M, Ando M, Kurakawa T, Oishi K. Manipulating the growth environment through co-culture to enhance stress tolerance and viability of probiotic strains in the gastrointestinal tract. Appl Environ Microbiol 2023; 89:e0150223. [PMID: 38019024 PMCID: PMC10734474 DOI: 10.1128/aem.01502-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE The viability of probiotics in the human gastrointestinal tract is important, as some reports indicate that the health benefits of live bacteria are greater than those of dead ones. Therefore, the higher the viability of the probiotic strain, the better it may be. However, probiotic strains lose their viability due to gastrointestinal stress such as gastric acid and bile. This study provides an example of the use of co-culture or pH-controlled monoculture, which uses more stringent conditions (lower pH) than normal monoculture to produce probiotic strains that are more resistant to gastrointestinal stress. In addition, co-cultured beverages showed higher viability of the probiotic strain in the human gastrointestinal tract than monocultured beverages in our human study.
Collapse
Affiliation(s)
- Kosuke Oana
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kensuke Shimizu
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Toshihiko Takada
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Hiroshi Makino
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Mikiko Yamazaki
- Food Research Department, Yakult Central Institute, Tokyo, Japan
| | - Miyuki Katto
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Minoru Ando
- Safety Research Department, Yakult Central Institute, Tokyo, Japan
| | - Takashi Kurakawa
- Basic Research Department, Yakult Central Institute, Tokyo, Japan
| | - Kenji Oishi
- Research Management Center, Yakult Central Institute, Tokyo, Japan
| |
Collapse
|
121
|
Wood PL, Wood MD, Kunigelis SC. Pilot Lipidomics Study of Copepods: Investigation of Potential Lipid-Based Biomarkers for the Early Detection and Quantification of the Biological Effects of Climate Change on the Oceanic Food Chain. Life (Basel) 2023; 13:2335. [PMID: 38137936 PMCID: PMC10744631 DOI: 10.3390/life13122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Maintenance of the health of our oceans is critical for the survival of the oceanic food chain upon which humanity is dependent. Zooplanktonic copepods are among the most numerous multicellular organisms on earth. As the base of the primary consumer food web, they constitute a major biomass in oceans, being an important food source for fish and functioning in the carbon cycle. The potential impact of climate change on copepod populations is an area of intense study. Omics technologies offer the potential to detect early metabolic alterations induced by the stresses of climate change. One such omics approach is lipidomics, which can accurately quantify changes in lipid pools serving structural, signal transduction, and energy roles. We utilized high-resolution mass spectrometry (≤2 ppm mass error) to characterize the lipidome of three different species of copepods in an effort to identify lipid-based biomarkers of copepod health and viability which are more sensitive than observational tools. With the establishment of such a lipid database, we will have an analytical platform useful for prospectively monitoring the lipidome of copepods in a planned long-term five-year ecological study of climate change on this oceanic sentinel species. The copepods examined in this pilot study included a North Atlantic species (Calanus finmarchicus) and two species from the Gulf of Mexico, one a filter feeder (Acartia tonsa) and one a hunter (Labidocerca aestiva). Our findings clearly indicate that the lipidomes of copepod species can vary greatly, supporting the need to obtain a broad snapshot of each unique lipidome in a long-term multigeneration prospective study of climate change. This is critical, since there may well be species-specific responses to the stressors of climate change and co-stressors such as pollution. While lipid nomenclature and biochemistry are extremely complex, it is not essential for all readers interested in climate change to understand all of the various lipid classes presented in this study. The clear message from this research is that we can monitor key copepod lipid families with high accuracy, and therefore potentially monitor lipid families that respond to environmental perturbations evoked by climate change.
Collapse
Affiliation(s)
- Paul L. Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA
| | - Michael D. Wood
- Child and Adolescent Psychiatry, BC Children’s and Women’s Hospital & Provincial Health Services Authority, Vancouver, BC V5Z 4H4, Canada;
| | - Stan C. Kunigelis
- Imaging and Analysis Center, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, USA;
| |
Collapse
|
122
|
Bril’kov MS, Stenbakk V, Jakubec M, Vasskog T, Kristoffersen T, Cavanagh JP, Ericson JU, Isaksson J, Flaten GE. Bacterial extracellular vesicles: towards realistic models for bacterial membranes in molecular interaction studies by surface plasmon resonance. Front Mol Biosci 2023; 10:1277963. [PMID: 38152113 PMCID: PMC10751319 DOI: 10.3389/fmolb.2023.1277963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 12/29/2023] Open
Abstract
One way to mitigate the ongoing antimicrobial resistance crisis is to discover and develop new classes of antibiotics. As all antibiotics at some point need to either cross or just interact with the bacterial membrane, there is a need for representative models of bacterial membranes and efficient methods to characterize the interactions with novel molecules -both to generate new knowledge and to screen compound libraries. Since the bacterial cell envelope is a complex assembly of lipids, lipopolysaccharides, membrane proteins and other components, constructing relevant synthetic liposome-based models of the membrane is both difficult and expensive. We here propose to let the bacteria do the hard work for us. Bacterial extracellular vesicles (bEVs) are naturally secreted by Gram-negative and Gram-positive bacteria, playing a role in communication between bacteria, as virulence factors, molecular transport or being a part of the antimicrobial resistance mechanism. bEVs consist of the bacterial outer membrane and thus inherit many components and properties of the native outer cell envelope. In this work, we have isolated and characterized bEVs from one Escherichia coli mutant and three clinical strains of the ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa. The bEVs were shown to be representative models for the bacterial membrane in terms of lipid composition with speciesstrain specific variations. The bEVs were further used to probe the interactions between bEV and antimicrobial peptides (AMPs) as model compounds by Surface Plasmon Resonance (SPR) and provide proof-of-principle that bEVs can be used as an easily accessible and highly realistic model for the bacterial surface in interaction studies. This further enables direct monitoring of the effect induced by antibiotics, or the response to host-pathogen interactions.
Collapse
Affiliation(s)
- Maxim S. Bril’kov
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Victoria Stenbakk
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Martin Jakubec
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Terje Vasskog
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tone Kristoffersen
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jorunn Pauline Cavanagh
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johanna U. Ericson
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Johan Isaksson
- Chemical Synthesis and Analysis Research Group, Department of Chemistry, Faculty of Natural Sciences and Technology, UiT the Arctic University of Norway, Tromsø, Norway
- Natural Products and Medicinal Chemistry Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Gøril Eide Flaten
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
123
|
Mao Y, Chen Z, Lu Y, Cao KF, Wu Y, Hu HY. Inactivation of Bacteria in Water by Ferrate(VI): Efficiency and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20893-20904. [PMID: 38032700 DOI: 10.1021/acs.est.3c05118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Ferrate (Fe(VI)) is an emerging green disinfectant and has received increasing attention nowadays. This study conducted systematic analyses of Fe(VI) disinfection on six typical bacteria in different water matrices. The results showed that Fe(VI) was more effective in inactivating Gram-negative (G-) bacteria than Gram-positive (G+) bacteria, and the disinfection performance of Fe(VI) was better in a phosphate buffer than that in a borate buffer and secondary effluent. The inactivation rate constants of G- bacteria were significantly higher than those of G+ bacteria. The cell membrane damage of G- bacteria was also more severe than that of G+ bacteria after Fe(VI) treatment. The cell wall structure, especially cell wall thickness, might account for the difference of the inactivation efficiency between G- bacteria and G+ bacteria. Moreover, it is revealed that Fe(VI) primarily reacted with proteins rather than other biological molecules (i.e., phospholipids, peptidoglycan, and lipopolysaccharide). This was further evidenced by the reduction of bacterial autofluorescence due to the destruction of bacterial proteins during Fe(VI) inactivation. Overall, this study advances the understanding of Fe(VI) disinfection mechanisms and provides valuable information for the Fe(VI) application in water disinfection.
Collapse
Affiliation(s)
- Yu Mao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Ke-Fan Cao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, P. R. China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, P. R. China
| |
Collapse
|
124
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim K, Pasolli HA, Phan S, Lippincott‐Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome. EMBO J 2023; 42:e114054. [PMID: 37933600 PMCID: PMC10711667 DOI: 10.15252/embj.2023114054] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Cristae are high-curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous lipid-based mechanisms have yet to be elucidated. Here, we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the inner mitochondrial membrane against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. This model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that cardiolipin is essential in low-oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of cardiolipin is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Christopher T Lee
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Guadalupe C Garcia
- Computational Neurobiology LaboratorySalk Institute for Biological StudiesLa JollaCAUSA
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
- Present address:
Applied Physical SciencesUniversity of North Carolina Chapel HillChapel HillNCUSA
| | - Daniel Milshteyn
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Keun‐Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - H Amalia Pasolli
- Howard Hughes Medical InstituteAshburnVAUSA
- Present address:
Electron Microscopy Resource CenterThe Rockefeller UniversityNew YorkNYUSA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological SystemsUniversity of California San DiegoLa JollaCAUSA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace EngineeringUniversity of California San DiegoLa JollaCAUSA
| | - Itay Budin
- Department of Chemistry and BiochemistryUniversity of California San DiegoLa JollaCAUSA
| |
Collapse
|
125
|
Yang H, Huang Z, Yue J, Chen J, Yu M, Qu C. Metabolomics reveals the mechanism of action of meropenem and amikacin combined in the treatment of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2023; 13:1327452. [PMID: 38116135 PMCID: PMC10728327 DOI: 10.3389/fcimb.2023.1327452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
The treatment of Pseudomonas aeruginosa infection often involves the combined use of β-lactam and aminoglycoside antibiotics. In this study, we employed metabolomic analysis to investigate the mechanism responsible for the synergistic activities of meropenem/amikacin combination therapy against multidrug-resistant P. aeruginosa strains harboring OXA-50 and PAO genes. Antibiotic concentrations for meropenem (2 mg/L) monotherapy, amikacin (16 mg/L) monotherapy, and meropenem/amikacin (2/16 mg/L) combination therapy were selected based on clinical breakpoint considerations. Metabolomic analysis revealed significant alterations in relevant metabolites involved in bacterial cell membrane and cell wall synthesis within 15 min of combined drug administration. These alterations encompassed various metabolic pathways, including fatty acid metabolism, peptidoglycan synthesis, and lipopolysaccharide metabolism. Furthermore, at 1 h and 4 h, the combination therapy exhibited significant interference with amino acid metabolism, nucleotide metabolism, and central carbon metabolism pathways, including the tricarboxylic acid cycle and pentose phosphate pathway. In contrast, the substances affected by single drug administration at 1 h and 4 h demonstrated a noticeable reduction. Meropenem/amikacin combination resulted in notable perturbations of metabolic pathways essential for survival of P. aeruginosa, whereas monotherapies had comparatively diminished impacts.
Collapse
Affiliation(s)
- Hai Yang
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Zhen Huang
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Jiali Yue
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Jianqi Chen
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chengming Qu
- Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| |
Collapse
|
126
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
127
|
Kravchenko SV, Domnin PA, Grishin SY, Vershinin NA, Gurina EV, Zakharova AA, Azev VN, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Fadeev RS, Ostroumova OS, Ermolaeva SA, Galzitskaya OV. Enhancing the Antimicrobial Properties of Peptides through Cell-Penetrating Peptide Conjugation: A Comprehensive Assessment. Int J Mol Sci 2023; 24:16723. [PMID: 38069046 PMCID: PMC10706425 DOI: 10.3390/ijms242316723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Combining antimicrobial peptides (AMPs) with cell-penetrating peptides (CPPs) has shown promise in boosting antimicrobial potency, especially against Gram-negative bacteria. We examined the CPP-AMP interaction with distinct bacterial types based on cell wall differences. Our investigation focused on AMPs incorporating penetratin CPP and dihybrid peptides containing both cell-penetrating TAT protein fragments from the human immunodeficiency virus and Antennapedia peptide (Antp). Assessment of the peptides TAT-AMP, AMP-Antp, and TAT-AMP-Antp revealed their potential against Gram-positive strains (Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), and Bacillus cereus). Peptides TAT-AMP and AMP-Antp using an amyloidogenic AMP from S1 ribosomal protein Thermus thermophilus, at concentrations ranging from 3 to 12 μM, exhibited enhanced antimicrobial activity against B. cereus. TAT-AMP and TAT-AMP-Antp, using an amyloidogenic AMP from the S1 ribosomal protein Pseudomonas aeruginosa, at a concentration of 12 µM, demonstrated potent antimicrobial activity against S. aureus and MRSA. Notably, the TAT-AMP, at a concentration of 12 µM, effectively inhibited Escherichia coli (E. coli) growth and displayed antimicrobial effects similar to gentamicin after 15 h of incubation. Peptide characteristics determined antimicrobial activity against diverse strains. The study highlights the intricate relationship between peptide properties and antimicrobial potential. Mechanisms of AMP action are closely tied to bacterial cell wall attributes. Peptides with the TAT fragment exhibited enhanced antimicrobial activity against S. aureus, MRSA, and P. aeruginosa. Peptides containing only the Antp fragment displayed lower activity. None of the investigated peptides demonstrated cytotoxic or cytostatic effects on either BT-474 cells or human skin fibroblasts. In conclusion, CPP-AMPs offer promise against various bacterial strains, offering insights for targeted antimicrobial development.
Collapse
Affiliation(s)
- Sergey V. Kravchenko
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Pavel A. Domnin
- Biology Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Gamaleya Research Centre of Epidemiology and Microbiology, 123098 Moscow, Russia;
| | - Sergei Y. Grishin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Nikita A. Vershinin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Elena V. Gurina
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia; (S.V.K.); (S.Y.G.); (N.A.V.); (E.V.G.)
| | - Anastasiia A. Zakharova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Leila G. Mustaeva
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Elena Y. Gorbunova
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Alexey K. Surin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (V.N.A.); (L.G.M.); (E.Y.G.)
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Roman S. Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| | - Olga S. Ostroumova
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.A.Z.); (O.S.O.)
| | | | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia; (M.I.K.); (R.S.F.)
| |
Collapse
|
128
|
Rensner JJ, Lueth P, Bellaire BH, Sahin O, Lee YJ. Rapid detection of antimicrobial resistance in methicillin-resistant Staphylococcus aureus using MALDI-TOF mass spectrometry. Front Cell Infect Microbiol 2023; 13:1281155. [PMID: 38076465 PMCID: PMC10702551 DOI: 10.3389/fcimb.2023.1281155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Antimicrobial resistance is a growing problem in modern healthcare. Most antimicrobial susceptibility tests (AST) require long culture times which delay diagnosis and effective treatment. Our group has previously reported a proof-of-concept demonstration of a rapid AST in Escherichia coli using deuterium labeling and MALDI mass spectrometry. Culturing bacteria in D2O containing media incorporates deuterium in newly synthesized lipids, resulting in a mass shift that can be easily detected by mass spectrometry. The extent of new growth is measured by the average mass of synthesized lipids that can be correlated with resistance in the presence of antimicrobials. In this work, we adapt this procedure to methicillin-resistant Staphylococcus aureus using the Bruker MALDI-TOF Biotyper, a low-cost instrument commonly available in diagnostic laboratories. The susceptible strain showed a significant decrease in average mass in on-target microdroplet cultures after 3 hours of incubation with 10 µg/mL methicillin, while the resistant strain showed consistent labeling regardless of methicillin concentration. This assay allows us to confidently detect methicillin resistance in S. aureus after only 3 hours of culture time and minimal sample processing, reducing the turn-around-time significantly over conventional assays. The success of this work suggests its potential as a rapid AST widely applicable in many clinical microbiology labs with minimal additional costs.
Collapse
Affiliation(s)
- Josiah J. Rensner
- Department of Chemistry, Iowa State University, Ames, IA, United States
| | - Paul Lueth
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Bryan H. Bellaire
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA, United States
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| | - Young Jin Lee
- Department of Chemistry, Iowa State University, Ames, IA, United States
| |
Collapse
|
129
|
Boutet-Dubois A, Magnan C, Lienard A, Pouget C, Bouchet F, Marchandin H, Larcher R, Lavigne JP, Pantel A. In Vivo-Acquired Resistance to Daptomycin during Methicillin-Resistant Staphylococcus aureus Bacteremia. Antibiotics (Basel) 2023; 12:1647. [PMID: 38136681 PMCID: PMC10740961 DOI: 10.3390/antibiotics12121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Daptomycin (DAP) represents an interesting alternative to treat methicillin-resistant Staphylococcus aureus (MRSA) infections. Different mechanisms of DAP resistance have been described; however, in vivo-acquired resistance is uncharacterized. This study described the phenotypic and genotypic evolution of MRSA strains that became resistant to DAP in two unrelated patients with bacteremia under DAP treatment, in two hospitals in the South of France. DAP MICs were determined using broth microdilution method on the pairs of isogenic (DAP-S/DAP-R) S. aureus isolated from bloodstream cultures. Whole genome sequencing was carried out using Illumina MiSeq Sequencing system. The two cases revealed DAP-R acquisition by MRSA strains within three weeks in patients treated by DAP. The isolates belonged to the widespread ST5 (patient A) and ST8 (patient B) lineages and were of spa-type t777 and t622, respectively. SNP analysis comparing each DAP-S/DAP-R pair confirmed that the isolates were isogenic. The causative mutations were identified in MprF (Multiple peptide resistance Factor) protein: L826F (Patient A) and S295L (Patient B), and in Cls protein: R228H (Patient B). These proteins encoded both proteins of the lipid biosynthetic enzymes. The resistance to DAP is particularly poorly described whereas DAP is highly prescribed to treat MRSA. Our study highlights the non-systematic cross-resistance between DAP and glycopeptides and the importance of monitoring DAP MIC in persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Adeline Boutet-Dubois
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Chloé Magnan
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Alexi Lienard
- Laboratory of Medical Biology, CH Bassin de Thau, 34207 Sète, France;
| | - Cassandra Pouget
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Flavien Bouchet
- Department of Internal Medicine-Infectiology, CH Bassin de Thau, 34207 Sète, France;
| | - Hélène Marchandin
- HydroSciences Montpellier, Department of Microbiology and Hospital Hygiene, University of Montpellier, CNRS, IRD, CHU Nîmes, 30029 Nîmes, France;
| | - Romaric Larcher
- Department of Infectious Diseases, CHU Nîmes, 30029 Nîmes, France;
| | - Jean-Philippe Lavigne
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| | - Alix Pantel
- VBIC, INSERM U1047, Department of Microbiology and Hospital Hygiene, University of Montpellier, CHU Nîmes, 30029 Nîmes, France; (A.B.-D.); (C.M.); (C.P.); (A.P.)
| |
Collapse
|
130
|
Kumar A, Daschakraborty S. Anomalous lateral diffusion of lipids during the fluid/gel phase transition of a lipid membrane. Phys Chem Chem Phys 2023; 25:31431-31443. [PMID: 37962400 DOI: 10.1039/d3cp04081j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A lipid membrane undergoes a phase transition from fluid to gel phase upon changing external thermodynamic conditions, such as decreasing temperature and increasing pressure. Extremophilic organisms face the challenge of preventing this deleterious phase transition. The main focus of their adaptive strategy is to facilitate effective temperature sensing through sensor proteins, relying on the drastic changes in packing density and membrane fluidity during the phase transition. Although the changes in packing density parameters due to the fluid/gel phase transition are studied in detail, the impact on membrane fluidity is less explored in the literature. Understanding the lateral diffusive dynamics of lipids in response to temperature, particularly during the fluid/gel phase transition, is albeit crucial. Here we have simulated the phase transition of a single component lipid membrane composed of dipalmitoylphosphatidylcholine (DPPC) lipids using a coarse-grained (CG) model and studied the changes of the structural and dynamical properties. It is observed that near the phase transition point, both fluid and gel phase domains coexist together. The dynamics remains highly non-Gaussian for a long time even when the mean square displacement reaches the Fickian regime at a much earlier time. This Fickian yet non-Gaussian diffusion (FnGD) is a characteristic of a highly heterogeneous system, previously observed for the lateral diffusion of lipids in raft mimetic membranes having liquid-ordered and liquid-disordered phases co-existing together. We have analyzed the molecular trajectories and calculated the jump-diffusion of the lipids, stemming from sudden jump translations, using a translational jump-diffusion (TJD) approach. An overwhelming contribution of the jump-diffusion of the lipids is observed suggesting anomalous diffusion of lipids during fluid/gel phase transition of the membrane. These results are important in unravelling the intricate nature of lipid diffusion during the phase transition of the membrane and open up a new possibility of investigating the most significant change of membrane properties during phase transition, which can be effectively sensed by proteins.
Collapse
Affiliation(s)
- Abhay Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | | |
Collapse
|
131
|
Stolarek P, Bernat P, Różalski A. Adjustment in the Composition and Organization of Proteus mirabilis Lipids during the Swarming Process. Int J Mol Sci 2023; 24:16461. [PMID: 38003652 PMCID: PMC10671106 DOI: 10.3390/ijms242216461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Proteus mirabilis, an opportunistic pathogen of the urinary tract, is known for its dimorphism and mobility. A connection of lipid alterations, induced by the rods elongation process, with enhanced pathogenicity of long-form morphotype for the development of urinary tract infections, seems highly probable. Therefore, research on the adjustment in the composition and organization of P. mirabilis lipids forming elongated rods was undertaken. The analyses performed using the ultra-high performance liquid chromatography with tandem mass spectrometry showed that drastic modifications in the morphology of P. mirabilis rods that occur during the swarming process are directly related to deprivation of the long-form cells of PE 33:1 and PG 31:2 and their enrichment with PE 32:1, PE 34:1, PE 34:2, PG 30:2, PG 32:1, and PG 34:1. The analyses conducted by the gas chromatography-mass spectrometry showed negligible effects of the swarming process on fatty acids synthesis. However, the constant proportions between unsaturated and saturated fatty acids confirmed that phenotypic modifications in the P. mirabilis rods induced by motility were independent of the saturation of the phospholipid tails. The method of the Förster resonance energy transfer revealed the influence of the swarming process on the melting of ordered lipid rafts present in the short-form rods, corresponding to the homogeneity of lipid bilayers in the long-form rods of P. mirabilis. Confocal microscope photographs visualized strong Rhod-PE fluorescence of the whole area of swarmer cells, in contrast to weak membrane fluorescence of non-swarmer cells. It suggested an increased permeability of the P. mirabilis bilayers in long-form rods morphologically adapted to the swarming process. These studies clearly demonstrate that swarming motility regulates the lipid composition and organization in P. mirabilis rods.
Collapse
Affiliation(s)
- Paulina Stolarek
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Antoni Różalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
132
|
Blanco-González A, Marrink SJ, Piñeiro Á, García-Fandiño R. Molecular insights into the effects of focused ultrasound mechanotherapy on lipid bilayers: Unlocking the keys to design effective treatments. J Colloid Interface Sci 2023; 650:1201-1210. [PMID: 37478737 DOI: 10.1016/j.jcis.2023.07.077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Administration of focused ultrasounds (US) represents an attractive complement to classical therapies for a wide range of maladies, from cancer to neurological pathologies, as they are non-invasive, easily targeted, their dosage is easy to control, and they involve low risks. Different mechanisms have been proposed for their activity but the direct effect of their interaction with cell membranes is not well understood at the molecular level. This is in part due to the difficulty of designing experiments able to probe the required spatio-temporal resolutions. Here we use Molecular Dynamics (MD) simulations at two resolution levels and machine learning (ML) classification tools to shed light on the effects that focused US mechanotherapy methods have over a range of lipid bilayers. Our results indicate that the dynamic-structural response of the membrane models to the mechanical perturbations caused by the sound waves strongly depends on the lipid composition. The analyses performed on the MD trajectories contribute to a better understanding of the behavior of lipid membranes, and to open up a path for the rational design of new therapies for the long list of diseases characterized by specific lipid profiles of pathological membrane cells.
Collapse
Affiliation(s)
- Alexandre Blanco-González
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain; Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain; MD.USE Innovations S.L., Edificio Emprendia, 15782 Santiago de Compostela, Spain
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Ángel Piñeiro
- Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Rebeca García-Fandiño
- Departamento de Química Orgánica, Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
133
|
Pfefferle K, Averhoff B. Wax Ester and Triacylglycerol Production in Acinetobacter baumannii: Role in Osmostress Protection, Reactive Oxygen Species, and Antibiotic Sensitivity. ACS Infect Dis 2023; 9:2093-2104. [PMID: 37883671 DOI: 10.1021/acsinfecdis.3c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Wax esters (WEs) are neutral lipids that are produced by many different bacteria as potential carbon and energy storage compounds. Comparatively little is known about the role of WE in pathogenic bacteria. The opportunistic pathogen Acinetobacter baumannii is a major cause of hospital-acquired infections worldwide. Salt and desiccation resistance foster A. baumannii infections such as urinary tract infections and allow for reinfection when bacteria are taken up from dry surfaces in the hospital environment. Here we report on WE and triacylglycerol (TAG) production in A. baumannii as a response to nitrogen limitation and high salt stress. Fatty acids and fatty alcohols with chain lengths of C16 and C18 were identified as the most prominent WE constituents. We identified the terminal key enzyme of WE biosynthesis, the bifunctional wax ester synthase/acylCoA:diacylglycerol acyltransferase (WS/DGAT) encoded by the wax/dgat gene, and demonstrated that transcription of wax/dgat and production of WS/DGAT are independent of the nitrogen concentration. A Δwax/dgat mutant was impaired in growth in the presence of high salt concentration and was more sensitive to imipenem and reactive oxygen species.
Collapse
Affiliation(s)
- Katharina Pfefferle
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, 60438 Frankfurt, Germany
| |
Collapse
|
134
|
Rempfert KR, Kraus EA, Nothaft DB, Dildar N, Spear JR, Sepúlveda J, Templeton AS. Intact polar lipidome and membrane adaptations of microbial communities inhabiting serpentinite-hosted fluids. Front Microbiol 2023; 14:1198786. [PMID: 38029177 PMCID: PMC10667739 DOI: 10.3389/fmicb.2023.1198786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The generation of hydrogen and reduced carbon compounds during serpentinization provides sustained energy for microorganisms on Earth, and possibly on other extraterrestrial bodies (e.g., Mars, icy satellites). However, the geochemical conditions that arise from water-rock reaction also challenge the known limits of microbial physiology, such as hyperalkaline pH, limited electron acceptors and inorganic carbon. Because cell membranes act as a primary barrier between a cell and its environment, lipids are a vital component in microbial acclimation to challenging physicochemical conditions. To probe the diversity of cell membrane lipids produced in serpentinizing settings and identify membrane adaptations to this environment, we conducted the first comprehensive intact polar lipid (IPL) biomarker survey of microbial communities inhabiting the subsurface at a terrestrial site of serpentinization. We used an expansive, custom environmental lipid database that expands the application of targeted and untargeted lipodomics in the study of microbial and biogeochemical processes. IPLs extracted from serpentinite-hosted fluid communities were comprised of >90% isoprenoidal and non-isoprenoidal diether glycolipids likely produced by archaeal methanogens and sulfate-reducing bacteria. Phospholipids only constituted ~1% of the intact polar lipidome. In addition to abundant diether glycolipids, betaine and trimethylated-ornithine aminolipids and glycosphingolipids were also detected, indicating pervasive membrane modifications in response to phosphate limitation. The carbon oxidation state of IPL backbones was positively correlated with the reduction potential of fluids, which may signify an energy conservation strategy for lipid synthesis. Together, these data suggest microorganisms inhabiting serpentinites possess a unique combination of membrane adaptations that allow for their survival in polyextreme environments. The persistence of IPLs in fluids beyond the presence of their source organisms, as indicated by 16S rRNA genes and transcripts, is promising for the detection of extinct life in serpentinizing settings through lipid biomarker signatures. These data contribute new insights into the complexity of lipid structures generated in actively serpentinizing environments and provide valuable context to aid in the reconstruction of past microbial activity from fossil lipid records of terrestrial serpentinites and the search for biosignatures elsewhere in our solar system.
Collapse
Affiliation(s)
- Kaitlin R. Rempfert
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Daniel B. Nothaft
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Nadia Dildar
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, CO, United States
| | - Julio Sepúlveda
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO, United States
| |
Collapse
|
135
|
Walczak-Skierska J, Monedeiro F, Maślak E, Złoch M. Lipidomics Characterization of the Microbiome in People with Diabetic Foot Infection Using MALDI-TOF MS. Anal Chem 2023; 95:16251-16262. [PMID: 37877781 PMCID: PMC10633811 DOI: 10.1021/acs.analchem.3c03071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
Lipidomic profiling has emerged as a powerful tool for the comprehensive characterization of bacterial species, particularly in the context of clinical diagnostics. Utilizing matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), this study aims to elucidate the lipidomic landscapes of bacterial strains isolated from diabetic foot infections (DFI). Our analysis successfully identified a diverse array of lipids in the cellular membranes of both Gram-positive and Gram-negative bacteria, revealing a total of 108 unique fatty acid combinations. Specifically, we identified 26 LPG, 33 LPE, 43 PE, 114 PG, 89 TAG, and 120 CLP in Gram-positive bacteria and 10 LPG, 14 LPE, 124 PE, 37 PG, 13 TAG, and 22 CLP in Gram-negative strains. Key fatty acids, such as palmitic acid, palmitoleic acid, stearic acid, and oleic acid, were prominently featured. Univariate analysis further highlighted distinct lipidomic signatures among the bacterial strains, revealing elevated levels of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) in Gram-negative bacteria associated with DFI. In contrast, Gram-positive strains demonstrated increased or uniquely fluctuating levels of triglyceride (TAG) and cardiolipin (CLP). These findings not only underscore the utility of MALDI-TOF MS in bacterial lipidomics but also provide valuable insights into the lipidomic adaptations of bacteria in diabetic foot infections, thereby laying the groundwork for future studies aimed at constructing microbial lipid libraries for enhanced bacterial identification.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
- Chair
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus a Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| | - Fernanda Monedeiro
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
| | - Ewelina Maślak
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
| | - Michał Złoch
- Centre
for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4 Str., 87-100 Toruń, Poland
- Chair
of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus a Copernicus University in Toruń, Gagarina 7 Str., 87-100 Toruń, Poland
| |
Collapse
|
136
|
Dennison SR, Morton LH, Badiani K, Harris F, Phoenix DA. Bacterial susceptibility and resistance to modelin-5. SOFT MATTER 2023; 19:8247-8263. [PMID: 37869970 DOI: 10.1039/d3sm01007d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Modelin-5 (M5-NH2) killed Pseudomonas aeruginosa with a minimum lethal concentration (MLC) of 5.86 μM and strongly bound its cytoplasmic membrane (CM) with a Kd of 23.5 μM. The peptide adopted high levels of amphiphilic α-helical structure (75.0%) and penetrated the CM hydrophobic core (8.0 mN m-1). This insertion destabilised CM structure via increased lipid packing and decreased fluidity (ΔGmix < 0), which promoted high levels of lysis (84.1%) and P. aeruginosa cell death. M5-NH2 showed a very strong affinity (Kd = 3.5 μM) and very high levels of amphiphilic α-helical structure with cardiolipin membranes (96.0%,) which primarily drove the peptide's membranolytic action against P. aeruginosa. In contrast, M5-NH2 killed Staphylococcus aureus with an MLC of 147.6 μM and weakly bound its CM with a Kd of 117.6 μM, The peptide adopted low levels of amphiphilic α-helical structure (35.0%) and only penetrated the upper regions of the CM (3.3 mN m-1). This insertion stabilised CM structure via decreased lipid packing and increased fluidity (ΔGmix > 0) and promoted only low levels of lysis (24.3%). The insertion and lysis of the S. aureus CM by M5-NH2 showed a strong negative correlation with its lysyl phosphatidylglycerol (Lys-PG) content (R2 > 0.98). In combination, these data suggested that Lys-PG mediated mechanisms inhibited the membranolytic action of M5-NH2 against S. aureus, thereby rendering the organism resistant to the peptide. These results are discussed in relation to structure/function relationships of M5-NH2 and CM lipids that underpin bacterial susceptibility and resistance to the peptide.
Collapse
Affiliation(s)
- Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Leslie Hg Morton
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Kamal Badiani
- Pepceuticals Limited, 4 Feldspar Close, Warrens Park, Enderby, Leicestershire, LE19 4JS, UK
| | - Frederick Harris
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| |
Collapse
|
137
|
Shi Y, Ruan H, Xu Y, Zou C. Cholesterol, Eukaryotic Lipid Domains, and an Evolutionary Perspective of Transmembrane Signaling. Cold Spring Harb Perspect Biol 2023; 15:a041418. [PMID: 37604587 PMCID: PMC10626259 DOI: 10.1101/cshperspect.a041418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Transmembrane signaling is essential for complex life forms. Communication across a bilayer lipid barrier is elaborately organized to convey precision and to fine-tune strength. Looking back, the steps that it has taken to enable this seemingly mundane errand are breathtaking, and with our survivorship bias, Darwinian. While this review is to discuss eukaryotic membranes in biological functions for coherence and theoretical footing, we are obliged to follow the evolution of the biological membrane through time. Such a visit is necessary for our hypothesis that constraints posited on cellular functions are mainly via the biomembrane, and relaxation thereof in favor of a coordinating membrane environment is the molecular basis for the development of highly specialized cellular activities, among them transmembrane signaling. We discuss the obligatory paths that have led to eukaryotic membrane formation, its intrinsic ability to signal, and how it set up the platform for later integration of protein-based receptor activation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Hefei Ruan
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanni Xu
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Chunlin Zou
- Department of Basic Medical Sciences, Tsinghua-Peking University Joint Center for Life Sciences, School of Medicine; Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
138
|
Valdivieso González D, Makowski M, Lillo MP, Cao‐García FJ, Melo MN, Almendro‐Vedia VG, López‐Montero I. Rotation of the c-Ring Promotes the Curvature Sorting of Monomeric ATP Synthases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301606. [PMID: 37705095 PMCID: PMC10625105 DOI: 10.1002/advs.202301606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/07/2023] [Indexed: 09/15/2023]
Abstract
ATP synthases are proteins that catalyse the formation of ATP through the rotatory movement of their membrane-spanning subunit. In mitochondria, ATP synthases are found to arrange as dimers at the high-curved edges of cristae. Here, a direct link is explored between the rotatory movement of ATP synthases and their preference for curved membranes. An active curvature sorting of ATP synthases in lipid nanotubes pulled from giant vesicles is found. Coarse-grained simulations confirm the curvature-seeking behaviour of rotating ATP synthases, promoting reversible and frequent protein-protein contacts. The formation of transient protein dimers relies on the membrane-mediated attractive interaction of the order of 1.5 kB T produced by a hydrophobic mismatch upon protein rotation. Transient dimers are sustained by a conic-like arrangement characterized by a wedge angle of θ ≈ 50°, producing a dynamic coupling between protein shape and membrane curvature. The results suggest a new role of the rotational movement of ATP synthases for their dynamic self-assembly in biological membranes.
Collapse
Affiliation(s)
- David Valdivieso González
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
| | - Marcin Makowski
- Instituto de Medicina MolecularFacultade de MedicinaUniversidade de LisboaLisbon1649‐028Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - M. Pilar Lillo
- Departamento Química Física BiológicaInstituto de Química‐Física “Blas Cabrera” (CSIC)Serrano 119Madrid28006Spain
| | - Francisco J. Cao‐García
- Departamento de Estructura de la MateriaFísica Térmica y ElectrónicaUniversidad Complutense de MadridPlaza de Ciencias 1Madrid28040Spain
- Instituto Madrileño de Estudios Avanzados en NanocienciaIMDEA NanocienciaC/ Faraday 9Madrid28049Spain
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Víctor G. Almendro‐Vedia
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
| | - Iván López‐Montero
- Departamento Química FísicaUniversidad Complutense de MadridAvda. Complutense s/nMadrid28040Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12)Avenida de Córdoba s/nMadrid28041Spain
- Instituto PluridisciplinarPaseo Juan XXIII 1Madrid28040Spain
| |
Collapse
|
139
|
Kobayashi K, Yoshihara A, Kubota-Kawai H. Evolutionary implications from lipids in membrane bilayers and photosynthetic complexes in cyanobacteria and chloroplasts. J Biochem 2023; 174:399-408. [PMID: 37500078 DOI: 10.1093/jb/mvad058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
In biomembranes, lipids form bilayer structures that serve as the fluid matrix for membrane proteins and other hydrophobic compounds. Additionally, lipid molecules associate with membrane proteins and impact their structures and functions. In both cyanobacteria and the chloroplasts of plants and algae, the lipid bilayer of the thylakoid membrane consists of four distinct glycerolipid classes: monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol, and phosphatidylglycerol. These lipids are also integral components of photosynthetic complexes such as photosystem II and photosystem I. The lipid-binding sites within the photosystems, as well as the lipid composition in the thylakoid membrane, are highly conserved between cyanobacteria and photosynthetic eukaryotes, and each lipid class has specific roles in oxygenic photosynthesis. This review aims to shed light on the potential evolutionary implications of lipid utilization in membrane lipid bilayers and photosynthetic complexes in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akiko Yoshihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hisako Kubota-Kawai
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi 990-8560, Japan
| |
Collapse
|
140
|
Mustafa G, Zahid MT, Bharat Kurade M, Mahadeo Patil S, Shakoori FR, Shafiq Z, Ihsan S, Ahn Y, Khan AA, Gacem A, Jeon BH. Molecular characterization of azoreductase and its potential for the decolorization of Remazol Red R and Acid Blue 29. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122253. [PMID: 37499970 DOI: 10.1016/j.envpol.2023.122253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/12/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
Azoreductase is a reductive enzyme that efficiently biotransformed textile azo dyes. This study demonstrated the heterologous overexpression of the azoreductase gene in Escherichia coli for the effective degradation of Remazol Red-R and Acid-Blue 29 dyes. The AzK gene of Klebsiella pneumoniae encoding a ≈22 kDa azoreductase enzyme was cloned into the pET21+C expression vector. The inoculum size of 1.5%, IPTG concentration of 0.5 mM, and incubation time of 6 h were optimized by response surface methodology a statistical tool. The crude extract showed 76% and 74%, while the purified enzyme achieved 94% and 93% decolorization of RRR and AB-29, respectively in 0.3 h. The reaction kinetics showed that RRR had a Km and Vmax value of 0.058 mM and 1416 U mg-1, respectively at an NADH concentration of 10 mM. HPLC and GC-MS analyses showed that RRR was effectively bio-transformed by azoreductase to 2-[3-(hydroxy-amino) benzene-1-sulfonyl and AB-29 to aniline and 3-nitrosoaniline. This study explored the potential of recombinant azoreductase isolated from K. pneumoniae in the degradation of toxic textile azo dyes into less toxic metabolites.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Muhammad Tariq Zahid
- Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Mayur Bharat Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Swapnil Mahadeo Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | | | - Zeeshan Shafiq
- Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Sidra Ihsan
- Department of Zoology, Government College University, Lahore, 54000, Lahore, Pakistan
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, 21000, Algeria
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
141
|
Mao W, Renner LD, Cornilleau C, Li de la Sierra-Gallay I, Afensiss S, Benlamara S, Ah-Seng Y, Van Tilbeurgh H, Nessler S, Bertin A, Chastanet A, Carballido-Lopez R. On the role of nucleotides and lipids in the polymerization of the actin homolog MreB from a Gram-positive bacterium. eLife 2023; 12:e84505. [PMID: 37818717 PMCID: PMC10718530 DOI: 10.7554/elife.84505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/08/2023] [Indexed: 10/12/2023] Open
Abstract
In vivo, bacterial actin MreB assembles into dynamic membrane-associated filamentous structures that exhibit circumferential motion around the cell. Current knowledge of MreB biochemical and polymerization properties in vitro remains limited and is mostly based on MreB proteins from Gram-negative species. In this study, we report the first observation of organized protofilaments by electron microscopy and the first 3D-structure of MreB from a Gram-positive bacterium. We show that Geobacillus stearothermophilus MreB forms straight pairs of protofilaments on lipid surfaces in the presence of ATP or GTP, but not in the presence of ADP, GDP or non-hydrolysable ATP analogs. We demonstrate that membrane anchoring is mediated by two spatially close short hydrophobic sequences while electrostatic interactions also contribute to lipid binding, and show that the population of membrane-bound protofilament doublets is in steady-state. In solution, protofilament doublets were not detected in any condition tested. Instead, MreB formed large sheets regardless of the bound nucleotide, albeit at a higher critical concentration. Altogether, our results indicate that both lipids and ATP are facilitators of MreB polymerization, and are consistent with a dual effect of ATP hydrolysis, in promoting both membrane binding and filaments assembly/disassembly.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Lars D Renner
- Leibniz Institute of Polymer Research, and the Max-Bergmann-Center of BiomaterialsDresdenGermany
| | - Charlène Cornilleau
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Ines Li de la Sierra-Gallay
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sana Afensiss
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Sarah Benlamara
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Yoan Ah-Seng
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Herman Van Tilbeurgh
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Sylvie Nessler
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
| | - Aurélie Bertin
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Sorbonne Université, 75005ParisFrance
| | - Arnaud Chastanet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| | - Rut Carballido-Lopez
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis InstituteJouy-en-JosasFrance
| |
Collapse
|
142
|
Majumder A, Vuksanovic N, Ray LC, Bernstein HM, Allen KN, Imperiali B, Straub JE. Synergistic computational and experimental studies of a phosphoglycosyl transferase membrane/ligand ensemble. J Biol Chem 2023; 299:105194. [PMID: 37633332 PMCID: PMC10519829 DOI: 10.1016/j.jbc.2023.105194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | | | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hannah M Bernstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
143
|
Bertelsen M, Lacey MM, Nichol T, Miller K. Mechanistic Insight into the Early Stages of Toroidal Pore Formation by the Antimicrobial Peptide Smp24. Pharmaceutics 2023; 15:2399. [PMID: 37896158 PMCID: PMC10610086 DOI: 10.3390/pharmaceutics15102399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/29/2023] Open
Abstract
The antimicrobial peptide Smp24, originally derived from the venom of Scorpio maurus palmatus, is a promising candidate for further drug development. However, before doing so, greater insight into the mechanism of action is needed to construct a reliable structure-activity relationship. The aim of this study was to specifically investigate the critical early stages of peptide-induced membrane disruption. Single-channel current traces were obtained via planar patch-clamp electrophysiology, with multiple types of pore-forming events observed, unlike those expected from the traditional, more rigid mechanistic models. To better understand the molecular-level structures of the peptide-pore assemblies underlying these observed conductance events, molecular dynamics simulations were used to investigate the peptide structure and orientation both before and during pore formation. The transition of the peptides to transmembrane-like states within disordered toroidal pores occurred due to a peptide-induced bilayer-leaflet asymmetry, explaining why pore stabilization does not always follow pore nucleation in the experimental observations. To fully grasp the structure-activity relationship of antimicrobial peptides, a more nuanced view of the complex and dynamic mechanistic behaviour must be adopted.
Collapse
Affiliation(s)
| | | | | | - Keith Miller
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
144
|
Oliveira-Tintino CDDM, Santana JEG, Alencar GG, Siqueira GM, Gonçalves SA, Tintino SR, de Menezes IRA, Rodrigues JPV, Gonçalves VBP, Nicolete R, Ribeiro-Filho J, da Silva TG, Coutinho HDM. Valencene, Nootkatone and Their Liposomal Nanoformulations as Potential Inhibitors of NorA, Tet(K), MsrA, and MepA Efflux Pumps in Staphylococcus aureus Strains. Pharmaceutics 2023; 15:2400. [PMID: 37896161 PMCID: PMC10609713 DOI: 10.3390/pharmaceutics15102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Valencene and nootkatone are aromatic sesquiterpenes with known biological activities, such as antimicrobial, antioxidant, anti-inflammatory, and antitumor. Given the evidence that encapsulation into nanosystems, such as liposomes, could improve the properties of several compounds, the present study aimed to evaluate the activity of these sesquiterpenes in their isolated state or in liposomal formulations against strains of Staphylococcus aureus carrying efflux pumps. The broth microdilution method evaluated the antibiotic-enhancing activity associated with antibiotics and ethidium bromide (EtBr). The minimum inhibitory concentration was assessed in strains of S. aureus 1199B, IS-58, and RN4220, which carry the efflux proteins NorA, Tet(K), and MsrA. In tests with strain 1199B, valencene reduced the MIC of norfloxacin and EtBr by 50%, while the liposomal formulation of this compound did not show a significant effect. Regarding the strain IS-58, valencene, and its nanoformulation reduced norfloxacin MIC by 60.3% and 50%, respectively. In the non-liposomal form, the sesquiterpene reduced the MIC of EtBr by 90%. Against the RN4220 strain, valencene reduced the MIC of the antibiotic and EtBr by 99% and 93.7%, respectively. Nootkatone and its nanoformulation showed significant activity against the 1199B strain, reducing the EtBr MIC by 21.9%. Against the IS-58 strain, isolated nootkatone reduced the EtBr MIC by 20%. The results indicate that valencene and nootkatone potentiate the action of antibiotics and efflux inhibitors in strains carrying NorA, Tet(K), and MsrA proteins, which suggests that these sesquiterpenes act as efflux pump inhibitors in S. aureus. Therefore, further studies are needed to assess the impact of incorporation into liposomes on the activity of these compounds in vivo.
Collapse
Affiliation(s)
- Cícera Datiane de Morais Oliveira-Tintino
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| | | | - Gabriel Gonçalves Alencar
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| | - Gustavo Miguel Siqueira
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| | - Sheila Alves Gonçalves
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| | - Irwin Rose Alencar de Menezes
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| | | | | | - Roberto Nicolete
- Oswaldo Cruz Foundation (Fiocruz Ceará), Eusébio 61773-270, CE, Brazil; (J.P.V.R.); (V.B.P.G.); (R.N.)
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz Ceará), Eusébio 61773-270, CE, Brazil; (J.P.V.R.); (V.B.P.G.); (R.N.)
| | - Teresinha Gonçalves da Silva
- Department of Antibiotics, Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.E.G.S.); (T.G.d.S.)
| | - Henrique Douglas Melo Coutinho
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-010, CE, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (S.A.G.); (S.R.T.); (I.R.A.d.M.)
| |
Collapse
|
145
|
Master NG, Markande AR. Importance of microbial amphiphiles: interaction potential of biosurfactants, amyloids, and other exo-polymeric-substances. World J Microbiol Biotechnol 2023; 39:320. [PMID: 37747579 DOI: 10.1007/s11274-023-03751-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
Microorganisms produce a diverse group of biomolecules having amphipathic nature (amphiphiles). Microbial amphiphiles, including amyloids, bio-surfactants, and other exo-polymeric substances, play a crucial role in various biological processes and have gained significant attention recently. Although diverse in biochemical composition, these amphiphiles have been reported for common microbial traits like biofilm formation and pathogenicity due to their ability to act as surface active agents with active interfacial properties essential for microbes to grow in various niches. This enables microbes to reduce surface tension, emulsification, dispersion, and attachment at the interface. In this report, the ecological importance and biotechnological usage of important amphiphiles have been discussed. The low molecular weight amphiphiles like biosurfactants, siderophores, and peptides showing helical and antimicrobial activities have been extensively reported for their ability to work as quorum-sensing mediators. While high molecular weight amphiphiles make up amyloid fibers, exopolysaccharides, liposomes, or magnetosomes have been shown to have a significant influence in deciding microbial physiology and survival. In this report, we have discussed the functional similarities and biochemical variations of several amphipathic biomolecules produced by microbes, and the present report shows these amphiphiles showing polyphyletic and ecophysiological groups of microorganisms and hence can `be replaced in biotechnological applications depending on the compatibility of the processes.
Collapse
Affiliation(s)
- Nishita G Master
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India
| | - Anoop R Markande
- Department of Biological Sciences, P.D. Patel Institute of Applied Sciences (PDPIAS), Charotar University of Science and Technology (CHARUSAT), Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
146
|
Medin S, Schmitz AM, Pian B, Mini K, Reid MC, Holycross M, Gazel E, Wu M, Barstow B. Genomic characterization of rare earth binding by Shewanella oneidensis. Sci Rep 2023; 13:15975. [PMID: 37749198 PMCID: PMC10520059 DOI: 10.1038/s41598-023-42742-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Rare earth elements (REE) are essential ingredients of sustainable energy technologies, but separation of individual REE is one of the hardest problems in chemistry today. Biosorption, where molecules adsorb to the surface of biological materials, offers a sustainable alternative to environmentally harmful solvent extractions currently used for separation of rare earth elements (REE). The REE-biosorption capability of some microorganisms allows for REE separations that, under specialized conditions, are already competitive with solvent extractions, suggesting that genetic engineering could allow it to leapfrog existing technologies. To identify targets for genomic improvement we screened 3,373 mutants from the whole genome knockout collection of the known REE-biosorbing microorganism Shewanella oneidensis MR-1. We found 130 genes that increased biosorption of the middle REE europium, and 112 that reduced it. We verified biosorption changes from the screen for a mixed solution of three REE (La, Eu, Yb) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in solution conditions with a range of ionic strengths and REE concentrations. We identified 18 gene ontologies and 13 gene operons that make up key systems that affect biosorption. We found, among other things, that disruptions of a key regulatory component of the arc system (hptA), which regulates cellular response to anoxic environments and polysaccharide biosynthesis related genes (wbpQ, wbnJ, SO_3183) consistently increase biosorption across all our solution conditions. Our largest total biosorption change comes from our SO_4685, a capsular polysaccharide (CPS) synthesis gene, disruption of which results in an up to 79% increase in biosorption; and nusA, a transcriptional termination/anti-termination protein, disruption of which results in an up to 35% decrease in biosorption. Knockouts of glnA, pyrD, and SO_3183 produce small but significant increases (≈ 1%) in relative biosorption affinity for ytterbium over lanthanum in multiple solution conditions tested, while many other genes we explored have more complex binding affinity changes. Modeling suggests that while these changes to lanthanide biosorption selectivity are small, they could already reduce the length of repeated enrichment process by up to 27%. This broad exploratory study begins to elucidate how genetics affect REE-biosorption by S. oneidensis, suggests new areas of investigation for better mechanistic understanding of the membrane chemistry involved in REE binding, and offer potential targets for improving biosorption and separation of REE by genetic engineering.
Collapse
Affiliation(s)
- Sean Medin
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Alexa M Schmitz
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Kuunemuebari Mini
- Department of Sciences and Technology Studies, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Megan Holycross
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
147
|
Yao A, Ma Y, Sun R, Zou W, Chen X, Zhou M, Ma C, Chen T, Shaw C, Wang L. A Designed Analog of an Antimicrobial Peptide, Crabrolin, Exhibits Enhanced Anti-Proliferative and In Vivo Antimicrobial Activity. Int J Mol Sci 2023; 24:14472. [PMID: 37833918 PMCID: PMC10572522 DOI: 10.3390/ijms241914472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 μM), which was around thirty times stronger than the parent peptide (MIC = 128 μM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 μM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.
Collapse
Affiliation(s)
- Aifang Yao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Yingxue Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Ruize Sun
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Wanchen Zou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (Y.M.); (R.S.); (X.C.); (M.Z.); (C.M.); (T.C.); (C.S.); (L.W.)
| |
Collapse
|
148
|
Odenkirk MT, Zhang G, Marty MT. Do Nanodisc Assembly Conditions Affect Natural Lipid Uptake? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2006-2015. [PMID: 37524089 PMCID: PMC10528108 DOI: 10.1021/jasms.3c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Lipids play critical roles in modulating membrane protein structure, interactions, and activity. Nanodiscs provide a tunable membrane mimetic that can model these endogenous protein-lipid interactions in a nanoscale lipid bilayer. However, most studies of membrane proteins with nanodiscs use simple synthetic lipids that lack the headgroup and fatty acyl diversity of natural extracts. Prior research has successfully used natural lipid extracts in nanodiscs that more accurately mimic natural environments, but it is not clear how nanodisc assembly may bias the incorporated lipid profiles. Here, we applied lipidomics to investigate how nanodisc assembly conditions affect the profile of natural lipids in nanodiscs. Specifically, we tested the effects of assembly temperature, nanodisc size, and lipidome extract complexity. Globally, our analysis demonstrates that the lipids profiles are largely unaffected by nanodisc assembly conditions. However, a few notable changes emerged within individual lipids and lipid classes, such as a differential incorporation of cardiolipin and phosphatidylglycerol lipids from the E. coli polar lipid extract at different temperatures. Conversely, some classes of brain lipids were affected by nanodisc size at higher temperatures. Collectively, these data enable the application of nanodiscs to study protein-lipid interactions in complex lipid environments.
Collapse
Affiliation(s)
- Melanie T. Odenkirk
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| | - Guozhi Zhang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ
- Bio5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
149
|
Pan H, Shim A, Lubin MB, Belin BJ. Hopanoid lipids promote soybean- Bradyrhizobium symbiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556284. [PMID: 37732186 PMCID: PMC10508751 DOI: 10.1101/2023.09.04.556284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
The symbioses between leguminous plants and nitrogen-fixing bacteria known as rhizobia are well known for promoting plant growth and sustainably increasing soil nitrogen. Recent evidence indicates that hopanoids, a family of steroid-like lipids, promote Bradyrhizobium symbioses with tropical legumes. To characterize hopanoids in Bradyrhizobium symbiosis with soybean, the most economically significant Bradyrhizobium host, we validated a recently published cumate-inducible hopanoid mutant of Bradyrhizobium diazoefficiens USDA110, Pcu- shc ::Δ shc . GC-MS analysis showed that this strain does not produce hopanoids without cumate induction, and under this condition, is impaired in growth in rich medium and under osmotic, temperature, and pH stress. In planta , Pcu- shc ::Δ shc is an inefficient soybean symbiont with significantly lower rates of nitrogen fixation and low survival within host tissue. RNA-seq revealed that hopanoid loss reduces expression of flagellar motility and chemotaxis-related genes, further confirmed by swim plate assays, and enhances expression of genes related to nitrogen metabolism and protein secretion. These results suggest that hopanoids provide a significant fitness advantage to B. diazoefficiens in legume hosts and provide a foundation for future mechanistic studies of hopanoid function in protein secretion and motility. IMPORTANCE A major problem for global sustainability is feeding our exponentially growing human population while available arable land is decreasing, especially in areas with the greatest population growth. Harnessing the power of plant-beneficial microbes has gained attention as a potential solution, including the increasing our reliance on the symbioses of leguminous plants and nitrogen-fixing rhizobia. This study examines the role of hopanoid lipids in the symbiosis between Bradyrhizobium diazoefficiens USDA110, an important commercial inoculant strain, and its economically important host soybean. Our research extends our knowledge of the functions of bacterial lipids in symbiosis to an agricultural context, which may one day help improve the practical applications of plant-beneficial microbes in agriculture.
Collapse
|
150
|
Venkatraman K, Lee CT, Garcia GC, Mahapatra A, Milshteyn D, Perkins G, Kim KY, Pasolli HA, Phan S, Lippincott-Schwartz J, Ellisman MH, Rangamani P, Budin I. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532310. [PMID: 36993370 PMCID: PMC10054968 DOI: 10.1101/2023.03.13.532310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cristae are high curvature structures in the inner mitochondrial membrane (IMM) that are crucial for ATP production. While cristae-shaping proteins have been defined, analogous mechanisms for lipids have yet to be elucidated. Here we combine experimental lipidome dissection with multi-scale modeling to investigate how lipid interactions dictate IMM morphology and ATP generation. When modulating phospholipid (PL) saturation in engineered yeast strains, we observed a surprisingly abrupt breakpoint in IMM topology driven by a continuous loss of ATP synthase organization at cristae ridges. We found that cardiolipin (CL) specifically buffers the IMM against curvature loss, an effect that is independent of ATP synthase dimerization. To explain this interaction, we developed a continuum model for cristae tubule formation that integrates both lipid and protein-mediated curvatures. The model highlighted a snapthrough instability, which drives IMM collapse upon small changes in membrane properties. We also showed that CL is essential in low oxygen conditions that promote PL saturation. These results demonstrate that the mechanical function of CL is dependent on the surrounding lipid and protein components of the IMM.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Guadalupe C Garcia
- Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla CA 92097
| | - Arijit Mahapatra
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Daniel Milshteyn
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn VA 20147
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | | | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California San Diego, La Jolla, CA 92093
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|