101
|
Tang WS, Zhong L, Ding QQ, Dou YN, Li WW, Xu ZS, Zhou YB, Chen J, Chen M, Ma YZ. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1278-1293. [PMID: 35224735 DOI: 10.1111/nph.18060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 05/26/2023]
Abstract
Salt tolerance during seed germination is essential for seedling establishment under salt stress. Sirtuin-like proteins, NAD+ -dependent histone deacetylases, are involved in plant responses to abiotic stresses; however, the regulatory mechanism remains unknown. We elucidated the mechanism underlying AtSRT2 (a sirtuin-like protein)-mediated regulation of salt tolerance during seed germination in Arabidopsis. The AtSRT2 mutant srt2 exhibited significantly reduced seed germination percentages under salt stress; its targets were identified via chromatin immunoprecipitation coupled with ultra-high-throughput parallel DNA sequencing (ChIP-Seq) assay. Epistasis analysis was performed to identify AtSRT2-related pathways. Overexpression of SRT2.7, an AtSRT2 splice variant, rescued the salt-sensitive phenotype of mutant srt2. AtSRT2 histone deacetylation activity was important for salt tolerance during seed germination. The acetylation level of histone H4K8 locus in srt2-1 increased significantly under salt treatment. Vesicle-associated membrane protein 714 (VAMP714), a negative regulator of hydrogen peroxide (H2 O2 )-containing vesicle trafficking in cells, was identified as a target of AtSRT2. AtSRT2 regulated histone acetylation in the promoter region of VAMP714 and inhibited VAMP714 transcription under salt treatment. Seed germination percentage of double-mutant srt2-1vamp714 was close to that of single-mutant vamp714, and higher than that of single-mutant srt2 under salt stress. Hydrogen peroxide content and DNA damage increased after salt treatment in srt2 during seed germination. AtSRT2 regulates salt tolerance during seed germination through VAMP714 in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Si Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Li Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Qing-Qian Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yi-Ning Dou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Wei-Wei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
102
|
Genome-wide identification of chromatin regulators in Sorghum bicolor. 3 Biotech 2022; 12:117. [PMID: 35547013 PMCID: PMC9033926 DOI: 10.1007/s13205-022-03181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 04/03/2022] [Indexed: 11/01/2022] Open
Abstract
Chromatin regulators play important roles in plant development and stress response. In this study, we identified totally 231 chromatin regulators including 63 histones, 29 histone chaperones, 101 histone modification enzymes, and 38 chromatin remodeling factors from Sorghum bicolor (L.) Moench. Most of these chromatin regulators are homologous to their counterparts in Arabidopsis or rice. However, sorghum genome evolves a few novel histone variants specific to some grass species and a sorghum-unique chromatin remodeling factor that contain the domains belonging to the elongation factor EF-Tu and the histone chaperone SPT16. Finally, we performed co-expression analysis for the chromatin regulator-encoding genes by clustering the expression patterns of these genes. Our results provide useful information for the future studies on the mechanism of epigenetic regulation in sorghum and its roles in development and stress response. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03181-8.
Collapse
|
103
|
Zhou JX, Su XM, Zheng SY, Wu CJ, Su YN, Jiang Z, Li L, Chen S, He XJ. The Arabidopsis NuA4 histone acetyltransferase complex is required for chlorophyll biosynthesis and photosynthesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:901-914. [PMID: 35043580 DOI: 10.1111/jipb.13227] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/14/2022] [Indexed: 05/29/2023]
Abstract
Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.
Collapse
Affiliation(s)
- Jin-Xing Zhou
- College of Life Sciences, Beijing Normal University, Beijing, 100091, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Xiao-Min Su
- College of Life Sciences, Beijing Normal University, Beijing, 100091, China
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Si-Yao Zheng
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Chan-Juan Wu
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, 102206, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
104
|
Chen Q, Zhang J, Li G. Dynamic epigenetic modifications in plant sugar signal transduction. TRENDS IN PLANT SCIENCE 2022; 27:379-390. [PMID: 34865981 DOI: 10.1016/j.tplants.2021.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
In eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development. Various epigenetic modifications participate in sensing and transmitting sugar signals. Here we summarize recent progress in uncovering the epigenetic mechanisms involved in sugar signal transduction, including histone acetylation and deacetylation, histone methylation and demethylation, and DNA methylation. We also highlight changes in chromatin marks when crosstalk occurs between sugar signaling and the light, temperature, and phytohormone signaling pathways, and describe potential questions and approaches for future research.
Collapse
Affiliation(s)
- Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
105
|
Gardiner J, Ghoshal B, Wang M, Jacobsen SE. CRISPR-Cas-mediated transcriptional control and epi-mutagenesis. PLANT PHYSIOLOGY 2022; 188:1811-1824. [PMID: 35134247 PMCID: PMC8968285 DOI: 10.1093/plphys/kiac033] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/13/2022] [Indexed: 05/24/2023]
Abstract
Tools for sequence-specific DNA binding have opened the door to new approaches in investigating fundamental questions in biology and crop development. While there are several platforms to choose from, many of the recent advances in sequence-specific targeting tools are focused on developing Clustered Regularly Interspaced Short Palindromic Repeats- CRISPR Associated (CRISPR-Cas)-based systems. Using a catalytically inactive Cas protein (dCas), this system can act as a vector for different modular catalytic domains (effector domains) to control a gene's expression or alter epigenetic marks such as DNA methylation. Recent trends in developing CRISPR-dCas systems include creating versions that can target multiple copies of effector domains to a single site, targeting epigenetic changes that, in some cases, can be inherited to the next generation in the absence of the targeting construct, and combining effector domains and targeting strategies to create synergies that increase the functionality or efficiency of the system. This review summarizes and compares DNA targeting technologies, the effector domains used to target transcriptional control and epi-mutagenesis, and the different CRISPR-dCas systems used in plants.
Collapse
Affiliation(s)
| | | | - Ming Wang
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California, USA
| | | |
Collapse
|
106
|
Morończyk J, Brąszewska A, Wójcikowska B, Chwiałkowska K, Nowak K, Wójcik AM, Kwaśniewski M, Gaj MD. Insights into the Histone Acetylation-Mediated Regulation of the Transcription Factor Genes That Control the Embryogenic Transition in the Somatic Cells of Arabidopsis. Cells 2022; 11:863. [PMID: 35269485 PMCID: PMC8909028 DOI: 10.3390/cells11050863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/10/2022] [Accepted: 02/28/2022] [Indexed: 02/01/2023] Open
Abstract
Somatic embryogenesis (SE), which is a process that involves the in vitro-induced embryogenic reprogramming of plant somatic cells, requires dynamic changes in the cell transcriptome. These changes are fine-tuned by many genetic and epigenetic factors, including posttranslational histone modifications such as histone acetylation. Antagonistically acting enzymes, histone acetyltransferases (HATs) and deacetylases (HDACs), which control histone acetylation in many developmental processes, are believed to control SE. However, the function of specific HAT/HDACs and the genes that are subjected to histone acetylation-mediated regulation during SE have yet to be revealed. Here, we present the global and gene-specific changes in histone acetylation in Arabidopsis explants that are undergoing SE. In the TSA (trichostatin A)-induced SE, we demonstrate that H3 and H4 acetylation might control the expression of the critical transcription factor (TF) genes of a vital role in SE, including LEC1, LEC2 (LEAFY COTYLEDON 1; 2), FUS3 (FUSCA 3) and MYB118 (MYB DOMAIN PROTEIN 118). Within the HATs and HDACs, which mainly positively regulate SE, we identified HDA19 as negatively affecting SE by regulating LEC1, LEC2 and BBM. Finally, we provide some evidence on the role of HDA19 in the histone acetylation-mediated regulation of LEC2 during SE. Our results reveal an essential function of histone acetylation in the epigenetic mechanisms that control the TF genes that play critical roles in the embryogenic reprogramming of plant somatic cells. The results implicate the complexity of Hac-related gene regulation in embryogenic induction and point to differences in the regulatory mechanisms that are involved in auxin- and TSA-induced SE.
Collapse
Affiliation(s)
- Joanna Morończyk
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Barbara Wójcikowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Karolina Chwiałkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Katarzyna Nowak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Anna M. Wójcik
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| | - Mirosław Kwaśniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.C.); (M.K.)
| | - Małgorzata D. Gaj
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-007 Katowice, Poland; (J.M.); (A.B.); (B.W.); (K.N.); (A.M.W.)
| |
Collapse
|
107
|
Hou Y, Yan Y, Cao X. Epigenetic regulation of thermomorphogenesis in Arabidopsis thaliana. ABIOTECH 2022; 3:12-24. [PMID: 36304197 PMCID: PMC9590556 DOI: 10.1007/s42994-022-00070-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022]
Abstract
Temperature is a key factor in determining plant growth and development, geographical distribution, and seasonal behavior. Plants accurately sense subtle changes in ambient temperature and alter their growth and development accordingly to improve their chances of survival and successful propagation. Thermomorphogenesis encompasses a variety of morphological changes that help plants acclimate to warm environmental temperatures. Revealing the molecular mechanism of thermomorphogenesis is important for breeding thermo-tolerant crops and ensuring food security under global climate change. Plant adaptation to elevated ambient temperature is regulated by multiple signaling pathways and epigenetic mechanisms such as histone modifications, histone variants, and non-coding RNAs. In this review, we summarize recent advances in the mechanism of epigenetic regulation during thermomorphogenesis with a focus on the model plant Arabidopsis thaliana and briefly discuss future prospects for this field.
Collapse
Affiliation(s)
- Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yan Yan
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
108
|
Xu Y, Li Q, Yuan L, Huang Y, Hung FY, Wu K, Yang S. MSI1 and HDA6 function interdependently to control flowering time via chromatin modifications. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:831-843. [PMID: 34807487 DOI: 10.1111/tpj.15596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/26/2021] [Accepted: 11/16/2021] [Indexed: 05/14/2023]
Abstract
MULTICOPY SUPPRESSOR OF IRA1 (MSI1) is a conserved subunit of Polycomb Repressive Complex 2 (PRC2), which mediates gene silencing by histone H3 lysine 27 trimethylation (H3K27Me3). Here, we demonstrated that MSI1 interacts with the RPD3-like histone deacetylase HDA6 both in vitro and in vivo. MSI1 and HDA6 are involved in flowering and repress the expression of FLC, MAF4, and MAF5 by removing H3K9 acetylation but adding H3K27Me3. Chromatin immunoprecipitation analysis showed that HDA6 and MSI1 interdependently bind to the chromatin of FLC, MAF4, and MAF5. Furthermore, H3K9 deacetylation mediated by HDA6 is dependent on MSI1, while H3K27Me3 mediated by PRC2 containing MSI1 is also dependent on HDA6. Taken together, these data indicate that MSI1 and HDA6 act interdependently to repress the expression of FLC, MAF4, and MAF5 through histone modifications. Our findings reveal that the HDA6-MSI1 module mediates the interaction between histone H3 deacetylation and H3K27Me3 to repress gene expression involved in flowering time control.
Collapse
Affiliation(s)
- Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agricultural Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lianyu Yuan
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yisui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
109
|
Lopez L, Perrella G, Calderini O, Porceddu A, Panara F. Genome-Wide Identification of Histone Modification Gene Families in the Model Legume Medicago truncatula and Their Expression Analysis in Nodules. PLANTS 2022; 11:plants11030322. [PMID: 35161303 PMCID: PMC8838541 DOI: 10.3390/plants11030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 01/22/2023]
Abstract
Histone methylation and acetylation are key processes in the epigenetic regulation of plant growth, development, and responses to environmental stimuli. The genes encoding for the enzymes that are responsible for these chromatin post-translational modifications, referred to as histone modification genes (HMGs), have been poorly investigated in Leguminosae species, despite their importance for establishment and activity of nitrogen-fixing nodules. In silico analysis of Medicago truncatula HMGs identified 81 histone methyltransferases, 46 histone demethylases, 64 histone acetyltransferases, and 15 histone deacetylases. MtHMGs were analyzed for their structure and domain composition, and some combinations that were not yet reported in other plant species were identified. Genes have been retrieved from M. truncatula A17 and R108 genotypes as well as M. sativa CADL and Zhongmu No.1; the gene number and distribution were compared with Arabidopsis thaliana. Furthermore, by analyzing the expression data that were obtained at various developmental stages and in different zones of nitrogen-fixing nodules, we identified MtHMG loci that could be involved in nodule development and function. This work sets a reference for HMG genomic organization in legumes which will be useful for functional investigation that is aimed at elucidating HMGs involvement in nodule development and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Loredana Lopez
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Giorgio Perrella
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
| | - Ornella Calderini
- Institute of Biosciences and Bioresources, Consiglio Nazionale delle Ricerche, 06128 Perugia, Italy
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| | - Andrea Porceddu
- Department of Agriculture, University of Sassari, Viale Italia, 39a, 07100 Sassari, Italy;
| | - Francesco Panara
- Trisaia Research Center, Italian National Agency for New Technologies Energy and Sustainable Economic Development (ENEA), 75026 Rotondella, Italy; (L.L.); (G.P.)
- Correspondence: (O.C.); (F.P.); Tel.: +39-075-501-4858 (O.C.); +39-0835-974-523 (F.P.)
| |
Collapse
|
110
|
NuA4 and H2A.Z control environmental responses and autotrophic growth in Arabidopsis. Nat Commun 2022; 13:277. [PMID: 35022409 PMCID: PMC8755797 DOI: 10.1038/s41467-021-27882-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleosomal acetyltransferase of H4 (NuA4) is an essential transcriptional coactivator in eukaryotes, but remains poorly characterized in plants. Here, we describe Arabidopsis homologs of the NuA4 scaffold proteins Enhancer of Polycomb-Like 1 (AtEPL1) and Esa1-Associated Factor 1 (AtEAF1). Loss of AtEAF1 results in inhibition of growth and chloroplast development. These effects are stronger in the Atepl1 mutant and are further enhanced by loss of Golden2-Like (GLK) transcription factors, suggesting that NuA4 activates nuclear plastid genes alongside GLK. We demonstrate that AtEPL1 is necessary for nucleosomal acetylation of histones H4 and H2A.Z by NuA4 in vitro. These chromatin marks are diminished genome-wide in Atepl1, while another active chromatin mark, H3K9 acetylation (H3K9ac), is locally enhanced. Expression of many chloroplast-related genes depends on NuA4, as they are downregulated with loss of H4ac and H2A.Zac. Finally, we demonstrate that NuA4 promotes H2A.Z deposition and by doing so prevents spurious activation of stress response genes. Function of nucleosomal acetyltransferase of H4 (NuA4), one major complex of HAT, remains unclear in plants. Here, the authors generate mutants targeting two components of the putative NuA4 complex in Arabidopsis (EAF1 and EPL1) and show their roles in photosynthesis genes regulation through H4K5ac and H2A.Z acetylation.
Collapse
|
111
|
Miryeganeh M. Epigenetic Mechanisms of Senescence in Plants. Cells 2022; 11:251. [PMID: 35053367 PMCID: PMC8773728 DOI: 10.3390/cells11020251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
Senescence is a major developmental transition in plants that requires a massive reprogramming of gene expression and includes various layers of regulations. Senescence is either an age-dependent or a stress-induced process, and is under the control of complex regulatory networks that interact with each other. It has been shown that besides genetic reprogramming, which is an important aspect of plant senescence, transcription factors and higher-level mechanisms, such as epigenetic and small RNA-mediated regulators, are also key factors of senescence-related genes. Epigenetic mechanisms are an important layer of this multilevel regulatory system that change the activity of transcription factors (TFs) and play an important role in modulating the expression of senescence-related gene. They include chromatin remodeling, DNA methylation, histone modification, and the RNA-mediated control of transcription factors and genes. This review provides an overview of the known epigenetic regulation of plant senescence, which has mostly been studied in the form of leaf senescence, and it also covers what has been reported about whole-plant senescence.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0412, Japan
| |
Collapse
|
112
|
Shin H, Choi WL, Lim JY, Huh JH. Epigenome editing: targeted manipulation of epigenetic modifications in plants. Genes Genomics 2022; 44:307-315. [PMID: 35000141 DOI: 10.1007/s13258-021-01199-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic modifications play important roles in diverse cellular processes such as X chromosome inactivation, cell differentiation, development and senescence. DNA methylation and histone modifications are major epigenetic modifications that regulate chromatin structure and gene expression without DNA sequence changes. Epigenetic alterations may induce phenotypic changes stable enough for mitotic or meiotic inheritance. Moreover, the reversibility of epigenetic marks makes the manipulation of chromatin and epigenetic signature an attractive strategy for therapeutic and breeding purposes. Targeted epigenetic manipulation, or epigenome editing, at the gene of interest commonly utilizes specific epigenetic modifiers fused with a targeting module of the conventional genome editing system. OBJECTIVE This review aims to summarize essential epigenetic components and introduce currently available epigenetic mutants and the corresponding epialleles in plants. Furthermore, advances in epigenome editing technology are discussed while proposing its potential application to plant breeding. CONCLUSIONS Epimutations associated with useful traits may provide a valuable resource for crop development. It is important to explore epimutations in a variety of crop species while understanding the fundamental aspects of epigenetic regulation of agronomically important traits such as yield, quality, disease resistance and stress tolerance. In the end, plant breeding programs through epigenome editing may help not only to expand the use of limited genetic resources but also to alleviate consumers' concerns about genetically manipulated crops.
Collapse
Affiliation(s)
- Hosub Shin
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, 08826, Seoul, South Korea
| | - Woo Lee Choi
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.,Plant Genomics and Breeding Institute, Seoul National University, 08826, Seoul, South Korea
| | - Joo Young Lim
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea
| | - Jin Hoe Huh
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea. .,Plant Genomics and Breeding Institute, Seoul National University, 08826, Seoul, South Korea. .,Research Institute of Agriculture and Life Sciences, Seoul National University, 08826, Seoul, South Korea.
| |
Collapse
|
113
|
Du Q, Fang Y, Jiang J, Chen M, Fu X, Yang Z, Luo L, Wu Q, Yang Q, Wang L, Qu Z, Li X, Xie X. Characterization of histone deacetylases and their roles in response to abiotic and PAMPs stresses in Sorghum bicolor. BMC Genomics 2022; 23:28. [PMID: 34991465 PMCID: PMC8739980 DOI: 10.1186/s12864-021-08229-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Histone deacetylases (HDACs) play an important role in the regulation of gene expression, which is indispensable in plant growth, development, and responses to environmental stresses. In Arabidopsis and rice, the molecular functions of HDACs have been well-described. However, systematic analysis of the HDAC gene family and gene expression in response to biotic and abiotic stresses has not been reported for sorghum. RESULTS We conducted a systematic analysis of the sorghum HDAC gene family and identified 19 SbHDACs mainly distributed on eight chromosomes. Phylogenetic tree analysis of SbHDACs showed that the gene family was divided into three subfamilies: RPD3/HDA1, SIR2, and HD2. Tissue-specific expression results showed that SbHDACs displayed different expression patterns in different tissues, indicating that these genes may perform different functions in growth and development. The expression pattern of SbHDACs under different stresses (high and low temperature, drought, osmotic and salt) and pathogen-associated molecular model (PAMPs) elf18, chitin, and flg22) indicated that SbHDAC genes may participate in adversity responses and biological stress defenses. Overexpression of SbHDA1, SbHDA3, SbHDT2 and SbSRT2 in Escherichia coli promoted the growth of recombinant cells under abiotic stress. Interestingly, we also showed that the sorghum acetylation level was enhanced when plants were under cold, heat, drought, osmotic and salt stresses. The findings will help us to understand the HDAC gene family in sorghum, and illuminate the molecular mechanism of the responses to abiotic and biotic stresses. CONCLUSION We have identified and classified 19 HDAC genes in sorghum. Our data provides insights into the evolution of the HDAC gene family and further support the hypothesis that these genes are important for the plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Meiqing Chen
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zaifu Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Liting Luo
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qijiao Wu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Qian Yang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Lujie Wang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Zhiguang Qu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, PR China
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, PR China.
| |
Collapse
|
114
|
Zhou L, Yarra R, Jin L, Yang Y, Cao H, Zhao Z. Identification and expression analysis of histone modification gene (HM) family during somatic embryogenesis of oil palm. BMC Genomics 2022; 23:11. [PMID: 34983381 PMCID: PMC8729141 DOI: 10.1186/s12864-021-08245-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Background Oil palm (Elaeis guineensis, Jacq.) is an important vegetable oil-yielding plant. Somatic embryogenesis is a promising method to produce large-scale elite clones to meet the demand for palm oil. The epigenetic mechanisms such as histone modifications have emerged as critical factors during somatic embryogenesis. These histone modifications are associated with the regulation of various genes controlling somatic embryogenesis. To date, none of the information is available on the histone modification gene (HM) family in oil palm. Results We reported the identification of 109 HM gene family members including 48 HMTs, 27 HDMs, 13 HATs, and 21 HDACs in the oil palm genome. Gene structural and motif analysis of EgHMs showed varied exon–intron organization and with conserved motifs among them. The identified 109 EgHMs were distributed unevenly across 16 chromosomes and displayed tandem duplication in oil palm genome. Furthermore, relative expression analysis showed the differential expressional pattern of 99 candidate EgHM genes at different stages (non-embryogenic, embryogenic, somatic embryo) of somatic embryogenesis process in oil palm, suggesting the EgHMs play vital roles in somatic embryogenesis. Our study laid a foundation to understand the regulatory roles of several EgHM genes during somatic embryogenesis. Conclusions A total of 109 histone modification gene family members were identified in the oil palm genome via genome-wide analysis. The present study provides insightful information regarding HM gene’s structure, their distribution, duplication in oil palm genome, and also their evolutionary relationship with other HM gene family members in Arabidopsis and rice. Finally, our study provided an essential role of oil palm HM genes during somatic embryogenesis process. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08245-2.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China.
| | - Rajesh Yarra
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Longfei Jin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Hongxing Cao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| | - Zhihao Zhao
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/ Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, 571339, P. R. China
| |
Collapse
|
115
|
Li HL, Wang Y, Guo D, Zhu JH, Peng SQ. Differential Expression of lncRNAs and miRNAs Between Self-Rooting Juvenile and Donor Clones Unveils Novel Insight Into the Molecular Regulation of Rubber Biosynthesis in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2022; 12:740597. [PMID: 35069613 PMCID: PMC8767119 DOI: 10.3389/fpls.2021.740597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
The rubber tree (Hevea brasiliensis Muell. Arg.) is a tropical tree species that produce natural rubber. Self-rooted juvenile clones (SRJCs) are novel rubber tree planting materials developed through primary somatic embryogenesis. SRJCs have a higher rubber yield compared with donor clones (DCs). The molecular basis underlying increased rubber yield in SRJCs remains largely unknown. Here, the latex from SRJCs and DCs were collected for strand-specific and small RNA-seq methods. A total of 196 differentially expressed long noncoding RNAs (DELs), and 11 differentially expressed microRNAs were identified in latex between SRJCs and DCs. Targeted genes of DELs were markedly enriched for various biological pathways related to plant hormone signal transduction, photosynthesis, glutathione metabolism, and amino acids biosynthesis. DELs probably acted as cis-acting regulation was calculated, and these DELs relevant to potentially regulate rubber biosynthesis, reactive oxygen species metabolism, and epigenetic modification. Furthermore, the DELs acting as microRNA targets were studied. The interaction of microRNA and DELs might involve in the regulation of natural rubber biosynthesis.
Collapse
|
116
|
Gupta C, Salgotra RK. Epigenetics and its role in effecting agronomical traits. FRONTIERS IN PLANT SCIENCE 2022; 13:925688. [PMID: 36046583 PMCID: PMC9421166 DOI: 10.3389/fpls.2022.925688] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/11/2022] [Indexed: 05/16/2023]
Abstract
Climate-resilient crops with improved adaptation to the changing climate are urgently needed to feed the growing population. Hence, developing high-yielding crop varieties with better agronomic traits is one of the most critical issues in agricultural research. These are vital to enhancing yield as well as resistance to harsh conditions, both of which help farmers over time. The majority of agronomic traits are quantitative and are subject to intricate genetic control, thereby obstructing crop improvement. Plant epibreeding is the utilisation of epigenetic variation for crop development, and has a wide range of applications in the field of crop improvement. Epigenetics refers to changes in gene expression that are heritable and induced by methylation of DNA, post-translational modifications of histones or RNA interference rather than an alteration in the underlying sequence of DNA. The epigenetic modifications influence gene expression by changing the state of chromatin, which underpins plant growth and dictates phenotypic responsiveness for extrinsic and intrinsic inputs. Epigenetic modifications, in addition to DNA sequence variation, improve breeding by giving useful markers. Also, it takes epigenome diversity into account to predict plant performance and increase crop production. In this review, emphasis has been given for summarising the role of epigenetic changes in epibreeding for crop improvement.
Collapse
|
117
|
Khan MSS, Islam F, Chen H, Chang M, Wang D, Liu F, Fu ZQ, Chen J. Transcriptional Coactivators: Driving Force of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:823937. [PMID: 35154230 PMCID: PMC8831314 DOI: 10.3389/fpls.2022.823937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a plant defense signal that mediates local and systemic immune responses against pathogen invasion. However, the underlying mechanism of SA-mediated defense is very complex due to the involvement of various positive and negative regulators to fine-tune its signaling in diverse pathosystems. Upon pathogen infections, elevated level of SA promotes massive transcriptional reprogramming in which Non-expresser of PR genes 1 (NPR1) acts as a central hub and transcriptional coactivator in defense responses. Recent findings show that Enhanced Disease Susceptibility 1 (EDS1) also functions as a transcriptional coactivator and stimulates the expression of PR1 in the presence of NPR1 and SA. Furthermore, EDS1 stabilizes NPR1 protein level, while NPR1 sustains EDS1 expression during pathogenic infection. The interaction of NPR1 and EDS1 coactivators initiates transcriptional reprogramming by recruiting cyclin-dependent kinase 8 in the Mediator complex to control immune responses. In this review, we highlight the recent breakthroughs that considerably advance our understanding on how transcriptional coactivators interact with their functional partners to trigger distinct pathways to facilitate immune responses, and how SA accumulation induces dynamic changes in NPR1 structure for transcriptional reprogramming. In addition, the functions of different Mediator subunits in SA-mediated plant immunity are also discussed in light of recent discoveries. Taken together, the available evidence suggests that transcriptional coactivators are essential and potent regulators of plant defense pathways and play crucial roles in coordinating plant immune responses during plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Faisal Islam
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Ming Chang
- The Key Laboratory of Bio-interactions and Plant Health, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Fengquan Liu,
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
- Zheng Qing Fu,
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang, China
- Jian Chen,
| |
Collapse
|
118
|
Lysine crotonylation: A challenging new player in the epigenetic regulation of plants. J Proteomics 2022; 255:104488. [DOI: 10.1016/j.jprot.2022.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/20/2022]
|
119
|
González-Grandío E, Álamos S, Zhang Y, Dalton-Roesler J, Niyogi KK, García HG, Quail PH. Chromatin Changes in Phytochrome Interacting Factor-Regulated Genes Parallel Their Rapid Transcriptional Response to Light. FRONTIERS IN PLANT SCIENCE 2022; 13:803441. [PMID: 35251080 PMCID: PMC8891703 DOI: 10.3389/fpls.2022.803441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/27/2022] [Indexed: 05/11/2023]
Abstract
As sessile organisms, plants must adapt to a changing environment, sensing variations in resource availability and modifying their development in response. Light is one of the most important resources for plants, and its perception by sensory photoreceptors (e.g., phytochromes) and subsequent transduction into long-term transcriptional reprogramming have been well characterized. Chromatin changes have been shown to be involved in photomorphogenesis. However, the initial short-term transcriptional changes produced by light and what factors enable these rapid changes are not well studied. Here, we define rapidly light-responsive, Phytochrome Interacting Factor (PIF) direct-target genes (LRP-DTGs). We found that a majority of these genes also show rapid changes in Histone 3 Lysine-9 acetylation (H3K9ac) in response to the light signal. Detailed time-course analysis of transcript and chromatin changes showed that, for light-repressed genes, H3K9 deacetylation parallels light-triggered transcriptional repression, while for light-induced genes, H3K9 acetylation appeared to somewhat precede light-activated transcript accumulation. However, direct, real-time imaging of transcript elongation in the nucleus revealed that, in fact, transcriptional induction actually parallels H3K9 acetylation. Collectively, the data raise the possibility that light-induced transcriptional and chromatin-remodeling processes are mechanistically intertwined. Histone modifying proteins involved in long term light responses do not seem to have a role in this fast response, indicating that different factors might act at different stages of the light response. This work not only advances our understanding of plant responses to light, but also unveils a system in which rapid chromatin changes in reaction to an external signal can be studied under natural conditions.
Collapse
Affiliation(s)
- Eduardo González-Grandío
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
- *Correspondence: Eduardo González-Grandío,
| | - Simón Álamos
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, United States
| | - Yu Zhang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Jutta Dalton-Roesler
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
| | - Krishna K. Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Hernán G. García
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
- Department of Physics, University of California, Berkeley, Berkeley, CA, United States
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, United States
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA, United States
| | - Peter H. Quail
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- Plant Gene Expression Center, Agricultural Research Service, US Department of Agriculture, Albany, CA, United States
- Peter H. Quail,
| |
Collapse
|
120
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
121
|
Liu J, An B, Luo H, He C, Wang Q. The histone acetyltransferase FocGCN5 regulates growth, conidiation, and pathogenicity of the banana wilt disease causal agent Fusarium oxysporum f.sp. cubense tropical race 4. Res Microbiol 2021; 173:103902. [PMID: 34838989 DOI: 10.1016/j.resmic.2021.103902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
Chromatin structure modifications by histone acetyltransferase are involved in multiple biological processes in eukaryotes. In the present study, the GCN5 homologue FocGCN5 was identified in Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). The coding gene was then knocked out to investigate the roles of FocGNC5. The mutant ΔFocGCN5 was found significantly reduced in growth rate and conidiation, and almost completely lost pathogenicity to banana plantlets. The RNA-seq analysis provide an insight into the underlying mechanism. Firstly, transcription of the genes involved in carbohydrate metabolism and fungal cell wall synthesis was reduced in ΔFocGCN5, leading to the impairment of apical deposition of cell-wall material. Secondly, FocabaA, one of the pivotal regulators of conidiation, was significantly reduced in expression in ΔFocGCN5, which might be the main cause of the conidiation reduction. Thirdly, the pathogenicity-associated factors, including effectors and plant cell wall degrading enzymes, were almost all down-regulated in ΔFocGCN5, which accounts for the decrease of pathogenicity. In addition, the stress tolerance to salt, heat, and cell wall inhibitors was slightly increased in ΔFocGCN5. Taken together, our studies clarify the roles of FocGCN5 in growth, conidiation, and pathogenicity of Foc TR4, and explore the possible mechanism behind its biological functions.
Collapse
Affiliation(s)
- Jingjing Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Bang An
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Hongli Luo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China
| | - Qiannan Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou 570228, Hainan, People's Republic of China.
| |
Collapse
|
122
|
Zheng L, Ma S, Shen D, Fu H, Wang Y, Liu Y, Shah K, Yue C, Huang J. Genome-wide identification of Gramineae histone modification genes and their potential roles in regulating wheat and maize growth and stress responses. BMC PLANT BIOLOGY 2021; 21:543. [PMID: 34800975 PMCID: PMC8605605 DOI: 10.1186/s12870-021-03332-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/10/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND In plants, histone modification (HM) genes participate in various developmental and defense processes. Gramineae plants (e.g., Triticum aestivum, Hordeum vulgare, Sorghum bicolor, Setaria italica, Setaria viridis, and Zea mays) are important crop species worldwide. However, little information on HM genes is in Gramineae species. RESULTS Here, we identified 245 TaHMs, 72 HvHMs, 84 SbHMs, 93 SvHMs, 90 SiHMs, and 90 ZmHMs in the above six Gramineae species, respectively. Detailed information on their chromosome locations, conserved domains, phylogenetic trees, synteny, promoter elements, and gene structures were determined. Among the HMs, most motifs were conserved, but several unique motifs were also identified. Our results also suggested that gene and genome duplications potentially impacted the evolution and expansion of HMs in wheat. The number of orthologous gene pairs between rice (Oryza sativa) and each Gramineae species was much greater than that between Arabidopsis and each Gramineae species, indicating that the dicotyledons shared common ancestors. Moreover, all identified HM gene pairs likely underwent purifying selection based on to their non-synonymous (Ka)/synonymous (Ks) nucleotide substitutions. Using published transcriptome data, changes in TaHM gene expression in developing wheat grains treated with brassinosteroid, brassinazole, or activated charcoal were investigated. In addition, the transcription models of ZmHMs in developing maize seeds and after gibberellin treatment were also identified. We also examined plant stress responses and found that heat, drought, salt, insect feeding, nitrogen, and cadmium stress influenced many TaHMs, and drought altered the expression of several ZmHMs. Thus, these findings indicate their important functions in plant growth and stress adaptations. CONCLUSIONS Based on a comprehensive analysis of Gramineae HMs, we found that TaHMs play potential roles in grain development, brassinosteroid- and brassinazole-mediated root growth, activated charcoal-mediated root and leaf growth, and biotic and abiotic adaptations. Furthermore, ZmHMs likely participate in seed development, gibberellin-mediated leaf growth, and drought adaptation.
Collapse
Affiliation(s)
- Liwei Zheng
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Shengjie Ma
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Dandan Shen
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Hong Fu
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Yue Wang
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Kamran Shah
- College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caipeng Yue
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
123
|
Gao S, Zeng X, Wang J, Xu Y, Yu C, Huang Y, Wang F, Wu K, Yang S. Arabidopsis SUMO E3 Ligase SIZ1 Interacts with HDA6 and Negatively Regulates HDA6 Function during Flowering. Cells 2021; 10:cells10113001. [PMID: 34831226 PMCID: PMC8616286 DOI: 10.3390/cells10113001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/13/2021] [Accepted: 10/31/2021] [Indexed: 01/12/2023] Open
Abstract
The changes in histone acetylation mediated by histone deacetylases (HDAC) play a crucial role in plant development and response to environmental changes. Mammalian HDACs are regulated by post-translational modifications (PTM), such as phosphorylation, acetylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification (SUMOylation), which affect enzymatic activity and transcriptional repression. Whether PTMs of plant HDACs alter their functions are largely unknown. In this study, we demonstrated that the Arabidopsis SUMO E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HISTONE DEACETYLASE 6 (HDA6) both in vitro and in vivo. Biochemical analyses indicated that HDA6 is not modified by SUMO1. Overexpression of HDA6 in siz1-3 background results in a decreased level of histone H3 acetylation, indicating that the activity of HDA6 is increased in siz1-3 plants. Chromatin immunoprecipitation (ChIP) assays showed that SIZ1 represses HDA6 binding to its target genes FLOWERING LOCUS C (FLC) and MADS AFFECTING FLOWERING 4 (MAF4), resulting in the upregulation of FLC and MAF4 by increasing the level of histone H3 acetylation. Together, these findings indicate that the Arabidopsis SUMO E3 ligase SIZ1 interacts with HDA6 and negatively regulates HDA6 function.
Collapse
Affiliation(s)
- Sujuan Gao
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Ministry of Agriculture, Guangzhou 510225, China;
| | - Xueqin Zeng
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Jianhao Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510000, China;
| | - Yingchao Xu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Chunwei Yu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
| | - Yishui Huang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
| | - Feng Wang
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (X.Z.); (F.W.)
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan;
- Correspondence: (K.W.); (S.Y.)
| | - Songguang Yang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Y.X.); (Y.H.)
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (K.W.); (S.Y.)
| |
Collapse
|
124
|
Luo Y, Shi DQ, Jia PF, Bao Y, Li HJ, Yang WC. Nucleolar histone deacetylases HDT1, HDT2 and HDT3 regulate plant reproductive development. J Genet Genomics 2021; 49:30-39. [PMID: 34699991 DOI: 10.1016/j.jgg.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Nucleolus is a membrane-less organelle where ribosomes are assembled and rRNAs transcribed and processed. The assembled ribosomes composed of ribosomal proteins and rRNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of rRNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of rRNAs and ribosomal proteins is also unknown. Here we report the critical role of three Arabidopsis nucleolar protein HDT1, HDT2 and HDT3 in fertility and transcription of rDNAs and rRNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesis-related genes for plant reproductive development.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
125
|
Yang L, Meng X, Chen S, Li J, Sun W, Chen W, Wang S, Wan H, Qian G, Yi X, Li J, Zheng Y, Luo M, Chen S, Liu X, Mi Y. Identification of the Histone Deacetylases Gene Family in Hemp Reveals Genes Regulating Cannabinoids Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:755494. [PMID: 34868143 PMCID: PMC8636033 DOI: 10.3389/fpls.2021.755494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Histone deacetylases (HDACs) play crucial roles nearly in all aspects of plant biology, including stress responses, development and growth, and regulation of secondary metabolite biosynthesis. The molecular functions of HDACs have been explored in depth in Arabidopsis thaliana, while little research has been reported in the medicinal plant Cannabis sativa L. Here, we excavated 14 CsHDAC genes of C. sativa L that were divided into three relatively conserved subfamilies, including RPD3/HDA1 (10 genes), SIR2 (2 genes), and HD2 (2 genes). Genes associated with the biosynthesis of bioactive constituents were identified by combining the distribution of cannabinoids with the expression pattern of HDAC genes in various organs. Using qRT-PCR and transcription group analysis, we verified the expression of candidate genes in different tissues. We found that the histone inhibitor Trichostatin A (TSA) affected the expression of key genes in the cannabinoid metabolism pathway and the accumulation of synthetic precursors, which indirectly indicates that histone inhibitor may regulate the synthesis of active substances in C. sativa L.
Collapse
Affiliation(s)
- Liu Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangxiao Meng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sifan Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guangtao Qian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaozhe Yi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yaqin Zheng
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Shanshan Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xia Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Yaolei Mi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
126
|
Du Q, Qu Z, Wang L, Jiang J, Fu X, Fang Y, Li X, Xie X. Histone deacetylase SbHDT701 in Sorghum bicolor reveals functions in response to stress factors by enhancing acetylation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104908. [PMID: 34446212 DOI: 10.1016/j.pestbp.2021.104908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Histone acetylation plays important roles in eukaryotic chromatin modification and gene expression regulation. Acetylation levels are modulated by histone deacetylases (HDACs), which function as key epigenetic factors that regulate gene expression in response to various stresses. HDT701, a member of the HD2 subfamily of HDACs, plays crucial roles in plant responses to abiotic stress and pathogen infection. Here, we analysed the expression pattern of SbHDT701 in sorghum. Real-time fluorescence quantitative PCR (RT-qPCR) results showed that expression of SbHDT701 was tissue-specific, and up-regulated under drought (d-mannitol) and salt (NaCl) stresses. We also determined the optimal expression conditions for SbHDT701 protein accumulation, and successfully expressed and purified SbHDT701 protein. Besides, overexpression of SbHDT701 in could promote the growth of recombinant cells under abiotic stress. SbHDT701 expression in Escherichia coli also increased acetylation modification levels following treatment with 750 mM NaCl, and 100 mM or 300 mM d-mannitol. In summary, the sorghum HDAC SbHDT701 mediates stress responses by enhancing acetylation modification levels.
Collapse
Affiliation(s)
- Qiaoli Du
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Zhiguang Qu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Li Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Junmei Jiang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China; State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiaodong Fu
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Yuanpeng Fang
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xin Xie
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
127
|
Takatsuka H, Shibata A, Umeda M. Genome Maintenance Mechanisms at the Chromatin Level. Int J Mol Sci 2021; 22:ijms221910384. [PMID: 34638727 PMCID: PMC8508675 DOI: 10.3390/ijms221910384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”. Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), 3-39-22, Showa-Machi, Maebashi 371-8511, Japan;
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Correspondence:
| |
Collapse
|
128
|
Li S, He X, Gao Y, Zhou C, Chiang VL, Li W. Histone Acetylation Changes in Plant Response to Drought Stress. Genes (Basel) 2021; 12:genes12091409. [PMID: 34573391 PMCID: PMC8468061 DOI: 10.3390/genes12091409] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Drought stress causes recurrent damage to a healthy ecosystem because it has major adverse effects on the growth and productivity of plants. However, plants have developed drought avoidance and resilience for survival through many strategies, such as increasing water absorption and conduction, reducing water loss and conversing growth stages. Understanding how plants respond and regulate drought stress would be important for creating and breeding better plants to help maintain a sound ecosystem. Epigenetic marks are a group of regulators affecting drought response and resilience in plants through modification of chromatin structure to control the transcription of pertinent genes. Histone acetylation is an ubiquitous epigenetic mark. The level of histone acetylation, which is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines whether the chromatin is open or closed, thereby controlling access of DNA-binding proteins for transcriptional activation. In this review, we summarize histone acetylation changes in plant response to drought stress, and review the functions of HATs and HDACs in drought response and resistance.
Collapse
Affiliation(s)
- Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Correspondence: ; Tel.: +86-15114585206
| | - Xu He
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.H.); (Y.G.); (C.Z.); (V.L.C.); (W.L.)
| |
Collapse
|
129
|
Ageeva-Kieferle A, Georgii E, Winkler B, Ghirardo A, Albert A, Hüther P, Mengel A, Becker C, Schnitzler JP, Durner J, Lindermayr C. Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. PLANT PHYSIOLOGY 2021; 187:336-360. [PMID: 34003928 PMCID: PMC8418403 DOI: 10.1093/plphys/kiab222] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/18/2021] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) is a signaling molecule with multiple regulatory functions in plant physiology and stress response. In addition to direct effects on transcriptional machinery, NO executes its signaling function via epigenetic mechanisms. We report that light intensity-dependent changes in NO correspond to changes in global histone acetylation (H3, H3K9, and H3K9/K14) in Arabidopsis (Arabidopsis thaliana) wild-type leaves, and that this relationship depends on S-nitrosoglutathione reductase and histone deacetylase 6 (HDA6). The activity of HDA6 was sensitive to NO, demonstrating that NO participates in regulation of histone acetylation. Chromatin immunoprecipitation sequencing and RNA-seq analyses revealed that NO participates in the metabolic switch from growth and development to stress response. This coordinating function of NO might be particularly important in plant ability to adapt to a changing environment, and is therefore a promising foundation for mitigating the negative effects of climate change on plant productivity.
Collapse
Affiliation(s)
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Patrick Hüther
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
- Faculty of Biology, Ludwig-Maximilians-University Munich, LMU Biocenter, Martinsried 82152, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising 85354, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Author for communication:
| |
Collapse
|
130
|
Histone deacetylase HDA-4-mediated epigenetic regulation in space-flown C. elegans. NPJ Microgravity 2021; 7:33. [PMID: 34471121 PMCID: PMC8410859 DOI: 10.1038/s41526-021-00163-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/03/2021] [Indexed: 02/04/2023] Open
Abstract
Epigenetic changes during long-term spaceflight are beginning to be studied by NASA's twin astronauts and other model organisms. Here, we evaluate the epigenetic regulation of gene expression in space-flown C. elegans by comparing wild type and histone deacetylase (hda)-4 mutants. Expression levels of 39 genes were consistently upregulated in all four generations of adult hda-4 mutants grown under microgravity compared with artificial Earth-like gravity (1G). In contrast, in the wild type, microgravity-induced upregulation of these genes occurred a little. Among these genes, 11 contain the domain of unknown function 19 (DUF-19) and are located in a cluster on chromosome V. When compared with the 1G condition, histone H3 trimethylation at lysine 27 (H3K27me3) increased under microgravity in the DUF-19 containing genes T20D4.12 to 4.10 locus in wild-type adults. On the other hand, this increase was also observed in the hda-4 mutant, but the level was significantly reduced. The body length of wild-type adults decreased slightly but significantly when grown under microgravity. This decrease was even more pronounced with the hda-4 mutant. In ground-based experiments, one of the T20D4.11 overexpressing strains significantly reduced body length and also caused larval growth retardation and arrest. These results indicate that under microgravity, C. elegans activates histone deacetylase HDA-4 to suppress overregulation of several genes, including the DUF-19 family. In other words, the expression of certain genes, including negative regulators of growth and development, is epigenetically fine-tuned to adapt to the space microgravity.
Collapse
|
131
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
132
|
Tahir MS, Tian L. HD2-type histone deacetylases: unique regulators of plant development and stress responses. PLANT CELL REPORTS 2021; 40:1603-1615. [PMID: 34041586 DOI: 10.1007/s00299-021-02688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Plants have developed sophisticated and complex epigenetic regulation-based mechanisms to maintain stable growth and development under diverse environmental conditions. Histone deacetylases (HDACs) are important epigenetic regulators in eukaryotes that are involved in the deacetylation of lysine residues of histone H3 and H4 proteins. Plants have developed a unique HDAC family, HD2, in addition to the RPD3 and Sir2 families, which are also present in other eukaryotes. HD2s are well conserved plant-specific HDACs, which were first identified as nucleolar phosphoproteins in maize. The HD2 family plays important roles not only in fundamental developmental processes, including seed germination, root and leaf development, floral transition, and seed development but also in regulating plant responses to biotic and abiotic stresses. Some of the HD2 members coordinate with each other to function. The HD2 family proteins also show functional association with RPD3-type HDACs and other transcription factors as a part of repression complexes in gene regulatory networks involved in environmental stress responses. This review aims to analyse and summarise recent research progress in the HD2 family, and to describe their role in plant growth and development and in response to different environmental stresses.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
133
|
Wang J, Liu C, Chen Y, Zhao Y, Ma Z. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol 2021; 23:4841-4855. [PMID: 34398483 DOI: 10.1111/1462-2920.15725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Protein acetylation and deacetylation catalysed by lysine acetyltransferases (KATs) and deacetylases (KDACs), respectively, are major mechanisms regulating various cellular processes. During the fight between microbial pathogens and host plants, both apply a set of measures, including acetylation interference, to strengthen themselves while suppressing the other. In this review, we first summarize KATs and KDACs in plants and their pathogens. Next, we introduce diverse acetylation and deacetylation mechanisms affecting protein functions, including the regulation of enzyme activity and specificity, protein-protein or protein-DNA interactions, subcellular localization and protein stability. We then focus on the current understanding of acetylation and deacetylation in plant-pathogen interactions. Additionally, we also discuss potential acetylation-related approaches for controlling plant diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
134
|
Zheng L, Li C, Ma X, Zhou H, Liu Y, Wang P, Yang H, Tamada Y, Huang J, Wang C, Hu Z, Wang X, Wang G, Li H, Hu J, Liu X, Zhou C, Zhang Y. Functional interplay of histone lysine 2-hydroxyisobutyrylation and acetylation in Arabidopsis under dark-induced starvation. Nucleic Acids Res 2021; 49:7347-7360. [PMID: 34165567 PMCID: PMC8287917 DOI: 10.1093/nar/gkab536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 02/03/2023] Open
Abstract
Lysine 2-hydroxyisobutyrylation (Khib) is a novel type of histone acylation whose prevalence and function in plants remain unclear. Here, we identified 41 Khib sites on histones in Arabidopsis thaliana, which did not overlap with frequently modified N-tail lysines (e.g. H3K4, H3K9 and H4K8). Chromatin immunoprecipitation-sequencing (ChIP-seq) assays revealed histone Khib in 35% of protein-coding genes. Most Khib peaks were located in genic regions, and they were highly enriched at the transcription start sites. Histone Khib is highly correlated with acetylation (ac), particularly H3K23ac, which it largely resembles in its genomic and genic distribution. Notably, co-enrichment of histone Khib and H3K23ac correlates with high gene expression levels. Metabolic profiling, transcriptome analyses, and ChIP-qPCR revealed that histone Khib and H3K23ac are co-enriched on genes involved in starch and sucrose metabolism, pentose and glucuronate interconversions, and phenylpropanoid biosynthesis, and help fine-tune plant response to dark-induced starvation. These findings suggest that Khib and H3K23ac may act in concert to promote high levels of gene transcription and regulate cellular metabolism to facilitate plant adaption to stress. Finally, HDA6 and HDA9 are involved in removing histone Khib. Our findings reveal Khib as a conserved yet unique plant histone mark acting with lysine acetylation in transcription-associated epigenomic processes.
Collapse
Affiliation(s)
- Lanlan Zheng
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Chen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xueping Ma
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Hanlin Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Yuan Liu
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Ping Wang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Huilan Yang
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yosuke Tamada
- School of Engineering, Utsunomiya University, Utsunomiya 321-8585, Japan
| | - Ji Huang
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| | - Chunfei Wang
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng 475001, China
| | - Zhubing Hu
- Center for Multi-Omics Research, Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng 475001, China
| | - Xuening Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an Shaanxi 710119, China
| | - Guodong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an Shaanxi 710119, China
| | - Haihong Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Juntao Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU) /Biotechnology Research Center, China Three Gorges University, Yichang 443002, China
| | - Yonghong Zhang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Academy of Bio-Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
135
|
Si S, Zhang M, Hu Y, Wu C, Yang Y, Luo S, Xiao X. BrcuHAC1 is a histone acetyltransferase that affects bolting development in Chinese flowering cabbage. J Genet 2021. [DOI: 10.1007/s12041-021-01303-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
136
|
Zhou X, He J, Velanis CN, Zhu Y, He Y, Tang K, Zhu M, Graser L, de Leau E, Wang X, Zhang L, Andy Tao W, Goodrich J, Zhu JK, Zhang CJ. A domesticated Harbinger transposase forms a complex with HDA6 and promotes histone H3 deacetylation at genes but not TEs in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1462-1474. [PMID: 33960113 DOI: 10.1111/jipb.13108] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
In eukaryotes, histone acetylation is a major modification on histone N-terminal tails that is tightly connected to transcriptional activation. HDA6 is a histone deacetylase involved in the transcriptional regulation of genes and transposable elements (TEs) in Arabidopsis thaliana. HDA6 has been shown to participate in several complexes in plants, including a conserved SIN3 complex. Here, we uncover a novel protein complex containing HDA6, several Harbinger transposon-derived proteins (HHP1, SANT1, SANT2, SANT3, and SANT4), and MBD domain-containing proteins (MBD1, MBD2, and MBD4). We show that mutations of all four SANT genes in the sant-null mutant cause increased expression of the flowering repressors FLC, MAF4, and MAF5, resulting in a late flowering phenotype. Transcriptome deep sequencing reveals that while the SANT proteins and HDA6 regulate the expression of largely overlapping sets of genes, TE silencing is unaffected in sant-null mutants. Our global histone H3 acetylation profiling shows that SANT proteins and HDA6 modulate gene expression through deacetylation. Collectively, our findings suggest that Harbinger transposon-derived SANT domain-containing proteins are required for histone deacetylation and flowering time control in plants.
Collapse
Affiliation(s)
- Xishi Zhou
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Junna He
- College of Horticulture, China Agricultural University, Beijing, 100193, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - Christos N Velanis
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yuhan He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Kai Tang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Mingku Zhu
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Lisa Graser
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
- University of Applied Sciences Mannheim, Paul-Wittsack-Str. 10,, Mannheim, 68163, Germany
| | - Erica de Leau
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Xingang Wang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette,, IN 47907, USA
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette,, IN 47907, USA
| | - Justin Goodrich
- Institute of Molecular Plant Science, School of Biological Sciences, University of Edinburgh, Daniel Rutherford Building, Max Born Crescent, Edinburgh, EH9 3BF, United Kingdom
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Cui-Jun Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| |
Collapse
|
137
|
Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Crit Rev Biotechnol 2021; 42:548-561. [PMID: 34289772 DOI: 10.1080/07388551.2021.1946004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Being sessile in nature, plants cannot overlook the incursion of unfavorable environmental conditions, including heat and drought. Heat and drought severely affect plant growth, development, reproduction and therefore productivity which poses a severe threat to global food security. Plants respond to these hostile environmental circumstances by rearranging their genomic and molecular architecture. One such modification commonly known as epigenetic changes involves the perishable to inheritable changes in DNA or DNA-binding histone proteins leading to modified chromatin organization. Reversible epigenetic modifications include DNA methylation, exchange of histone variants, histone methylation, histone acetylation, ATP-dependent nucleosome remodeling, and others. These modifications are employed to regulate the spatial and temporal expression of genes in response to external stimuli or specific developmental requirements. Understanding the epigenetic regulation of stress-related gene expression in response to heat and drought would commence manifold avenues for crop improvement through molecular breeding or biotechnological approaches.
Collapse
Affiliation(s)
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
138
|
Jarończyk K, Sosnowska K, Zaborowski A, Pupel P, Bucholc M, Małecka E, Siwirykow N, Stachula P, Iwanicka-Nowicka R, Koblowska M, Jerzmanowski A, Archacki R. Bromodomain-containing subunits BRD1, BRD2, and BRD13 are required for proper functioning of SWI/SNF complexes in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100174. [PMID: 34327319 PMCID: PMC8299063 DOI: 10.1016/j.xplc.2021.100174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 05/26/2023]
Abstract
SWI/SNF chromatin remodelers are evolutionarily conserved multiprotein complexes that use the energy of ATP hydrolysis to change chromatin structure. A characteristic feature of SWI/SNF remodelers is the occurrence in both the catalytic ATPase subunit and some auxiliary subunits, of bromodomains, the protein motifs capable of binding acetylated histones. Here, we report that the Arabidopsis bromodomain-containing proteins BRD1, BRD2, and BRD13 are likely true SWI/SNF subunits that interact with the core SWI/SNF components SWI3C and SWP73B. Loss of function of each single BRD protein caused early flowering but had a negligible effect on other developmental pathways. By contrast, a brd triple mutation (brdx3) led to more pronounced developmental abnormalities, indicating functional redundancy among the BRD proteins. The brdx3 phenotypes, including hypersensitivity to abscisic acid and the gibberellin biosynthesis inhibitor paclobutrazol, resembled those of swi/snf mutants. Furthermore, the BRM protein level and occupancy at the direct target loci SCL3, ABI5, and SVP were reduced in the brdx3 mutant background. Finally, a brdx3 brm-3 quadruple mutant, in which SWI/SNF complexes were devoid of all constituent bromodomains, phenocopied a loss-of-function mutation in BRM. Taken together, our results demonstrate the relevance of BRDs as SWI/SNF subunits and suggest their cooperation with the bromodomain of BRM ATPase.
Collapse
Affiliation(s)
- Kamila Jarończyk
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | | | - Adam Zaborowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Maria Bucholc
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Ewelina Małecka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Nina Siwirykow
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Paulina Stachula
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Andrzej Jerzmanowski
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| | - Rafał Archacki
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-106 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, 02-106 Warsaw, Poland
| |
Collapse
|
139
|
Li H, Schilderink S, Cao Q, Kulikova O, Bisseling T. Plant-specific histone deacetylases are essential for early and late stages of Medicago nodule development. PLANT PHYSIOLOGY 2021; 186:1591-1605. [PMID: 33744928 PMCID: PMC8260124 DOI: 10.1093/plphys/kiab140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/18/2021] [Indexed: 05/22/2023]
Abstract
Legume and rhizobium species can establish a nitrogen-fixing nodule symbiosis. Previous studies have shown that several transcription factors that play a role in (lateral) root development are also involved in nodule development. Chromatin remodeling factors, like transcription factors, are key players in regulating gene expression. However, studies have not investigated whether chromatin remodeling genes that are essential for root development are also involved in nodule development. Here, we studied the role of Medicago (Medicago truncatula) histone deacetylases (MtHDTs) in nodule development. Arabidopsis (Arabidopsis thaliana) orthologs of HDTs have been shown to play a role in root development. MtHDT expression is induced in nodule primordia and is maintained in the nodule meristem and infection zone. Conditional, nodule-specific knockdown of MtHDT expression by RNAi blocks nodule primordium development. A few nodules may still form, but their nodule meristems are smaller, and rhizobial colonization of the cells derived from the meristem is markedly reduced. Although the HDTs are expressed during nodule and root development, transcriptome analyses indicate that HDTs control the development of each organ in a different manner. During nodule development, the MtHDTs positively regulate 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1). Decreased expression of MtHMGR1 is sufficient to explain the inhibition of primordium formation.
Collapse
Affiliation(s)
- Huchen Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Stefan Schilderink
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Present address: St. Bonifatius College, Burgemeester Fockema Andreaelaan 7–9, 3582 KA Utrecht, The Netherlands
| | - Qingqin Cao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing 102206, China
| | - Olga Kulikova
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ton Bisseling
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Author for communication:
| |
Collapse
|
140
|
Wu CJ, Liu ZZ, Wei L, Zhou JX, Cai XW, Su YN, Li L, Chen S, He XJ. Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis. MOLECULAR PLANT 2021; 14:1071-1087. [PMID: 33737195 DOI: 10.1016/j.molp.2021.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/25/2021] [Accepted: 03/12/2021] [Indexed: 05/29/2023]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an evolutionarily conserved histone acetyltransferase complex that has a critical role in histone acetylation, gene expression, and various developmental processes in eukaryotes. However, little is known about the composition and function of the SAGA complex in plants. In this study, we found that the SAGA complex in Arabidopsis thaliana contains not only conserved subunits but also four plant-specific subunits: three functionally redundant paralogs, SCS1, SCS2A, and SCS2B (SCS1/2A/2B), and a TAF-like subunit, TAFL. Mutations in SCS1/2A/2B lead to defective phenotypes similar to those caused by mutations in the genes encoding conserved SAGA subunits HAG1 and ADA2B, including delayed juvenile-to-adult phase transition, late flowering, and increased trichome density. Furthermore, we demonstrated that SCS1/2A/2B are required for the function of the SAGA complex in histone acetylation, thereby promoting the transcription of development-related genes. These results together suggest that SCS1/2A/2B are core subunits of the SAGA complex in Arabidopsis. Compared with SAGA complexes in other eukaryotes, the SAGA complexes in plants have evolved unique features that are necessary for normal growth and development.
Collapse
Affiliation(s)
- Chan-Juan Wu
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Long Wei
- National Institute of Biological Sciences, Beijing 102206, China
| | - Jin-Xing Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xue-Wei Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 10084, China.
| |
Collapse
|
141
|
Vall-Llaura N, Torres R, Lindo-García V, Muñoz P, Munné-Bosch S, Larrigaudière C, Teixidó N, Giné-Bordonaba J. PbSRT1 and PbSRT2 regulate pear growth and ripening yet displaying a species-specific regulation in comparison to other Rosaceae spp. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110925. [PMID: 34034873 DOI: 10.1016/j.plantsci.2021.110925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic regulation is crucial to ensure a coordinated control of the different events that occur during fruit development and ripening. Sirtuins are NAD+-dependent histone deacetylases involved in the regulation of gene expression of many biological processes. However, their implications in the Rosaceae family remains unexplored. Accordingly, in this work, we demonstrated the phylogenetic divergence of both sirtuins among Rosaceae species. We then characterized the expression pattern of both SRT1 and SRT2 in selected pome and stone fruit species. Both SRT1 and SRT2 significantly changed during the fruit development and ripening of apple, nectarine and pear fruit, displaying a different expression profile. Such differences could explain in part their different ripening behaviour. To further unravel the role of sirtuins on the fruit development and ripening processes, a deeper analysis was performed using pear as a fruit model. In pear, PbSRT1 gene expression levels were negatively correlated with specific hormones (i.e. abscisic acid, indole-3-acetic acid, gibberellin A1 and zeatin) during the first phases of fruit development. PbSRT2 seemed to directly mediate pear ripening in an ethylene-independent manner. This hypothesis was further reinforced by treating the fruit with the ethylene inhibitor 1-methylcyclopropene (1-MCP). Instead, enhanced PbSRT2 along pear growth/ripening positively correlated with the accumulation of major sugars (R2 > 0.94), reinforcing the idea that sugar metabolism may be a target of epigenetic modifications during fruit ripening. Overall, the results from this study point out, for the first time, the importance that sirtuins have in the regulation of fruit growth and ripening of pear fruit by likely regulating hormonal and sugar metabolism.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Violeta Lindo-García
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Christian Larrigaudière
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Jordi Giné-Bordonaba
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| |
Collapse
|
142
|
Yruela I, Moreno-Yruela C, Olsen CA. Zn 2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. TRENDS IN PLANT SCIENCE 2021; 26:741-757. [PMID: 33461867 DOI: 10.1016/j.tplants.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/09/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Zn2+-dependent histone deacetylases are widely distributed in archaea, bacteria, and eukaryotes. Through deacetylation of histones and other biomolecules, these enzymes regulate mammalian gene expression, microtubule stability, and polyamine metabolism. In plants, they play essential roles in development and stress response, but little is known about their biochemistry. We provide here a holistic revision of plant histone deacetylase (HDA) phylogeny and translate recent lessons from other organisms. HDA evolution correlates with a gain of structural ductility/disorder, as observed for other proteins. We also highlight two recently identified Brassicaceae-specific HDAs, as well as unprecedented key mutations that would affect the catalytic activity of individual HDAs. This revised phylogeny will contextualize future studies and illuminate research on plant development and adaptation.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Group of Biochemistry, Biophysics, and Computational Biology (GBsC), Institute for Biocomputation and Physics of Complex Systems (BIFI) and Universidad de Zaragoza (UNIZAR) Joint Unit to CSIC, Zaragoza, Spain.
| | - Carlos Moreno-Yruela
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
143
|
Yu Y, Fu W, Xu J, Lei Y, Song X, Liang Z, Zhu T, Liang Y, Hao Y, Yuan L, Li C. Bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and vital for their genomic targeting in Arabidopsis. MOLECULAR PLANT 2021; 14:888-904. [PMID: 33771698 DOI: 10.1016/j.molp.2021.03.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machines that play vital roles in the regulation of chromatin structure and gene expression. However, the mechanisms by which SWI/SNF complexes recognize their target loci in plants are not fully understood. Here, we show that the Arabidopsis thaliana bromodomain-containing proteins BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and critical for SWI/SNF genomic targeting. These three BRDs interact directly with multiple SWI/SNF subunits, including the BRAHMA (BRM) catalytic subunit. Phenotypic and transcriptomic analyses of the brd1 brd2 brd13 triple mutant revealed that these BRDs act largely redundantly to control gene expression and developmental processes that are also regulated by BRM. Genome-wide occupancy profiling demonstrated that these three BRDs extensively colocalize with BRM on chromatin. Simultaneous loss of function of three BRD genes results in reduced BRM protein levels and decreased occupancy of BRM on chromatin across the genome. Furthermore, we demonstrated that the bromodomains of BRDs are essential for genomic targeting of the BRD subunits of SWI/SNF complexes to their target sites. Collectively, these results demonstrate that BRD1, BRD2, and BRD13 are core subunits of SWI/SNF complexes and reveal their biological roles in facilitating genomic targeting of BRM-containing SWI/SNF complexes in plants.
Collapse
Affiliation(s)
- Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yawen Lei
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuhui Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuanhao Hao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Liangbing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
144
|
Abstract
PURPOSE OF REVIEW Breast cancer frequently metastasizes to the bone and lung, but the ability to treat metastatic tumor cells remains a pressing clinical challenge. Histone deacetylases (HDACs) and histone acetyltransferases (HATs) have emerged as promising targets since these enzymes are aberrantly expressed in numerous cancers and regulate the expression of genes that drive tumorigenesis and metastasis. This review focuses on the abnormal expression of histone-modifying enzymes in cancers that have a high tropism for the bone and lung and explores the clinical use of histone deacetylase inhibitors for the treatment and prevention of metastasis to these sites. RECENT FINDINGS Preclinical studies have demonstrated that the role for HDACs is highly dependent on tumor type and stage of disease progression. HDAC inhibitors can induce apoptosis, senescence, cell differentiation, and tumor dormancy genes and inhibit angiogenesis, making these promising therapeutics for the treatment of metastatic disease. HDAC inhibitors are already FDA approved for hematologic malignancies and are in clinical trials with standard-of-care chemotherapies and targeted agents for several solid tumors, including cases of metastatic disease. However, these drugs can negatively impact bone homeostasis. Although HDAC inhibitors are not currently administered for the treatment of bone and lung metastatic disease, preclinical studies have shown that these drugs can reduce distant metastasis by targeting molecular factors and signaling pathways that drive tumor cell dissemination to these sites. Thus, HDAC inhibitors in combination with bone protective therapies may be beneficial in the treatment of bone metastatic cancers.
Collapse
Affiliation(s)
- Courtney M Edwards
- Graduate Program in Cancer Biology, Vanderbilt University, 2215b Garland Ave, 1165C Medical Research Building IV, Nashville, TN, 37232, USA
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rachelle W Johnson
- Graduate Program in Cancer Biology, Vanderbilt University, 2215b Garland Ave, 1165C Medical Research Building IV, Nashville, TN, 37232, USA.
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
145
|
Liao X, Li Y, Hu Z, Lin Y, Zheng B, Ding J. Poplar acetylome profiling reveals lysine acetylation dynamics in seasonal bud dormancy release. PLANT, CELL & ENVIRONMENT 2021; 44:1830-1845. [PMID: 33675080 DOI: 10.1111/pce.14040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 05/06/2023]
Abstract
For perennials in boreal and temperate ecosystems, bud dormancy is crucial for survival in harsh winter. Dormancy is released by prolonged exposure to low temperatures and is followed by reactive growth in the spring. Lysine acetylation (Kac) is one of the major post-translational modifications (PTMs) that are involved in plant response to environmental signals. However, little information is available on the effects of Kac modification on bud dormancy release. Here, we report the dynamics of lysine acetylome in hybrid poplar (Populus tremula × Populus alba) dormant buds. A total of 7,594 acetyl-sites from 3,281 acetyl-proteins were identified, representing a large dataset of lysine acetylome in plants. Of them, 229 proteins were differentially acetylated during bud dormancy release and were mainly involved in the primary metabolic pathways. Site-directed mutagenesis enzymatic assays showed that Kac strongly modified the activities of two key enzymes of primary metabolism, pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH). We thus propose that Kac of enzymes could be an important strategy for reconfiguration of metabolic processes during bud dormancy release. In all, our results reveal the importance of Kac in bud dormancy release and provide a new perspective to understand the molecular mechanisms of seasonal growth of trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Yue Li
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhu Hu
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Ying Lin
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Bo Zheng
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| | - Jihua Ding
- College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
146
|
Dong J, LeBlanc C, Poulet A, Mermaz B, Villarino G, Webb KM, Joly V, Mendez J, Voigt P, Jacob Y. H3.1K27me1 maintains transcriptional silencing and genome stability by preventing GCN5-mediated histone acetylation. THE PLANT CELL 2021; 33:961-979. [PMID: 33793815 PMCID: PMC8226292 DOI: 10.1093/plcell/koaa027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 05/17/2023]
Abstract
Epigenetic mechanisms play diverse roles in the regulation of genome stability in eukaryotes. In Arabidopsis thaliana, genome stability is maintained during DNA replication by the H3.1K27 methyltransferases ARABIDOPSIS TRITHORAX-RELATED PROTEIN 5 (ATXR5) and ATXR6, which catalyze the deposition of K27me1 on replication-dependent H3.1 variants. The loss of H3.1K27me1 in atxr5 atxr6 double mutants leads to heterochromatin defects, including transcriptional de-repression and genomic instability, but the molecular mechanisms involved remain largely unknown. In this study, we identified the transcriptional co-activator and conserved histone acetyltransferase GCN5 as a mediator of transcriptional de-repression and genomic instability in the absence of H3.1K27me1. GCN5 is part of a SAGA-like complex in plants that requires the GCN5-interacting protein ADA2b and the chromatin remodeler CHR6 to mediate the heterochromatic defects in atxr5 atxr6 mutants. Our results also indicate that Arabidopsis GCN5 acetylates multiple lysine residues on H3.1 variants, but H3.1K27 and H3.1K36 play essential functions in inducing genomic instability in the absence of H3.1K27me1. Finally, we show that H3.1K36 acetylation by GCN5 is negatively regulated by H3.1K27me1 in vitro. Overall, this work reveals a key molecular role for H3.1K27me1 in maintaining transcriptional silencing and genome stability in heterochromatin by restricting GCN5-mediated histone acetylation in plants.
Collapse
Affiliation(s)
- Jie Dong
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Chantal LeBlanc
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Axel Poulet
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Benoit Mermaz
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Gonzalo Villarino
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF
| | - Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Josefina Mendez
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CN 06511
| |
Collapse
|
147
|
Patrick RM, Huang XQ, Dudareva N, Li Y. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3704-3722. [PMID: 33606881 PMCID: PMC8096599 DOI: 10.1093/jxb/erab072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/15/2021] [Indexed: 05/29/2023]
Abstract
Biosynthesis of secondary metabolites relies on primary metabolic pathways to provide precursors, energy, and cofactors, thus requiring coordinated regulation of primary and secondary metabolic networks. However, to date, it remains largely unknown how this coordination is achieved. Using Petunia hybrida flowers, which emit high levels of phenylpropanoid/benzenoid volatile organic compounds (VOCs), we uncovered genome-wide dynamic deposition of histone H3 lysine 9 acetylation (H3K9ac) during anthesis as an underlying mechanism to coordinate primary and secondary metabolic networks. The observed epigenome reprogramming is accompanied by transcriptional activation at gene loci involved in primary metabolic pathways that provide precursor phenylalanine, as well as secondary metabolic pathways to produce volatile compounds. We also observed transcriptional repression among genes involved in alternative phenylpropanoid branches that compete for metabolic precursors. We show that GNAT family histone acetyltransferase(s) (HATs) are required for the expression of genes involved in VOC biosynthesis and emission, by using chemical inhibitors of HATs, and by knocking down a specific HAT gene, ELP3, through transient RNAi. Together, our study supports that regulatory mechanisms at chromatin level may play an essential role in activating primary and secondary metabolic pathways to regulate VOC synthesis in petunia flowers.
Collapse
Affiliation(s)
- Ryan M Patrick
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
| | - Xing-Qi Huang
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907,USA
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907,USA
| | - Ying Li
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907,USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN 47907,USA
| |
Collapse
|
148
|
Vlachonasios KE. Histone acetylation: a requirement for petunia floral scent. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3493-3495. [PMID: 33948651 PMCID: PMC8096597 DOI: 10.1093/jxb/erab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This article comments on: Patrick RM, Huang X-Q, Dudareva N, Li Y. 2021. Dynamic histone acetylation in floral volatile synthesis and emission in petunia flowers. Journal of Experimental Botany 72, 3704–3722.
Collapse
Affiliation(s)
- Konstantinos E Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Greece
- Natural Products Research Centre of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), Thessaloniki, Greece
| |
Collapse
|
149
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
150
|
Núñez-Álvarez Y, Suelves M. HDAC11: a multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J 2021; 289:2771-2792. [PMID: 33891374 DOI: 10.1111/febs.15895] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
The histone deacetylases (HDACs) family of enzymes possess deacylase activity for histone and nonhistone proteins; HDAC11 is the latest discovered HDAC and the only member of class IV. Besides its shared HDAC family catalytical activity, recent studies underline HDAC11 as a multifaceted enzyme with a very efficient long-chain fatty acid deacylase activity, which has open a whole new field of action for this protein. Here, we summarize the importance of HDAC11 in a vast array of cellular pathways, which has been recently highlighted by discoveries about its subcellular localization, biochemical features, and its regulation by microRNAs and long noncoding RNAs, as well as its new targets and interactors. Additionally, we discuss the recent work showing the consequences of HDAC11 dysregulation in brain, skeletal muscle, and adipose tissue, and during regeneration in response to kidney, skeletal muscle, and vascular injuries, underscoring HDAC11 as an emerging hub protein with physiological functions that are much more extensive than previously thought, and with important implications in human diseases.
Collapse
Affiliation(s)
| | - Mònica Suelves
- Germans Trias i Pujol Research Institute, Badalona, Spain
| |
Collapse
|