101
|
Barker E, Murison P, Macchiarini P, Jones A, Otto C, Rothkoetter HJ, Haverson K, Bailey M, Birchall M, Stokes C. Early immunological changes associated with laryngeal transplantation in a major histocompatibility complex-matched pig model. Clin Exp Immunol 2007; 146:503-8. [PMID: 17100771 PMCID: PMC1810420 DOI: 10.1111/j.1365-2249.2006.03232.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Laryngeal transplantation is an increasingly viable proposition for patients with irreversible diseases of the larynx. One human transplant has been performed successfully, but many questions remain before routine transplantation can begin. In order to measure the immunological changes in mismatched transplants, it is first necessary to know the immediate combined effects of ischaemia-reperfusion injury (IRI) plus the added insult of major surgery in a fully matched setting. We measured the changes in immunologically active mucosal cells following 3 h of cold ischaemia and 8 h of in situ reperfusion in a major histocompatibility complex (MHC)-matched minipig model (n = 4). Biopsies were prepared for quantitative, multiple-colour immunofluorescence histology. The number of immunologically active cells was significantly altered above (supraglottis) and below (subglottis) the vocal cords following transplantation and reperfusion (P < 0.05, P < 0.001, respectively). However, the direction of the change differed between the two subsites: cell numbers decreased post-transplant in the supraglottis and increased in the subglottis. Despite the statistical evidence for IRI, these changes were less than the large normal inter- and intrapig variation in cell counts. Therefore, the significance of IRI in exacerbating loss of function or rejection of a laryngeal allograft is open to question. Longer-term studies are required.
Collapse
Affiliation(s)
- E Barker
- Laryngeal Research Group, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Arumugam TV, Magnus T, Woodruff TM, Proctor LM, Shiels IA, Taylor SM. Complement mediators in ischemia–reperfusion injury. Clin Chim Acta 2006; 374:33-45. [PMID: 16872589 DOI: 10.1016/j.cca.2006.06.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 06/08/2006] [Accepted: 06/09/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ischemia-reperfusion (I/R) injury occurs when a tissue is temporarily deprived of blood supply and the return of the blood supply triggers an intense inflammatory response. Pathologically, increased complement activity can cause substantial damage to blood vessels, tissues and also facilitate leukocyte activation and recruitment following I/R injury. Herein, previously published studies are reported and critically reviewed. METHODS Medline and the World Wide Web were searched and the relevant literature was classified under the following categories: (1) Complement pathways; (2) The complement system and the inflammatory response; (3) Complement in ischemia-reperfusion injuries; and (4) Therapeutic approaches against complement in I/R injuries. RESULTS AND CONCLUSIONS I/R injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient and is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. Complement activation leads to the release of biologically active potent inflammatory complement substances including the anaphylatoxins (C3a and C5a) and the cytolytic terminal membrane attack complement complex C5b-9 (MAC). The use of specific complement inhibitors to block complement activation at various levels of the cascade has been shown to prevent or reduce local tissue injury after I/R. Several agents that inhibit all or part of the complement system, such as soluble complement receptor type 1 (sCR1), C1 inhibitor (C1-INH), C5a monoclonal antibodies, a C5a receptor antagonist and soluble CD59 (sCD59) have been shown to reduce I/R injury of various organs. The novel inhibitors of complement products may eventually find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
103
|
Zheng X, Feng B, Chen G, Zhang X, Li M, Sun H, Liu W, Vladau C, Liu R, Jevnikar AM, Garcia B, Zhong R, Min WP. Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 gene. Am J Transplant 2006; 6:2099-108. [PMID: 16796725 DOI: 10.1111/j.1600-6143.2006.01427.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The complement system is one of the important mediators of renal ischemia-reperfusion injury (IRI). We hypothesized that efficient silencing of C3, which is the central component on which all complement activation pathways converge, could be achieved using small interfering RNA (siRNA), and that this would result in overall inhibition of complement activation, thereby preventing IRI in kidneys. A series of experiments was conducted, using a mouse model of IRI and vector-delivered C3-specific siRNA. We demonstrated the following: (1) renal expression of C3 increases as a result of IRI; (2) by incorporation into a pRNAT U6.1 vector, siRNA can be delivered to renal cells in vivo; (3) systemically delivered siRNA is effective in reducing the expression of C3 in an experimentally induced mouse kidney model of IRI; (4) similarly, siRNA reduces complement-mediated IRI-related effects, both in terms of renal injury (as evidenced by renal function and histopathology examination) and mouse mortality and (5) silencing the production of C3 diminishes in vivo production of TNF-alpha. This study implies that siRNA represents a novel approach to preventing IRI in kidneys and might be used in a variety of clinical settings, including transplantation and acute tubular necrosis.
Collapse
Affiliation(s)
- X Zheng
- Department of Surgery, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Costa C, Zhao L, Shen Y, Su X, Hao L, Colgan SP, Stahl GL, Zhou T, Wang Y. Role of complement component C5 in cerebral ischemia/reperfusion injury. Brain Res 2006; 1100:142-51. [PMID: 16780818 DOI: 10.1016/j.brainres.2006.05.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 05/04/2006] [Accepted: 05/07/2006] [Indexed: 11/29/2022]
Abstract
We evaluated the role of complement component C5 during the course of cerebral ischemic reperfusion injury in a rat model of middle cerebral artery occlusion (MCAO). Systemic C5 inhibition was achieved with an anti-C5 monoclonal antibody, which significantly prevented the deterioration of the motor functions by reducing cerebral lesion and edema. Our results show that activated C5 complement components played an important role in cerebral tissue inflammation resulting from ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Cristina Costa
- Department of Preclinical Sciences, Alexion Pharmaceuticals Inc., Cheshire, CT 06410, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Affiliation(s)
- Prasad Devarajan
- Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, OH 45229-3039, USA.
| |
Collapse
|
106
|
Bouwman LH, Roep BO, Roos A. Mannose-Binding Lectin: Clinical Implications for Infection, Transplantation, and Autoimmunity. Hum Immunol 2006; 67:247-56. [PMID: 16720204 DOI: 10.1016/j.humimm.2006.02.030] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Indexed: 01/24/2023]
Abstract
Mannose-binding lectin (MBL) is a recognition molecule of the lectin pathway of complement and a key component of innate immunity. MBL variant alleles have been described in the coding region of the MBL gene, which are associated with low MBL serum concentration and impaired MBL structure and function. Both high and low serum levels of functional MBL have been associated with a variety of diseases and disease complications. Functioning as double-edged sword, low MBL serum levels have been shown to enhance the risk for infections. On the other hand, high MBL serum levels and high MBL activity have been associated with inflammatory diseases, transplant rejection, and diabetic nephropathy. Underscoring the Jekyll-and-Hyde character of MBL, both high and low serum MBL levels are associated with several aspects of autoimmune diseases. This review provides a general outline of the genetic and molecular characteristics of MBL and discusses MBL-disease association and its consequence in infection, transplantation, and autoimmunity.
Collapse
Affiliation(s)
- Lee H Bouwman
- Department of Surgery, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | |
Collapse
|
107
|
Harper S, Hosgood S, Kay M, Nicholson M. Leucocyte depletion improves renal function during reperfusion using an experimental isolated haemoperfused organ preservation system. Br J Surg 2006; 93:623-9. [PMID: 16552743 DOI: 10.1002/bjs.5324] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Background
Leucocytes have been implicated as mediators of renal ischaemia–reperfusion injury. This study aimed to demonstrate the effect of white cells in early renal reperfusion injury using an isolated haemoperfused porcine kidney model.
Methods
After 2 h cold storage, porcine kidneys were perfused with normothermic autologous blood using an isolated organ preservation system. This was designed using cardiopulmonary bypass technology, and perfusion commenced with a circulating serum creatinine level of 1000 µmol/l. In group 1 (n = 6) a leucocyte filter was included in the circuit and in group 2 (n = 6) non-filtered blood was used.
Results
The mean(s.d.) area under the curve for serum creatinine was lower in the leucocyte-depleted experiments (1286(214) versus 2627(418); P = 0·002). Leucocyte depletion also led to improved urine output (191(75) versus 70(32) ml/h; P = 0·002) and higher creatinine clearance (10·6(2·8) versus 1·9(1·0) ml/min; P = 0·002). Renal blood flow, oxygen consumption and acid–base homeostasis were all improved by perfusion with leucocyte-depleted blood, and histological tubular damage was ameliorated.
Conclusion
These data show that the depletion of leucocytes from blood used to perfuse porcine kidneys improved postschaemic renal function, indicating that white cells play an important role in renal ischaemia–reperfusion injury.
Collapse
Affiliation(s)
- S Harper
- Department of Cardiovascular Sciences, Transplant Group, Leicester General Hospital, Leicester LE5 4PW, UK
| | | | | | | |
Collapse
|
108
|
Patel H, Smith RAG, Sacks SH, Zhou W. Therapeutic strategy with a membrane-localizing complement regulator to increase the number of usable donor organs after prolonged cold storage. J Am Soc Nephrol 2006; 17:1102-11. [PMID: 16510763 DOI: 10.1681/asn.2005101116] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A shortage of donor organs and increasing dependence on marginal grafts with prolonged ischemic times have meant that new methods are needed to prevent postischemic damage. Herein is reported a new strategy aimed to protect donor kidney from complement-mediated postischemic damage and therefore increase the number of successful transplants. Rat donor kidneys were perfused with a membrane-localizing complement regulator derived from human complement receptor type 1 (APT070) and then subjected to prolonged periods of cold storage (at 4 degrees C). A relationship was found between the duration of cold ischemia and the extent of complement-mediated tubule damage and loss of graft function. After 16 h of cold storage, APT070-treated kidneys that were transplanted into syngeneic recipients showed a significant increase in the number of surviving grafts, compared with control-treated grafts (63.6 versus 26.3%). Surviving grafts also displayed less acute tubular injury and better preservation of renal function. These results not only enhance the understanding of the mechanism by which prolonged cold ischemia reduces immediate graft survival but also provide essential information about the effectiveness of membrane-localizing complement regulator with prolonged cold storage. This could lead to more effective strategies for improving the use of severely ischemic donor organs.
Collapse
Affiliation(s)
- Hetal Patel
- Department of Nephrology and Transplantation, 5th Floor, Thomas Guy House, Guy's Hospital, London SE1 9RT, UK
| | | | | | | |
Collapse
|
109
|
Thurman JM, Royer PA, Ljubanovic D, Dursun B, Lenderink AM, Edelstein CL, Holers VM. Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J Am Soc Nephrol 2006; 17:707-15. [PMID: 16467447 DOI: 10.1681/asn.2005070698] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Complement activation in the kidney after ischemia/reperfusion (I/R) seems to occur primarily via the alternative complement pathway. The ability of an inhibitory mAb to mouse factor B, a necessary component of the alternative pathway, to protect mice from ischemic acute renal failure was tested. Treatment with the mAb prevented the deposition of C3b on the tubular epithelium and the generation of systemic C3a after renal I/R. Treated mice had significantly lower increases in serum urea nitrogen and developed significantly less morphologic injury of the kidney after I/R. For gaining insight into potential mechanisms of protection, the activity of caspases within the kidney also was measured, and it was found that caspases-2, -3, and -9 increased in a complement-dependent manner after renal I/R. Apoptotic cells were detected by terminal deoxynucleotidyl transferase catalyzed labeling of DNA fragments, and mice in which the alternative pathway was inhibited demonstrated significantly less apoptosis than control mice. Thus, use of an inhibitory mAb to mouse factor B effectively prevented activation of complement in the kidney after I/R and protected the mice from necrotic and apoptotic injury of the tubules.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Medicine, University of Colorado Health Sciences Center, Denver, CO 80262, USA, and Department of Pathology, University Hospital Dubrava, Zabreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|
110
|
Reiman R, Campos Torres A, Martin BK, Ting JP, Campbell IL, Barnum SR. Expression of C5a in the brain does not exacerbate experimental autoimmune encephalomyelitis. Neurosci Lett 2005; 390:134-8. [PMID: 16154690 DOI: 10.1016/j.neulet.2005.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 08/04/2005] [Accepted: 08/05/2005] [Indexed: 11/26/2022]
Abstract
Complement is implicated in the pathology of neurodegenerative and inflammatory disease in the central nervous system (CNS). Although studies demonstrate that inhibition of complement activation attenuates disease development in the CNS, the specific complement components that contribute to the pathogenesis of CNS diseases remain unclear. To dissect the role of C5a in CNS disease, we developed a transgenic mouse that produces C5a exclusively in the brain using the astrocyte-specific, murine glial fibrillary acidic protein (GFAP) promoter. C5a/GFAP mice develop normally and do not demonstrate any signs of spontaneous inflammation or neurodegeneration with age. Using C5a/GFAP mice, we examined the outcome of the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). To our surprise the onset and severity of myelin oligodendrocyte glycoprotein-induced EAE was essentially identical between C5a/GFAP and control mice. These results demonstrate that C5a, despite it is pro-inflammatory functions, is not critical to the development and progression of EAE.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain/pathology
- Complement C5a/genetics
- Complement C5a/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Fluorescent Antibody Technique/methods
- Gene Expression Regulation/physiology
- Glial Fibrillary Acidic Protein/biosynthesis
- Glycoproteins
- Humans
- Mice
- Mice, Transgenic
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments
- Severity of Illness Index
Collapse
Affiliation(s)
- Rachael Reiman
- Department of Microbiology, University of Alabama at Birmingham, 845 19th St. S., Birmingham, AL 35294, USA
| | | | | | | | | | | |
Collapse
|
111
|
Yang B, Jain S, Pawluczyk IZA, Imtiaz S, Bowley L, Ashra SY, Nicholson ML. Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int 2005; 68:2050-67. [PMID: 16221205 DOI: 10.1111/j.1523-1755.2005.00662.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We have previously shown the long-term influence of renal ischemia/reperfusion (I/R) injury and immunosuppression on fibrotic genes and apoptosis in a rat model. For the first time, we have now investigated the effects of I/R and immunosuppression on inflammation and caspase activation. METHODS I/R injury was induced in the right kidney and the left was removed. Cyclosporin (CsA) (10 mg/kg), tacrolimus (0.2 mg/kg), rapamycin (1 mg/kg), or mycophenolate mofetil (MMF) (10 mg/kg) was then administered for 16 weeks. The effects of I/R and immunosuppressants on interstitial inflammation, interleukin (IL)-1beta expression, caspase-1 and caspase-3 activation, tubulointerstitial damage, and fibrosis were evaluated. RESULTS ED-1+ (a specific rat monocyte/macrophage marker) cells were mainly localized in the tubulointerstitium and periglomerular areas and increased in I/R group compared to controls (P < 0.01). This was further increased by CsA, but decreased by tacrolimus, rapamycin, or MMF (P < 0.05). The 17 kD active IL-1beta remained unchanged, but 35 kD IL-1beta precursor was decreased by rapamycin in comparison with I/R group (P < 0.05). The 45 kD or 20 kD caspase-1 was increased by I/R or CsA, respectively, and decreased by rapamycin (P < 0.05). The 24 kD caspase-3, which proved to be an active caspase-3 subunit, was increased in I/R and CsA groups and deceased by tacrolimus, rapamycin, or MMF (P < 0.05), but not 32 kD precursor or 17 kD active caspase-3. The activity data of caspase-1 and caspase-3 exhibited the same trend as Western blotting data. The staining of active caspase-3 was scattered in kidneys, mainly in tubular and interstitial areas, which was consistent with that of ED-1+ cells. There was a strong positive correlation between interstitial inflammation and 24 kD caspase-3 expression or caspase-3 activity (r = 0.814 or 0.484), all of which were also closely related with urinary protein (r = 0.537, 0.529, or 0.517), serum creatinine (r = 0.463, 0.573, or 0.539), tubulointerstitial damage (r = 0.794, 0.618, or 0.712) and fibrosis (r = 0.651, 0.567, or 0.469), all P < 0.01. CONCLUSION This study shows that the mechanisms of long-term I/R injury and immunosuppressants treatment include interstitial inflammation and caspase activation, most clearly demonstrated by the 24 kD active caspase-3.
Collapse
Affiliation(s)
- Bin Yang
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester General Hospital, UK.
| | | | | | | | | | | | | |
Collapse
|
112
|
Bao L, Osawe I, Haas M, Quigg RJ. Signaling through up-regulated C3a receptor is key to the development of experimental lupus nephritis. THE JOURNAL OF IMMUNOLOGY 2005; 175:1947-55. [PMID: 16034139 DOI: 10.4049/jimmunol.175.3.1947] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Signaling of the C3a anaphylatoxin through its G protein-coupled receptor, C3aR, is relevant in a variety of inflammatory diseases, but its role in lupus nephritis is undefined. In this study, we show that expression of C3aR was significantly increased in prediseased and diseased kidneys of MRL/lpr lupus mice compared with MRL/+ controls. To investigate the role of C3aR in experimental lupus, a small molecule antagonist of C3aR (C3aRa) was administered continuously to MRL/lpr mice from 13 to 19 wk of age. All 13 C3aRa-treated mice survived during the 6-wk treatment compared with 9 of 14 (64.3%) control animals given vehicle (p = 0.019). Relative to controls, C3aRa-treated animals were protected from renal disease as measured by albuminuria (p = 0.040) and blood urea nitrogen (p = 0.021). In addition, there were fewer neutrophils, monocytes, and apoptotic cells in the kidneys of C3aRa-treated mice. C3aRa treatment also led to reduced renal IL-1beta and RANTES mRNA and phosphorylated phosphatase and tensin homologue deleted on chromosome 10 protein, whereas the mass of phosphorylated protein kinase B/Akt was increased by C3aRa. Thus, C3aR antagonism significantly reduces renal disease in MRL/lpr mice, which further translates into prolonged survival. These data illustrate that C3aR is relevant in experimental lupus nephritis and may be a target for therapeutic intervention in the human disease.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Apoptosis/drug effects
- Apoptosis/immunology
- Arginine/administration & dosage
- Arginine/analogs & derivatives
- Benzhydryl Compounds/administration & dosage
- Complement C3a/metabolism
- Complement C3a/physiology
- Complement Inactivator Proteins/administration & dosage
- Fluorescent Antibody Technique, Indirect
- Inflammation Mediators/metabolism
- Kidney/drug effects
- Kidney/immunology
- Kidney/metabolism
- Kidney/pathology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/mortality
- Lupus Erythematosus, Systemic/pathology
- Male
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred MRL lpr
- PTEN Phosphohydrolase
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation/drug effects
- RNA, Messenger/biosynthesis
- Receptors, Complement/antagonists & inhibitors
- Receptors, Complement/biosynthesis
- Receptors, Complement/genetics
- Receptors, Complement/physiology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Suppressor Proteins/metabolism
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Lihua Bao
- Section of Nephrology, University of Chicago, Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
113
|
Waters SM, Brodbeck RM, Steflik J, Yu J, Baltazar C, Peck AE, Severance D, Zhang LY, Currie K, Chenard BL, Hutchison AJ, Maynard G, Krause JE. Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction. J Biol Chem 2005; 280:40617-23. [PMID: 16230349 DOI: 10.1074/jbc.m509245200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.
Collapse
Affiliation(s)
- Stephen M Waters
- Department of Biochemistry and Molecular Biology, Neurogen Corporation, Branford, Connecticut 06405, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Berger SP, Roos A, Daha MR. Complement and the kidney: what the nephrologist needs to know in 2006? Nephrol Dial Transplant 2005; 20:2613-9. [PMID: 16204271 DOI: 10.1093/ndt/gfi166] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
115
|
Thurman JM, Lucia MS, Ljubanovic D, Holers VM. Acute tubular necrosis is characterized by activation of the alternative pathway of complement. Kidney Int 2005; 67:524-30. [PMID: 15673300 DOI: 10.1111/j.1523-1755.2005.67109.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies in animal models have shown that the alternative pathway of complement is activated in the kidney after ischemia/reperfusion. In addition, mice deficient in complement factor B, a necessary component of the alternative pathway, are protected from ischemic acute renal failure. The purpose of this study was to determine whether alternative pathway activation also occurs during the development of ischemic acute tubular necrosis in the human kidney. METHODS Biopsies were identified from nine patients with morphologically normal kidneys and seven patients with evidence of acute tubular necrosis by light microscopy. Immunofluorescence microscopy was used to quantify and localize the complement activation products C3d and C4d. The results were correlated with available clinical data. RESULTS Similar to mice, small amounts of activated C3d were present along the tubular basement membrane in normal kidneys. However, kidneys from patients with acute tubular necrosis had C3d complement deposition along a significantly greater number of tubules, and many of the tubules were completely circumscribed. In contrast, C4d was not detectable, indicating that complement activation occurred primarily via alternative pathway activation. CONCLUSION Complement activation occurs in human ischemic acute tubular necrosis. As in rodents, complement activation along the tubular basement membrane after ischemia appears to occur principally via the alternative complement pathway. Because of this, an inhibitor of the alternative pathway might limit complement activation and inflammation after ischemia/reperfusion, thereby protecting the kidney from ischemic acute renal failure.
Collapse
Affiliation(s)
- Joshua M Thurman
- Department of Internal Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
116
|
Møller-Kristensen M, Wang W, Ruseva M, Thiel S, Nielsen S, Takahashi K, Shi L, Ezekowitz A, Jensenius JC, Gadjeva M. Mannan-binding lectin recognizes structures on ischaemic reperfused mouse kidneys and is implicated in tissue injury. Scand J Immunol 2005; 61:426-34. [PMID: 15882434 DOI: 10.1111/j.1365-3083.2005.01591.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Organ damage as a consequence of ischaemia and reperfusion (I/R) is a major clinical problem in an acute renal failure and transplantation. Ligands on surfaces of endothelial cells that are exposed due to the ischaemia may be recognized by pattern recognition molecules such as mannan-binding lectin (MBL), inducing complement activation. We examined the contribution of the MBL complement pathway in a bilateral renal I/R model (45 min of ischaemia followed by 24 h of reperfusion), using transgenic mice deficient in MBL-A and MBL-C [MBL double knockout (MBL DKO)] and in wildtype (WT) mice. Kidney damages, which were evaluated by levels of blood urea nitrogen (BUN) and creatinine, showed that MBL DKO mice were significantly protected compared with WT mice. MBL DKO mice, reconstituted with recombinant human MBL, showed a dose-dependent severity of kidney injury increasing to a comparable level to WT mice. Acute tubular necrosis was evident in WT mice but not in MBL DKO mice after I/R, confirming renal damages in WT mice. MBL ligands in kidneys were observed to be present after I/R but not in sham-operated mice. C3a (desArg) levels in MBL DKO mice were decreased after I/R compared with that in WT mice, indicating less complement activation that was correlated with less C3 deposition in the kidneys of MBL DKO mice. Our data implicate a role of MBL in I/R-induced kidney injury.
Collapse
Affiliation(s)
- M Møller-Kristensen
- Department of Medical Microbiology and Immunology, University of Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Berger SP, Roos A, Mallat MJK, Fujita T, de Fijter JW, Daha MR. Association between mannose-binding lectin levels and graft survival in kidney transplantation. Am J Transplant 2005; 5:1361-6. [PMID: 15888042 DOI: 10.1111/j.1600-6143.2005.00841.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The mannose-binding lectin (MBL) pathway of complement is activated by pattern recognition. Genetic MBL variants are frequent and associated with low MBL serum levels. Higher MBL levels may be associated with more complement-mediated damage resulting in inferior graft survival. Pre-transplant serum samples from 266 consecutive deceased donor kidney transplant recipients were analyzed for MBL concentration by ELISA. Subsequently the cohort was analyzed for transplant-related outcome. There was no significant difference in incidence of delayed graft function in recipients with a low MBL level (< or =400 ng/mL) compared to those with a higher MBL level (>400 ng/mL) (37.1 vs. 34.9%). At 10 years, death-censored graft survival was 89.9% in patients with an MBL level below 400 ng/mL compared with 78.8% at a higher MBL level (p < 0.02). Multivariate analysis including traditional risk factors for graft loss showed an independent risk of 2.7 (95% CI 1.2-6.3) for death-censored graft loss if pre-transplant MBL levels were above 400 ng/mL. This difference was almost entirely explained by rejection-associated graft loss (2.4 vs. 12.4%, p < 0.01). Higher MBL levels seem to be associated with a more severe form of rejection leading to treatment failure and graft loss. If these data can be confirmed, pre-transplant MBL levels may provide additional information for risk stratification prior to kidney transplantation.
Collapse
Affiliation(s)
- Stefan P Berger
- Department of Nephrology, Leiden University Medical Center, The Netherlands.
| | | | | | | | | | | |
Collapse
|
118
|
Théroux P, Armstrong PW, Mahaffey KW, Hochman JS, Malloy KJ, Rollins S, Nicolau JC, Lavoie J, Luong TM, Burchenal J, Granger CB. Prognostic significance of blood markers of inflammation in patients with ST-segment elevation myocardial infarction undergoing primary angioplasty and effects of pexelizumab, a C5 inhibitor: a substudy of the COMMA trial. Eur Heart J 2005; 26:1964-70. [PMID: 15872036 DOI: 10.1093/eurheartj/ehi292] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Pexelizumab, a monoclonal antibody inhibiting C5, reduced 90 day mortality and shock in the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial without apparent reductions in infarct size. Inflammation is a critical component of ST-elevation myocardial infarction (STEMI); this substudy examines prognostic values of selected markers and treatment effects. METHODS AND RESULTS C-reactive protein, interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNF-alpha) serum levels were assessed in 337 patients enrolled in either the placebo or the pexelizumab 24 h infusion group. Higher C-reactive protein and IL-6 levels at baseline, 24 h, and 72 h were strongly associated with increased subsequent death (P<0.002 at baseline and 24 h, P<0.02 at 72 h); and all baseline marker levels with death or cardiogenic shock (P<0.03) within 90 days. C-reactive protein and IL-6 levels were similar at baseline, but significantly lower 24 h later with pexelizumab, when compared with placebo (17.1 vs. 25.5 mg/L, P=0.03 and 51.0 vs. 63.8 pg/mL, P=0.04, respectively). At 72 h, corresponding levels were similar, whereas TNF-alpha was slightly higher (P=0.04) in the treated group. CONCLUSION Inflammation markers and their serial changes predict death and shock in patients with STEMI undergoing primary angioplasty. Pexelizumab reduced C-reactive protein and IL-6, suggesting treatment benefits mediated through anti-inflammatory effects.
Collapse
Affiliation(s)
- Pierre Théroux
- Montreal Heart Institute, Montreal, 5000 Belanger E, Montreal, Quebec, Canada H1T 1C8.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Abstract
The adaptive immune system has evolved highly specific pattern recognition proteins and receptors that, when triggered, provide a first line of host defense against pathogens. Studies reveal that these innate recognition proteins are also self-reactive and can initiate inflammation against self-tissues in a similar manner as with pathogens. This specific event is referred to as "innate autoimmunity." In this review, we describe two classes of autoimmune responses, that is, reperfusion injury and fetal loss syndrome, in which the recognition and injury are mediated by innate immunity. Both disorders are common and are clinically important. Reperfusion injury (RI) represents an acute inflammatory response after a reversible ischemic event and subsequent restoration of blood flow. Findings that injury is IgM and complement dependent and that a single natural antibody prepared from a panel of B-1 cell hybridomas can restore injury in antibody-deficient mice suggest that RI is an autoimmune-type disorder. Fetal loss syndrome is also an antibody- and complement-dependent disorder. Although both immune and natural antibodies are likely involved in recognition of phospholipid self-antigens, inhibition of the complement pathway in rodent models can block fetal loss. As new innate recognition proteins and receptors are identified, it is likely that innate responses to self represent frequent events and possibly underlie many of the known chronic autoimmune disorders normally attributable to dysregulation of adaptive immunity.
Collapse
Affiliation(s)
- Michael C Carroll
- CBR Institute for Biomedical Research, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
120
|
de Vries B, Walter SJ, Peutz-Kootstra CJ, Wolfs TGAM, van Heurn LWE, Buurman WA. The mannose-binding lectin-pathway is involved in complement activation in the course of renal ischemia-reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:1677-88. [PMID: 15509537 PMCID: PMC1618654 DOI: 10.1016/s0002-9440(10)63424-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ischemia-reperfusion (I/R) is an important cause of acute renal failure (ARF). The complement system appears to be essentially involved in I/R injury. However, via which pathway the complement system is activated and in particular whether the mannose-binding lectin (MBL)-pathway is activated is unclear. This tempted us to study the activation and regulation of the MBL-pathway in the course of experimental renal I/R injury and in clinical post-transplant ARF. Mice subjected to renal I/R displayed evident renal MBL-depositions, depending on the duration of warm ischemia, in the early reperfusion phase. Renal deposition of C3, C6 and C9 was observed in the later reperfusion phase. The deposition of MBL-A and -C completely co-localized with the late complement factor C6, showing that MBL is involved in complement activation in the course of renal I/R injury. Moreover, the degree of early MBL-deposition correlated with complement activation, neutrophil-influx, and organ-failure observed in the later reperfusion phase. In serum of mice subjected to renal I/R MBL-A, levels increased in contrast to MBL-C levels, which dropped evidently. In line, liver mRNA levels for MBL-A increased, whereas MBL-C levels decreased. Renal MBL mRNA levels rapidly dropped in the course of renal I/R. Finally, in human biopsies, MBL-depositions were observed early after transplantation of ischemically injured kidneys. In line with our experimental data, in ischemically injured grafts displaying post-transplant organ-failure extensive MBL depositions were observed in peritubular capillaries and tubular epithelial cells. In conclusion, in experimental renal I/R injury and clinical post-transplant ARF the MBL-pathway is activated, followed by activation of the complement system. These data indicate that the MBL-pathway is involved in ischemia-induced complement activation.
Collapse
Affiliation(s)
- Bart de Vries
- Department of General Surgery, Maastricht University, P.O. Box 616, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | |
Collapse
|
121
|
de Vries B, Walter SJ, Wolfs TGAM, Hochepied T, Räbinä J, Heeringa P, Parkkinen J, Libert C, Buurman WA. Exogenous alpha-1-acid glycoprotein protects against renal ischemia-reperfusion injury by inhibition of inflammation and apoptosis. Transplantation 2004; 78:1116-24. [PMID: 15502707 DOI: 10.1097/01.tp.0000138096.14126.ca] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Although ischemia-reperfusion (I/R) injury represents a major problem in posttransplant organ failure, effective treatment is not available. The acute phase protein alpha-1-acid glycoprotein (AGP) has been shown to be protective against experimental I/R injury. The effects of AGP are thought to be mediated by fucose groups expressed on the AGP protein inhibiting neutrophil infiltration. However, the precise mechanism of protection remains to be established. We therefore studied the effects of exogenous human AGP (hAGP) in a mouse model of ischemic acute renal failure. METHODS Mice were subjected to renal I/R and treated with hAGP, fucose-depleted hAGP, or control treated. Also, transgenic mice over-expressing rat AGP or wild-type controls were subjected to renal I/R. RESULTS Treatment was with hAGP as well as fucose-depleted hAGP protected mice against I/R-induced acute renal failure. Surprisingly, AGP-over-expressing mice were not protected against I/R injury. Both natural and fucose-depleted hAGP inhibited the activation of the complement system, as determined by renal C3 deposition and influx of neutrophils measured by immunohistochemistry and myeloperoxidase-enzyme-linked immunoadsorbent assay. Tubular epithelial cell structure (actin cytoskeleton) and cell-cell interaction (tight-junction architecture) were completely preserved in AGP-treated mice. Also, epithelial caspase activation and apoptotic DNA cleavage were prevented by AGP treatment. CONCLUSIONS Both natural and fucose-depleted hAGP protect against renal I/R injury by preservation of tubular epithelial structure and inhibition of apoptosis and subsequent inflammation. Therefore, hAGP can be regarded as a potential new therapeutic intervention in the treatment of acute renal failure, as seen after transplantation of ischemically injured kidneys.
Collapse
Affiliation(s)
- Bart de Vries
- Department of Surgery, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Academic Hospital Maastricht and Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Delayed graft function is a form of acute renal failure resulting in post-transplantation oliguria, increased allograft immunogenicity and risk of acute rejection episodes, and decreased long-term survival. Factors related to the donor and prerenal, renal, or postrenal transplant factors related to the recipient can contribute to this condition. From experimental studies, we have learnt that both ischaemia and reinstitution of blood flow in ischaemically damaged kidneys after hypothermic preservation activate a complex sequence of events that sustain renal injury and play a pivotal part in the development of delayed graft function. Elucidation of the pathophysiology of renal ischaemia and reperfusion injury has contributed to the development of strategies to decrease the rate of delayed graft function, focusing on donor management, organ procurement and preservation techniques, recipient fluid management, and pharmacological agents (vasodilators, antioxidants, anti-inflammatory agents). Several new drugs show promise in animal studies in preventing or ameliorating ischaemia-reperfusion injury and possibly delayed graft function, but definitive clinical trials are lacking. The goal of monotherapy for the prevention or treatment of is perhaps unattainable, and multidrug approaches or single drug targeting multiple signals will be the next step to reduce post-transplantation injury and delayed graft function.
Collapse
Affiliation(s)
- Norberto Perico
- Department of Medicine and Transplantation, Ospedali Riuniti di Bergamo-Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
| | | | | | | |
Collapse
|
123
|
Arumugam TV, Shiels IA, Woodruff TM, Granger DN, Taylor SM. The role of the complement system in ischemia-reperfusion injury. Shock 2004; 21:401-9. [PMID: 15087815 DOI: 10.1097/00024382-200405000-00002] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Collapse
Affiliation(s)
- Thiruma V Arumugam
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | |
Collapse
|
124
|
Tateno C, Yoshizane Y, Saito N, Kataoka M, Utoh R, Yamasaki C, Tachibana A, Soeno Y, Asahina K, Hino H, Asahara T, Yokoi T, Furukawa T, Yoshizato K. Near completely humanized liver in mice shows human-type metabolic responses to drugs. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:901-12. [PMID: 15331414 PMCID: PMC1618591 DOI: 10.1016/s0002-9440(10)63352-4] [Citation(s) in RCA: 422] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Human hepatocytes were transplanted into urokinase-type plasminogen activator-transgenic SCID mice (uPA/SCID mice), which are immunodeficient and undergo liver failure. The transplanted cells were characterized in terms of their in vivo growth potential and functions. The human hepatocytes progressively repopulated the murine host liver. However, the recipients died when the replacement index (RI) of the human hepatocytes exceeded 50%. The hosts (chimeric mice) survived at RI >50% when treated with a drug that has anti-human complement factor activity, and these mice developed livers with RI values as high as 96%. In total, 36 chimeric mice were generated, and the rate of successful engraftment was as high as 92%. The yield of chimeric mice with RI >70% was 32%. The human hepatocytes in the murine host liver expressed mRNAs for a variety of human cytochrome P450 (hCYP) subtypes, in a manner that was similar to the donor liver. The mRNAs for hCYP3A4 and hCYP1A1/2 were induced in the liver in a CYP type-specific manner when the mice were treated with rifampicin and 3-methylcholanthrene, respectively. These results indicate that human hepatocytes that propagate in mice retain their normal pharmacological responses. We conclude that the chimeric mouse developed in the present study is a useful model for assessing the functions and pharmacological responses of human hepatocytes.
Collapse
Affiliation(s)
- Chise Tateno
- Yoshizato Project, Cooperative Link of Unique Science and Technology for Economy Revitalization (CLUSTER), Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Yamada K, Miwa T, Liu J, Nangaku M, Song WC. Critical protection from renal ischemia reperfusion injury by CD55 and CD59. THE JOURNAL OF IMMUNOLOGY 2004; 172:3869-75. [PMID: 15004194 DOI: 10.4049/jimmunol.172.6.3869] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is a feature of ischemic acute renal failure and it impacts both short- and long-term graft survival after kidney transplantation. Complement activation has been implicated in renal IRI, but its mechanism of action is uncertain and the determinants of complement activation during IRI remain poorly understood. We engineered mice deficient in two membrane complement regulatory proteins, CD55 and CD59, and used them to investigate the role of these endogenous complement inhibitors in renal IRI. CD55-deficient (CD55(-/-)), but not CD59-deficient (CD59(-/-)), mice exhibited increased renal IRI as indicated by significantly elevated blood urea nitrogen levels, histological scores, and neutrophil infiltration. Remarkably, although CD59 deficiency alone was inconsequential, CD55/CD59 double deficiency greatly exacerbated IRI. Severe IRI in CD55(-/-)CD59(-/-) mice was accompanied by endothelial deposition of C3 and the membrane attack complex (MAC) and medullary capillary thrombosis. Complement depletion in CD55(-/-)CD59(-/-) mice with cobra venom factor prevented these effects. Thus, CD55 and CD59 act synergistically to inhibit complement-mediated renal IRI, and abrogation of their function leads to MAC-induced microvascular injury and dysfunction that may exacerbate the initial ischemic assault. Our findings suggest a rationale for anti-complement therapies aimed at preventing microvascular injury during ischemia reperfusion, and the CD55(-/-)CD59(-/-) mouse provides a useful animal model in this regard.
Collapse
Affiliation(s)
- Koei Yamada
- Center for Experimental Therapeutics and Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
126
|
De Simoni MG, Rossi E, Storini C, Pizzimenti S, Echart C, Bergamaschini L. The powerful neuroprotective action of C1-inhibitor on brain ischemia-reperfusion injury does not require C1q. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1857-63. [PMID: 15111332 PMCID: PMC1615651 DOI: 10.1016/s0002-9440(10)63744-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
C1-inhibitor (C1-INH) is a major regulator of the complement classical pathway. Besides this action, it may also inhibit other related inflammatory systems. We have studied the effect of C1-INH in C57BL/6 mice with focal transient brain ischemia induced by 30 minutes of occlusion of the middle cerebral artery. C1-INH induced a dose-dependent reduction of ischemic volume that, with the dose of 15 U/mouse, reached 10.8% of the volume of saline-treated mice. Four days after ischemia the treated mice had significantly lower general and focal neurological deficit scores. Fluoro-Jade staining, a marker for neuronal degeneration, showed that C1-INH-treated mice had a lower number of degenerating cells. Leukocyte infiltration, as assessed by CD45 immunostaining, was also markedly decreased. We then investigated the response to ischemia in C1q(-/-) mice. There was a slight, nonsignificant decrease in infarct volume in C1q(-/-) mice (reduction to 72.3%) compared to wild types. Administration of C1-INH to these mice was still able to reduce the ischemic volume to 31.4%. The study shows that C1-INH has a strong neuroprotective effect on brain ischemia/reperfusion injury and that its action is independent from C1q-mediated activation of classical pathway.
Collapse
Affiliation(s)
- Maria Grazia De Simoni
- Laboratory of Inflammation and Nervous System Diseases, Mario Negri Institute for Pharmacological Research, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
127
|
|
128
|
de Vries B, Walter SJ, von Bonsdorff L, Wolfs TGAM, van Heurn LWE, Parkkinen J, Buurman WA. Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia-reperfusion injury. Transplantation 2004; 77:669-75. [PMID: 15021827 DOI: 10.1097/01.tp.0000115002.28575.e7] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Warm ischemia-reperfusion (I/R) injury plays an important role in posttransplant organ failure. In particular, organs from marginal donors suffer I/R injury. Although iron has been implicated in the pathophysiology of renal I/R injury, the mechanism of iron-mediated injury remains to be established. The authors therefore investigated the role of circulating redox-active iron in an experimental model for renal I/R injury. METHODS Male Swiss mice were subjected to unilateral renal ischemia for 45 min, followed by contralateral nephrectomy and reperfusion. To investigate the role of circulating iron, mice were treated with apotransferrin, an endogenous iron-binding protein, or iron-saturated apotransferrin (holotransferrin). RESULTS Renal ischemia induced a significant increase in circulating redox-active iron levels during reperfusion. Apotransferrin, in contrast to holotransferrin, reduced the amount of circulating redox-active iron and abrogated renal superoxide formation. Apotransferrin treatment did not affect I/R-induced renal apoptosis, whereas holotransferrin aggravated apoptotic cell death. Apotransferrin, in contrast to holotransferrin, inhibited the influx of neutrophils. Both apo- and holotransferrin reduced I/R-induced complement deposition, indicating that the effects of transferrin are differentially mediated by its iron and protein moiety. Finally, apotransferrin, in contrast to holotransferrin, dose-dependently inhibited the loss of renal function induced by ischemia. CONCLUSIONS Redox-active iron is released into the circulation in the course of renal I/R. Reducing the amount of circulating redox-active iron by treatment with apotransferrin protects against renal I/R injury, inhibiting oxidative stress, inflammation, and loss of function. Apotransferrin could be used in the treatment of acute renal failure, as seen after transplantation of ischemically damaged organs.
Collapse
Affiliation(s)
- Bart de Vries
- Department of Surgery, Nutrition and Toxicology Research Institute Maastricht, Academic Hospital Maastricht, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
129
|
Wen L, Atkinson JP, Giclas PC. Clinical and laboratory evaluation of complement deficiency. J Allergy Clin Immunol 2004; 113:585-93; quiz 594. [PMID: 15100659 DOI: 10.1016/j.jaci.2004.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The complement system provides innate defense against microbial pathogens and is a "complement" to humoral (antibody-mediated) immunity. Consisting of plasma and membrane proteins, this proinflammatory system works in part by a cascade involving limited proteolysis whereby one component activates the next, resulting in a dramatic amplification. The overall goal is deposition of complement fragments on pathologic targets for the purposes of opsonization, lysis, and liberation of peptides that promote the inflammatory response. Deficiencies of complement components predispose to infections and autoimmune syndromes. Even though total deficiency of a complement component is rare, patients presenting with certain bacterial infections and autoimmune syndromes, especially SLE, have a much greater incidence of deficiency. This review will summarize the clinical manifestations and pathophysiology of congenital and acquired complement deficiency diseases. We will also present an algorithm for laboratory diagnosis of complement deficiency and discuss current and future therapeutic options.
Collapse
Affiliation(s)
- Leana Wen
- Washington University School of Medicine, St Louis, Missouri, USA
| | | | | |
Collapse
|
130
|
Maheshwari A, Christensen RD, Calhoun DA, Dimmitt RA, Lacson A. Circulating CXC-chemokine concentrations in a murine intestinal ischemia-reperfusion model. Fetal Pediatr Pathol 2004; 23:145-57. [PMID: 15768860 DOI: 10.1080/15227950490523781] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND CXC-chemokines bearing the glutamic acid-leucine-arginine (ELR) motif (ELR+ CXC chemokines) are potent neutrophil chemoattractants and hence may play a role in mucosal injury seen with intestinal ischemia-reperfusion (I/R). METHODS Serum concentrations of ELR+ CXC chemokines (keratinocyte-derived chemokine(KC) / CXC ligand (CXCL) 1, macrophage inflammatory protein (MIP)-2/CXCL 2/3, lipopolysaccharide-induced CXC chemokine (LIX) / CXCL5, and lungkine/CXCL15) were measured in a murine intestinal I/R model. Fifteen 4-week-old wild-type mice were studied in three subgroups: sham, ischemia (superior mesenteric artery [SMA] clamping for 60 min) and ischemia-reperfusion (SMA clamping for 60 min followed by reperfusion for 90 min). RESULTS Concentrations of KC/CXCL1 and MIP-2/CXCL2/3 in sham-treated animals (145 +/- 123 and 107 +/- 55 pg/mL, respectively) and the ischemia subgroup (646 +/- 413 and 226 +/- 129 pg/mL) were similar, but concentrations were signifcantly higher with reperfusion (6398 +/- 2297, p < .001 and 874 +/- 790 pg/mL, p = .04). LIX/CXCL5 and lungkine/CXCL15 concentrations did not change significantly with ischemia or following I/R. KC/CXCL1 and MIP-2/CXCL2/3 concentrations correlated positively with the severity of mucosal injury and with each other, whereas a negative relationship was observed between LIX/CXCL5 concentrations and microscopic injury scores. CONCLUSIONS Development of mucosal injury in intestinal I/R is associated with increased serum concentrations of KC/CXCL1 and MIP-2/CXCL2/3, but not with those of LIX/CXCL5 and lungkine/CXCL15.
Collapse
Affiliation(s)
- Akhil Maheshwari
- Department of Pediatrics, University of South Florida College of Medicine, Florida, USA.
| | | | | | | | | |
Collapse
|
131
|
Farrar CA, Wang Y, Sacks SH, Zhou W. Independent pathways of P-selectin and complement-mediated renal ischemia/reperfusion injury. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:133-41. [PMID: 14695327 PMCID: PMC1602227 DOI: 10.1016/s0002-9440(10)63104-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Evidence from in vitro studies indicates that complement activation regulates the expression of P-selectin on endothelial cells. This suggests that in disorders such as ischemia/reperfusion injury, in which both complement and P-selectin have been shown to play a role, complement activation is a primary event and the effects of P-selectin are secondary. To test this hypothesis in vivo, we examined a mouse kidney model of ischemia/reperfusion injury. Surprisingly, the time course and extent of expression of P-selectin was unaltered in C3-deficient mice compared with wild-type mice, in which there was rapid but transient up-regulation of P-selectin on capillary walls and slower accumulation of complement split product on the tubular epithelium. In addition, treatment with anti-P-selectin antibody to reduce the neutrophil-mediated reperfusion damage was equally effective in the absence of C3. These data imply that complement and P-selectin-mediated pathways of renal reperfusion injury are mutually independent, a conclusion that is possibly explained by the differences in the location and time kinetics of complement activation and P-selectin expression. We conclude that in vivo interaction between complement and P-selectin is limited because of time and spatial considerations. Consequently, complement and P-selectin pose distinct targets for therapy.
Collapse
Affiliation(s)
- Conrad A Farrar
- Department of Nephrology and Transplantation, Guy's Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
132
|
Yang ZF, Ho DWY, Chu ACY, Wang YQ, Fan ST. Linking inflammation to acute rejection in small-for-size liver allografts: the potential role of early macrophage activation. Am J Transplant 2004; 4:196-209. [PMID: 14974940 DOI: 10.1046/j.1600-6143.2003.00313.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aims to investigate the immunological status of small-for-size liver allografts and possible mechanism that contributes to the accelerated immune response in these allografts. Eight experimental groups were: whole isografts; 40% isografts; whole allografts, no treatment; 40% allografts, no treatment; whole allografts with sodium salicylate intraperitoneal injection, D0-3; 40% allografts with sodium salicylate, D0-3; whole allografts with FK506 intramuscular injection D0-3, and 40% allografts with FK506, D0-3. The 40% allografts survived significantly shorter than whole allografts (p=0.02). At 72 h after reperfusion, a higher number of macrophages infiltrated into the periportal area of small-for-size allografts than whole allografts. Remarkable up-regulation of interleukin-1beta (IL-1beta), interleukin-2 (IL-2), interleukin-10 (IL-10) and interferon-gamma (IFN-gamma) messenger RNA (mRNA) levels were detected in small-for-size allografts within 24 h after reperfusion. Sodium salicylate administration reduced IL-1beta and IFN-gamma mRNA in both small-for-size and whole allografts, but it could decrease IL-2 and IL-10 mRNA levels only in small-for-size allografts. In vitro study revealed that CD80, CD86 and CD11b expression on macrophages was augmented after IL-1beta stimulation, whereas the up-regulation could be blocked by sodium salicylate. In conclusion, early activation of macrophages as a result of graft injury might play an important role in the accelerated acute rejection process in small-for-size allografts.
Collapse
Affiliation(s)
- Zhen-Fan Yang
- Centre for the Study of Liver Disease and Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
133
|
Affiliation(s)
- Richard J Quigg
- Section of Nephrology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
134
|
Elliott MK, Jarmi T, Ruiz P, Xu Y, Holers VM, Gilkeson GS. Effects of complement factor D deficiency on the renal disease of MRL/lpr mice. Kidney Int 2004; 65:129-38. [PMID: 14675043 DOI: 10.1111/j.1523-1755.2004.00371.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The alternative complement pathway (AP) is activated in individuals with lupus nephritis and in murine models of systemic lupus erythematosus, including MRL/lpr mice. A previous study from our laboratory evaluated the development of renal disease in MRL/lpr mice genetically deficient in factor B (Bf-/-), a protein necessary for AP activation. MRL/lpr Bf-/- mice developed less renal disease and had improved survival; however, these mice were also a different major histocompatibility complex (MHC) haplotype (H-2b) than their wild-type littermates (H-2k) due to the gene for Bf being located in the MHC gene complex. We undertook the current study to determine if the decreased renal disease in MRL/lpr Bf-/- mice was due to the lack of AP activation or the H-2b haplotype by studying the effects of factor D (Df) deficiency, a critical protein for AP activation, on disease development in MRL/lpr mice. METHODS Df-deficient mice were backcrossed with MRL/lpr mice for four to nine generations. MRL/lpr H-2k Df-/-, Df+/-, and Df+/+ littermates were evaluated for disease development. Lack of AP activation in MRL/lpr Df-/- mice was determined by the zymosan assay. Serum creatinine levels were measured using a creatinine kit. Proteinuria and autoantibody levels were determined by enzyme-linked immunosorbent assay (ELISA). Sections from one kidney were stained with fluorescein isothiocyanate (FITC) alpha-murine C3 or alpha-murine IgG to detect C3 and IgG deposition. The remaining kidney was cut in half with one half fixed, sectioned, and stained with hematoxylin and eosin and periodic acid-Schiff (PAS) to evaluate pathology and another half fixed in glutaraldehyde and examined via electron microscopy. RESULTS MRL/lpr Df-/- mice had similar glomerular IgG deposition, proteinuria and autoantibody levels, as Df+/+ and Df+/- littermates. However, glomerular C3 deposition, serum creatinine levels, and pathologic renal disease were significantly reduced in Df-/- mice. Despite the lack of renal disease in Df-/- mice, life span was not impacted by factor D deficiency. CONCLUSION The absence of Df and AP activation is protective against the development of proliferative renal disease in MRL/lpr mice suggesting the similar effect of Bf deficiency in MRL/lpr mice was also due to the lack of AP activation.
Collapse
Affiliation(s)
- Margaret K Elliott
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | | | | | | |
Collapse
|
135
|
Burne-Taney MJ, Ascon DB, Daniels F, Racusen L, Baldwin W, Rabb H. B cell deficiency confers protection from renal ischemia reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:3210-5. [PMID: 12960350 DOI: 10.4049/jimmunol.171.6.3210] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent data have demonstrated a role for CD4(+) cells in the pathogenesis of renal ischemia reperfusion injury (IRI). Identifying engagement of adaptive immune cells in IRI suggests that the other major cell of the adaptive immune response, B cells, may also mediate renal IRI. An established model of renal IRI was used: 30 min of renal pedicle clamping was followed by reperfusion in B cell-deficient ( mu MT) and wild-type mice. Renal function was significantly improved in mu MT mice compared with wild-type mice at 24, 48, and 72 h postischemia. mu MT mice also had significantly reduced tubular injury. Both groups of mice had similar renal phagocyte infiltration postischemia assessed by myeloperoxidase levels and similar levels of CD4(+) T cell infiltration postischemia. Peritubular complement C3d staining was also similar in both groups. To identify the contribution of cellular vs soluble mechanism of action, serum transfer into mu MT mice partially restored ischemic phenotype, but B cell transfers did not. These data are the first demonstration of a pathogenic role for B cells in ischemic acute renal failure, with a serum factor as a potential underlying mechanism of action.
Collapse
Affiliation(s)
- Melissa J Burne-Taney
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
136
|
Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 2003; 14:2199-210. [PMID: 12874476 DOI: 10.1097/01.asn.0000079785.13922.f6] [Citation(s) in RCA: 546] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, and the Harvard--MIT, Division of Health Sciences and Technology, Charlestown, Massachusetts, USA.
| | | |
Collapse
|
137
|
de Vries B, Matthijsen RA, van Bijnen AAJHM, Wolfs TGAM, Buurman WA. Lysophosphatidic acid prevents renal ischemia-reperfusion injury by inhibition of apoptosis and complement activation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:47-56. [PMID: 12819010 PMCID: PMC1868182 DOI: 10.1016/s0002-9440(10)63629-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Renal ischemia-reperfusion (I/R) injury is an important cause of acute renal failure as observed after renal transplantation, major surgery, trauma, and septic as well as hemorrhagic shock. We previously showed that the inhibition of apoptosis is protective against renal I/R injury, indicating that apoptotic cell-death is an important feature of I/R injury. Lysophosphatidic acid (LPA) is an endogenous phospholipid growth factor with anti-apoptotic properties. This tempted us to investigate the effects of exogenous LPA in a murine model of renal I/R injury. LPA administered at the time of reperfusion dose dependently inhibited renal apoptosis as evaluated by the presence of internucleosomal DNA cleavage. I/R-induced renal apoptosis was only present in tubular epithelial cells with evident disruption of brush border as assessed by immunohistochemistry for active caspase-7 and filamentous actin, respectively. LPA treatment specifically prevented tubular epithelial cell apoptosis but also reduced the I/R-induced loss of brush-border integrity. Besides, LPA showed strong anti-inflammatory effects, inhibiting the renal expression of tumor necrosis factor-alpha and abrogating the influx of neutrophils. Next, LPA dose dependently inhibited activation of the complement system. Moreover, treatment with LPA abrogated the loss of renal function in the course of renal I/R. This study is the first to show that administration of the phospholipid LPA prevents I/R injury, abrogating apoptosis and inflammation. Moreover, exogenous LPA is capable of preventing organ failure because of an ischemic insult and thus may provide new means to treat clinical conditions associated with I/R injury in the kidney and potentially also in other organs.
Collapse
Affiliation(s)
- Bart de Vries
- Department of General Surgery, Nutrition, and Toxicology Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
138
|
de Vries B, Köhl J, Leclercq WKG, Wolfs TGAM, van Bijnen AAJHM, Heeringa P, Buurman WA. Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3883-9. [PMID: 12646657 DOI: 10.4049/jimmunol.170.7.3883] [Citation(s) in RCA: 191] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The complement system has been shown to mediate renal ischemia-reperfusion (I/R) injury. However, the contribution of complement factor C5a to I/R injury, in particular in the kidney, remains to be established. In this study, we investigated the impact of blocking the C5aR pathway on the inflammatory response and on the renal function in a murine model of I/R injury. First, we analyzed C5aR expression in kidneys of healthy mice. Intriguingly, we found expression on mesangial, as well as on tubular epithelial, cells. After I/R injury, C5aR expression was up-regulated in tubular epithelial cells. In addition, mRNA levels of CXC chemokines and TNF-alpha increased significantly and kidneys were heavily infiltrated by neutrophils. Blocking the C5aR pathway by a specific C5a receptor antagonist (C5aRA) abrogated up-regulation of CXC chemokines but not of TNF-alpha and reduced neutrophil infiltration by >50%. Moreover, application of the C5aRA significantly reduced loss of renal function. This improvement of function was independent of the presence of neutrophils because neutrophil depletion by mAb NIMP-R14 did not affect the protective effect of C5aRA treatment. Furthermore, blocking of the C5aR pathway had no influence on renal apoptosis. These data provide evidence that C5a is crucially involved in the pathogenesis of renal I/R injury by modulation of neutrophil-dependent as well as neutrophil-independent pathways, which include the regulation of CXC chemokines but not TNF-alpha or apoptotic pathways.
Collapse
Affiliation(s)
- Bart de Vries
- Department of General Surgery, Nutrition and Toxicology Research Institute Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|