101
|
Molecular Biomarkers of Malignant Transformation in Head and Neck Dysplasia. Cancers (Basel) 2022; 14:cancers14225581. [PMID: 36428690 PMCID: PMC9688631 DOI: 10.3390/cancers14225581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/01/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) and its treatments are associated with substantial morbidity, often resulting in cosmetic deformity and loss of physiologic functions including speech and swallowing. Despite advancements in treatment, 5-year survival rates for mucosal malignancies remain below 70%. Effective prevention of HNSCC demands an understanding of the molecular pathways of carcinogenesis. Specifically, defining features of pre-cancerous dysplastic lesions that indicate a better or worse prognosis is necessary to help identify patients who are likely to develop a carcinoma and allow a more aggressive approach to management. There remains a need for identification of biomarkers that can provide both early prognostic and predictive value in clinical decision-making by serving as both therapeutic targets as well as predictors of therapy response. Here, we comprehensively review the most frequently altered molecular biomarkers of malignant transformation in head and neck dysplasia. These markers are involved in a wide range of cellular processes in head and neck carcinogenesis, including extracellular matrix degradation, cell motility and invasion, cell-cell adhesion, solute transport, immortalization, metabolism, the cell cycle and apoptosis, transcription, and cell signaling.
Collapse
|
102
|
Hybrid nanoparticulate system of Fluvastatin loaded phospholipid, alpha lipoic acid and melittin for the management of colon cancer. Sci Rep 2022; 12:19446. [PMID: 36376469 PMCID: PMC9663543 DOI: 10.1038/s41598-022-24151-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, Fluvastatin (FLV) is used for reducing low-density lipoprotein (LDL) cholesterol as well as to prevent cardiovascular problems. FLV showed cell line cytotoxicity and antitumor effect. Melittin (MEL) exhibits antineoplastic activity and is known to be promising as a therapeutic option for cancer patients. The aim of this work was to investigate the combination of FLV with MEL loaded hybrid formula of phospholipid (PL) with alpha lipoic acid (ALA) nanoparticles to maximize anticancer tendencies. This study examines the optimization of the prepared formulation in order to minimize nanoparticles size and maximize zeta potential to potentiate cytotoxic potentialities in colon cancer cells (Caco2), cell viability, cell cycle analysis and annexin V were tested. In addition to biological markers as P53, Bax, bcl2 and Caspase 3 evaluation The combination involving FLV PL ALA MEL showed enhanced cytotoxic potentiality (IC50 = 9.242 ± 0.35 µg/mL), about twofold lower, compared to the raw FLV (IC50 = 21.74 ± 0.82 µg/mL). According to studies analyzing cell cycle, optimized FLV PL ALA MEL was found to inhibit Caco2 colon cancer cells more significantly than other therapeutic treatments, wherein a higher number of cells were found to accumulate over G2/M and pre-G1 phases, whereas G0/G1/S phases witnessed the accumulation of a lower number of cells. The optimized formulation may pave the way for a novel and more efficacious treatment for colon cancer.
Collapse
|
103
|
Ramírez-Patiño R, Avalos-Navarro G, Figuera LE, Varela-Hernández JJ, Bautista-Herrera LA, Muñoz-Valle JF, Gallegos-Arreola MP. Influence of nitric oxide signaling mechanisms in cancer. Int J Immunopathol Pharmacol 2022; 36:3946320221135454. [PMID: 36260949 PMCID: PMC9585559 DOI: 10.1177/03946320221135454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a molecule with multiple biological functions that is involved in various pathophysiological processes such as neurotransmission and blood vessel relaxation as well as the endocrine system, immune system, growth factors, and cancer. However, in the carcinogenesis process, it has a dual behavior; at low doses, NO regulates homeostatic functions, while at high concentrations, it promotes tissue damage or acts as an agent for immune defense against microorganisms. Thus, its participation in the carcinogenic process is controversial. Cancer is a multifactorial disease that presents complex behavior. A better understanding of the molecular mechanisms associated with the initiation, promotion, and progression of neoplastic processes is required. Some hypotheses have been proposed regarding the influence of NO in activating oncogenic pathways that trigger carcinogenic processes, because NO might regulate some signaling pathways thought to promote cancer development and more aggressive tumor growth. Additionally, NO inhibits apoptosis of tumor cells, together with the deregulation of proteins that are involved in tissue homeostasis, promoting spreading to other organs and initiating metastatic processes. This paper describes the signaling pathways that are associated with cancer, and how the concentration of NO can serve a beneficial or pathological function in the initiation and promotion of neoplastic events.
Collapse
Affiliation(s)
- R Ramírez-Patiño
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Ocotlán Jalisco, México
| | - G Avalos-Navarro
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Ocotlán Jalisco, México
| | - LE Figuera
- División de Génetica, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara Jalisco, México,Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara Jalisco, México
| | - JJ Varela-Hernández
- Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega (CUCIÉNEGA), Universidad de Guadalajara, Ocotlán Jalisco, México
| | - LA Bautista-Herrera
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingeniería (CUCEI), Universidad de Guadalajara, Guadalajara Jalisco, México
| | - JF Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas (IICB), Centro Universitario de Ciencias de la Salud (CUCS) Universidad de Guadalajara, Guadalajara Jalisco, México
| | - MP Gallegos-Arreola
- División de Génetica, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara Jalisco, México,Martha Patricia Gallegos-Arreola, División de Genética CIBO, IMSS, Sierra Mojada 800, Col, Independencia, Guadalajara, Jalisco 44340, México.
| |
Collapse
|
104
|
Zohny MH, Alrouji M, Alhajlah S, AlOmeir O, Ewees MGED, Ghaffar DMA, El Adle Khalaf N, Mohammed OA, Abdeldaiem MSI, El-Bahouty WB, Elrabat A, Zakaria S, Abdel-Nasser ZM, Haleem AA, El-Gharbawy DM, Abdelhady R, Kaddah MMY, Shata A, Saber S. Diacetylrhein, an anthraquinone antiarthritic agent, suppresses dextran sodium sulfate-induced inflammation in rats: A possible mechanism for a protective effect against ulcerative colitis. Biomed Pharmacother 2022; 154:113651. [PMID: 36081290 DOI: 10.1016/j.biopha.2022.113651] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/22/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory life-threatening and premalignant disorder with no cure that even might end up with surgical removal of a large section or even all of the colon. It is characterized by relapsing-remitting courses of intestinal inflammation and mucosal damage in which oxidative stress and exaggerated inflammatory response play a significant role. Most of the current medications to maintain remission are symptomatic and have many adverse reactions. Therefore, the potential for improved management of patients with UC continues to increase. Yet, the benefits of using the antiarthritic agent diacetylrhein to counteract inflammation in UC are still obscure. Hence, our study was designed to explore its potential role in UC using a model of dextran sodium sulfate-induced acute colitis in rats. Our results revealed that diacetylrhein targeted the NLRP3 and inhibited the inflammasome assembly. Consequently, caspase-1 activity and the inflammatory cytokines IL-1β and IL-18 were inhibited leading to a curbed pyroptosis process. Additionally, diacetylrhein revealed a significant antiapoptotic potential as revealed by the levels of pro-apoptotic and anti-apoptotic proteins. Concomitant to these effects, diacetylrhein also interrupted NFκB signals leading to improved microscopic features of inflamed colon and decreased colon weight to length ratio, indices of disease activity, and macroscopic damage. Additionally, a reduction in the myeloperoxidase activity, IL-6, and TGF-β alongside an increase in the gene expression of Ocln and ZO-1 were detected. To conclude diacetylrhein showed a significant antioxidant and anti-inflammatory potential and therefore might represent a promising agent in the management of acute UC.
Collapse
Affiliation(s)
- Mona H Zohny
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Othman AlOmeir
- Department of Pharmacy Practice, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| | | | - Dalia M Abdel Ghaffar
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Noura El Adle Khalaf
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt; Department of Clinical Pharmacology, Faculty of Medicine, Bisha University, Bisha 61922, Saudi Arabia.
| | - Mahmoud Said Ibrahim Abdeldaiem
- Clinical Pharmacy Department, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Pharmacy Practice Department, Faculty of Pharmacy, Sinai University, Ismailia, Egypt.
| | | | - Amr Elrabat
- Gastroenterology and Hepatology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sahar Zakaria
- Department of Tropical Medicine, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Zeinab M Abdel-Nasser
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 11787, Egypt.
| | - Amira A Haleem
- Medical Biochemistry Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Doaa M El-Gharbawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Rasha Abdelhady
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt.
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.
| | - Ahmed Shata
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| |
Collapse
|
105
|
Masoud M, Maryam SSP, Mahla SB, Mehrnaz KS, Mahla L, Reza V, Bahareh K, Tania D, Alireza F. Elevated Bax/Bcl-2 Ratio: A Cytotoxic Mode of Action of Kermanian Propolis Against an Acute Lymphoblastic Leukemia Cell Line, NALM-6. Indian J Hematol Blood Transfus 2022; 38:649-657. [PMID: 36258739 PMCID: PMC9569251 DOI: 10.1007/s12288-022-01522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
Abstract
Currently, alternative cancer remedies, especially herbal-derived medicines, have attracted great interest. Propolis, a honeybee-produced naturopathic formulation, is an available, affordable, and safe example of such remedies with different content according to its geographic location. Findings regarding the protective properties of this resinous substance across numerous pathological conditions are promising. Although the anti-tumor effects of propolis from different origins have been explored to some degree, yet there is no study on the effects of Kermanian propolis in the treatment of hematologic malignancies. Accordingly, the objective of the present experiment was to divulge the anti-tumor potential of this bioactive substance both as monotherapy and in combination with doxorubicin against an acute lymphoblastic leukemia cell line (NALM-6).The viability of cells treated with Kermanian propolis (5-500 μg/mL) and doxorubicin (5-100 μg/mL) was analyzed during 72 h. Based on the MTT results, the best incubation time, IC50 concentrations, and finally the cytotoxicity of the combination therapy were ascertained. Next, the apoptotic rate and expression of apoptosis-related genes (Bcl-2 and Bax) were assessed in mono and combination therapies using flow cytometry and real-time PCR assays, respectively. Kermanian propolis and doxorubicin have impressive tumor-suppressing activity in a dose-dependent manner (IC50 concentrations: 100 and 40 μg/mL respectively). The best incubation time was considered 48 h. For the combination approach, 50 and 10 μg/mL were determined as optimum concentrations of the compounds. The selected concentrations induced notable apoptosis in the studied cells through significant (P < 0.01) upregulation of Bax/Bcl-2 level. The present study clearly suggests that Kermanian propolis, as an adjunct treatment option, has a promising apoptosis-induced cell death potential in the NALM-6 cell line.
Collapse
Affiliation(s)
- Moghadari Masoud
- Department of Traditional Medicine, Faculty of Traditional Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Samareh Salavati pour Maryam
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sattarzadeh Bardsiri Mahla
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Kouhbananinejad Seyedeh Mehrnaz
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Lashkari Mahla
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahidi Reza
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Kashani Bahareh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Dehesh Tania
- Institute for Futures Studies, Modeling in Health Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Farsinejad Alireza
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
106
|
Lendzion K, Gornowicz A, Strawa JW, Bielawska K, Czarnomysy R, Popławska B, Bielawski K, Tomczyk M, Miltyk W, Bielawska A. LC-PDA-MS and GC-MS Analysis of Scorzonera hispanica Seeds and Their Effects on Human Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms231911584. [PMID: 36232888 PMCID: PMC9569732 DOI: 10.3390/ijms231911584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Scorzonera hispanica is an herbaceous perennial cultivated in Central and Southern Europe. This study aimed to qualitatively and quantitatively evaluate the composition of oil, extracts, and fractions (SH1-SH12) obtained from S. hispanica seeds. Furthermore, an evaluation of biological activities in breast cancer cell lines was also performed. GC-MS analysis revealed that the primary components of the seed oil (SH12) were fatty acids and β-sitosterol. In the evaluation of extracts (SH1-SH3, SH8-SH10) and fractions (SH4-SH7, SH11) composition, the presence of apigenin, derivatives of p-coumaric and caffeic acids, was reported. In the biological assays, methanolic extract (SH1), diethyl ether (SH4), and chloroform (SH11) fractions exhibited cytotoxicity toward cells. The highest activity was observed for fatty acids- and 3,4-dimethoxycinnamate-rich SH11 (IC50: 399.18 μg/mL for MCF-7, 781.26 μg/mL for MDA-MB-231). SH11 was also observed to induce apoptosis in MCF-7 cells (52.4%). SH1, SH4, and SH11 attenuate signaling pathways and affect the expression of apoptosis-, autophagy-, and inflammation-related proteins. SH12 was non-toxic toward either cancer or normal cell lines in concentrations up to 1 mg/mL. The results suggest that S. hispanica seeds exhibit a wide range of potential uses as a source of oil and bioactive compounds for complementary therapy of breast cancer.
Collapse
Affiliation(s)
- Karolina Lendzion
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland
- Correspondence:
| | - Agnieszka Gornowicz
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland
| | - Jakub W. Strawa
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland
| | - Katarzyna Bielawska
- Department of Pharmaceutical and Biopharmaceutical Analysis, Faculty of Pharmacy, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland
| | - Bożena Popławska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland
| | - Michał Tomczyk
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Bialystok, ul. Mickiewicza 2A, 15-230 Bialystok, Poland
| | - Wojciech Miltyk
- Department of Pharmaceutical and Biopharmaceutical Analysis, Faculty of Pharmacy, Medical University of Bialystok, ul. Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, ul. Kilińskiego 1, 15-089 Bialystok, Poland
| |
Collapse
|
107
|
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54:e14602. [PMID: 36161318 DOI: 10.1111/and.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine-disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
108
|
Oxidative Stress Induces Bovine Endometrial Epithelial Cell Damage through Mitochondria-Dependent Pathways. Animals (Basel) 2022; 12:ani12182444. [PMID: 36139304 PMCID: PMC9495185 DOI: 10.3390/ani12182444] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Polymorphonuclear neutrophil (PMN) count is the main diagnostic method of bovine endometritis. High neutrophil PMN counts in the endometrium of cows affected by endometritis suggest the involvement of oxidative stress among the causes of impaired fertility. The damage mechanism of oxidative stress on bovine endometrial epithelial cells (BEECs) is still unelucidated. The objective of this experiment was to investigate the relationship between oxidative stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury to BEECs. Our research showed that there was an imbalance of antioxidant stress in dairy cow uterine with endometritis, oxidative stress damaged dairy cow endometrial epithelial cells through mitochondria-dependent pathways. These findings may provide new insight into the therapeutic target of bovine endometrial cell injury. Abstract Bovine endometritis is a mucosal inflammation that is characterized by sustained polymorphonuclear neutrophil (PMN) infiltration. Elevated PMN counts in the uterine discharge of dairy cows affected by endometritis suggest that oxidative stress may be among the causes of impaired fertility due to the condition. Nevertheless, the effects of oxidative stress-mediated endometritis in dairy cows largely remain uninvestigated. Therefore, fresh uterine tissue and uterine discharge samples were collected to diagnose the severity of endometritis according to the numbers of inflammatory cells in the samples. Twenty-six fresh uteri were classified into healthy, mild, moderate, and severe endometritis groups based on hematoxylin and eosin stain characteristics and the percentage of PMNs in discharge. BEECs were treated with graded concentrations of H2O2 from 50 μM to 200 μM in vitro as a model to explore the mechanism of oxidative stress during bovine graded endometritis. The expressions of antioxidant stress kinases were detected by quantitative fluorescence PCR to verify the oxidative stress level in uteri with endometritis. Reactive oxygen species were detected by fluorescence microscope, and inflammation-related mRNA expression increased significantly after H2O2 stimulation. Moreover, mRNA expression levels of antioxidant oxidative stress-related enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and mitochondrial membrane potential both decreased. Further investigation revealed that expression of the apoptosis regulator Bcl-2/Bax decreased, whereas expression of the mitochondrial apoptosis-related proteins cytochrome c and caspase-3 increased in response to oxidative stress. Our results indicate that an imbalance exists between oxidation and antioxidation during bovine endometritis. Moreover, apoptosis induced in vitro by oxidative stress was characterized by mitochondrial damage in BEECs.
Collapse
|
109
|
Realgar (As 4S 4), a traditional Chinese medicine, induces acute promyelocytic leukemia cell death via the Bcl-2/Bax/Cyt-C/AIF signaling pathway in vitro. Aging (Albany NY) 2022; 14:7109-7125. [PMID: 36098742 PMCID: PMC9512515 DOI: 10.18632/aging.204281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Acute promyelocytic leukemia (APL) is a specific subtype of acute myelogenous leukemia (AML) characterized by the proliferation of abnormal promyelocytes. Realgar, a Chinese medicine containing arsenic, can be taken orally. Traditional Chinese medicine physicians have employed realgar to treat APL for over a thousand years. Therefore, realgar may be a promising candidate for the treatment of APL. Nevertheless, the underlying mechanism behind realgar therapy is largely unclear. The present study aimed to investigate the effect of realgar on cell death in the APL cell line (NB4) in vitro and to elucidate the underlying mechanism. In this study, after APL cells were treated with different concentrations of realgar, the cell survival rate, apoptotic assay, morphological changes, ATP levels and cell cycle arrest were assessed. The expression of Bcl-2, Bax, Cytochrome C (Cyt-C) and apoptosis-inducing factor (AIF) at the mRNA and protein levels were also measured by immunofluorescence, quantitative PCR (qPCR) and Western blotting. We found that realgar could significantly inhibit APL cell proliferation and cell death in a time- and dose-dependent manner. Realgar effectively decreased the ATP levels in APL cells. Realgar also induced APL cell cycle arrest at the S and G2/M phases. Following realgar treatment, the mRNA and protein levels of Bcl-2 were significantly downregulated, whereas the levels of Bax, Cyt-C, and AIF were significantly upregulated. In summary, realgar can induce APL cell death via the Bcl-2/Bax/Cyt-C/AIF signaling pathway, suggesting that realgar may be an effective therapeutic for APL.
Collapse
|
110
|
Karami Fath M, Azami J, Jaafari N, Akbari Oryani M, Jafari N, Karim poor A, Azargoonjahromi A, Nabi-Afjadi M, Payandeh Z, Zalpoor H, Shanehbandi D. Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett 2022; 27:74. [PMID: 36064322 PMCID: PMC9446857 DOI: 10.1186/s11658-022-00377-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
Exosomes, known as a type of extracellular vesicles (EVs), are lipid particles comprising heterogeneous contents such as nucleic acids, proteins, and DNA. These bi-layered particles are naturally released into the extracellular periphery by a variety of cells such as neoplastic cells. Given that exosomes have unique properties, they can be used as vectors and carriers of biological and medicinal particles like drugs for delivering to the desired areas. The proteins and RNAs being encompassed by the circulating exosomes in B-cell malignancies are deemed as the promising sources for diagnostic and prognostic biomarkers, as well as therapeutic agents. Exosomes can also provide a "snapshot" view of the tumor and metastatic landscape at any particular time. Further, clinical research has shown that exosomes are produced by immune cells such as dendritic cells can stimulate the immune system, so these exosomes can be used in antitumor vaccines. Despite the great potential of exosomes in the fields of diagnostic and treatment, further studies are in need for these purposes to reach a convergence notion. This review highlights the applications of exosomes in multiple immune-related diseases, including chronic lymphocytic leukemia, multiple sclerosis, and arthritis rheumatoid, as well as explaining sundry aspects of exosome therapy and the function of exosomes in diagnosing diseases.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Jalil Azami
- Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | | | | | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Dariush Shanehbandi
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
- Immunology Research center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
111
|
Zhao W, Chen C, Zhou J, Chen X, Cai K, Shen M, Chen X, Jiang L, Wang G. Inhibition of Autophagy Promotes the Anti-Tumor Effect of Metformin in Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14174185. [PMID: 36077722 PMCID: PMC9454503 DOI: 10.3390/cancers14174185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common malignant tumor in the head and neck. Due to its high malignancy and easy recurrence, the five-year survival rate is only 50–60%. Currently, commonly used chemotherapy drugs for OSCC include cisplatin, paclitaxel, and fluorouracil, which are highly cytotoxic and cause drug resistance in patients. Therefore, a safe and effective treatment strategy for OSCC is urgent. To address this issue, our study investigated the anti-tumor activity of metformin (the first-line diabetes drug) in OSCC. We found that metformin could inhibit OSCC cell proliferation by promoting apoptosis and blocking the cell cycle in G1 phase. Additionally, we also found that metformin could induce protective autophagy of OSCC cells. After inhibiting autophagy with hydroxychloroquine (HCQ), the metformin-induced apoptosis was enhanced. In vitro, metformin inhibited the growth of subcutaneous xenograft tumor in nude mice and HCQ enhanced this effect of metformin. Therefore, metformin combined with HCQ may become a safe and effective treatment strategy for OSCC.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Chen Chen
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Jianjun Zhou
- Department of Stomatology, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, China
| | - Xiaoqing Chen
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kuan Cai
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Miaomiao Shen
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Xuan Chen
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Lei Jiang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Guodong Wang
- Department of Stomatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Correspondence:
| |
Collapse
|
112
|
Mitra S, Das R, Emran TB, Labib RK, Noor-E-Tabassum, Islam F, Sharma R, Ahmad I, Nainu F, Chidambaram K, Alhumaydhi FA, Chandran D, Capasso R, Wilairatana P. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front Pharmacol 2022; 13:943967. [PMID: 36071845 PMCID: PMC9441672 DOI: 10.3389/fphar.2022.943967] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a life-threatening disease caused by the uncontrolled division of cells, which culminates in a solid mass of cells known as a tumor or liquid cancer. It is the leading cause of mortality worldwide, and the number of cancer patients has been increasing at an alarming rate, with an estimated 20 million cases expected by 2030. Thus, the use of complementary or alternative therapeutic techniques that can help prevent cancer has been the subject of increased attention. Garlic, the most widely used plant medicinal product, exhibits a wide spectrum of biological activities, including antibacterial, hypo-lipidemic, antithrombotic, and anticancer effects. Diallyl disulfide (DADS) is a major organosulfur compound contained within garlic. Recently, several experimental studies have demonstrated that DADS exhibits anti-tumor activity against many types of tumor cells, including gynecological cancers (cervical cancer, ovarian cancer), hematological cancers (leukemia, lymphoma), lung cancer, neural cancer, skin cancer, prostate cancer, gastrointestinal tract and associated cancers (esophageal cancer, gastric cancer, colorectal cancer), hepatocellular cancer cell line, etc. The mechanisms behind the anticancer action of DADS include epithelial-mesenchymal transition (EMT), invasion, and migration. This article aims to review the available information regarding the anti-cancer potential of DADS, as well as summarize its mechanisms of action, bioavailability, and pharmacokinetics from published clinical and toxicity studies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
113
|
The Expression Pattern of Bcl-2 and Bax in the Tumor and Stromal Cells in Colorectal Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081135. [PMID: 36013602 PMCID: PMC9416041 DOI: 10.3390/medicina58081135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Background and objectives: The epithelial and stromal tissues both play a role in the progression of colorectal cancer (CRC). The aim of this study was to assess the expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax in the epithelium as well as the lamina propria of normal colonic controls, low-grade tumor samples and high-grade tumor samples. Materials and Methods: A total of 60 samples consisting of both normal colonic and carcinoma samples was collected from the Department of Pathology, Cytology and Forensic Medicine, University Hospital Center, Split from January 2020 to December 2021. The expression of Bcl-2 and Bax markers was semi-quantitatively and quantitatively evaluated by recording immunofluorescence stain intensity and by counting stained cells in the lamina propria and epithelium. Analysis of positive cells was performed using the Mann-Whitney test. Results: In all samples, Bcl-2 was significantly more expressed in the lamina propria when compared with the epithelium. Bax was significantly more expressed in the epithelium of normal and low-grade cancer samples when compared with their respective laminae propriae. The percentage of Bcl-2-positive cells in lamina propria is about two times lower in high-grade CRC and about three times lower in low-grade CRC in comparison with healthy controls. Contrary to this, the percentage of Bax-positive cells was greater in the epithelium of low-grade CRC in comparison with healthy control and high-grade CRC. Conclusions: Our study provides a new insight into Bcl-2 and Bax expression pattern in CRC. Evaluation of Bcl-2 expression in the lamina propria and Bax expression in the epithelium could provide important information for colorectal cancer prognosis as well as potential treatment strategies.
Collapse
|
114
|
Kotewicz M, Krauze-Baranowska M, Daca A, Płoska A, Godlewska S, Kalinowski L, Lewko B. Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose. Cells 2022; 11:cells11162471. [PMID: 36010548 PMCID: PMC9406555 DOI: 10.3390/cells11162471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
Urolithins are bioactive compounds generated in human and animal intestines because of the bacterial metabolism of dietary ellagitannins (and their constituent, ellagic acid). Due to their multidirectional effects, including anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and antiglycative properties, urolithins are potential novel therapeutic agents. In this study, while considering the future possibility of using urolithins to improve podocyte function in diabetes, we assessed the results of exposing mouse podocytes cultured in normal (NG, 5.5 mM) and high (HG, 25 mM) glucose concentrations to urolithin A (UA) and urolithin B (UB). Podocytes metabolized UA to form glucuronides in a time-dependent manner; however, in HG conditions, the metabolism was lower than in NG conditions. In HG milieu, UA improved podocyte viability more efficiently than UB and reduced the reactive oxygen species level. Both types of urolithins showed cytotoxic activity at high (100 µM) concentration. The UA upregulated total and surface nephrin expression, which was paralleled by enhanced nephrin internalization. Regulation of nephrin turnover was independent of ambient glucose concentration. We conclude that UA affects podocytes in different metabolic and functional aspects. With respect to its pro-survival effects in HG-induced toxicity, UA could be considered as a potent therapeutic candidate against diabetic podocytopathy.
Collapse
Affiliation(s)
- Milena Kotewicz
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Sylwia Godlewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Barbara Lewko
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
115
|
Amirshahrokhi K, Niapour A. Carvedilol attenuates brain damage in mice with hepatic encephalopathy. Int Immunopharmacol 2022; 111:109119. [PMID: 35933745 DOI: 10.1016/j.intimp.2022.109119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Brain injury is the most common and serious consequence of hepatic encephalopathy (HE), and its pathophysiology is poorly understood. Excessive inflammatory, oxidative and apoptotic responses are the major mechanisms involved in the progression of brain injury induced by HE. Carvedilol is an adrenergic receptor antagonist with pronouncedantioxidant and anti-inflammatory activity. The present study aimed to investigatethe effects and underlying mechanisms of carvedilol on HE-induced brain damage in mice. Experimental model of HE was induced by the injection of thioacetamide (200 mg/kg) for two consecutive days and then mice were treated with carvedilol (10 or 20 mg/kg/day, orally) for 3 days in treatment groups. After the behavioral test, animals were sacrificed and the brain tissues were collected for biochemical, real time PCR and immunohistochemical analysis. The results showed that carvedilol improved locomotor impairment and reduced mortality rate in mice with HE. Carvedilol treatment decreased the brain levels of oxidative stress markers and induced Nrf2/HO-1 pathway. Carvedilol inhibited the activity of nuclear factor kappa B (NF-κB) and the expression of pro-inflammatory cytokines TNF-α, IL1β and IL-6 in the brain tissues. Treatment of mice with carvedilol caused a significant reduction in the brain levels of iNOS/NO, myeloperoxidase (MPO), cyclooxygenase (COX)-2 and chemokine MCP-1 as proinflammatory mediators in HE. Moreover, the ratio of Bcl2/Bax was increased and apoptotic cell death was decreased in the brain of mice treated with carvedilol. In conclusion, carvedilol exerted protective effect against HE-induced brain injury through increasing antioxidant defense mechanisms and inhibitionof inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran; Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali Niapour
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
116
|
Li F, Wang H, Chen H, Guo J, Dang X, Ru Y, Wang H. Mechanism of Ferroptosis and Its Role in Spinal Cord Injury. Front Neurol 2022; 13:926780. [PMID: 35756929 PMCID: PMC9218271 DOI: 10.3389/fneur.2022.926780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a non-necrotic form of regulated cell death (RCD) that is primarily characterized by iron-dependent membrane lipid peroxidation and is regulated by cysteine transport, glutathione synthesis, and glutathione peroxidase 4 function as well as other proteins including ferroptosis suppressor protein 1. It has been found that ferroptosis played an important role in many diseases, such as neurodegenerative diseases and ischemia-reperfusion injury. Spinal cord injury (SCI), especially traumatic SCI, is an urgent problem worldwide due to its high morbidity and mortality, as well as the destruction of functions of the human body. Various RCDs, including ferroptosis, are found in SCI. Different from necrosis, since RCD is a form of cell death regulated by various molecular mechanisms in cells, the study of the role played by RCD in SCI will contribute to a deeper understanding of the pathophysiological process, as well as the treatment and functional recovery. The present review mainly introduces the main mechanism of ferroptosis and its role in SCI, so as to provide a new idea for further exploration.
Collapse
Affiliation(s)
- Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Chen
- Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Jianing Guo
- Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Ru
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Haoyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
117
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
118
|
Ershova ES, Shmarina GV, Martynov AV, Zakharova NV, Veiko RV, Umriukhin PE, Kostyuk GP, Kutsev SI, Veiko NN, Kostyuk SV. NADPH-oxidase 4 gene over-expression in peripheral blood lymphocytes of the schizophrenia patients. PLoS One 2022; 17:e0269130. [PMID: 35696356 PMCID: PMC9191697 DOI: 10.1371/journal.pone.0269130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/14/2022] [Indexed: 12/28/2022] Open
Abstract
Introduction Increased systemic oxidative stress is common in schizophrenia (SZ) patients. NADPH-oxidase 4 (NOX4) is the cell oxidoreductase, catalyzing the hydrogen peroxide formation. Presumably, NOX4 is the main oxidative stress factor in a number of diseases such as cardiovascular diseases and cancer. We hypothesized that NOX4 may be involved in the oxidative stress development caused by the disease in the schizophrenic patients’ peripheral blood lymphocytes (PBL). Materials and methods The SZ group included 100 patients (68 men and 32 women aged 28 ± 11 years). The control group included 60 volunteers (35 men and 25 women aged 25 ± 12 years). Flow cytometry analysis (FCA) was used for DNA damage markers (8-oxodG, ɣH2AX), pro- and antiapoptotic proteins (BAX1 and BCL2) and the master-regulator of anti-oxidant response NRF2 detection in the lymphocytes of the untreated SZ patients (N = 100) and the healthy control (HC, N = 60). FCA and RT-qPCR were used for NOX4 and RNANOX4 detection in the lymphocytes. RT-qPCR was used for mtDNA quantitation in peripheral blood mononuclear cells. Cell-free DNA concentration was determined in blood plasma fluorimetrically. Results 8-oxodG, NOX4, and BCL2 levels in the PBL in the SZ group were higher than those in the HC group (p < 0.001). ɣH2AX protein level was increased in the subgroup with high 8-oxodG (p<0.02) levels and decreased in the subgroup with low 8-oxodG (p <0.0001) levels. A positive correlation was found between 8-oxodG, ɣH2AX and BAX1 levels in the SZ group (p <10−6). NOX4 level in lymphocytes did not depend on the DNA damage markers values and BAX1 and BCL2 proteins levels. In 15% of PBL of the HC group a small cellular subfraction was found (5–12% of the total lymphocyte pool) with high DNA damage level and elevated BAX1 protein level. The number of such cells was maximal in PBL samples with low NOX4 protein levels. Conclusion Significant NOX4 gene expression was found a in SZ patients’ lymphocytes, but the corresponding protein is probably not a cause of the DNA damage.
Collapse
Affiliation(s)
| | | | | | - Natalia V. Zakharova
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | | | - Pavel E. Umriukhin
- Research Centre for Medical Genetics, Moscow, Russia
- Normal Physiology Departement, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- * E-mail:
| | - George P. Kostyuk
- N. A. Alexeev Clinical Psychiatric Hospital №1, Moscow Healthcare Department, Moscow, Russia
| | | | | | | |
Collapse
|
119
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
120
|
Zou G, Wan J, Balupillai A, David E, Ranganathan B, Saravanan K. Geraniol enhances peroxiredoxin-1, and prevents isoproterenol-induced oxidative stress and inflammation associated with myocardial infarction in experimental animal models. J Biochem Mol Toxicol 2022; 36:e23098. [PMID: 35608392 DOI: 10.1002/jbt.23098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023]
Abstract
This study has explored the fact that geraniol prevents isoproterenol (ISO)-induced oxidative stress and inflammation-mediated myocardial infarction (MI) through enhanced expression of peroxiredoxin-1 (Prdx-1) in experimental animal models. The experimental strategies of MI were stimulated through the subcutaneous direction of ISO (85 mg/kg body weight) for 14 days. ISO-directed models showed elevated heart rate levels and cardiac markers (serum creatine kinase [CK], serum CK-myocardial band, serum C-reactive proteins, and plasma homocysteine); increased cardiac-troponins-T, and troponin-I levels in both serum and myocardium. Moreover, we perceived that a higher level of lipid peroxidation molecules (thiobarbituric acid reactive substances and lipid hydroperoxides) reduced the antioxidant enzyme levels in plasma and heart tissue of ISO-directed rats. However, geraniol treatment prevents ISO-directed enhancement of the heart rate, cardiac and lipid peroxidative genes; reverted the blood pressure, and antioxidant status in ISO-directed rats. Furthermore, gene expression results revealed that geraniol treatment inhibited the mitogen-activated protein kinase (MAPK) proteins, inflammatory responder (tumor necrosis factor-α, interleukin 6, nuclear factor-κB), and cardiac fibrotic proteins (matrix metalloproteinase-2[MMP-2], MMP-9) in ISO directed rats. Prdx-1 is an antioxidant response element, and it can regulate all the antioxidant proteins and it scavenges harmful radicals. Therefore, enhanced Prdx-1 expression is considered to have a pivotal role in preventing cardiac infarction. In this study, an elevated expression of Prdx1 was noticed in geraniol treated with ISO-directed rats. Hence, we concluded that geraniol is considered a potential phytodrug, and it prevents ISO-directed MAPKs, inflammation, and cardiac markers by enhancing the expression of Prdx1.
Collapse
Affiliation(s)
- Gangqiang Zou
- Department of Macrovascular Surgery, Fuwai Central China Cardiovascular Hospital, Zhengzhou, Henan, China
| | - Jia Wan
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Agilan Balupillai
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | | | - Kalaimani Saravanan
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, India
| |
Collapse
|
121
|
Negm A, Gouda M, Ibrahim HIM. Carboxymethyl Cellulose/Zn-Organic Framework Down-Regulates Proliferation and Up-Regulates Apoptosis and DNA Damage in Colon and Lung Cancer Cell Lines. Polymers (Basel) 2022; 14:2015. [PMID: 35631897 PMCID: PMC9148085 DOI: 10.3390/polym14102015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
A solvothermal technique was used to prepare a Zn-benzenetricarboxylic acid (Zn@BTC) organic framework covered with a carboxymethyl cellulose (CMC/Zn@BTC). Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM), and Brunauer, Emmett, and Teller (BET) surface area were applied to characterize CMC/Zn@BTC. Moreover, the anticancer, anti-migrative, anti-invasive, and anti-proliferative action of CMC/Zn@BTC nanoparticles were assessed on cancer cell lines. Apoptotic markers and DNA damage were assessed to explore the cellular and biological changes induced by CMC/Zn@BTC nanoparticles. The microscopic observation revealed that CMC controls the surface morphology and surface characteristics of the Zn@BTC. The obtained BET data revealed that the Zn@BTC nanocomposite surface area lowers from 1061 m2/g to 740 m2/g, and the pore volume decreases from 0.50 cm3/g to 0.37 cm3/g when CMC is applied to Zn@BTC nanocomposites. The cellular growth of DLD1 and A549 was suppressed by CMC/Zn@BTC, with IC50 values of 19.1 and 23.1 μg/mL, respectively. P53 expression was upregulated, and Bcl-2 expression was downregulated by CMC/Zn@BTC, which promoted the apoptotic process. Furthermore, CMC/Zn@BTC caused DNA damage in both cancer cell lines with diverse impact, 66 percent (A549) and 20 percent (DLD1) compared to cisplatin's 52 percent reduction. CMC/Zn@BTC has anti-invasive properties and significantly reduced cellular migration. Moreover, CMC/Zn@BTC aims key proteins associated with metastasis, proliferation and programmed cellular death.
Collapse
Affiliation(s)
- Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hairul-Islam M. Ibrahim
- Biological Science Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
122
|
Effect of amygdalin on MCF-7, MDA-MB-231 and T-47D breast cancer cells in the in vitro study. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Introduction
Amygdalin is a chemical compound found in the seeds of many edible plants. Different studies using cancer cell cultures in vitro indicate its potential anti-cancer activity. Various types of cancer cells showed different responses to different doses of amygdalin. This may suggest many in vitro models of the activity of this compound. The aim of the study was to evaluate the effect of amygdalin on MCF-7, MDA-MB-231, and T-47D breast cancer cells and on HFF-1 normal dermal fibroblasts (control cell culture) in vitro. Cell proliferation, viability, and the changes in mRNA transcript levels of basic proteins (BAX, caspase 3 and BCL-2) involved in apoptosis were analyzed.
Materials and Methods
MCF-7, MDA-MB-231, T-47D, and HFF-1 cell lines were purchased from the ATCC. Amygdalin derived from apricot kernels was purchased from Sigma-Aldrich. CVDE, WST-1, and LDH assays were used to evaluate the effects of amygdalin on cell proliferation and viability. Molecular evaluation of gene transcription levels was performed using the RT-qPCR technique.
Results
Amygdalin causes a dose-dependent decrease in proliferation and metabolic activity of MCF-7, MDA-MB-231, and T-47D cells in the in vitro cultures. In all cell cultures amygdalin affects the mRNA levels of pro-apoptotic BAX and caspase 3 proteins and anti-apoptotic BCL-2 protein.
Conclusions
Amygdalin anti-cancer activity may be selective in relation to different cell types. It seems that examined breast cancer cells are more sensitive to amygdalin than normal cells.
Collapse
|
123
|
Winkler S, Winkler I, Figaschewski M, Tiede T, Nordheim A, Kohlbacher O. De novo identification of maximally deregulated subnetworks based on multi-omics data with DeRegNet. BMC Bioinformatics 2022; 23:139. [PMID: 35439941 PMCID: PMC9020058 DOI: 10.1186/s12859-022-04670-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background With a growing amount of (multi-)omics data being available, the extraction of knowledge from these datasets is still a difficult problem. Classical enrichment-style analyses require predefined pathways or gene sets that are tested for significant deregulation to assess whether the pathway is functionally involved in the biological process under study. De novo identification of these pathways can reduce the bias inherent in predefined pathways or gene sets. At the same time, the definition and efficient identification of these pathways de novo from large biological networks is a challenging problem. Results We present a novel algorithm, DeRegNet, for the identification of maximally deregulated subnetworks on directed graphs based on deregulation scores derived from (multi-)omics data. DeRegNet can be interpreted as maximum likelihood estimation given a certain probabilistic model for de-novo subgraph identification. We use fractional integer programming to solve the resulting combinatorial optimization problem. We can show that the approach outperforms related algorithms on simulated data with known ground truths. On a publicly available liver cancer dataset we can show that DeRegNet can identify biologically meaningful subgraphs suitable for patient stratification. DeRegNet can also be used to find explicitly multi-omics subgraphs which we demonstrate by presenting subgraphs with consistent methylation-transcription patterns. DeRegNet is freely available as open-source software. Conclusion The proposed algorithmic framework and its available implementation can serve as a valuable heuristic hypothesis generation tool contextualizing omics data within biomolecular networks.
Collapse
Affiliation(s)
- Sebastian Winkler
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany. .,International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.
| | - Ivana Winkler
- International Max Planck Research School (IMPRS) "From Molecules to Organism", Tübingen, Germany.,Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirjam Figaschewski
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Thorsten Tiede
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany
| | - Alfred Nordheim
- Interfaculty Institute for Cell Biology (IFIZ), University of Tuebingen, Tübingen, Germany.,Leibniz Institute on Aging (FLI), Jena, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tuebingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tuebingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tuebingen, Tübingen, Germany
| |
Collapse
|
124
|
Siddiqui SH, Subramaniyan SA, Park J, Kang D, Khan M, Belal SA, Lee SC, Shim K. Modulatory effects of cell–cell interactions between porcine skeletal muscle satellite cells and fibroblasts on the expression of myogenesis-related genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Shah Ahmed Belal
- Department of Poultry Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
125
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
126
|
John E, Mishra B, Tripathi AS, R A. Protective effect of Celastrus paniculatus on cognitive function in glutamate induced brain injured mice by reducing the intracellular influx of Ca . Int J Dev Neurosci 2022; 82:331-338. [PMID: 35338672 DOI: 10.1002/jdn.10182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/11/2022] Open
Abstract
Present investigation evaluates the protective effect of Celastrus paniculatus (CP) on the cognitive function in neuronal injured mice. Neuronal injury was induced by oral administration of monosodium glutamate (MSG) at a dose of 1.66 g/kg/day for 30 days. Mice in the CP treated group receives CP 30 mg/kg i.p. and CP+GGA treated group received CP 30 mg/kg i.p. and glutamic acid (GGA, 1.5 mg/kg, i.p.) 30 min prior to the administration of MSG for 30 days. Assessment of cognitive function was done using Morris water maze. Level of inflammatory cytokines and production of reactive oxygen species (ROS) was estimated in the brain tissue of brain injured mice. Moreover, intracellular concentration of Ca+ ion was estimated in the brain tissue and expression of Bcl-2, Bax and caspase-3 protein was estimated in the brain tissue by western blot assay. Cognitive function was attenuated in CP treated glutamate injured mice. Data of the study suggest that treatment with CP reduces the level of inflammatory cytokines and production of ROS in the brain tissue compared to negative control group. There was reduction in the concentration of Ca+ ion in the neuronal cells in CP treated group than negative control group of mice. Treatment with CP ameliorates the expression of Bax, Bcl-2 and caspase-3 in the brain tissue of glutamate induced brain injured mice. In conclusion, data of the study suggest that treatment with CP attenuates the cognitive function and neuronal apoptosis in glutamate induced neuronal injury by reducing the concentration of intracellular Ca+ ion.
Collapse
Affiliation(s)
- Elezabeth John
- Department of Pharmacology, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| | - Bharat Mishra
- Department of Pharmacology, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India.,Geeta College of Pharmacy, Lucknow, Uttar Pradesh
| | | | - Aleesha R
- Department of Pharmacology, Nirmala College of Pharmacy, Muvattupuzha, Kerala, India
| |
Collapse
|
127
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
128
|
Sadoughi F, Dana PM, Asemi Z, Shafabakhash R, Mohammadi S, Heidar Z, Mirzamoradi M, Targhazeh N, Mirzaei H. Molecular and cellular mechanisms of melatonin in breast cancer. Biochimie 2022; 202:26-33. [PMID: 35341930 DOI: 10.1016/j.biochi.2022.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
Breast cancer is considered as one of the most important health problems due to its poor prognosis and high rate of mortality and new diagnosed cases. Annually, a great number of deaths are reported in men and women; this means that despite all the improvements in cancer diagnosis and treatment, still, an intense need for more effective approaches exists. Melatonin is a multivalent compound which has a hand in several cellular and molecular processes and therefore, is an appropriate candidate for treatment of many diseases like cancer. Currently, considerable properties of this agent have oriented the research towards investigating its effects specifically in breast cancer. In this review, we gathered a bunch of evidence in order to give a new sight for breast cancer treatment utilizing melatonin. We expect that in coming years, melatonin will become one of the most common therapeutic drugs with lesser side-effects than other chemotherapeutic drugs.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Rana Shafabakhash
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| | - Sotoudeh Mohammadi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Heidar
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Mirzamoradi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Targhazeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R., Iran.
| |
Collapse
|
129
|
Gouda M, Ibrahim HIM, Negm A. Chitosan Containing Nano Zn-Organic Framework: Synthesis, Characterization and Biological Activity. Polymers (Basel) 2022; 14:1276. [PMID: 35406150 PMCID: PMC9002788 DOI: 10.3390/polym14071276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
A biologically active agent based on a Zn-1,3,5-benzen tricarboxylic acid (Zn-BTC) framework incorporated into a chitosan (CS) biopolymer (Zn-BTC@CS) was successfully synthesized using a microwave irradiation technique. The synthesized Zn-BTC@CS was characterized using a scanning electron microscope (SEM) and the obtained data indicated a highly smooth surface morphology of the synthesized Zn-BTC and no morphological changes when the Zn-BTC covered the CS. In addition, the particle size diameter varied from 20 to 40 nm. XRD displayed a well-maintained Zn-BTC structure, and the crystal structure of Zn-BTC was not distorted by the composition of Zn-BTC and chitosan in the nanocomposite. Data from BET analysis revealed that the specific surface area of the Zn-BTC was reduced from 995.15 m2/g to 15.16 m2/g after coating with chitosan. The pore size distribution and pore volume of the Zn-BTC, Zn-BTC@CS were centered at 37.26 nm and at 22.5 nm, respectively. Zn-BTC@CS exhibited anticancer efficacy against lung and colon cancer cell lines. Zn-BTC@CS inhibited the proliferation of A549 and DLD-1 cancer cell lines in a dose-dependent manner with IC50 values of 13.2 and 19.8 µg/mL for the colon and lung cancer cell lines, respectively. Zn-BTC@CS stimulated the apoptotic process through up-regulating P53 expression and down-regulating Bcl-2 expression. Moreover, Zn-BTC@CS induced in vitro DNA fragmentation in both cancer cell lines with significantly different affinity by 66% (A549) and 20% (DLD-1) versus 52% reduction by Cisplatin. Zn-BTC@CS (IC50) exhibited anti-invasive activity and dramatically inhibited the migration of lung and colon cancer cell lines. This study provides evidence that Zn-BTC@CS targets the essential proteins involved in proliferation, metastasis, and apoptosis. Thus, Zn-BTC@CS has chemotherapeutic potential for inhibiting lung and colon cancer viability and growth.
Collapse
Affiliation(s)
- Mohamed Gouda
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | | | - Amr Negm
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
130
|
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022; 11:983. [PMID: 35326433 PMCID: PMC8946783 DOI: 10.3390/cells11060983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNA, miRs) play crucial roles in cardiovascular disease regulating numerous processes, including inflammation, cell proliferation, angiogenesis, and cell death. Herein, we present an updated and comprehensive overview of the functional involvement of miRs in the regulation of cardiomyocyte death, a central event in acute myocardial infarction, ischemia/reperfusion, and heart failure. Specifically, in this systematic review we are focusing on necrosis, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Fahimeh Varzideh
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Pasquale Mone
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Stanislovas S. Jankauskas
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
131
|
iRhom pseudoproteases regulate ER stress-induced cell death through IP 3 receptors and BCL-2. Nat Commun 2022; 13:1257. [PMID: 35273168 PMCID: PMC8913617 DOI: 10.1038/s41467-022-28930-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The folding capacity of membrane and secretory proteins in the endoplasmic reticulum (ER) can be challenged by physiological and pathological perturbations, causing ER stress. If unresolved, this leads to cell death. We report a role for iRhom pseudoproteases in controlling apoptosis due to persistent ER stress. Loss of iRhoms causes cells to be resistant to ER stress-induced apoptosis. iRhom1 and iRhom2 interact with IP3 receptors, critical mediators of intracellular Ca2+ signalling, and regulate ER stress-induced transport of Ca2+ into mitochondria, a primary trigger of mitochondrial membrane depolarisation and cell death. iRhoms also bind to the anti-apoptotic regulator BCL-2, attenuating the inhibitory interaction between BCL-2 and IP3 receptors, which promotes ER Ca2+ release. The discovery of the participation of iRhoms in the control of ER stress-induced cell death further extends their potential pathological significance to include diseases dependent on protein misfolding and aggregation. Cells that cannot cope with persistent endoplasmic reticulum stress will die. Here, the authors show that iRhom pseudoproteases regulate cell death by modulating the ability of BCL-2 to inhibit calcium flow through IP3R channels.
Collapse
|
132
|
Feng X, Yan Z, Zhou F, Lou J, Lyu X, Ren X, Zeng Z, Liu C, Zhang S, Zhu D, Huang H, Yang J, Zhao Y. Discovery of a selective and covalent small-molecule inhibitor of BFL-1 protein that induces robust apoptosis in cancer cells. Eur J Med Chem 2022; 236:114327. [DOI: 10.1016/j.ejmech.2022.114327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
|
133
|
Mohammed GH, Elsayed Essawy AEW, Bayoumi AH, Rouby Mostafa SA, Elsayed RM. Possible protective role of L-thyroxin on the parotid gland of adult male albino rat in carbimazole induced hypothyroidism: histological, histomorphometry, and ultrastructural study. Ultrastruct Pathol 2022; 46:80-95. [DOI: 10.1080/01913123.2022.2027590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
134
|
Liu L, Cheng X, Yang H, Lian S, Jiang Y, Liang J, Chen X, Mo S, Shi Y, Zhao S, Li J, Jiang R, Yang DH, Wu Y. BCL-2 expression promotes immunosuppression in chronic lymphocytic leukemia by enhancing regulatory T cell differentiation and cytotoxic T cell exhaustion. Mol Cancer 2022; 21:59. [PMID: 35193595 PMCID: PMC8862474 DOI: 10.1186/s12943-022-01516-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) results in increased susceptibility to infections. T cell dysfunction is not associated with CLL in all patients; therefore, it is important to identify CLL patients with T cell defects. The role of B-cell lymphoma-2 (BCL-2) in CLL has been explored; however, few studies have examined its role in T cells in CLL patients. Herein, we have investigated the regulatory role of BCL-2 in T cells in the CLL tumor microenvironment. METHODS The expression of BCL-2 in T cells was evaluated using flow cytometry. The regulatory roles of BCL-2 were investigated using single-cell RNA sequencing (scRNA-seq) and verified using multi-parameter flow cytometry on CD4 and CD8 T cells. The clinical features of BCL-2 expression in T cells in CLL were also explored. RESULTS We found a significant increase in BCL-2 expression in the T cells of CLL patients (n = 266). Single cell RNA sequencing (scRNA-seq) indicated that BCL-2+CD4+ T cells had the gene signature of increased regulatory T cells (Treg); BCL-2+CD8+ T cells showed the gene signature of exhausted cytotoxic T lymphocytes (CTL); and increased expression of BCL-2 was associated with T cell activation and cellular adhesion. The results from scRNA-seq were verified in peripheral T cells from 70 patients with CLL, wherein BCL-2+CD4+ T cells were enriched with Tregs and had higher expression of interleukin-10 and transforming growth factor-β than BCL-2-CD4+ T cells. BCL-2 expression in CD8+T cells was associated with exhausted cells (PD-1+Tim-3+) and weak expression of granzyme B and perforin. T cell-associated cytokine profiling revealed a negative association between BCL-2+ T cells and T cell activation. Decreased frequencies and recovery functions of BCL-2+T cells were observed in CLL patients in complete remission after treatment with venetoclax. CONCLUSION BCL-2 expression in the T cells of CLL patients is associated with immunosuppression via promotion of Treg abundance and CTL exhaustion.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Xianfeng Cheng
- Department of Clinical laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Hui Yang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Senlin Lian
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuegen Jiang
- Department of Clinical laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Jinhua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Xiao Chen
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Suo Mo
- Department of Clinical laboratory, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yu Shi
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Sishu Zhao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China
| | - Runqiu Jiang
- Jiangsu Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China. .,State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, 210093, China. .,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Yujie Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China. .,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
135
|
Zhang W, Zhang L, Zhou H, Li C, Shao C, He Y, Yang J, Wan H. Astragaloside IV Alleviates Infarction Induced Cardiomyocyte Injury by Improving Mitochondrial Morphology and Function. Front Cardiovasc Med 2022; 9:810541. [PMID: 35265681 PMCID: PMC8899080 DOI: 10.3389/fcvm.2022.810541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The protective effect of astragaloside IV (AS-IV) on myocardial injury after myocardial infarction has been reported. However, the underlying mechanism is still largely unknown. We established a myocardial infarction model in C57BL/6 mice and injected intraperitoneally with 10 mg/kg/d AS-IV for 4 weeks. The cardiac function, myocardial fibrosis, and angiogenesis were investigated by echocardiography, Masson's trichrome staining, and CD31 and smooth muscle actin staining, respectively. Cardiac mitochondrial morphology was visualized by transmission electron microscopy. Cardiac function, infarct size, vascular distribution, and mitochondrial morphology were significantly better in AS-IV-treated mice than in the myocardial infarction model mice. In vitro, a hypoxia-induced H9c2 cell model was established to observe cellular apoptosis and mitochondrial function. H9c2 cells transfected with silent information regulator 3 (Sirt3) targeting siRNA were assayed for Sirt3 expression and activity. Sirt3 silencing eliminated the beneficial effects of AS-IV and abrogated the inhibitory effect of AS-IV on mitochondrial division. These results suggest that AS-IV protects cardiomyocytes from hypoxic injury by maintaining mitochondrial homeostasis in a Sirt3-dependent manner.
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chang Li
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chongyu Shao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Yu He
| | - Jiehong Yang
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Jiehong Yang
| | - Haitong Wan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan
| |
Collapse
|
136
|
Liu WM, Hall NK, Liu HSY, Hood FL, Dalgleish AG. Combination of cannabidiol with low‑dose naltrexone increases the anticancer action of chemotherapy in vitro and in vivo. Oncol Rep 2022; 47:76. [PMID: 35179218 DOI: 10.3892/or.2022.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/24/2022] [Indexed: 11/06/2022] Open
Abstract
We previously reported that both cannabidiol (CBD) and low‑dose naltrexone (LDN) exhibit complex effects on G‑protein coupled receptors, which can impact the expression and function of other members of this superfamily. These receptors feed into and interact with central signalling cascades that determine the ease by which cells engage in apoptosis, and can be used as a way to prime cancer cells to other treatments. The present study was designed to investigate the effect of combining these two agents on cancer cell lines in vitro and in a mouse model, and focused on how the sequence of administration may affect the overall action. The results showed both agents had minimal effect on cell numbers when used simultaneously; however, the combination of LDN and CBD, delivered in this specific sequence, significantly reduced the number of cells, and was superior to the regimen where the order of the agents was reversed. For example, there was a 35% reduction in cell numbers when using LDN before CBD compared to a 22% reduction when using CBD before LDN. The two agents also sensitised cells to chemotherapy as significant decreases in cell viability were observed when they were used before chemotherapy. In mouse models, the use of both agents enhanced the effect of gemcitabine, and crucially, their use resulted in no significant toxicity in the mice, which actually gained more weight compared to those without this pre‑treatment (+6.5 vs. 0%). Overall, the results highlight the importance of drug sequence when using these drugs. There is also a need to translate these observations into standard chemotherapy regimens, especially for common tumour types where treatment is often not completed due to toxicities.
Collapse
Affiliation(s)
- Wai M Liu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Nadine K Hall
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | - Harry S Y Liu
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| | | | - Angus G Dalgleish
- Institute for Infection and Immunity, St George's University of London, London SW17 0RE, UK
| |
Collapse
|
137
|
Bin-Jumah MN, Nadeem MS, Gilani SJ, Al-Abbasi FA, Ullah I, Alzarea SI, Ghoneim MM, Alshehri S, Uddin A, Murtaza BN, Kazmi I. Genes and Longevity of Lifespan. Int J Mol Sci 2022; 23:1499. [PMID: 35163422 PMCID: PMC8836117 DOI: 10.3390/ijms23031499] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Aging is a complex process indicated by low energy levels, declined physiological activity, stress induced loss of homeostasis leading to the risk of diseases and mortality. Recent developments in medical sciences and an increased availability of nutritional requirements has significantly increased the average human lifespan worldwide. Several environmental and physiological factors contribute to the aging process. However, about 40% human life expectancy is inherited among generations, many lifespan associated genes, genetic mechanisms and pathways have been demonstrated during last decades. In the present review, we have evaluated many human genes and their non-human orthologs established for their role in the regulation of lifespan. The study has included more than fifty genes reported in the literature for their contributions to the longevity of life. Intact genomic DNA is essential for the life activities at the level of cell, tissue, and organ. Nucleic acids are vulnerable to oxidative stress, chemotherapies, and exposure to radiations. Efficient DNA repair mechanisms are essential for the maintenance of genomic integrity, damaged DNA is not replicated and transferred to next generations rather the presence of deleterious DNA initiates signaling cascades leading to the cell cycle arrest or apoptosis. DNA modifications, DNA methylation, histone methylation, histone acetylation and DNA damage can eventually lead towards apoptosis. The importance of calorie restriction therapy in the extension of lifespan has also been discussed. The role of pathways involved in the regulation of lifespan such as DAF-16/FOXO (forkhead box protein O1), TOR and JNK pathways has also been particularized. The study provides an updated account of genetic factors associated with the extended lifespan and their interactive contributory role with cellular pathways.
Collapse
Affiliation(s)
- May Nasser Bin-Jumah
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan;
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Aziz Uddin
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra 21300, Pakistan;
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology (AUST), Abbottabad 22310, Pakistan;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
138
|
Raj S. R, D. N. D, Mondal S, Ashokan M, Thota LN, Karuthadurai T, J. NKT, Ramesha KP. Expression analysis of pro-apoptotic BAX and anti-apoptotic BCL-2 genes in relation to lactation performance in Deoni and Holstein Friesian crossbred cows. Anim Biotechnol 2022:1-8. [PMID: 35067189 DOI: 10.1080/10495398.2021.2025066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The study was designed with the objective of expression analysis of pro-apoptotic BAX and anti-apoptotic BCL-2 genes on lactation performance in Bos indicus and HF crossbred cows during early lactation. BAX/BCL-2 mRNA expression ratio in HF crossbreds showed a steady increase from 30th day to 90th day, but in Deoni cows the ratio exhibited a different pattern, which increased from day 30 to day 60, decreased on day 75, and then increased on day 90. BAX/BCL-2 expression ratio in Deoni and HF crossbreds were lowest on day 30 and highest on day 90. On contrary, the milk yield was highest on day 30 and lowest on day 90 suggesting BCL-2 gene favors milk production and BAX gene oppose milk production. In comparison to HF crossbreds, Deoni cows exhibited highest BAX/BCL-2 ratio at the end of early lactation, indicating Bos indicus cows were more sensitive to apoptosis than HF crossbreds. Comparison of daily milk yield with BAX/BCL-2 mRNA expression ratio revealed significant negative correlation with a correlation coefficient of -0.98 (P < 0.01) and -0.95 (P < 0.05) in Deoni and HF crossbred cows, respectively. Our study provides new insights into understanding the genetic control of mammary apoptosis between Bos indicus and HF crossbreds.
Collapse
Affiliation(s)
- Reshma Raj S.
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Das D. N.
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - S. Mondal
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - M. Ashokan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | | | - T. Karuthadurai
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| | - Nikhil Kumar Tej J.
- ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - Kerekoppa P. Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore, India
| |
Collapse
|
139
|
Tsai YT, Huang HC, Kao ST, Chang TT, Cheng CY. Neuroprotective Effects of Alpinia oxyphylla Miq against Mitochondria-Related Apoptosis by the Interactions between Upregulated p38 MAPK Signaling and Downregulated JNK Signaling in the Subacute Phase of Cerebral Ischemia-Reperfusion in Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:2057-2083. [DOI: 10.1142/s0192415x22500884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apoptosis in the penumbra region is the major cell death mechanism occurring during ischemia–reperfusion injury’s early phase. Here, we evaluated how the Alpinia oxyphylla Miq (AOM) affects mitochondria-related apoptosis 3 days after transient middle cerebral artery occlusion (MCAo) and examined the mechanisms underlying the regulation of MAPK-mediated mitochondria-related apoptotic signaling in the peri-infarct cortex in rats. The rats were administered the AOM extract intraperitoneally at doses of 0.2[Formula: see text]g/kg (AOM-0.2[Formula: see text]g), 0.4[Formula: see text]g/kg (AOM-0.4[Formula: see text]g), or 0.8[Formula: see text]g/kg (AOM-0.8[Formula: see text]g) at MCAo initiation. The AOM-0.4[Formula: see text]g and AOM-0.8[Formula: see text]g significantly ameliorated apoptotic cell death and considerably downregulated cytochrome c (cyto c) and cleaved caspase-3 immunoreactivity 3 days after reperfusion. Simultaneously, they significantly downregulated cytosolic p-JNK/JNK, cathepsin B/actin, cyto c/actin, Smac/DIABLO/actin, cleaved caspase-3/actin, and AIF/actin and mitochondrial p53/HSP60 and Bax/HSP60 fractions but upregulated cytosolic p-p38 MAPK/p38 MAPK, p-p90RSK/actin, p-Bad/Bad, p-CREB/actin, and XIAP/actin and cytosolic and mitochondrial Bcl-2/Bax and Bcl-xL/Bax fractions in the peri-infarct cortex. Pretreatment with SB203580 — a p38 MAPK inhibitor — completely abrogated the effects of AOM-0.8[Formula: see text]g on the aforementioned protein expression, whereas treatment with SP600125 — a JNK inhibitor — exerted protective effects similar to those of AOM-0.8[Formula: see text]g. Treatment with 0.4 or 0.8[Formula: see text]g/kg AOM has neuroprotective effects against mitochondria-related apoptosis by suppressing cyto c, Smac/DIABLO, and AIF release from the mitochondria to cytosol. The anti-mitochondria related apoptotic effects of the AOM extract are attributable to the interactions between upregulated p38 MAPK/p90RSK-mediated p-Bad and CREB signaling and downregulated JNK/cathepsin B-mediated Bax and p53 signaling in the peri-infarct cortex 3 days after transient MCAo.
Collapse
Affiliation(s)
- Yueh-Ting Tsai
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Traditional Chinese Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| | - Hui-Chi Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Shung-Te Kao
- School of Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Tung-Ti Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
| | - Chin-Yi Cheng
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University Taichung 40402, Taiwan
- Department of Chinese Medicine, Hui-Sheng Hospital, Taichung 42056, Taiwan
- Department of Chinese Medicine, China Medical University Hospital, Taichung 42056, Taiwan
| |
Collapse
|
140
|
Zhang X, Wang Q, Zhang J, Song M, Shao B, Han Y, Yang X, Li Y. The Protective Effect of Selenium on T-2-Induced Nephrotoxicity Is Related to the Inhibition of ROS-Mediated Apoptosis in Mice Kidney. Biol Trace Elem Res 2022; 200:206-216. [PMID: 33547999 DOI: 10.1007/s12011-021-02614-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 02/04/2023]
Abstract
T-2 toxin is produced by the Fusarium genus. Ingestion of food or feed contaminated by T-2 toxin will cause damage to kidney. Selenium (Se), an essential trace element, showed the significant protective effects against kidney and renal cell damage induced by toxic substances. To explore the protective effects and mechanisms of Se against T-2-induced renal lesions, forty-eight male Kunming mice were exposed to T-2 toxin (1.0 mg/kg) and/or Se (0.2 mg/kg) for 28 days. In this study, we found that Se alleviated T-2-induced nephrotoxicity, presenting as increasing the body weight and kidney coefficient, relieving the renal structure injury, decreasing the contents of renal function-related biomarkers, decreasing the levels of reactive oxygen species (ROS), and increasing the mitochondrial membrane potential in T-2 toxin-treated mice. In addition, inhibition of renal cell apoptosis by Se was associated with blocking the mitochondrial pathway in T-2 toxin-treated mice, presenting as decreasing the protein expression of cytochrome-c, activities of caspase-3/9, as well as regulating the protein and mRNA expressions of Bax and Bcl-2. These results documented that the alleviating effect of Se on T-2-induced nephrotoxicity is related to the inhibition of ROS-mediated renal apoptosis.
Collapse
Affiliation(s)
- Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Qi Wang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China
| | - Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, NO. 600, Changjiang Road, Xiangfang District, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
141
|
Nagano Y, Arafiles JVV, Kuwata K, Kawaguchi Y, Imanishi M, Hirose H, Futaki S. Grafting Hydrophobic Amino Acids Critical for Inhibition of Protein-Protein Interactions on a Cell-Penetrating Peptide Scaffold. Mol Pharm 2021; 19:558-567. [PMID: 34958576 DOI: 10.1021/acs.molpharmaceut.1c00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stapled peptides are a promising class of conformationally restricted peptides for modulating protein-protein interactions (PPIs). However, the low membrane permeability of these peptides is an obstacle to their therapeutic applications. It is common that only a few hydrophobic amino acid residues are mandatory for stapled peptides to bind to their target proteins. Hoping to create a novel class of membrane-permeable PPI inhibitors, the phenylalanine, tryptophan, and leucine residues that play a critical role in inhibiting the p53-HDM2 interaction were grafted into the framework of CADY2─a cell-penetrating peptide (CPP) having a helical propensity. Two analogues (CADY-3FWL and CADY-10FWL) induced apoptotic cell death but lacked the intended HDM2 interaction. Pull-down experiments followed by proteomic analysis led to the elucidation of nesprin-2 as a candidate binding target. Nesprin-2 is considered to play a role in the nuclear translocation of β-catenin upon activation of the Wnt signaling pathway, which leads to the expression of antiapoptosis proteins and cell survival. Cells treated with the two analogues showed decreased nuclear localization of β-catenin and reduced mRNA expression of related antiapoptotic proteins. These data suggest inhibition of β-catenin nuclear translocation as a possible mode of action of the described cell-penetrating stapled peptides.
Collapse
Affiliation(s)
- Yuki Nagano
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | | | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
142
|
Han L, Kou J, Hu K, Wang Y, Tang Z, Wu Z, Song X. Protective effects of Re-yan-ning mixture on Streptococcus pneumonia in rats based on network pharmacology. PHARMACEUTICAL BIOLOGY 2021; 59:209-221. [PMID: 33678123 PMCID: PMC7939573 DOI: 10.1080/13880209.2021.1872653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Re-yan-ning mixture (RYNM) is a new national drug approved by China's State Food and Drug Administration for the treatment of colds, simple pneumonia and acute bronchitis. OBJECTIVE To determine the mechanism of action of RYNM in the treatment of bacterial pneumonia. MATERIALS AND METHODS Using the network pharmacology approach, the multiple components, component candidate targets and multiple therapeutic targets of RYNM were screened and functionally enriched. Also, we established a rat Streptococcus pneumonia model to verify the results of network pharmacology enrichment analysis. Forty male SPF Sprague Dawley rats were divided into four groups of 10 rats: control (normal saline), model (normal saline), levofloxacin-intervened and RYNM-intervened groups. IL-10, NOS2, COX-1, IL-6, TNF-α and NF-κB in serum and BALF were detected by ELISA. Western blot detected IL-17, IL-6, TNF-α, COX-2 and Bcl-2. RESULTS The network pharmacology approach successfully identified 48 bioactive components in RYNM, and 65 potential targets and 138 signal pathways involved in the treatment of Streptococcus pneumonia with RYNM. The in vivo experiments indicated that model group has visible inflammation and lesions while RYNM and levofloxacin groups have not. The RYNM exhibited its therapeutic effects on Streptococcus pneumonia mainly via the regulation of cell proliferation and survival through the IL-6/IL-10/IL-17, Bax/Bcl-2, COX-1/COX-2, NF-κB and TNF-α signalling pathways. DISCUSSION AND CONCLUSIONS The present study demonstrated the protective effects of RYNM on Streptococcus pneumonia, providing a potential mechanism for the treatment of bacterial pneumonia with RYNM.
Collapse
Affiliation(s)
- Lizhu Han
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Kou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Kunxia Hu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yunlan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhisheng Wu
- College of Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
143
|
Melo AM, Taher NAB, Doherty DG, Molloy EJ. The role of lymphocytes in neonatal encephalopathy. Brain Behav Immun Health 2021; 18:100380. [PMID: 34755125 PMCID: PMC8560973 DOI: 10.1016/j.bbih.2021.100380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 01/19/2023] Open
Abstract
Neonatal encephalopathy is a syndrome characterised by abnormal neurological function often caused by a hypoxic insult during childbirth. Triggers such as hypoxia-ischaemia result in the release of cytokines and chemokines inducing the infiltration of neutrophils, natural killer cells, B cells, T cells and innate T cells into the brain. However, the role of these cells in the development of the brain injury is poorly understood. We review the mechanisms by which lymphocytes contribute to brain damage in NE. NK, T and innate T cells release proinflammatory cytokines contributing to the neurodegeneration in the secondary and tertiary phase of injury, whereas B cells and regulatory T cells produce IL-10 protecting the brain in NE. Targeting lymphocytes may have therapeutic potential in the treatment of NE in terms of management of inflammation and brain damage, particularly in the tertiary or persistent phases.
Collapse
Key Words
- Blood-brain barrier, BBB
- Hypoxia-ischaemia encephalopathy, HIE
- Hypoxia-ischaemia, HI
- Hypoxic-ischaemia
- Immune response
- Lymphocytes
- Neonatal encephalopathy
- Neonatal encephalopathy, NE
- Regulatory T cells, Tregs
- T cell receptors, TCRs
- T helper, Th
- Therapeutic hypothermia, TH
- White Matter Injury, WMI
- activating transcription factor-6, ATF6
- central nervous system, CNS
- granulocyte-macrophage colony-stimulating factor, GM-CSF
- interleukin, IL
- major histocompatibility complex, MHC
- natural killer, NK cells
- tumour necrosis factor-alpha, TNF-α
Collapse
Affiliation(s)
- Ashanty M. Melo
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Nawal AB. Taher
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Derek G. Doherty
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
| | - Eleanor J. Molloy
- Discipline of Paediatrics and Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Immunology Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Trinity Research in Childhood Centre, Trinity College Dublin, Crumlin, Dublin, Ireland
- Discipline of Paediatrics, Children's Hospital Ireland (CHI) at Tallaght & Crumlin, Crumlin, Dublin, Ireland
- Discipline of Coombe Women and Infants University Hospital, Crumlin, Dublin, Ireland
- Discipline of Neonatology & National Children's Research Centre, Crumlin, Dublin, Ireland
- Discipline of National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
144
|
Antibacterial, Immunomodulatory, and Lung Protective Effects of Boswelliadalzielii Oleoresin Ethanol Extract in Pulmonary Diseases: In Vitro and In Vivo Studies. Antibiotics (Basel) 2021; 10:antibiotics10121444. [PMID: 34943656 PMCID: PMC8698344 DOI: 10.3390/antibiotics10121444] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Lung diseases such as asthma, chronic obstructive pulmonary diseases, and pneumonia are causing many global health problems. The COVID-19 pandemic has directed the scientific community's attention toward performing more research to explore novel therapeutic drugs for pulmonary diseases. Herein, gas chromatography coupled with mass spectrometry tentatively identified 44 compounds in frankincense ethanol extract (FEE). We investigated the antibacterial and antibiofilm effects of FEE against Pseudomonas aeruginosa bacteria, isolated from patients with respiratory infections. In addition, its in vitro immunomodulatory activity was explored by the detection of the gene expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), nitric oxide synthase (iNOS), cycloxygenase-2 (COX-2), and nuclear factor kappa-B (NF-κB) in lipopolysaccharide (LPS)-induced peripheral blood mononuclear cells (PBMC). In addition, its anticancer activity against the A549 lung cancer cell line and human skin fibroblast (HSF) normal cell line was studied. Moreover, the in vivo lung protective potential of FEE was explored histologically and immunohistochemically in mice using a benzo(a)pyrene induced lung damage model. FEE exhibited antibacterial and antibiofilm activities besides the significant inhibition of gene expression of TNFα, IL-6, and NF-κB. FEE also exerted a cytotoxic effect against A549 cell line. Histological and immunohistochemical investigations with morphometric analysis of the mean area percentage and color intensity of positive TNF-α, COX-2, and NF-κB and Bcl-2 reactions revealed the lung protective activity of FEE. This study outlined the promising therapeutic activity of oleoresin obtained from B. dalzielii in the treatment of different pulmonary diseases.
Collapse
|
145
|
Kulbay M, Paimboeuf A, Ozdemir D, Bernier J. Review of cancer cell resistance mechanisms to apoptosis and actual targeted therapies. J Cell Biochem 2021; 123:1736-1761. [PMID: 34791699 DOI: 10.1002/jcb.30173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/04/2021] [Accepted: 10/22/2021] [Indexed: 11/11/2022]
Abstract
The apoptosis pathway is a programmed cell death mechanism that is crucial for cellular and tissue homeostasis and organ development. There are three major caspase-dependent pathways of apoptosis that ultimately lead to DNA fragmentation. Cancerous cells are known to highly regulate the apoptotic pathway and its role in cancer hallmark acquisition has been discussed over the past decades. Numerous mutations in cancer cell types have been reported to be implicated in chemoresistance and treatment outcome. In this review, we summarize the mutations of the caspase-dependant apoptotic pathways that are the source of cancer development and the targeted therapies currently available or in trial.
Collapse
Affiliation(s)
- Merve Kulbay
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada.,Department of Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - Adeline Paimboeuf
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| | - Derman Ozdemir
- Department of Medicine, One Brooklyn Health-Brookdale Hospital Medical Center, Brooklyn, New York, USA
| | - Jacques Bernier
- INRS - Centre Armand-Frappier Santé Biotechnologie, Laval, Quebec, Canada
| |
Collapse
|
146
|
Vasconcelos JCD, Siqueira IBD, Maia FFR, Parisi MCR, Zantut-Wittmann DE. Influence of thyroid hormone in the expression of the marker pro-apoptosis BID, in spite of the predominance of anti-apoptosis activation in intratiroidal lymphocytic infiltration in Hashimoto's thyroiditis. Mol Cell Endocrinol 2021; 537:111421. [PMID: 34389447 DOI: 10.1016/j.mce.2021.111421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
UNLABELLED Cell destruction in Hashimoto's thyroiditis (HT) involves autoantibodies and cytotoxic T lymphocytes. Thyrocytes maintenance occurs by pro-apoptotic, anti-apoptotic and cell proliferation balance. OBJECTIVES To characterize factors related to the mechanisms of apoptosis and cell proliferation in thyroid cells and intrathyroid lymphocytic infiltrate in HT. METHODS We assessed lymphocytic infiltrate and thyroid cells from HT and normal thyroid by immunohistochemical analysis of cell proliferation (Ki-67), antiproliferation (p27Kip1), pro-apoptosis (Fas, Fas-ligand, BID) and anti-apoptosis (MCL-1, BCL2) markers. RESULTS Lymphocytic infiltrate presented BCL2 and MCL-1 higher expression, Ki-67 and p27kip1 balance. Thyrocytes exhibited Fas and FasL balance, higher BID expression; MCL-1, BCL-2, Ki-67 similar to the normal thyroid. T4 and higher lymphocytes BID expression were associated. CONCLUSIONS In lymphocytic infiltrate predominated anti-apoptosis in relation to pro-apoptosis except for BID. Thyrocytes presented pro-apoptosis and anti-apoptosis balance and cell proliferation similar to normal thyroid. T4-associated BID expression in HT lymphocytes suggests the influence of thyroid hormone as a signal to up-regulate the BID pro-apoptotic protein and thus increase lymphocytic apoptosis rates.
Collapse
Affiliation(s)
- Jessica Castro de Vasconcelos
- Endocrinology Division, Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil.
| | | | | | - Maria Cândida Ribeiro Parisi
- Endocrinology Division, Department of Internal Medicine, School of Medical Sciences, University of Campinas, São Paulo, Brazil.
| | | |
Collapse
|
147
|
Global Reprogramming of Apoptosis-Related Genes during Brain Development. Cells 2021; 10:cells10112901. [PMID: 34831124 PMCID: PMC8616463 DOI: 10.3390/cells10112901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
To enable long-term survival, mammalian adult neurons exhibit unique apoptosis competence. Questions remain as to whether and how neurons globally reprogram the expression of apoptotic genes during development. We systematically examined the in vivo expression of 1923 apoptosis-related genes and associated histone modifications at eight developmental ages of mouse brains. Most apoptotic genes displayed consistent temporal patterns across the forebrain, midbrain, and hindbrain, suggesting ubiquitous robust developmental reprogramming. Although both anti- and pro-apoptotic genes can be up- or downregulated, half the regulatory events in the classical apoptosis pathway are downregulation of pro-apoptotic genes. Reduced expression in initiator caspases, apoptosome, and pro-apoptotic Bcl-2 family members restrains effector caspase activation and attenuates neuronal apoptosis. The developmental downregulation of apoptotic genes is attributed to decreasing histone-3-lysine-4-trimethylation (H3K4me3) signals at promoters, where histone-3-lysine-27-trimethylation (H3K27me3) rarely changes. By contrast, repressive H3K27me3 marks are lost in the upregulated gene groups, for which developmental H3K4me3 changes are not predictive. Hence, developing brains remove epigenetic H3K4me3 and H3K27me3 marks on different apoptotic gene groups, contributing to their downregulation and upregulation, respectively. As such, neurons drastically alter global apoptotic gene expression during development to transform apoptosis controls. Research into neuronal cell death should consider maturation stages as a biological variable.
Collapse
|
148
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
149
|
Scuderi SA, Casili G, Basilotta R, Lanza M, Filippone A, Raciti G, Puliafito I, Colarossi L, Esposito E, Paterniti I. NLRP3 Inflammasome Inhibitor BAY-117082 Reduces Oral Squamous Cell Carcinoma Progression. Int J Mol Sci 2021; 22:ijms222011108. [PMID: 34681768 PMCID: PMC8540383 DOI: 10.3390/ijms222011108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 02/07/2023] Open
Abstract
Oral cancer is one of the most common human malignancies, and its incidence is increasing worldwide. In particular, oral squamous cell carcinoma (OSCC) is characterized by high rates of proliferation, invasiveness, and metastasis. Currently, standard treatment for OSCC includes surgical removal, chemotherapy, and radiotherapy; however, the survival rate of patients with OSCC remains low, thus new therapies are needed. It has been proven that excessive NLRP3 inflammasome activation and apoptosis alteration may contribute to oral cancer progression. This study aimed to investigate the effect of BAY-117082, an NLRP3 inflammasome inhibitor, in an in vitro and in vivo xenograft model of oral cancer. In vitro results revealed that BAY-117082 at concentrations of 5, 10, and 30 µM was able to reduce OSCC cell viability. BAY-117082 at higher concentrations significantly reduced NLRP3, ASC, caspase-1, IL-1β, and IL-18 expression. Moreover, Bax, Bad, and p53 expression were increased, whereas Bcl-2 expression was reduced. Furthermore, the in vivo study demonstrated that BAY-117082 at doses of 2.5 and 5 mg/kg significantly decreased subcutaneous tumor mass, and also reduced NLRP3 inflammasome pathway activation. Therefore, based on these results, the use of BAY-117082 could be considered a promising strategy to counteract oral cancer progression, thanks its ability to modulate the NLRP3 inflammasome and apoptosis pathways.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
| | | | - Ivana Puliafito
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Catania, Italy; (I.P.); (L.C.)
| | - Lorenzo Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Catania, Italy; (I.P.); (L.C.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
- Correspondence: ; Tel.: (+39)-090-676-5208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 6 Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (S.A.S.); (G.C.); (R.B.); (M.L.); (A.F.); (I.P.)
| |
Collapse
|
150
|
Zhang Y, Mahmood T, Tang Z, Wu Y, Yuan J. Effects of naturally oxidized corn oil on inflammatory reaction and intestinal health of broilers. Poult Sci 2021; 101:101541. [PMID: 34788712 PMCID: PMC8605181 DOI: 10.1016/j.psj.2021.101541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/25/2021] [Accepted: 10/08/2021] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effects of naturally oxidized corn oil on the inflammatory reaction and intestinal health of broilers. Total 450, one-day-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicate cages (15 birds in each replicate cage). The dietary treatment array consisted of the varying ratio of nonoxidized corn oil to naturally oxidized corn oil from 0:100, 25:75, 50:50, 75:25, and 100:0, respectively. The experimental period was 42 d. Serum, jejunum, and contents of cecum samples were taken at the age of 42 d of broilers. The results showed no significant difference in the body weight gain (BWG) with a different proportion of oxidized corn oil compared with the 0% oxidized oil group on d 42. The feed intake (FI), the concentration of immunoglobulin G (IgG), interferon-γ (IFN-γ), and interleukin-10 (IL10) in serum showed a significant quadratic response with the increase of oxidized oil concentration on d 42. The serum's concentration of IgG, IFN-γ, and IL-10 reached the highest value at 75% oxidized corn oil. In addition, the mRNA expression levels of interleukin-1β (IL-1β), IFN-γ, nuclear factor kappa B (NF-κB), tumor necrosis factor α (TNF-α), and myeloid differentiation factor-88 (MyD88) in the jejunum were significantly affected by different proportions of oxidized corn oil, and the gene expression levels were highest at 75% oxidized corn oil on d 42. The mRNA expression of Bcl2-associated X (Bax) in the jejunum showed a significantly quadratic curve with the increase of oxidized oil concentration, and its gene expression was the highest after adding 50% oxidized corn oil according to the regression equation on d 42. The villus height/crypt depth and goblet cells of jejunum decreased linearly with the increasing proportion of oxidized corn oil and reached the lowest point after adding 100% oxidized corn oil on d 42. The β diversity showed the remarkable differentiation of microbial communities among 5 groups, and the microbial community of the 0% oxidized oil group was significantly separated from that of 75 and 100% oxidized oil groups in the cecum. Taken together, these results showed that a low dose of naturally oxidized corn oil is not harmful to the growth of broilers, while a high dose of oxidized corn oil will trigger the inflammatory response and adversely affect the gut health of broilers.
Collapse
Affiliation(s)
- Yuqing Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Tahir Mahmood
- Adisseo Animal Nutrition, Dubai 00000, United Arab Emirates
| | - Zhenhai Tang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuqin Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|