101
|
Lenzini L, Iori E, Vettore M, Gugelmo G, Radu C, Padoan A, Carraro G, Simioni P, Calò L, Avogaro A, Rossi GP, Vitturi N. Increased Soluble Interleukin 6 Receptors in Fabry Disease. J Clin Med 2023; 13:218. [PMID: 38202225 PMCID: PMC10780051 DOI: 10.3390/jcm13010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Fabry disease (FD) is an X-linked lysosome storage disease that results in the accumulation of globotriaosylceramide (Gb3) throughout the body leading to irreversible target organ damage. As the role of secondary mediators (inflammatory molecules) and their mechanisms has not been fully elucidated, we focused on the interleukin (IL)-6 system in adult FD patients and in matched healthy subjects. To obtain insights into the complex regulation of IL-6 actions, we used a novel approach that integrates information from plasma and exosomes of FD patients (n = 20) and of healthy controls (n = 15). Soluble IL-6 receptor (sIL-6R) levels were measured in plasma with the ELISA method, and membrane-bound IL-6R was quantified in plasma and urinary exosomes using flow cytometry. In FD patients, the levels of soluble IL-6R in plasma were higher than in control subjects (28.0 ± 5.4 ng/mL vs. 18.9 ± 5.4 ng/mL, p < 0.0001); they were also higher in FD subjects with the classical form as compared to those with the late-onset form of the disease (36.0 ± 11.4 ng/mL vs. 26.1 ± 4.5 ng/mL, p < 0.0001). The percentage of urinary exosomes positive for IL-6R was slightly lower in FD (97 ± 1 vs. 100 ± 0% of events positive for IL-6R, p < 0.05); plasma IL-6 levels were not increased. These results suggest a potential role of IL-6 in triggering the inflammatory response in FD. As in FD patients only the levels of sIL-6Rs are consistently higher than in healthy controls, the IL-6 pathogenic signal seems to prevail over the homeostatic one, suggesting a potential mechanism causing multi-systemic damage in FD.
Collapse
Affiliation(s)
- Livia Lenzini
- Internal & Emergency Medicine Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (L.L.); (G.P.R.)
| | - Elisabetta Iori
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| | - Monica Vettore
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| | - Giorgia Gugelmo
- Division of Clinical Nutrition, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| | - Claudia Radu
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (C.R.); (P.S.)
| | - Andrea Padoan
- Laboratory Medicine Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy;
| | - Gianni Carraro
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (G.C.); (L.C.)
| | - Paolo Simioni
- General Medicine and Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (C.R.); (P.S.)
| | - Lorenzo Calò
- Nephrology, Dialysis and Transplant Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (G.C.); (L.C.)
| | - Angelo Avogaro
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| | - Gian Paolo Rossi
- Internal & Emergency Medicine Unit, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (L.L.); (G.P.R.)
| | - Nicola Vitturi
- Division of Metabolic Diseases, Department of Medicine, Padova University Hospital, 35128 Padova, Italy; (E.I.); (M.V.); (A.A.)
| |
Collapse
|
102
|
Chen YH, van Zon S, Adams A, Schmidt-Arras D, Laurence ADJ, Uhlig HH. The Human GP130 Cytokine Receptor and Its Expression-an Atlas and Functional Taxonomy of Genetic Variants. J Clin Immunol 2023; 44:30. [PMID: 38133879 PMCID: PMC10746620 DOI: 10.1007/s10875-023-01603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Genetic variants in IL6ST encoding the shared cytokine receptor for the IL-6 cytokine family GP130 have been associated with a diverse number of clinical phenotypes and disorders. We provide a molecular classification for 59 reported rare IL6ST pathogenic or likely pathogenic variants and additional polymorphisms. Based on loss- or gain-of-function, cytokine selectivity, mono- and biallelic associations, and variable cellular mosaicism, we grade six classes of IL6ST variants and explore the potential for additional variants. We classify variants according to the American College of Medical Genetics and Genomics criteria. Loss-of-function variants with (i) biallelic complete loss of GP130 function that presents with extended Stüve-Wiedemann Syndrome; (ii) autosomal recessive hyper-IgE syndrome (HIES) caused by biallelic; and (iii) autosomal dominant HIES caused by monoallelic IL6ST variants both causing selective IL-6 and IL-11 cytokine loss-of-function defects; (iv) a biallelic cytokine-specific variant that exclusively impairs IL-11 signaling, associated with craniosynostosis and tooth abnormalities; (v) somatic monoallelic mosaic constitutively active gain-of-function variants in hepatocytes that present with inflammatory hepatocellular adenoma; and (vi) mosaic constitutively active gain-of-function variants in hematopoietic and non-hematopoietic cells that are associated with an immune dysregulation syndrome. In addition to Mendelian IL6ST coding variants, there are common non-coding cis-acting variants that modify gene expression, which are associated with an increased risk of complex immune-mediated disorders and trans-acting variants that affect GP130 protein function. Our taxonomy highlights IL6ST as a gene with particularly strong functional and phenotypic diversity due to the combinatorial biology of the IL-6 cytokine family and predicts additional genotype-phenotype associations.
Collapse
Affiliation(s)
- Yin-Huai Chen
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Sarah van Zon
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Alex Adams
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Dirk Schmidt-Arras
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK.
- Biomedical Research Centre, University of Oxford, Oxford, UK.
- Department of Paediatrics, University of Oxford, Oxford, UK.
| |
Collapse
|
103
|
McKinley E, Speckhart SL, Keane JA, Oliver MA, Rhoads ML, Edwards JL, Biase FH, Ealy AD. Influences of Supplementing Selective Members of the Interleukin-6 Cytokine Family on Bovine Oocyte Competency. Animals (Basel) 2023; 14:44. [PMID: 38200775 PMCID: PMC10778514 DOI: 10.3390/ani14010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
This work explored whether supplementing selective members of the interleukin-6 (IL6) cytokine family during in vitro bovine oocyte maturation affects maturation success, cumulus-oocyte complex (COC) gene expression, fertilization success, and embryo development potential. Human recombinant proteins for IL6, IL11, and leukemia inhibitory factor (LIF) were supplemented to COCs during the maturation period, then fertilization and embryo culture commenced without further cytokine supplementation. The first study determined that none of these cytokines influenced the rate that oocytes achieved arrest at meiosis II. The second study identified that LIF and IL11 supplementation increases AREG transcript abundance. Supplementation with IL6 supplementation did not affect AREG abundance but reduced HAS2 transcript abundance. Several other transcriptional markers of oocyte competency were not affected by any of the cytokines. The third study determined that supplementing these cytokines during maturation did not influence fertilization success, but either LIF or IL11 supplementation increased blastocyst development. No effect of IL6 supplementation on subsequent blastocyst development was detected. The fourth experiment explored whether each cytokine treatment affects the post-thaw survivability of cryopreserved IVP blastocysts. None of the cytokines supplemented during oocyte maturation produced any positive effects on post-thaw blastocyst re-expansion and hatching. In conclusion, these outcomes implicate IL11 and LIF as potentially useful supplements for improving bovine oocyte competency.
Collapse
Affiliation(s)
- Endya McKinley
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Savannah L. Speckhart
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Jessica A. Keane
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Mary A. Oliver
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Michelle L. Rhoads
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - J. Lannett Edwards
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA;
| | - Fernando H. Biase
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| | - Alan D. Ealy
- School of Animal Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (E.M.); (S.L.S.); (J.A.K.); (M.A.O.); (M.L.R.); (F.H.B.)
| |
Collapse
|
104
|
Günther V, Allahqoli L, Deenadayal-Mettler A, Maass N, Mettler L, Gitas G, Andresen K, Schubert M, Ackermann J, von Otte S, Alkatout I. Molecular Determinants of Uterine Receptivity: Comparison of Successful Implantation, Recurrent Miscarriage, and Recurrent Implantation Failure. Int J Mol Sci 2023; 24:17616. [PMID: 38139443 PMCID: PMC10743587 DOI: 10.3390/ijms242417616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Embryo implantation is one of the most remarkable phenomena in human reproduction and is not yet fully understood. Proper endometrial function as well as a dynamic interaction between the endometrium itself and the blastocyst-the so-called embryo-maternal dialog-are necessary for successful implantation. Several physiological and molecular processes are involved in the success of implantation. This review describes estrogen, progesterone and their receptors, as well as the role of the cytokines interleukin (IL)-6, IL-8, leukemia inhibitory factor (LIF), IL-11, IL-1, and the glycoprotein glycodelin in successful implantation, in cases of recurrent implantation failure (RIF) and in cases of recurrent pregnancy loss (RPL). Are there differences at the molecular level underlying RIF or RPL? Since implantation has already taken place in the case of RPL, it is conceivable that different molecular biological baseline situations underlie the respective problems.
Collapse
Affiliation(s)
- Veronika Günther
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Leila Allahqoli
- School of Public Health, Iran University of Medical Sciences (IUMS), Tehran 14535, Iran
| | - Anupama Deenadayal-Mettler
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Nicolai Maass
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Liselotte Mettler
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Georgios Gitas
- Private Gynecologic Practice, Chrisostomou Smirnis 11Β, 54622 Thessaloniki, Greece
| | - Kristin Andresen
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Melanie Schubert
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Johannes Ackermann
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| | - Sören von Otte
- University Fertility Center, Ambulanzzentrum of University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany
| | - Ibrahim Alkatout
- Department of Obstetrics and Gynecology, University Hospitals Schleswig-Holstein, Campus Kiel, Arnold-Heller-Strasse 3 (House C), 24105 Kiel, Germany; (V.G.)
| |
Collapse
|
105
|
Lee HJ, Zhao Y, Fleming I, Mehta S, Wang X, Wyk BV, Ronca SE, Kang H, Chou CH, Fatou B, Smolen KK, Levy O, Clish CB, Xavier RJ, Steen H, Hafler DA, Love JC, Shalek AK, Guan L, Murray KO, Kleinstein SH, Montgomery RR. Early cellular and molecular signatures correlate with severity of West Nile virus infection. iScience 2023; 26:108387. [PMID: 38047068 PMCID: PMC10692672 DOI: 10.1016/j.isci.2023.108387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Infection with West Nile virus (WNV) drives a wide range of responses, from asymptomatic to flu-like symptoms/fever or severe cases of encephalitis and death. To identify cellular and molecular signatures distinguishing WNV severity, we employed systems profiling of peripheral blood from asymptomatic and severely ill individuals infected with WNV. We interrogated immune responses longitudinally from acute infection through convalescence employing single-cell protein and transcriptional profiling complemented with matched serum proteomics and metabolomics as well as multi-omics analysis. At the acute time point, we detected both elevation of pro-inflammatory markers in innate immune cell types and reduction of regulatory T cell activity in participants with severe infection, whereas asymptomatic donors had higher expression of genes associated with anti-inflammatory CD16+ monocytes. Therefore, we demonstrated the potential of systems immunology using multiple cell-type and cell-state-specific analyses to identify correlates of infection severity and host cellular activity contributing to an effective anti-viral response.
Collapse
Affiliation(s)
- Ho-Joon Lee
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yujiao Zhao
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Ira Fleming
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sameet Mehta
- Department of Genetics and Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520, USA
| | - Xiaomei Wang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shannon E. Ronca
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Heather Kang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chih-Hung Chou
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Benoit Fatou
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kinga K. Smolen
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Department of Infectious Disease, Precision Vaccines Program, Boston Children’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hanno Steen
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - David A. Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - J. Christopher Love
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Alex K. Shalek
- The Institute of Medical Science and Engineering, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, USA
| | - Kristy O. Murray
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX 77030, USA
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Ruth R. Montgomery
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
106
|
Nguyen VT, Fields CJ, Ashley NT. Temporal dynamics of pro-inflammatory cytokines and serum corticosterone following acute sleep fragmentation in male mice. PLoS One 2023; 18:e0288889. [PMID: 38096187 PMCID: PMC10721077 DOI: 10.1371/journal.pone.0288889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Obstructive sleep apnea is increasing worldwide, leading to disordered sleep patterns and inflammatory responses in brain and peripheral tissues that predispose individuals to chronic disease. Pro-inflammatory cytokines activate the inflammatory response and are normally regulated by glucocorticoids secreted from adrenal glands. However, the temporal dynamics of inflammatory responses and hypothalamic-pituitary-adrenal (HPA) axis activation in relation to acute sleep fragmentation (ASF) are undescribed. Male C57BL/6J mice were exposed to ASF or control conditions (no ASF) over specified intervals (1, 2, 6, or 24 h) and cytokine gene expression (IL-1β, TNF-α) in brain and peripheral tissues as well as serum glucocorticoid and interleukin-6 (IL-6) concentration were assessed. The HPA axis was rapidly activated, leading to elevated serum corticosterone from 1-24 h of ASF compared with controls. This activation was followed by elevated serum IL-6 concentration from 6-24 h of ASF. The tissue to first exhibit increased pro-inflammatory gene expression from ASF was heart (1 h of ASF). In contrast, pro-inflammatory gene expression was suppressed in hypothalamus from 1 h of ASF, but elevated at 6 h. Because the HPA axis was activated throughout ASF, this suggests that brain, but not peripheral, pro-inflammatory responses were rapidly inhibited by glucocorticoid immunosuppression.
Collapse
Affiliation(s)
- Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Cameron J. Fields
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| |
Collapse
|
107
|
Lin H, Li W, Sun R, Xu C, Zhang C, Gao J, Cao W, Qin X, Zhong S, Chen Y. Purification and characterization of a novel immunoregulatory peptide from Sipunculus nudus L. protein. Food Sci Nutr 2023; 11:7779-7790. [PMID: 38107114 PMCID: PMC10724601 DOI: 10.1002/fsn3.3695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to purify and characterize immunoregulatory peptides from Sipunculus nudus L. and to explore the underlying mechanisms. Ultrafiltration, gel filtration chromatography, and reverse phase high-performance liquid chromatography (RP-HPLC) were used to purify the peptide following enzymatic hydrolysis. Rates of lymphocyte proliferation and phagocytosis as well as nitric oxide (NO) production levels were used as indicators of immunoregulatory activity to screen the fractions. The amino acid sequence of the peptide, designated as SNLP, was identified as Arg-Val-Lys-Gly-Lys-Ile-Leu-Ala-Lys-Arg-Leu-Asn (RVKGKILAKRLN) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Treatment with the synthetic SNLP increased the proliferation and phagocytosis of RAW 264.7 macrophages and promoted the secretion of tumor necrosis factor-ɑ (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and NO levels. The mRNA levels of these cytokines and iNOS were also increased by SNLP. Our results provide preliminary evidence suggesting that SNLP acts as a dual immunomodulatory peptide with immunostimulatory and anti-inflammatory activities. In summary, SNLP derived from Sipunculus nudus L. is a potent immunoregulatory peptide and represents a potential functional food or immunoregulatory drug.
Collapse
Affiliation(s)
- Haisheng Lin
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Wan Li
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Ruikun Sun
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Cheng Xu
- Empress TherapeuticsCambridgeMassachusettsUSA
| | - Chaohua Zhang
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Jialong Gao
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Wenhong Cao
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Xiaoming Qin
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Yibin Chen
- Hainan Semnl Biotechnology Co. Ltd.ChengmaiChina
| |
Collapse
|
108
|
Setiadi H, El-Banayosy AM, Long JW, Maybauer MO, Mihu MR, El Banayosy A. Oncostatin M for characterizing the inflammatory burden and outcome of V-V ECMO in ARDS patients. Artif Organs 2023; 47:1885-1892. [PMID: 37476931 DOI: 10.1111/aor.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Assessing the outcome of Veno-Venous Extracorporeal Membrane Oxygenation (V-V ECMO) support remains challenging as plasma lactate (pLA), the widely used tool for this purpose, has been shown unreliable. We hypothesized that plasma oncostatin M (pOSM), a sensitive marker of leukocyte activation in infection and inflammation, could address this deficiency. METHODS Plasma OSM levels were measured by ELISA in 30 Acute Respiratory Distress Syndrome (ARDS) patients, prior to cannulation (baseline) and decannulation. RESULTS Based on the absolute pOSM levels at presentation, patients were separated into two groups, A and B. Patients in group A had low pOSM levels (Mean ± SD; Median, 1.1 ± 3.8; 0 pg/mL), whereas group B had high pOSM levels (1548 ± 1999; 767 pg/mL) [t-test: p < 0.01]. The percentage of pOSM levels at decannulation relative to baseline OSM levels was significantly higher in those who died (116.8 ± 68.0; 85.3%) than those who survived (47.6 ± 25.5; 48.9%) [t-test: p = 0.02; Mann-Whitney U Test: p = 0.01]. Conversely, no significant difference was observed in the percentage of pLA levels between those who died (142.9 ± 179.9; 89.8%) and those who survived (79.3 ± 34.3; 81.8%) [t-test: p = 0.31; Mann-Whitney U Test: p = 0.63]. CONCLUSION These early findings suggested critical value of absolute and relative pOSM to characterize the inflammatory burden of ARDS patients and the outcome of their V-V ECMO support.
Collapse
Affiliation(s)
- Hendra Setiadi
- Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma, USA
| | - Ahmed M El-Banayosy
- Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma, USA
| | - James W Long
- Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma, USA
| | - Marc O Maybauer
- Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma, USA
- Department of Anesthesiology, Division of Critical Care Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Mircea R Mihu
- Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma, USA
| | - Aly El Banayosy
- Advanced Cardiac Care, INTEGRIS Baptist Medical Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
109
|
Sarieva K, Kagermeier T, Khakipoor S, Atay E, Yentür Z, Becker K, Mayer S. Human brain organoid model of maternal immune activation identifies radial glia cells as selectively vulnerable. Mol Psychiatry 2023; 28:5077-5089. [PMID: 36878967 PMCID: PMC9986664 DOI: 10.1038/s41380-023-01997-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023]
Abstract
Maternal immune activation (MIA) during critical windows of gestation is correlated with long-term neurodevelopmental deficits in the offspring, including increased risk for autism spectrum disorder (ASD) in humans. Interleukin 6 (IL-6) derived from the gestational parent is one of the major molecular mediators by which MIA alters the developing brain. In this study, we establish a human three-dimensional (3D) in vitro model of MIA by treating induced pluripotent stem cell-derived dorsal forebrain organoids with a constitutively active form of IL-6, Hyper-IL-6. We validate our model by showing that dorsal forebrain organoids express the molecular machinery necessary for responding to Hyper-IL-6 and activate STAT signaling upon Hyper-IL-6 treatment. RNA sequencing analysis reveals the upregulation of major histocompatibility complex class I (MHCI) genes in response to Hyper-IL-6 exposure, which have been implicated with ASD. We find a small increase in the proportion of radial glia cells after Hyper-IL-6 treatment through immunohistochemistry and single-cell RNA-sequencing. We further show that radial glia cells are the cell type with the highest number of differentially expressed genes, and Hyper-IL-6 treatment leads to the downregulation of genes related to protein translation in line with a mouse model of MIA. Additionally, we identify differentially expressed genes not found in mouse models of MIA, which might drive species-specific responses to MIA. Finally, we show abnormal cortical layering as a long-term consequence of Hyper-IL-6 treatment. In summary, we establish a human 3D model of MIA, which can be used to study the cellular and molecular mechanisms underlying the increased risk for developing disorders such as ASD.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Shokoufeh Khakipoor
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ezgi Atay
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, Germany.
- Heidelberger Akademie der Wissenschaften, Heidelberg, Germany.
| |
Collapse
|
110
|
Xu X, Wen S, Zhang Y, Cao W, Yue P, Kong J, Liu M, Fan Y, Chen J, Ji Z, Dong Y, Zhou G, Li B, Liu A, Bao F. A key protein from Borrelia burgdorferi could stimulate cytokines in human microglial cells and inhibitory effects of Cucurbitacin IIa. IBRO Neurosci Rep 2023; 15:376-385. [PMID: 38046885 PMCID: PMC10689270 DOI: 10.1016/j.ibneur.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Lyme neuroborreliosis (LNB) is an infectious disease of the nervous system caused by Borrelia burgdorferi (Bb) infection. However, its pathogenesis is not fully understood. We used recombinant BmpA (rBmpA) to stimulate human microglia cell HMC3, then collected the culture supernatant and extracted total RNA from cells, and used the supernatant for cytokine chip, then ELISA and qPCR technology were used to validate the results from cytokine chip. After rBmpA stimulation of microglia, 24 inflammation-related cytokines showed elevated expression. Among them, six cytokines (IL-6, IL-8, CCL2, CCL5, CXCL1, and CXCL10) increased significantly in mRNA transcription, three cytokines (IL-6, IL-8, and CXCL10) concentrations in the cell supernatant increased significantly after the rBmpA stimulation, and CuIIa could inhibit expression of these cytokines. The BmpA can stimulate human microglia to produce large amounts of cytokines, leading to the occurrence of inflammation, which may be closely related to the development of LNB. CuIIa can inhibit BmpA-induced cytokine production in microglia, which may have potential therapeutic effects on LNB.
Collapse
Affiliation(s)
- Xin Xu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Shiyuan Wen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Department of Intensive Care Unit, First People's Hospital of Yunnan Province, Kunming, China
| | - Yu Zhang
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Wenjing Cao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Peng Yue
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Jing Kong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Meixiao Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yuxin Fan
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Jingjing Chen
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Zhenhua Ji
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yan Dong
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Guozhong Zhou
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Bingxue Li
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| | - Fukai Bao
- The Institute for Tropical Medicine, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming, China
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
- Yunnan Province Key Laboratory of Children's Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
111
|
Jasemi SV, Zia S, Mirbahari SG, Sadeghi M. A systematic review and meta-analysis to evaluate blood levels of interleukin-6 in lung cancer patients. KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA = POLISH JOURNAL OF CARDIO-THORACIC SURGERY 2023; 20:240-250. [PMID: 38283553 PMCID: PMC10809806 DOI: 10.5114/kitp.2023.134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024]
Abstract
Introduction The exact mechanism responsible for inflammation in malignancy is not completely understood, but it is possible that interleukin-6 (IL-6) plays a major role in triggering and maintaining an inflammatory response. Aim To conduct a systematic review and meta-analysis of the levels of IL-6 in the serum/plasma of lung cancer (LC) patients. Material and methods The researchers searched four databases up to September 11, 2022, to find studies that reported on IL-6 levels in LC patients compared to healthy controls (HCs). They calculated effect sizes using standardized mean difference (SMD) with a 95% confidence interval (CI). To evaluate the quality of each study, they used the Newcastle-Ottawa Scale (NOS). They performed subgroup analysis, sensitivity analysis, meta-regression analysis, heterogeneity analyses, trial sequential analysis, and publication bias with the trim-and-fill method. Results The meta-analysis included 28 studies, and the results showed that the pooled SMD was 1.71 (95% CI: 1.22, 2.19; p < 0.00001; I2 = 98%), indicating that LC patients had significantly higher levels of IL-6 in their serum/plasma than HCs. Conclusions The study found that the publication year and quality score of the studies were positively associated with the level of IL-6, while the sample size was inversely related. The research suggests that measuring IL-6 levels in the blood could be useful for detecting and monitoring LC as it appears to be a reliable biomarker.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soha Zia
- Department of Pathology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Masoud Sadeghi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
112
|
Castelo-Soccio L, Kim H, Gadina M, Schwartzberg PL, Laurence A, O'Shea JJ. Protein kinases: drug targets for immunological disorders. Nat Rev Immunol 2023; 23:787-806. [PMID: 37188939 PMCID: PMC10184645 DOI: 10.1038/s41577-023-00877-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
Protein kinases play a major role in cellular activation processes, including signal transduction by diverse immunoreceptors. Given their roles in cell growth and death and in the production of inflammatory mediators, targeting kinases has proven to be an effective treatment strategy, initially as anticancer therapies, but shortly thereafter in immune-mediated diseases. Herein, we provide an overview of the status of small molecule inhibitors specifically generated to target protein kinases relevant to immune cell function, with an emphasis on those approved for the treatment of immune-mediated diseases. The development of inhibitors of Janus kinases that target cytokine receptor signalling has been a particularly active area, with Janus kinase inhibitors being approved for the treatment of multiple autoimmune and allergic diseases as well as COVID-19. In addition, TEC family kinase inhibitors (including Bruton's tyrosine kinase inhibitors) targeting antigen receptor signalling have been approved for haematological malignancies and graft versus host disease. This experience provides multiple important lessons regarding the importance (or not) of selectivity and the limits to which genetic information informs efficacy and safety. Many new agents are being generated, along with new approaches for targeting kinases.
Collapse
Affiliation(s)
- Leslie Castelo-Soccio
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hanna Kim
- Juvenile Myositis Pathogenesis and Therapeutics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Department of Immunology, Royal Free London Hospitals NHS Foundation Trust, London, UK.
- University College London Hospitals NHS Foundation Trust, London, UK.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
113
|
Majrashi M, Kotowska A, Scurr D, Hicks JM, Ghaemmaghami A, Yang J. Sustained Release of Dexamethasone from 3D-Printed Scaffolds Modulates Macrophage Activation and Enhances Osteogenic Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15. [PMID: 38016086 PMCID: PMC10726309 DOI: 10.1021/acsami.3c09774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Enhancing osteogenesis via modulating immune cells is emerging as a new approach to address the current challenges in repairing bone defects and fractures. However, much remains unknown about the crosstalk between immune cells and osteolineage cells during bone formation. Moreover, biomaterial scaffold-based approaches to effectively modulate this crosstalk to favor bone healing are also lacking. This study is the first to investigate the interactions between macrophages and mesenchymal stem cells (MSCs) in co-cultures with the sustained release of an anti-inflammatory and pro-osteogenesis drug (dexamethasone) from three-dimensional (3D)-printed scaffolds. We successfully achieved the sustained release of dexamethasone from polycaprolactone (PCL) by adding the excipient-sucrose acetate isobutyrate (SAIB). Dexamethasone was released over 35 days in the 17-163 nM range. The osteogenic differentiation of MSCs was enhanced by M1 macrophages at early time points. The late-stage mineralization was dominated by dexamethasone, with little contribution from the macrophages. Besides confirming BMP-2 whose secretion was promoted by both dexamethasone and M1 macrophages as a soluble mediator for enhanced osteogenesis, IL-6 was found to be a possible new soluble factor that mediated osteogenesis in macrophage-MSC co-cultures. The phenotype switching from M1 to M2 was drastically enhanced by the scaffold-released dexamethasone but only marginally by the co-cultured MSCs. Our results offer new insight into macrophage-MSC crosstalk and demonstrate the potential of using drug-release scaffolds to both modulate inflammation and enhance bone regeneration.
Collapse
Affiliation(s)
- Majed Majrashi
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Biodiscovery
Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Anna Kotowska
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - David Scurr
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Jacqueline M. Hicks
- Nanoscale
and Microscale Research Centre, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Amir Ghaemmaghami
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Jing Yang
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- Biodiscovery
Institute, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
114
|
Cheng T, Cheng Y, Jin DY. Oncostatin M for Anti-HBV Therapy: Can a Foe Be Turned Into a Friend? Cell Mol Gastroenterol Hepatol 2023; 17:309-310. [PMID: 38016648 PMCID: PMC10829518 DOI: 10.1016/j.jcmgh.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/30/2023]
Affiliation(s)
- Tao Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yun Cheng
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
115
|
Metcalfe RD, Hanssen E, Fung KY, Aizel K, Kosasih CC, Zlatic CO, Doughty L, Morton CJ, Leis AP, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant. Nat Commun 2023; 14:7543. [PMID: 37985757 PMCID: PMC10662374 DOI: 10.1038/s41467-023-42754-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702, USA
| | - Eric Hanssen
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ka Yee Fung
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kaheina Aizel
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Clara C Kosasih
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Larissa Doughty
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Craig J Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- CSIRO Biomedical Manufacturing Program, Clayton, Victoria, 3168, Australia
| | - Andrew P Leis
- Ian Holmes Imaging Centre, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael W Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, 3065, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Tracy L Putoczki
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
116
|
Pedrosa LDF, de Vos P, Fabi JP. Nature's soothing solution: Harnessing the potential of food-derived polysaccharides to control inflammation. Curr Res Struct Biol 2023; 6:100112. [PMID: 38046895 PMCID: PMC10692654 DOI: 10.1016/j.crstbi.2023.100112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
Reducing inflammation by diet is a major goal for prevention or lowering symptoms of a variety of diseases, such as auto-immune reactions and cancers. Natural polysaccharides are increasingly gaining attention due to their potential immunomodulating capacity. Structures of those molecules are highly important for their effects on the innate immune system, cytokine production and secretion, and enzymes in immune cells. Such polysaccharides include β-glucans, pectins, fucoidans, and fructans. To better understand the potential of these immunomodulatory molecules, it is crucial to enhance dedicated research in the area. A bibliometric analysis was performed to set a starting observation point. Major pillars of inflammation, such as pattern recognition receptors (PRRs), enzymatic production of inflammatory molecules, and involvement in specific pathways such as Nuclear-factor kappa-B (NF-kB), involved in cell transcription, survival, and cytokine production, and mitogen-activated protein kinase (MAPK), a regulator of genetic expression, mitosis, and cell differentiation. Therefore, the outcomes from polysaccharide applications in those scenarios are discussed.
Collapse
Affiliation(s)
- Lucas de Freitas Pedrosa
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, the Netherlands
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, SP, Brazil
- Food Research Center (ForC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, SP, Brazil
| |
Collapse
|
117
|
Sarieva K, Hildebrand F, Kagermeier T, Yentür Z, Becker K, Mayer S. Pluripotent stem cell-derived neural progenitor cells can be used to model effects of IL-6 on human neurodevelopment. Dis Model Mech 2023; 16:dmm050306. [PMID: 37921007 PMCID: PMC10629675 DOI: 10.1242/dmm.050306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Maternal immune activation (MIA) increases the risks for neurodevelopmental disorders in offspring through inflammatory cytokines, including interleukin-6 (IL-6). We therefore aimed to establish a human two-dimensional (2D) in vitro neural model to investigate the effects of IL-6 exposure on neurodevelopment. IL-6 signal transduction requires two receptors: interleukin-6 signal transducer (IL6ST) and interleukin-6 receptor (IL6R). Prenatally, neural cells lack IL6R, and hence cannot elicit cis IL-6 signaling, but IL6R can be provided by microglia in trans. We demonstrate here that an immortalized human neural progenitor cell (NPC) line, ReNCell CX, expresses IL6ST and elicits both cis and trans IL-6 signaling, limiting its use as a model of MIA. In contrast, induced pluripotent stem cell (iPSC)-derived NPCs only activate the IL-6 cascade in trans. Activation of the trans IL-6 cascade did not result in increased proliferation of iPSC-derived NPCs or ReNCell CX, as has been demonstrated in animal models. iPSC-derived NPCs upregulated NR2F1 expression in response to IL-6 signaling in line with analogous experiments in organoids. Thus, iPSC-derived NPCs can be used to model gene expression changes in response to MIA in 2D cultures.
Collapse
Affiliation(s)
- Kseniia Sarieva
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Felix Hildebrand
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Theresa Kagermeier
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Zeynep Yentür
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School, Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
- Heidelberg Academy of Sciences and Humanities, 69117 Heidelberg, Germany
| | - Katharina Becker
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Simone Mayer
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Heidelberg Academy of Sciences and Humanities, 69117 Heidelberg, Germany
| |
Collapse
|
118
|
Liu T, Wang Q, Zhou L, Zhang P, Mi L, Qiu X, Chen Z, Kuang H, Li S, Lin JD. Intrahepatic paracrine signaling by cardiotrophin-like cytokine factor 1 ameliorates diet-induced NASH in mice. Hepatology 2023; 78:1478-1491. [PMID: 35950514 PMCID: PMC9918604 DOI: 10.1002/hep.32719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS The mammalian liver harbors heterogeneous cell types that communicate via local paracrine signaling. Recent studies have delineated the transcriptomic landscape of the liver in NASH that provides insights into liver cell heterogeneity, intercellular crosstalk, and disease-associated reprogramming. However, the nature of intrahepatic signaling and its role in NASH progression remain obscure. APPROACH AND RESULTS Here, we performed transcriptomic analyses and identified cardiotrophin-like cytokine factor 1 (CLCF1), a member of the IL-6 family cytokines, as a cholangiocyte-derived paracrine factor that was elevated in the liver from diet-induced NASH mice and patients with NASH. Adenovirus-associated virus-mediated overexpression of CLCF1 in the liver ameliorated NASH pathologies in two diet-induced NASH models in mice, illustrating that CLCF1 induction may serve an adaptive and protective role during NASH pathogenesis. Unexpectedly, messenger RNA and protein levels of leukemia inhibitory factor receptor (LIFR), a subunit of the receptor complex for CLCF1, were markedly downregulated in NASH liver. Hepatocyte-specific inactivation of LIFR accelerated NASH progression in mice, supporting an important role of intrahepatic cytokine signaling in maintaining tissue homeostasis under metabolic stress conditions. CONCLUSIONS Together, this study sheds light on the molecular nature of intrahepatic paracrine signaling during NASH pathogenesis and uncovers potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Tongyu Liu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Qiuyu Wang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Linkang Zhou
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Lin Mi
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Xiaoxue Qiu
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Henry Kuang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jiandie D. Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI 48109
| |
Collapse
|
119
|
Saki N, Javan M, Moghimian-Boroujeni B, Kast RE. Interesting effects of interleukins and immune cells on acute respiratory distress syndrome. Clin Exp Med 2023; 23:2979-2996. [PMID: 37330918 DOI: 10.1007/s10238-023-01118-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a medical condition characterized by widespread inflammation in the lungs with consequent proportional loss of gas exchange function. ARDS is linked with severe pulmonary or systemic infection. Several factors, including secretory cytokines, immune cells, and lung epithelial and endothelial cells, play a role in the development and progression of this disease. The present study is based on Pubmed database information (1987-2022) using the words "Acute respiratory distress syndrome", "Interleukin", "Cytokines" and "Immune cells". Cytokines and immune cells play an important role in this disease, with particular emphasis on the balance between pro-inflammatory and anti-inflammatory factors. Neutrophils are one of several important mediators of Inflammation, lung tissue destruction, and malfunction during ARDS. Some immune cells, such as macrophages and eosinophils, play a dual role in releasing inflammatory mediators, recruitment inflammatory cells and the progression of ARDS, or releasing anti-inflammatory mediators, clearing the lung of inflammatory cells, and helping to improve the disease. Different interleukins play a role in the development or inhibition of ARDS by helping to activate various signaling pathways, helping to secrete other inflammatory or anti-inflammatory interleukins, and playing a role in the production and balance between immune cells involved in ARDS. As a result, immune cells and, inflammatory cytokines, especially interleukins play an important role in the pathogenesis of this disease Therefore, understanding the relevant mechanisms will help in the proper diagnosis and treatment of this disease.
Collapse
Affiliation(s)
- Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Bahareh Moghimian-Boroujeni
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, 61357-15794, Iran.
| | | |
Collapse
|
120
|
Huldani H, Abdul-Jabbar Ali S, Al-Dolaimy F, Hjazi A, Denis Andreevich N, Oudaha KH, Almulla AF, Alsaalamy A, Kareem Oudah S, Mustafa YF. The potential role of interleukins and interferons in ovarian cancer. Cytokine 2023; 171:156379. [PMID: 37757536 DOI: 10.1016/j.cyto.2023.156379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Ovarian cancer poses significant challenges and remains a highly lethal disease with limited treatment options. In the context of ovarian cancer, interleukins (ILs) and interferons (IFNs), important cytokines that play crucial roles in regulating the immune system, have emerged as significant factors influencing its development. This article provides a comprehensive review of the involvement of various ILs, including those from the IL-1 family, IL-2 family, IL-6 family, IL-8 family, IL-10 family, and IL-17 family, in ovarian cancer. The focus is on their impact on tumor growth, metastasis, and their role in evading immune responses within the tumor microenvironment. Additionally, the article conducts an in-depth examination of the oncogenic or antitumor roles of each IL in the context of ovarian cancer pathogenesis and progression. Besides, we elucidated the enhancements in the treatment of ovarian cancer through the utilization of type-I IFN and type-II IFN. Recent research has shed light on the intricate mechanisms through which specific ILs and IFNs contribute to the advancement of the disease. By incorporating recent findings, this review also seeks to inspire further investigations into unexplored mechanisms, fostering ongoing research to develop more effective therapeutic strategies for ovarian cancer. Moreover, through an in-depth analysis of IL- and IFN-associated clinical trials, we have highlighted their promising potential of in the treatment of ovarian cancer. These clinical trials serve to reinforce the significant outlook for utilizing ILs and IFNs as therapeutic agents in combating this disease.
Collapse
Affiliation(s)
- Huldani Huldani
- Department of Physiology, Faculty of Medicine, Lambung Mangkurat University, Banjarmasin, South Kalimantan, Indonesia
| | | | | | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Khulood H Oudaha
- Pharmaceutical Chemistry Department, College of Pharmacy, Al-Ayen University, Thi-Qar, Iraq
| | - Abbas F Almulla
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Shamam Kareem Oudah
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
121
|
Lee M, Suzuki H, Ogiwara K, Aoki R, Kato R, Nakayama M, Fukao Y, Nihei Y, Kano T, Makita Y, Muto M, Yamada K, Suzuki Y. The nucleotide-sensing Toll-Like Receptor 9/Toll-Like Receptor 7 system is a potential therapeutic target for IgA nephropathy. Kidney Int 2023; 104:943-955. [PMID: 37648155 DOI: 10.1016/j.kint.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
The progression determinants of IgA nephropathy (IgAN) are still not fully elucidated. We have previously demonstrated that the mucosal activation of toll-like receptor (TLR) 9, which senses microbial unmethylated CpG DNA, influences progression by producing aberrantly glycosylated IgA. However, numerous recent reports of patients with IgAN presenting with gross hematuria after the mRNA vaccination for coronavirus disease 2019 suggest that the RNA-sensing system also exacerbates IgAN. Here, we investigated whether TLR7, which recognizes microbial RNA, is also involved in IgAN progression using a murine model and tonsil tissue from 53 patients with IgAN compared to samples from 40 patients with chronic tonsillitis and 12 patients with sleep apnea syndrome as controls. We nasally administered imiquimod, the ligand of TLR7, to IgAN-prone ddY mice and found that TLR7 stimulation elevated the serum levels of aberrantly glycosylated IgA and induced glomerular IgA depositions and proteinuria. Co-administered hydroxychloroquine, which inhibits TLRs, canceled the kidney injuries. In vitro, stimulating splenocytes from ddY mice with imiquimod increased interleukin-6 and aberrantly glycosylated IgA levels. The expression of TLR7 in the tonsils was elevated in patients with IgAN and positively correlated with that of a proliferation-inducing ligand (APRIL) involved in the production of aberrantly glycosylated IgA. Mechanistically, TLR7 stimulation enhanced the synthesis of aberrantly glycosylated IgA through the modulation of enzymes involved in the glycosylation of IgA. Thus, our findings suggest that nucleotide-sensing TLR9 and TLR7 play a crucial role in the pathogenesis of IgAN. Hence, nucleotide-sensing TLRs could be reasonably strong candidates for disease-specific therapeutic targets in IgAN.
Collapse
Affiliation(s)
- Mingfeng Lee
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan; Department of Nephrology, Juntendo University Urayasu Hospital, Chiba, Japan.
| | - Kei Ogiwara
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryosuke Aoki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Rina Kato
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Maiko Nakayama
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Fukao
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Kano
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yuko Makita
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Masahiro Muto
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Koshi Yamada
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
122
|
Sutin AR, Stephan Y, Luchetti M, Terracciano A. Purpose in life and markers of immunity and inflammation: Testing pathways of episodic memory. J Psychosom Res 2023; 174:111487. [PMID: 37696089 PMCID: PMC10591954 DOI: 10.1016/j.jpsychores.2023.111487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE This prospective cohort study examines whether purpose in life is associated with markers of immunity and inflammation and tests these markers as mediators between purpose and episodic memory. METHODS Participants from the Venous Blood Study of the Health and Retirement Study reported on their purpose in life, had their blood assayed for markers of immunity and inflammation, and were administered an episodic memory task (N = 8999). Regression analyses tested the association between purpose and each marker. Prospective mediation analyses (N = 6092) tested whether these markers measured in 2016 were mediators between purpose measured in 2012/2014 and episodic memory measured in 2018. RESULTS Higher purpose in life was associated with lower neutrophil counts (β = -0.08, p < .001), lower ratio of neutrophils/lymphocytes (β = -0.05, p < .001), and lower systemic immune inflammation index (β = -0.04, p < .001); purpose was unrelated to monocyte, platelet, and lymphocyte counts or the ratio of platelets/lymphocytes (all ns). Purpose was associated negatively with c-reactive protein (β = -0.07, p < .001), Interleukin-6 (β = -0.08, p < .001), Interleukin-10 (β = -0.07, p < .001), Interleukin-1ra (β = -0.08, p < .001), and soluble Tumor Necrosis Factor Receptor 1 (sTNFR1; β = -0.10, p < .001); purpose was unrelated to Transforming Growth Factor beta 1. These associations were largely not moderated by age, sex, race, ethnicity, and education. Lower neutrophils, Interleukin-6, and sTNFR1 were associated prospectively with better episodic memory and mediated the association between purpose and episodic memory. CONCLUSION Purpose in life is associated with markers of immunity and inflammation, some of which are one mechanism in the pathway between purpose and healthier episodic memory.
Collapse
|
123
|
Han L, Yan J, Li T, Lin W, Huang Y, Shen P, Ba X, Huang Y, Qin K, Geng Y, Wang H, Zheng K, Liu Y, Wang Y, Chen Z, Tu S. Multifaceted oncostatin M: novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front Immunol 2023; 14:1258765. [PMID: 38022540 PMCID: PMC10654622 DOI: 10.3389/fimmu.2023.1258765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Rheumatoid arthritis (RA) is a self-immune inflammatory disease characterized by joint damage. A series of cytokines are involved in the development of RA. Oncostatin M (OSM) is a pleiotropic cytokine that primarily activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway, and other physiological processes such as cell proliferation, inflammatory response, immune response, and hematopoiesis through its receptor complex. In this review, we first describe the characteristics of OSM and its receptor, and the biological functions of OSM signaling. Subsequently, we discuss the possible roles of OSM in the development of RA from clinical and basic research perspectives. Finally, we summarize the progress of clinical studies targeting OSM for the treatment of RA. This review provides researchers with a systematic understanding of the role of OSM signaling in RA, which can guide the development of drugs targeting OSM for the treatment of RA.
Collapse
Affiliation(s)
- Liang Han
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Yan
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Shen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xin Ba
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Huang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Qin
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinhong Geng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaifeng Zheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yafei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Chen
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shenghao Tu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
124
|
Niknazar S, Bazgir N, Shafaei V, Abbaszadeh HA, Zali A, Asghar Peyvandi A. Assessment of prognostic biomarkers in sudden sensorineural hearing loss: A systematic review and meta-analysis. Clin Biochem 2023; 121-122:110684. [PMID: 37944628 DOI: 10.1016/j.clinbiochem.2023.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Sudden sensorineural hearing loss (SSNHL) is defined as hearing loss of more than 30 dB in less than 72 h. SSNHL is a frequent complaint and an emergency in otolaryngology. Various biomarkers have been used to determine the prognosis of SSNHL. This systematic review and meta-analysis aims to evaluate the relationship between the different biomarkers and the prognosis of SSNHL. We searched English-language literature up to October 2022 in four databases, including PubMed, Google Scholar, Cochrane, and Science Direct. This search was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. This study was reported in the International Prospective Register of Systematic Reviews (PROSPERO) database (ID = CRD42022369538). All studies examining the role of neutrophil to lymphocyte ratio (NLR) concluded that higher NLR is associated with a worse prognosis. The results of studies regarding the relationship between platelet to lymphocyte ratio (PLR) and tumor necrosis factor (TNF) are controversial. Other factors shown to be associated with SSNHL include Glycated hemoglobin (HbA1C), blood glucose, iron levels, serum endocan, salusin-beta, and bone turnover biomarkers. This meta-analysis showed that PLR, NLR, and neutrophils were significantly different between recovered and non-recovered patients. PLR, NLR, and neutrophil count are reliable tools to assess the prognosis of patients with SSNHL.
Collapse
Affiliation(s)
- Somayeh Niknazar
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Narges Bazgir
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahideh Shafaei
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Peyvandi
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
125
|
McIntosh BJ, Hartmann GG, Yamada‐Hunter SA, Liu P, Williams CF, Sage J, Cochran JR. An engineered interleukin-11 decoy cytokine inhibits receptor signaling and proliferation in lung adenocarcinoma. Bioeng Transl Med 2023; 8:e10573. [PMID: 38023717 PMCID: PMC10658506 DOI: 10.1002/btm2.10573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 12/01/2023] Open
Abstract
The cytokine interleukin (IL)-11 has been shown to play a role in promoting fibrosis and cancer, including lung adenocarcinoma, garnering interest as an attractive target for therapeutic intervention. We used combinatorial methods to engineer an IL-11 variant that binds with higher affinity to the IL-11 receptor and stimulates enhanced receptor-mediated cell signaling. Introduction of two additional point mutations ablates IL-11 ligand/receptor association with the gp130 coreceptor signaling complex, resulting in a high-affinity receptor antagonist. Unlike wild-type IL-11, this engineered variant potently blocks IL-11-mediated cell signaling and slows tumor growth in a mouse model of lung cancer. Our approach highlights a strategy where native ligands can be engineered and exploited to create potent receptor antagonists.
Collapse
Affiliation(s)
| | | | - Sean A. Yamada‐Hunter
- Center for Cancer Cell Therapy, Stanford Cancer InstituteStanford University School of MedicineStanfordCaliforniaUSA
| | - Phillip Liu
- Biophysics ProgramStanford UniversityStanfordCaliforniaUSA
| | | | - Julien Sage
- Department of PediatricsStanford UniversityStanfordCaliforniaUSA
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford UniversityStanfordCaliforniaUSA
| | - Jennifer R. Cochran
- Cancer Biology ProgramStanford UniversityStanfordCaliforniaUSA
- Stanford Cancer InstituteStanford UniversityStanfordCaliforniaUSA
- Department of BioengineeringStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
126
|
Xue C, Chen K, Gao Z, Bao T, Dong L, Zhao L, Tong X, Li X. Common mechanisms underlying diabetic vascular complications: focus on the interaction of metabolic disorders, immuno-inflammation, and endothelial dysfunction. Cell Commun Signal 2023; 21:298. [PMID: 37904236 PMCID: PMC10614351 DOI: 10.1186/s12964-022-01016-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/11/2022] [Indexed: 11/01/2023] Open
Abstract
Diabetic vascular complications (DVCs), including macro- and micro- angiopathy, account for a high percentage of mortality in patients with diabetes mellitus (DM). Endothelial dysfunction is the initial and role step for the pathogenesis of DVCs. Hyperglycemia and lipid metabolism disorders contribute to endothelial dysfunction via direct injury of metabolism products, crosstalk between immunity and inflammation, as well as related interaction network. Although physiological and phenotypic differences support their specified changes in different targeted organs, there are still several common mechanisms underlying DVCs. Also, inhibitors of these common mechanisms may decrease the incidence of DVCs effectively. Thus, this review may provide new insights into the possible measures for the secondary prevention of DM. And we discussed the current limitations of those present preventive measures in DVCs research. Video Abstract.
Collapse
Affiliation(s)
- Chongxiang Xue
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zezheng Gao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Tingting Bao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - LiShuo Dong
- Changchun University of Traditional Chinese Medicine, Changchun, 130117, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
| | - Xiuyang Li
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 BeiXianGe Street, Xicheng District, Beijing, 100053, China.
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
127
|
Ye Y, Fu Y, Lin C, Shen Y, Yu Q, Yao X, Huang Q, Liu C, Zeng Y, Chen T, Wu S, Xun Z, Ou Q. Oncostatin M Induces IFITM1 Expression to Inhibit Hepatitis B Virus Replication Via JAK-STAT Signaling. Cell Mol Gastroenterol Hepatol 2023; 17:219-235. [PMID: 37879404 PMCID: PMC10760422 DOI: 10.1016/j.jcmgh.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND & AIMS Functional cure is achieved by a limited number of patients with chronic hepatitis B (CHB) after nucleotide analogue(s) and interferon treatment. It is urgent to develop therapies that can help a larger proportion of patients achieve functional cure. The present study was designed to explore the anti-hepatitis B virus (HBV) potency of interleukin-6 family cytokines and to characterize the underlying mechanisms of the cytokine displaying the highest anti-HBV potency. METHODS HBV-infected cells were used to screened the anti-HBV potency of interleukin-6 family cytokines. The concentration of oncostatin M (OSM) in patients with chronic HBV infection was examined by enzyme-linked immunosorbent assay. The underlying mechanism of OSM anti-HBV was explored through RNA-seq. C57BL/6 mice injected with rAAV8-1.3HBV were used to explore the suppression effect of OSM on HBV in vivo. RESULTS OSM is the most effective of the interleukin-6 family cytokines for suppression of HBV replication (percentage of average inhibition: hepatitis B surface antigen, 34.44%; hepatitis B e antigen, 32.52%; HBV DNA, 61.57%). Hepatitis B e antigen-positive CHB patients with high OSM levels had lower hepatitis B surface antigen and hepatitis B e antigen than those with low levels. OSM activated JAK-STAT signaling pathway promoting the formation of STAT1-IRF9 transcription factor complex. Following this, OSM increased the expression of various genes with known functions in innate and adaptive immunity, which was higher expression in patients with CHB in immune clearance phase than in immune tolerance phase (data from GEO: GSE65359). Interferon-induced transmembrane protein 1, one of the most differentially expressed genes, was identified as an HBV restriction factor involved in OSM-mediated anti-HBV effect. In vivo, we also found OSM significantly inhibited HBV replication and induced expression of antiviral effector interferon-induced transmembrane protein 1. CONCLUSIONS Our study shows that OSM remodels the immune response against HBV and exerts potent anti-HBV activity, supporting its further development as a potential therapy for treating CHB.
Collapse
Affiliation(s)
- Yuchen Ye
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Caorui Lin
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Shen
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qingqing Yu
- Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Xiaobao Yao
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Qunfang Huang
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Can Liu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yongbin Zeng
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, China
| | - Songhang Wu
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhen Xun
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qishui Ou
- Department of Laboratory Medicine, Gene Diagnosis Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
128
|
Hamilton F, Pedersen KM, Ghazal P, Nordestgaard BG, Smith GD. Low levels of small HDL particles predict but do not influence risk of sepsis. Crit Care 2023; 27:389. [PMID: 37814277 PMCID: PMC10563213 DOI: 10.1186/s13054-023-04589-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Low levels of high-density lipoprotein (HDL) cholesterol have been associated with higher rates and severity of infection. Alterations in inflammatory mediators and infection are associated with alterations in HDL cholesterol. It is unknown whether the association between HDL and infection is present for all particle sizes, and whether the observed associations are confounded by IL-6 signalling. METHODS In the UK Biobank, ~ 270,000 individuals have data on HDL subclasses derived from nuclear magnetic resonance analysis. We estimated the association of particle count of total HDL and HDL subclasses (small, medium, large, and extra-large HDL) with sepsis, sepsis-related death, and critical care admission in a Cox regression model. We subsequently utilised genetic data from UK Biobank and FinnGen to perform Mendelian randomisation (MR) of each HDL subclass and sepsis to test for a causal relationship. Finally, we explored the role of IL-6 signalling as a potential causal driver of changes in HDL subclasses. RESULTS In observational analyses, higher particle count of small HDL was associated with protection from sepsis (Hazard ratio, HR 0.80; 95% CI 0.74-0.86, p = 4 × 10-9 comparing Quartile 4, highest quartile of HDL to Quartile 1, lowest quartile of HDL), sepsis-related death (HR 0.80; 95% CI 0.74-0.86, p = 2 × 10-4), and critical care admission with sepsis (HR 0.72 95% CI 0.60-0.85, p = 2 × 10-4). Parallel associations with other HDL subclasses were likely driven by changes in the small HDL compartment. MR analyses did not strongly support causality of small HDL particle count on sepsis incidence (Odds ratio, OR 0.98; 95% CI 0.89-1.07, p = 0.6) or death (OR 0.94, 95% CI 0.75-1.17, p = 0.56), although the estimate on critical care admission with sepsis supported protection (OR 0.73, 95% CI 0.57-0.95, p = 0.02). Bidirectional MR analyses suggested that increased IL-6 signalling was associated with reductions in both small (beta on small HDL particle count - 0.16, 95% CI - 0.10 to - 0.21 per natural log change in SD-scaled CRP, p = 9 × 10-8).and total HDL particle count (beta - 0.13, 95% CI - 0.09 to - 0.17, p = 7 × 10-10), but that the reverse effect of HDL on IL-6 signalling was largely null. CONCLUSIONS Low number of small HDL particles are associated with increased hazard of sepsis, sepsis-related death, and sepsis-related critical care admission. However, genetic analyses did not strongly support this as causal. Instead, we demonstrate that increased IL-6 signalling, which is known to alter infection risk, could confound associations with reduced HDL particle count, and suggest this may explain part of the observed association between (small) HDL particle count and sepsis.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Road, Bristol, BS8 2PS, UK.
- Infection Science, North Bristol NHS Trust, Bristol, UK.
| | - Kasper Mønsted Pedersen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Road, Bristol, BS8 2PS, UK
| |
Collapse
|
129
|
Niroomand A, Hirdman G, Pierre L, Ghaidan H, Kjellström S, Stenlo M, Hyllén S, Olm F, Lindstedt S. Proteomic changes to immune and inflammatory processes underlie lung preservation using ex vivo cytokine adsorption. Front Cardiovasc Med 2023; 10:1274444. [PMID: 37849943 PMCID: PMC10577429 DOI: 10.3389/fcvm.2023.1274444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction In recent years, the field of graft preservation has made considerable strides in improving outcomes related to solid organ restoration and regeneration. Ex vivo lung perfusion (EVLP) in line with the related devices and treatments has yielded promising results within preclinical and clinical studies, with the potential to improve graft quality. Its main benefit is to render marginal and declined donor lungs suitable for transplantation, ultimately increasing the donor pool available for transplantation. In addition, using such therapies in machine perfusion could also increase preservation time, facilitating logistical planning. Cytokine adsorption has been demonstrated as a potentially safe and effective therapy when applied to the EVLP circuit and post-transplantation. However, the mechanism by which this therapy improves the donor lung on a molecular basis is not yet fully understood. Methods We hypothesized that there were characteristic inflammatory and immunomodulatory differences between the lungs treated with and without cytokine adsorption, reflecting proteomic changes in the gene ontology pathways and across inflammation-related proteins. In this study, we investigate the molecular mechanisms and signaling pathways of how cytokine adsorption impacts lung function when used during EVLP and post-transplantation as hemoperfusion in a porcine model. Lung tissues during EVLP and post-lung transplantation were analyzed for their proteomic profiles using mass spectrometry. Results We found through gene set enrichment analysis that the inflammatory and immune processes and coagulation pathways were significantly affected by the cytokine treatment after EVLP and transplantation. Conclusion In conclusion, we showed that the molecular mechanisms are using a proteomic approach behind the previously reported effects of cytokine adsorption when compared to the non-treated transplant recipients undergoing EVLP.
Collapse
Affiliation(s)
- Anna Niroomand
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- School of Medicine, Rutgers Robert Wood Johnson University, New Brunswick, NJ, United States
| | - Gabriel Hirdman
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Leif Pierre
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Haider Ghaidan
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| | - Sven Kjellström
- Department of Clinical Sciences, BioMS, Lund University, Lund, Sweden
| | - Martin Stenlo
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
- Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Snejana Hyllén
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Anesthesia and Intensive Care, Skåne University Hospital, Lund, Sweden
| | - Franziska Olm
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Department of Clinical Sciences, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Cardiothoracic Surgery and Transplantation, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
130
|
REN H, ZHAO L, GAO K, YANG Y, CUI X, HU J, CHEN Z, LI Y. Deciphering the chemical profile and pharmacological mechanism of Jinlingzi powder against bile reflux gastritis using ultra-high performance liquid chromatography coupled with Q exactive focus mass spectrometry, network pharmacology, and molecular docking. J TRADIT CHIN MED 2023; 43:1209-1218. [PMID: 37946483 PMCID: PMC10623248 DOI: 10.19852/j.cnki.jtcm.20230908.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2023]
Abstract
OBJECTIVE To elucidate the chemical profile and the pharmacological mechanism by which Jinlingzi powder (, JLZP) treats bile reflux gastritis (BRG). METHODS A BRG model was established in rats by oral administration of the model solution. JLZP was orally administered for 35 d. Residual gastric rate and tumor necrosis factor (TNF)-α, interleukin (IL)-6, and gastrin levels in the serum were measured, and stomach tissues were collected for histopathological analysis. We used ultra-high performance liquid chromatography coupled with Q Exactive Focus mass spectrometry to identify the chemical ingredients in JLZP. Then, protein-protein interaction and herb-compound-target networks were constructed to screen potential bioactive compounds and targets. Kyoto Encyclopedia of Genes and Genomes pathway analysis was then performed to elucidate the pathway involved in the JLZP-mediated treatment of BRG. After constructing the core compound-target-pathway interaction network, molecular docking was performed to study the binding free energy of core bioactive compounds and two candidate targets [RAC-alpha serine/threonine-protein kinase (AKT1) and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA)]. RESULTS JLZP extracts significantly promoted gastric emptying, regulating the release of cytokines (TNF-α and IL-6) and improving gastrin secretion and mucosal repair. Fifty-six compounds were tentatively characterized in JLZP. Moreover, the network pharmacology and molecular docking results showed that alkaloids and flavonoids might be the bioactive compounds in JLZP that treat BRG. JLZP might improve mucosal repair during BRG progression by modulating the phosphatidylinositol-4,5-bisphosphate 3-kinase-protein kinase B, hypoxia inducible factor-1, mitogen-activated protein kinase, forkhead box O, TNF, and IL-17 signaling pathways. CONCLUSIONS We elucidated the chemical constituents and the pharmacological mechanism of JLZP in treating BRG and provided a basis for clinical application.
Collapse
Affiliation(s)
- Hui REN
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Lintao ZHAO
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Kai GAO
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuanyuan YANG
- 2 Department of Traditional Chinese Medicine, Xi'an Institute for Food and Drug Control, Xi'an 710054, China
| | - Xiaomin CUI
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jing HU
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Zhiyong CHEN
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Ye LI
- 1 Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| |
Collapse
|
131
|
Rose-John S, Jenkins BJ, Garbers C, Moll JM, Scheller J. Targeting IL-6 trans-signalling: past, present and future prospects. Nat Rev Immunol 2023; 23:666-681. [PMID: 37069261 PMCID: PMC10108826 DOI: 10.1038/s41577-023-00856-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2023] [Indexed: 04/19/2023]
Abstract
Interleukin-6 (IL-6) is a key immunomodulatory cytokine that affects the pathogenesis of diverse diseases, including autoimmune diseases, chronic inflammatory conditions and cancer. Classical IL-6 signalling involves the binding of IL-6 to the membrane-bound IL-6 receptor α-subunit (hereafter termed 'mIL-6R') and glycoprotein 130 (gp130) signal-transducing subunit. By contrast, in IL-6 trans-signalling, complexes of IL-6 and the soluble form of IL-6 receptor (sIL-6R) signal via membrane-bound gp130. A third mode of IL-6 signalling - known as cluster signalling - involves preformed complexes of membrane-bound IL-6-mIL-6R on one cell activating gp130 subunits on target cells. Antibodies and small molecules have been developed that block all three forms of IL-6 signalling, but in the past decade, IL-6 trans-signalling has emerged as the predominant pathway by which IL-6 promotes disease pathogenesis. The first selective inhibitor of IL-6 trans-signalling, sgp130, has shown therapeutic potential in various preclinical models of disease and olamkicept, a sgp130Fc variant, had promising results in phase II clinical studies for inflammatory bowel disease. Technological developments have already led to next-generation sgp130 variants with increased affinity and selectivity towards IL-6 trans-signalling, along with indirect strategies to block IL-6 trans-signalling. Here, we summarize our current understanding of the biological outcomes of IL-6-mediated signalling and the potential for targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Stefan Rose-John
- Biochemical Institute, Medical Faculty, Christian-Albrechts-University, Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GC:I3), Otto-von-Guericke-University, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
132
|
Steadman T, O'Reilly S. Elevated interleukin-11 in systemic sclerosis and role in disease pathogenesis. J Dermatol 2023; 50:1255-1261. [PMID: 37291792 DOI: 10.1111/1346-8138.16854] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/13/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease in which there is elevated inflammation, aberrant cytokine expression, and subsequent fibrosis. Interleukin-11 (IL-11) is a recently described profibrotic cytokine that can mediate fibrosis in the heart, lungs, and skin and is upregulated by transforming Growth Factor-β (TGF-β1). The objective of this study was to quantify the serum levels of IL-11 in early diffuse SSc patients. Also, if IL-11 could regulate the alarmin IL-33 in dermal fibroblasts was quantified. Early diffuse SSc patient sera was isolated and IL-11 was quantified by specific commercial ELISA compared to healthy control (n = 17). Healthy dermal fibroblasts were cultured in vitro and then serum starved and incubated with or without recombinant IL-11. At specific early and late time points the supernatant was quantified for the alarmin IL-33 by specific ELISA. In early diffuse SSc patients it was demonstrated that they have elevated IL-11 in their sera. In a subgroup of SSc patients with interstitial lung disease (ILD) this elevation was particularly pronounced compared to those devoid of fibrotic lung disease. In vitro incubation of healthy dermal fibroblasts led to a significant induction of IL-33 cytokine release into the cell media. IL-11 is a profibrotic cytokine that is elevated in early diffuse SSc and is particularly elevated in those with ILD. This suggests that IL-11 could be a possible biomarker of ILD in SSc. It was also found that IL-11 led to release of the cytokine alarmin IL-33 in fibroblasts at earlier time points but not late time points, suggesting early stimulation elicits an inflammatory response in the local microenvironment but prolonged stimulation leads to fibrosis.
Collapse
|
133
|
Mo L, Ma J, Xiong Y, Xiong X, Lan D, Li J, Yin S. Factors Influencing the Maturation and Developmental Competence of Yak ( Bos grunniens) Oocytes In Vitro. Genes (Basel) 2023; 14:1882. [PMID: 37895231 PMCID: PMC10606142 DOI: 10.3390/genes14101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The yak (Bos grunniens) is a unique breed living on the Qinghai-Tibet Plateau and its surrounding areas, providing locals with a variety of vital means of living and production. However, the yak has poor sexual maturity and low fertility. High-quality mature oocytes are the basis of animal breeding technology. Recently, in vitro culturing of oocytes and embryo engineering technology have been applied to yak breeding. However, compared to those observed in vivo, the maturation rate and developmental capacity of in vitro oocytes are still low, which severely limits the application of in vitro fertilization and embryo production in yaks. This review summarizes the endogenous and exogenous factors affecting the in vitro maturation (IVM) and developmental ability of yak oocytes reported in recent years and provides a theoretical basis for obtaining high-quality oocytes for in vitro fertilization and embryo production in yaks.
Collapse
Affiliation(s)
- Luoyu Mo
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
| | - Jun Ma
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
| | - Yan Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China; (L.M.); (J.M.); (Y.X.); (X.X.); (D.L.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu 610041, China
- Key Laboratory of Animal Science of National Ethnic Affairs Commission of China, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
134
|
Zhi W, Wang Y, Jiang C, Gong Y, Chen Q, Mao X, Deng W, Zhao S. PLEKHA4 is a novel prognostic biomarker that reshapes the tumor microenvironment in lower-grade glioma. Front Immunol 2023; 14:1128244. [PMID: 37818357 PMCID: PMC10560889 DOI: 10.3389/fimmu.2023.1128244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Background Lower-grade glioma (LGG) is a primary intracranial tumor that carry a high risk of malignant transformation and limited therapeutic options. Emerging evidence indicates that the tumor microenvironment (TME) is a superior predictor for tumor progression and therapy response. PLEKHA4 has been demonstrated to be a biomarker for LGG that correlate with immune infiltration. However, the fundamental mechanism by which PLEKHA4 contributes to LGG is still poorly understood. Methods Multiple bioinformatic tools, including Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA2), Shiny Methylation Analysis Resource Tool (SMART), etc., were incorporated to analyze the PLEKHA4. ESTIMATE, ssGSEA, CIBERSORT, TIDE and CellMiner algorithms were employed to determine the association of PLEKHA4 with TME, immunotherapy response and drug sensitivities. Immunohistochemistry (IHC)-based tissue microarrays and M2 macrophage infiltration assay were conducted to verify their associations. Results PLEKHA4 expression was found to be dramatically upregulated and strongly associated with unfavorable overall survival (OS) and disease-specific survival (DSS) in LGG patients, as well as their poor clinicopathological characteristics. Cox regression analysis identified that PLEKHA4 was an independent prognostic factor. Methylation analysis revealed that DNA methylation correlates with PLEKHA4 expression and indicates a better outcome in LGG. Moreover, PLEKHA4 was remarkably correlated with immune responses and TME remodeling, as evidenced by its positive correlation with particular immune marker subsets and the putative infiltration of immune cells. Surprisingly, the proportion of M2 macrophages in TME was strikingly higher than others, inferring that PLEKHA4 may regulate the infiltration and polarization of M2 macrophages. Evidence provided by IHC-based tissue microarrays and M2 macrophage infiltration assay further validated our findings. Moreover, PLEKHA4 expression was found to be significantly correlated with chemokines, interleukins, and their receptors, further supporting the critical role of PLEKHA4 in reshaping the TME. Additionally, we found that PLEKHA4 expression was closely associated with drug sensitivities and immunotherapy responses, indicating that PLEKHA4 expression also had potential clinical significance in guiding immunotherapy and chemotherapy in LGG. Conclusion PLEKHA4 plays a pivotal role in reshaping the TME of LGG patients, and may serve as a potential predictor for LGG prognosis and therapy.
Collapse
Affiliation(s)
- Wenqian Zhi
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Ye Wang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chenyu Jiang
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yuqin Gong
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Qiuyan Chen
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Xiang Mao
- Institute of Hygiene Toxicology, Wuhan Centre for Disease Prevention and Control, Wuhan, Hubei, China
| | - Wensheng Deng
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Shasha Zhao
- College of Life Science and Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
135
|
Nenu I, Toadere TM, Topor I, Țichindeleanu A, Bondor DA, Trella ȘE, Sparchez Z, Filip GA. Interleukin-6 in Hepatocellular Carcinoma: A Dualistic Point of View. Biomedicines 2023; 11:2623. [PMID: 37892997 PMCID: PMC10603956 DOI: 10.3390/biomedicines11102623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) is a pressing health concern, demanding a deep understanding of various mediators' roles in its development for therapeutic progress. Notably, interleukin-6 (IL-6) has taken center stage in investigations due to its intricate and context-dependent functions. This review delves into the dual nature of IL-6 in HCC, exploring its seemingly contradictory roles as both a promoter and an inhibitor of disease progression. We dissect the pro-tumorigenic effects of IL-6, including its impact on tumor growth, angiogenesis, and metastasis. Concurrently, we examine its anti-tumorigenic attributes, such as its role in immune response activation, cellular senescence induction, and tumor surveillance. Through a comprehensive exploration of the intricate interactions between IL-6 and the tumor microenvironment, this review highlights the need for a nuanced comprehension of IL-6 signaling in HCC. It underscores the importance of tailored therapeutic strategies that consider the dynamic stages and diverse surroundings within the tumor microenvironment. Future research directions aimed at unraveling the multifaceted mechanisms of IL-6 in HCC hold promise for developing more effective treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Iuliana Nenu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
| | - Teodora Maria Toadere
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Ioan Topor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Andra Țichindeleanu
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Daniela Andreea Bondor
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Șerban Ellias Trella
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Zeno Sparchez
- Department of Gastroenterology, "Prof. Dr. O. Fodor" Regional Institute of Gastroenterology and Hepatology, 400162 Cluj-Napoca, Romania
- Department of Internal Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| |
Collapse
|
136
|
Sutkowy P, Lesiewska H, Woźniak A, Malukiewicz G. Inflammation-Involved Proteins in Blood Serum of Cataract Patients-A Preliminary Study. Biomedicines 2023; 11:2607. [PMID: 37892980 PMCID: PMC10604040 DOI: 10.3390/biomedicines11102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Approximately 50% of all global blindness is caused by cataract in adults aged ≥50 years. The mechanisms of the disease are most arguably related to a redox imbalance and inflammation; therefore, the aim of the study was to evaluate the processes associated with inflammation in cataract patients. Twenty-four patients aged 22-60 years (62.5% females) participated in the study, with 33 controls aged 28-60 years (66.7% females). Venous blood serum of the subjects was examined for alpha 1-antitrypsin, as well as selected lysosomal enzymes and adipokines. The activities of lysosomal enzymes, as well as the activity of alpha 1-antitrypsin and the concentrations of c-reactive protein and leptin, were similar in the patients versus the controls. The concentrations of interleukin 6 and resistin were lower, in turn, whereas omentin-1 and adiponectin were higher. Moreover, the study revealed the existence of many linear relationships between the parameters, including multiple linear regression, especially gender-wise. No systemic inflammation was probably noted in the cataract patients tested; nevertheless, the deregulation of adiponectin, omentin-1 and resistin secretion was observed.
Collapse
Affiliation(s)
- Paweł Sutkowy
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Hanna Lesiewska
- Department of Ophthalmology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (H.L.); (G.M.)
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Grażyna Malukiewicz
- Department of Ophthalmology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (H.L.); (G.M.)
| |
Collapse
|
137
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
138
|
Unal U, Gov E. Drug Repurposing Analysis for Colorectal Cancer through Network Medicine Framework: Novel Candidate Drugs and Small Molecules. Cancer Invest 2023; 41:713-733. [PMID: 37682113 DOI: 10.1080/07357907.2023.2255672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/04/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to reveal the drug-repurposing candidates for colorectal cancer (CRC) via drug-repurposing methods and network biology approaches. A novel, differentially co-expressed, highly interconnected, and co-regulated prognostic gene module was identified for CRC. Based on the gene module, polyethylene glycol (PEG), gallic acid, pyrazole, cordycepin, phenothiazine, pantoprazole, cysteamine, indisulam, valinomycin, trametinib, BRD-K81473043, AZD8055, dovitinib, BRD-A17065207, and tyrphostin AG1478 presented as drugs and small molecule candidates previously studied in the CRC. Lornoxicam, suxamethonium, oprelvekin, sirukumab, levetiracetam, sulpiride, NVP-TAE684, AS605240, 480743.cdx, HDAC6 inhibitor ISOX, BRD-K03829970, and L-6307 are proposed as novel drugs and small molecule candidates for CRC.
Collapse
Affiliation(s)
- Ulku Unal
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Esra Gov
- Department of Bioengineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| |
Collapse
|
139
|
Song J, Peng H, Lai M, Kang H, Chen X, Cheng Y, Su X. Relationship between inflammatory-related cytokines with aortic dissection. Int Immunopharmacol 2023; 122:110618. [PMID: 37480750 DOI: 10.1016/j.intimp.2023.110618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/24/2023]
Abstract
Aortic dissection, characterized by severe intramural hematoma formation and acute endometrial rupture, is caused by excessive bleeding within the aortic wall or a severe tear within the intimal layer of the aorta, which subsequently promotes the separation or dissection in the layers of the aortic wall. Epidemiological surveys showed that aortic dissection was most observed among those patients from 55 to 80 years of age, with a prevalence of approximately 40 cases per 100,000 individuals per year, posing serious risks to future health and leading to high mortality. Other risk factors of aortic dissection progression contained dyslipidemia, hypertension, and genetic disorders, such as Marfan syndrome. Currently, emerging evidence indicates the pathological progression of aortic dissection is significantly complicated, which is correlated with the aberrant infiltration of pro-inflammatory cells into the aortic wall, subsequently facilitating the apoptosis of vascular smooth muscle cells (VSMCs) and inducing the aberrant expression of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interferon (IF). Other pro-inflammatory-related cytokines, including the colony-stimulating factor (CSF), chemotactic factor, and growth factor (GF), played an essential function in facilitating aortic dissection. Multiple studies focused on the important relationship between pro-inflammatory cytokines and aortic dissection, which could deepen the understanding of aortic dissection and further guide the therapeutic strategies in clinical practice. The present review elucidated pro-inflammatory cytokines' functions in modulating the risk of aortic dissection are summarized. Moreover, the emerging evidence that aimed to elucidate the potential mechanisms wherebyvarious pro-inflammatory cytokines affected the pathological development of aortic dissection was also listed.
Collapse
Affiliation(s)
- Jingjin Song
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hua Peng
- Department of Cardiac Macrovascular Surgery, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Min Lai
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huiyuan Kang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xiaofang Chen
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
140
|
Polak KL, Tamagno I, Parameswaran N, Smigiel J, Chan ER, Yuan X, Rios B, Jackson MW. Oncostatin-M and OSM-Receptor Feed-Forward Activation of MAPK Induces Separable Stem-like and Mesenchymal Programs. Mol Cancer Res 2023; 21:975-990. [PMID: 37310811 PMCID: PMC10527478 DOI: 10.1158/1541-7786.mcr-22-0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) frequently present with advanced metastatic disease and exhibit a poor response to therapy, resulting in poor outcomes. The tumor microenvironment cytokine Oncostatin-M (OSM) initiates PDAC plasticity, inducing the reprogramming to a stem-like/mesenchymal state, which enhances metastasis and therapy resistance. Using a panel of PDAC cells driven through epithelial-mesenchymal transition (EMT) by OSM or the transcription factors ZEB1 or SNAI1, we find that OSM uniquely induces tumor initiation and gemcitabine resistance independently of its ability to induce a CD44HI/mesenchymal phenotype. In contrast, while ZEB1 and SNAI1 induce a CD44HI/mesenchymal phenotype and migration comparable with OSM, they are unable to promote tumor initiation or robust gemcitabine resistance. Transcriptomic analysis identified that OSM-mediated stemness requires MAPK activation and sustained, feed-forward transcription of OSMR. MEK and ERK inhibitors prevented OSM-driven transcription of select target genes and stem-like/mesenchymal reprogramming, resulting in reduced tumor growth and resensitization to gemcitabine. We propose that the unique properties of OSMR, which hyperactivates MAPK signaling when compared with other IL6 family receptors, make it an attractive therapeutic target, and that disrupting the OSM-OSMR-MAPK feed-forward loop may be a novel way to therapeutically target the stem-like behaviors common to aggressive PDAC. IMPLICATIONS Small-molecule MAPK inhibitors may effectively target the OSM/OSMR-axis that leads to EMT and tumor initiating properties that promote aggressive PDAC.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Ilaria Tamagno
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Neetha Parameswaran
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jacob Smigiel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - E. Ricky Chan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xueer Yuan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Brenda Rios
- Cancer Biology Program, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Mark W. Jackson
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
141
|
Chen X, Wang Z, Deng R, Yan H, Liu X, Kang R. Intervertebral disc degeneration and inflammatory microenvironment: expression, pathology, and therapeutic strategies. Inflamm Res 2023; 72:1811-1828. [PMID: 37665342 DOI: 10.1007/s00011-023-01784-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a leading cause of low back pain (LBP), posing a significant socioeconomic burden. Recent studies highlight the crucial role of inflammatory microenvironment in IDD progression. METHOD A keyword-based search was performed using the PubMed database for published articles. RESULTS AND CONCLUSIONS Dysregulated expression of inflammatory cytokines disrupts intervertebral disc (IVD) homeostasis, causing atrophy, fibrosis, and phenotypic changes in nucleus pulposus cells. Modulating the inflammatory microenvironment and restoring cytokine balance hold promise for IVD repair and regeneration. This comprehensive review systematically examines the expression regulation, pathological effects, therapeutic strategies, and future challenges associated with the inflammatory microenvironment and relevant cytokines in IDD. Key inflammatory cytokines, including interleukins (IL), tumor necrosis factor-alpha (TNF-α), and chemokines, exhibit significant pathological effects in IDD. Furthermore, major therapeutic modalities such as chemical antagonists, biologics, plant extracts, and gene transcription therapies are introduced to control and ameliorate the inflammatory microenvironment. These approaches provide valuable insights for identifying potential targets in future anti-inflammatory treatments for IDD.
Collapse
Affiliation(s)
- Xin Chen
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Zihan Wang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Rongrong Deng
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Hongjie Yan
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China
| | - Xin Liu
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| | - Ran Kang
- The Third Clinical Medical College, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, 210028, Jiangsu, People's Republic of China.
| |
Collapse
|
142
|
Du X, Liu Z, Tao X, Mei Y, Zhou D, Cheng K, Gao S, Shi H, Song C, Zhang X. Research Progress on the Pathogenesis of Knee Osteoarthritis. Orthop Surg 2023; 15:2213-2224. [PMID: 37435789 PMCID: PMC10475681 DOI: 10.1111/os.13809] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Knee osteoarthritis (KOA) is a chronic joint bone disease characterized by inflammatory destruction and hyperplasia of bone. Its main clinical symptoms are joint mobility difficulties and pain, severe cases can lead to limb paralysis, which poses major pressure to the quality of life and mental health of patients, but also brings serious economic burden to society. The occurrence and development of KOA is influenced by many factors, including systemic factors and local factors. The joint biomechanical changes caused by aging, trauma and obesity, abnormal bone metabolism caused by metabolic syndrome, the effects of cytokines and related enzymes, genetic and biochemical abnormalities caused by plasma adiponectin, etc. all directly or indirectly lead to the occurrence of KOA. However, there is little literature that systematically and comprehensively integrates macro- and microscopic KOA pathogenesis. Therefore, it is necessary to comprehensively and systematically summarize the pathogenesis of KOA in order to provide a better theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Xin Du
- Center for Phenomics of Traditional Chinese MedicineThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Zi‐yu Liu
- Center for Phenomics of Traditional Chinese MedicineThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Xing‐xing Tao
- Center for Phenomics of Traditional Chinese MedicineThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Yong‐liang Mei
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Da‐qian Zhou
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Kang Cheng
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Si‐long Gao
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Hou‐yin Shi
- Medical DepartmentThe Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Chao Song
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| | - Xiao‐min Zhang
- Department of Orthopaedics and Traumatology (Trauma and Bone‐setting)The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical UniversityLuzhouChina
| |
Collapse
|
143
|
Stansberry WM, Pierchala BA. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front Mol Neurosci 2023; 16:1238453. [PMID: 37692101 PMCID: PMC10483118 DOI: 10.3389/fnmol.2023.1238453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The discovery of the neurotrophins and their potent survival and trophic effects led to great enthusiasm about their therapeutic potential to rescue dying neurons in neurodegenerative diseases. The further discovery that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) had potent survival-promoting activity on motor neurons led to the proposal for their use in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). In this review we synthesize the literature pertaining to the role of NGF, BDNF, CNTF and GDNF on the development and physiology of spinal motor neurons, as well as the preclinical studies that evaluated their potential for the treatment of ALS. Results from the clinical trials of these molecules will also be described and, with the aid of decades of hindsight, we will discuss what can reasonably be concluded and how this information can inform future clinical development of neurotrophic factors for ALS.
Collapse
Affiliation(s)
- Wesley M. Stansberry
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian A. Pierchala
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
144
|
Zhao M, Chen L, Yang J, Zhang Z, Wang H, Shao Z, Liu X, Xing L. Interleukin 6 exacerbates the progression of warm autoimmune hemolytic anemia by influencing the activity and function of B cells. Sci Rep 2023; 13:13231. [PMID: 37580421 PMCID: PMC10425344 DOI: 10.1038/s41598-023-40239-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
To explore the effect of IL-6 on the activity and secretory function of B cells and analyze its effect on clinical indicators and efficacy in wAIHA patients. This study included 25 hemolytic wAIHA patients, 13 remission patients, and 10 HCs. Plasma levels of various cytokines were detected using CBA. PBMCs were extracted from 12 hemolytic wAIHA patients and divided into three wells, stimulation with IL-6 and IL-6 + tocilizumab, the blank control wells were also set. After 48 h of in vitro cell culture, percentage of CD5+CD80+, CD5-CD80+,CD5+CD86+,CD5-CD86+,CD5+IL-10+,CD5-IL-10+B cells were determined by flow-cytometry. Plasma levels of IL-6 and IL-10 in hemolytic episode group were significantly higher than that in HCs group (p = 0.0243; p = 0.0214). RBC and Hb levels were negatively correlated with IL-6 levels in wAIHA patients, while LDH levels were positively correlated.Therapeutic effects of glucocorticoid and duration of efficacy were also significantly correlated with IL-6 levels in wAIHA patients. After 48 h in vitro cell culture, percentages of CD80+/CD5+CD19+and CD80+/CD5-CD19+ cells in the IL-6 stimulation group were higher than those in blank control group (p = 0.0019; p = 0.0004), while CD86+/CD5+ CD19+ and CD86+/CD5-CD19+ cells were not statistically different before and after IL-6 stimulation. Percentage of IL-10+/CD5+ CD19+ cells in IL-6 stimulation group was lower than that in blank control (p = 0.0017) and IL-6 + toc (p = 0.0117) group. Percentage of IL-10+/CD5- CD19+cells in the IL-6 stimulation group was lower than that in the blank control group (p = 0.0223). Plasma levels of IL-6 were significantly elevated in hemolytic wAIHA patients and correlated with clinical indicators and efficacy. IL-6 promotes the activation of B cells. Although the results were not statistically significant, IL-6R antagonist tocilizumab may hopefully become a targeted therapy for wAIHA patients.
Collapse
Affiliation(s)
- Manjun Zhao
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lei Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jin Yang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ziying Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Huaquan Wang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Xiaoqing Liu
- Division of Infectious Diseases, Department of Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Limin Xing
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
145
|
Tsitsipanis C, Miliaraki M, Paflioti E, Lazarioti S, Moustakis N, Ntotsikas K, Theofanopoulos A, Ilia S, Vakis A, Simos P, Venihaki M. Inflammation biomarkers IL‑6 and IL‑10 may improve the diagnostic and prognostic accuracy of currently authorized traumatic brain injury tools. Exp Ther Med 2023; 26:364. [PMID: 37408863 PMCID: PMC10318605 DOI: 10.3892/etm.2023.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic brain injury (TBI) is currently one of the leading causes of mortality and disability worldwide. At present, no reliable inflammatory or specific molecular neurobiomarker exists in any of the standard models proposed for TBI classification or prognostication. Therefore, the present study was designed to assess the value of a group of inflammatory mediators for evaluating acute TBI, in combination with clinical, laboratory and radiological indices and prognostic clinical scales. In the present single-centre, prospective observational study, 109 adult patients with TBI, 20 adult healthy controls and a pilot group of 17 paediatric patients with TBI from a Neurosurgical Department and two intensive care units of University General Hospital of Heraklion, Greece were recruited. Blood measurements using the ELISA method, of cytokines IL-6, IL-8 and IL-10, ubiquitin C-terminal hydrolase L1 (UCH-L1) and glial fibrillary acidic protein, were performed. Compared with those in healthy control individuals, elevated IL-6 and IL-10 but reduced levels of IL-8 were found on day 1 in adult patients with TBI. In terms of TBI severity classifications, higher levels of IL-6 (P=0.001) and IL-10 (P=0.009) on day 1 in the adult group were found to be associated with more severe TBI according to widely used clinical and functional scales. Moreover, elevated IL-6 and IL-10 in adults were found to be associated with more serious brain imaging findings (rs<0.442; P<0.007). Subsequent multivariate logistic regression analysis in adults revealed that early-measured (day 1) IL-6 [odds ratio (OR)=0.987; P=0.025] and UCH-L1 (OR=0.993; P=0.032) are significant independent predictors of an unfavourable outcome. In conclusion, results from the present study suggest that inflammatory molecular biomarkers may prove to be valuable diagnostic and prognostic tools for TBI.
Collapse
Affiliation(s)
- Christos Tsitsipanis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Marianna Miliaraki
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Elina Paflioti
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Sofia Lazarioti
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Nikolaos Moustakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Konstantinos Ntotsikas
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | | | - Stavroula Ilia
- Pediatric Intensive Care Unit, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Antonis Vakis
- Department of Neurosurgery, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Panagiotis Simos
- Department of Psychiatry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Maria Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
146
|
Gumkowska-Sroka O, Kotyla K, Mojs E, Palka K, Kotyla P. Novel Therapeutic Strategies in the Treatment of Systemic Sclerosis. Pharmaceuticals (Basel) 2023; 16:1066. [PMID: 37630981 PMCID: PMC10458905 DOI: 10.3390/ph16081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Systemic sclerosis is a connective tissue disease of unknown origin and with an unpredictable course, with both cutaneous and internal organ manifestations. Despite the enormous progress in rheumatology and clinical immunology, the background of this disease is largely unknown, and no specific therapy exists. The therapeutic approach aims to treat and preserve the function of internal organs, and this approach is commonly referred to as organ-based treatment. However, in modern times, data from other branches of medicine may offer insight into how to treat disease-related complications, making it possible to find new drugs to treat this disease. In this review, we present therapeutic options aiming to stop the progression of fibrotic processes, restore the aberrant immune response, stop improper signalling from proinflammatory cytokines, and halt the production of disease-related autoantibodies.
Collapse
Affiliation(s)
- Olga Gumkowska-Sroka
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Kacper Kotyla
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Ewa Mojs
- Department of Clinical Psychology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Klaudia Palka
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| | - Przemysław Kotyla
- Department of Rheumatology and Clinical Immunology, Voivodeship Hospital No. 5 in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland;
- Department of Internal Medicine Rheumatology and Clinical Immunology, Medical University of Silesia, 40-055 Katowice, Poland; (K.K.); (K.P.)
| |
Collapse
|
147
|
Kakae M, Nakajima H, Tobori S, Kawashita A, Miyanohara J, Morishima M, Nagayasu K, Nakagawa T, Shigetomi E, Koizumi S, Mori Y, Kaneko S, Shirakawa H. The astrocytic TRPA1 channel mediates an intrinsic protective response to vascular cognitive impairment via LIF production. SCIENCE ADVANCES 2023; 9:eadh0102. [PMID: 37478173 PMCID: PMC10361588 DOI: 10.1126/sciadv.adh0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Vascular cognitive impairment (VCI) refers to cognitive alterations caused by vascular disease, which is associated with various types of dementia. Because chronic cerebral hypoperfusion (CCH) induces VCI, we used bilateral common carotid artery stenosis (BCAS) mice as a CCH-induced VCI model. Transient receptor potential ankyrin 1 (TRPA1), the most redox-sensitive TRP channel, is functionally expressed in the brain. Here, we investigated the pathophysiological role of TRPA1 in CCH-induced VCI. During early-stage CCH, cognitive impairment and white matter injury were induced by BCAS in TRPA1-knockout but not wild-type mice. TRPA1 stimulation with cinnamaldehyde ameliorated BCAS-induced outcomes. RNA sequencing analysis revealed that BCAS increased leukemia inhibitory factor (LIF) in astrocytes. Moreover, hydrogen peroxide-treated TRPA1-stimulated primary astrocyte cultures expressed LIF, and culture medium derived from these cells promoted oligodendrocyte precursor cell myelination. Overall, TRPA1 in astrocytes prevents CCH-induced VCI through LIF production. Therefore, TRPA1 stimulation may be a promising therapeutic approach for VCI.
Collapse
Affiliation(s)
- Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Hiroki Nakajima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shota Tobori
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Ayaka Kawashita
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Jun Miyanohara
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Misa Morishima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Pharmacotherapy, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Kyoto, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
148
|
López-Ayllón BD, de Lucas-Rius A, Mendoza-García L, García-García T, Fernández-Rodríguez R, Suárez-Cárdenas JM, Santos FM, Corrales F, Redondo N, Pedrucci F, Zaldívar-López S, Jiménez-Marín Á, Garrido JJ, Montoya M. SARS-CoV-2 accessory proteins involvement in inflammatory and profibrotic processes through IL11 signaling. Front Immunol 2023; 14:1220306. [PMID: 37545510 PMCID: PMC10399023 DOI: 10.3389/fimmu.2023.1220306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/08/2023] Open
Abstract
SARS-CoV-2, the cause of the COVID-19 pandemic, possesses eleven accessory proteins encoded in its genome. Their roles during infection are still not completely understood. In this study, transcriptomics analysis revealed that both WNT5A and IL11 were significantly up-regulated in A549 cells expressing individual accessory proteins ORF6, ORF8, ORF9b or ORF9c from SARS-CoV-2 (Wuhan-Hu-1 isolate). IL11 is a member of the IL6 family of cytokines. IL11 signaling-related genes were also differentially expressed. Bioinformatics analysis disclosed that both WNT5A and IL11 were involved in pulmonary fibrosis idiopathic disease and functional assays confirmed their association with profibrotic cell responses. Subsequently, data comparison with lung cell lines infected with SARS-CoV-2 or lung biopsies from patients with COVID-19, evidenced altered profibrotic gene expression that matched those obtained in this study. Our results show ORF6, ORF8, ORF9b and ORF9c involvement in inflammatory and profibrotic responses. Thus, these accessory proteins could be targeted by new therapies against COVID-19 disease.
Collapse
Affiliation(s)
- Blanca D. López-Ayllón
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Ana de Lucas-Rius
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Laura Mendoza-García
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Tránsito García-García
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Raúl Fernández-Rodríguez
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - José M. Suárez-Cárdenas
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Fátima Milhano Santos
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Centre for Biotechnology (CNB-CSIC), Madrid, Spain
| | - Natalia Redondo
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
- Unit of Infectious Diseases, University Hospital ‘12 de Octubre’, Institute for Health Research Hospital ‘12 de Octubre’ (imas12), Madrid, Spain
- Centre for Biomedical Research Network on Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Federica Pedrucci
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| | - Sara Zaldívar-López
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Ángeles Jiménez-Marín
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - Juan J. Garrido
- Department of Genetics, Immunogenomics and Molecular Pathogenesis Group, UIC Zoonoses and Emergent Diseases ENZOEM, University of Córdoba, Córdoba, Spain
- Maimónides Biomedical Research Institute of Córdoba (IMIBIC), GA-14 Research Group, Córdoba, Spain
| | - María Montoya
- Molecular Biomedicine Department, Margarita Salas Center for Biological Research (CIB-CSIC), Madrid, Spain
| |
Collapse
|
149
|
Xu J, Yu L, Liu F, Wan L, Deng Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol 2023; 14:1222129. [PMID: 37475866 PMCID: PMC10355373 DOI: 10.3389/fimmu.2023.1222129] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/12/2023] [Indexed: 07/22/2023] Open
Abstract
The complicated connections and cross talk between the skeletal system and the immune system are attracting more attention, which is developing into the field of Osteoimmunology. In this field, cytokines that are among osteoblasts and osteoclasts play a critical role in bone remodeling, which is a pathological process in the pathogenesis and development of osteoporosis. Those cytokines include the tumor necrosis factor (TNF) family, the interleukin (IL) family, interferon (IFN), chemokines, and so on, most of which influence the bone microenvironment, osteoblasts, and osteoclasts. This review summarizes the effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis, aiming to providing the latest reference to the role of immunology in osteoporosis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linxin Yu
- Renmin Hospital of Wuhan University, Wuhan, China
| | - Feng Liu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Longbiao Wan
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Deng
- Hubei Provincial Hospital of Traditional Chinese Medicine (TCM), Wuhan, China
| |
Collapse
|
150
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|