101
|
Jacob AL, Smith C, Partanen J, Ornitz DM. Fibroblast growth factor receptor 1 signaling in the osteo-chondrogenic cell lineage regulates sequential steps of osteoblast maturation. Dev Biol 2006; 296:315-28. [PMID: 16815385 PMCID: PMC2077084 DOI: 10.1016/j.ydbio.2006.05.031] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/02/2006] [Accepted: 05/23/2006] [Indexed: 12/29/2022]
Abstract
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.
Collapse
MESH Headings
- Animals
- Bone and Bones/abnormalities
- Bone and Bones/embryology
- Bone and Bones/enzymology
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Lineage/genetics
- Cell Lineage/physiology
- Cells, Cultured
- Chondrocytes/cytology
- Chondrocytes/enzymology
- Chondrocytes/physiology
- Hypertrophy/genetics
- Mice
- Mice, Knockout
- Mice, Transgenic
- Osteoblasts/cytology
- Osteoblasts/enzymology
- Osteoblasts/physiology
- Receptor, Fibroblast Growth Factor, Type 1/biosynthesis
- Receptor, Fibroblast Growth Factor, Type 1/deficiency
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Anne L. Jacob
- Department of Molecular Biology and Pharmacology, Washington University Medical School, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Craig Smith
- Department of Molecular Biology and Pharmacology, Washington University Medical School, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Juha Partanen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - David M. Ornitz
- Department of Molecular Biology and Pharmacology, Washington University Medical School, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
- * Corresponding author. E-mail address: (D.M. Ornitz)
| |
Collapse
|
102
|
Hoch RV, Soriano P. Context-specific requirements for Fgfr1 signaling through Frs2 and Frs3 during mouse development. Development 2006; 133:663-73. [PMID: 16421190 DOI: 10.1242/dev.02242] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor receptor 1 (Fgfr1) plays pleiotropic roles during embryonic development, but the mechanisms by which this receptor signals in vivo have not previously been elucidated. Biochemical studies have implicated Fgf receptor-specific substrates (Frs2, Frs3) as the principal mediators of Fgfr1 signal transduction to the MAPK and PI3K pathways. To determine the developmental requirements for Fgfr1-Frs signaling, we generated mice (Fgfr1ΔFrs/ΔFrs) in which the Frs2/3-binding site on Fgfr1 is deleted. Fgfr1ΔFrs/ΔFrs embryos die during late embryogenesis, and exhibit defects in neural tube closure and in the development of the tail bud and pharyngeal arches. However, the mutant receptor is able to drive Fgfr1 functions during gastrulation and somitogenesis, and drives normal MAPK responses to Fgf. These findings indicate that Fgfr1 uses distinct signal transduction mechanisms in different developmental contexts, and that some essential functions of this receptor are mediated by Frs-independent signaling.
Collapse
Affiliation(s)
- Renée V Hoch
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | |
Collapse
|
103
|
Morriss-Kay GM, Wilkie AOM. Growth of the normal skull vault and its alteration in craniosynostosis: insights from human genetics and experimental studies. J Anat 2006; 207:637-53. [PMID: 16313397 PMCID: PMC1571561 DOI: 10.1111/j.1469-7580.2005.00475.x] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The mammalian skull vault is constructed principally from five bones: the paired frontals and parietals, and the unpaired interparietal. These bones abut at sutures, where most growth of the skull vault takes place. Sutural growth involves maintenance of a population of proliferating osteoprogenitor cells which differentiate into bone matrix-secreting osteoblasts. Sustained function of the sutures as growth centres is essential for continuous expansion of the skull vault to accommodate the growing brain. Craniosynostosis, the premature fusion of the cranial sutures, occurs in 1 in 2500 children and often presents challenging clinical problems. Until a dozen years ago, little was known about the causes of craniosynostosis but the discovery of mutations in the MSX2, FGFR1, FGFR2, FGFR3, TWIST1 and EFNB1 genes in both syndromic and non-syndromic cases has led to considerable insights into the aetiology, classification and developmental pathology of these disorders. Investigations of the biological roles of these genes in cranial development and growth have been carried out in normal and mutant mice, elucidating their individual and interdependent roles in normal sutures and in sutures undergoing synostosis. Mouse studies have also revealed a significant correspondence between the neural crest-mesoderm boundary in the early embryonic head and the position of cranial sutures, suggesting roles for tissue interaction in suture formation, including initiation of the signalling system that characterizes the functionally active suture.
Collapse
|
104
|
OGINO YUKIKO, SUZUKI KENTARO, HARAGUCHI RYUMA, SATOH YOSHIHIKO, DOLLE PASCAL, YAMADA GEN. External Genitalia Formation. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2001.tb03983.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
105
|
Takeuchi Y, Molyneaux K, Runyan C, Schaible K, Wylie C. The roles of FGF signaling in germ cell migration in the mouse. Development 2005; 132:5399-409. [PMID: 16291796 DOI: 10.1242/dev.02080] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor (FGF) signaling is thought to play a role in germ cell behavior. FGF2 has been reported to be a mitogen for primordial germ cells in vitro, whilst combinations of FGF2, steel factor and LIF cause cultured germ cells to transform into permanent lines of pluripotent cells resembling ES cells. However, the actual function of FGF signaling on the migrating germ cells in vivo is unknown. We show, by RT-PCR analysis of cDNA from purified E10.5 germ cells, that germ cells express two FGF receptors: Fgfr1-IIIc and Fgfr2-IIIb. Second, we show that FGF-mediated activation of the MAP kinase pathway occurs in germ cells during their migration, and thus they are potentially direct targets of FGF signaling. Third, we use cultured embryo slices in simple gain-of-function experiments,using FGF ligands, to show that FGF2, a ligand for FGFR1-IIIc, affects motility, whereas FGF7, a ligand for FGFR2-IIIb, affects germ cell numbers. Loss of function, using a specific inhibitor of FGF signaling, causes increased apoptosis and inhibition of cell shape change in the migrating germ cells. Lastly, we confirm in vivo the effects seen in slice cultures in vitro,by examining germ cell positions and numbers in embryos carrying a loss-of-function allele of FGFR2-IIIb. In FGFR2-IIIb-/- embryos,germ cell migration is unaffected, but the numbers of germ cells are significantly reduced. These data show that a major role of FGF signaling through FGFR2-IIIb is to control germ cell numbers. The data do not discriminate between direct and indirect effects of FGF signaling on germ cells, and both may be involved.
Collapse
MESH Headings
- Alternative Splicing
- Animals
- Cell Count
- Cell Movement/physiology
- Embryo, Mammalian/cytology
- Extracellular Signal-Regulated MAP Kinases/physiology
- Female
- Fibroblast Growth Factor 2/physiology
- Fibroblast Growth Factor 7/physiology
- Germ Cells/cytology
- Germ Cells/physiology
- In Vitro Techniques
- Male
- Mice
- Mice, Transgenic
- Mutation
- Pyrroles/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yutaka Takeuchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
106
|
Dessimoz J, Opoka R, Kordich JJ, Grapin-Botton A, Wells JM. FGF signaling is necessary for establishing gut tube domains along the anterior-posterior axis in vivo. Mech Dev 2005; 123:42-55. [PMID: 16326079 DOI: 10.1016/j.mod.2005.10.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 01/25/2023]
Abstract
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.
Collapse
Affiliation(s)
- Jessica Dessimoz
- ISREC, Chemin des Boveresses 155, CH1066, Epalinges/Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
107
|
Carapuço M, Nóvoa A, Bobola N, Mallo M. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev 2005; 19:2116-21. [PMID: 16166377 PMCID: PMC1221883 DOI: 10.1101/gad.338705] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We show here that expression of Hoxa10 in the presomitic mesoderm is sufficient to confer a Hox group 10 patterning program to the somite, producing vertebrae without ribs, an effect not achieved when Hoxa10 is expressed in the somites. In addition, Hox group 11-dependent vertebral sacralization requires Hoxa11 expression in the presomitic mesoderm, while their caudal differentiation requires that Hoxa11 is expressed in the somites. Therefore, Hox gene patterning activity is different in the somites and presomitic mesoderm, the latter being very prominent for Hox gene-mediated patterning of the axial skeleton. This is further supported by our finding that inactivation of Gbx2, a homeobox-containing gene expressed in the presomitic mesoderm but not in the somites, produced Hox-like phenotypes in the axial skeleton without affecting Hox gene expression.
Collapse
Affiliation(s)
- Marta Carapuço
- Instituto Gulbenkian de Ciencia, 2780-156 Oeiras, Portugal
| | | | | | | |
Collapse
|
108
|
Li C, Xu X, Nelson DK, Williams T, Kuehn MR, Deng CX. FGFR1 function at the earliest stages of mouse limb development plays an indispensable role in subsequent autopod morphogenesis. Development 2005; 132:4755-64. [PMID: 16207751 DOI: 10.1242/dev.02065] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors have been implicated in limb development. However, because of early post-implantation lethality associated with fibroblast growth factor receptor 1 (FGFR1) deficiency, the role of this receptor in limb development remains elusive. To overcome embryonic lethality, we have performed a conditional knockout of Fgfr1 using the Cre-LoxP approach. We show that Cre-mediated deletion of Fgfr1 in limb mesenchyme, beginning at a time point slightly after the first sign of initial budding, primarily affects formation of the first one or two digits. In contrast, deletion of Fgfr1 at an earlier stage, prior to thickening of limb mesenchyme, results in more severe defects, characterized by malformation of the AER, diminished Shh expression and the absence of the majority of the autopod skeletal elements. We show that FGFR1 deficiency does not affect cell proliferation. Instead, it triggers cell death and leads to alterations in expression of a number of genes involved in apoptosis and digit patterning, including increased expression of Bmp4, Dkk1 and Alx4, and downregulation of MKP3. These data demonstrate that FGF/FGFR1 signals play indispensable roles in the early stages of limb initiation, eliciting a profound effect on the later stages of limb development, including cell survival, autopod formation and digit patterning.
Collapse
MESH Headings
- Animals
- Body Patterning
- Cell Death
- Embryo, Mammalian
- Extremities/embryology
- Extremities/growth & development
- Gene Expression Regulation, Developmental
- Integrases
- Mesoderm
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Morphogenesis
- Receptor, Fibroblast Growth Factor, Type 1/deficiency
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/physiology
Collapse
Affiliation(s)
- Cuiling Li
- Genetics of Development and Disease Branch, NIDDK, NIH, 10/9N105, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Derived from the inner cell mass of blastocysts, embryonic stem cells (ESCs) retain the pluripotent features of early embryonic epiblast cells. In vitro, ESCs undergo spontaneous differentiation into a multitude of tissues, and thus are a powerful tool for the study of early developmental processes and a promising resource for cell-based therapies. We have pursued the derivation of functional, multipotent and engraftable hematopoietic stem cells (HSCs) from ESCs in order to investigate the genetic pathways specifying blood formation, as well as to lay the foundation for hematopoietic cell replacement therapies based on engineered ESCs. Theoretically, the generation of HSCs from patient-specific ESCs derived by nuclear transfer could provide for autologous hematopoietic therapies for the treatment of malignant and genetic bone marrow disorders. Although significant progress has been made in achieving hematopoietic differentiation from both murine and human ESCs, we have only a primitive understanding of the underlying mechanisms that specify hematopoietic cell fate, and a very limited capacity to direct the differentiation of the definitive HSC that would be suitable for clinical engraftment studies. Here we will review the progress to date and the significant problems that remain, and outline a strategy to achieve the directed differentiation of HSCs under conditions that might be appropriate for clinical scale-up and disease applications.
Collapse
Affiliation(s)
- Claudia Lengerke
- Department of Hematology and Oncology, University Medical Center II, Tuebingen, Germany
| | | |
Collapse
|
110
|
Verheyden JM, Lewandoski M, Deng C, Harfe BD, Sun X. Conditional inactivation of Fgfr1 in mouse defines its role in limb bud establishment, outgrowth and digit patterning. Development 2005; 132:4235-45. [PMID: 16120640 PMCID: PMC6986394 DOI: 10.1242/dev.02001] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have implicated fibroblast growth factor receptor 1 (FGFR1) in limb development. However, the precise nature and complexity of its role have not been defined. Here, we dissect Fgfr1 function in mouse limb by conditional inactivation of Fgfr1 using two different Cre recombinase-expressing lines. Use of the T (brachyury)-cre line led to Fgfr1 inactivation in all limb bud mesenchyme (LBM) cells during limb initiation. This mutant reveals FGFR1 function in two phases of limb development. In a nascent limb bud, FGFR1 promotes the length of the proximodistal (PD) axis while restricting the dimensions of the other two axes. It also serves an unexpected role in limiting LBM cell number in this early phase. Later on during limb outgrowth, FGFR1 is essential for the expansion of skeletal precursor population by maintaining cell survival. Use of mice carrying the sonic hedgehog(cre) (Shh(cre)) allele led to Fgfr1 inactivation in posterior LBM cells. This mutant allows us to test the role of Fgfr1 in gene expression regulation without disturbing limb bud growth. Our data show that during autopod patterning, FGFR1 influences digit number and identity, probably through cell-autonomous regulation of Shh expression. Our study of these two Fgfr1 conditional mutants has elucidated the multiple roles of FGFR1 in limb bud establishment, growth and patterning.
Collapse
Affiliation(s)
- Jamie M. Verheyden
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, WI 53706, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick Cancer Research and Development Center, Frederick, MD 21702, USA
| | - Chuxia Deng
- Genetics of Development and Disease Branch, NIDDK, NIH, 10/9N105, 10 Center Drive, Bethesda, MD 20892, USA
| | - Brian D. Harfe
- University of Florida College of Medicine, Department of Molecular Genetics and Microbiology, Gainesville, FL 32610-0266, USA
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, 425G Henry Mall, Madison, WI 53706, USA
- Author for correspondence: ()
| |
Collapse
|
111
|
Deschamps J, van Nes J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 2005; 132:2931-42. [PMID: 15944185 DOI: 10.1242/dev.01897] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.
Collapse
Affiliation(s)
- Jacqueline Deschamps
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| | | |
Collapse
|
112
|
Smith TG, Sweetman D, Patterson M, Keyse SM, Münsterberg A. Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 2005; 132:1305-14. [PMID: 15716340 DOI: 10.1242/dev.01699] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cells in the early vertebrate somite receive cues from surrounding tissues,which are important for their specification. A number of signalling pathways involved in somite patterning have been described extensively. By contrast,the interactions between cells from different regions within the somite are less well characterised. Here, we demonstrate that myotomally derived FGFs act through the MAPK signal transduction cascade and in particular, ERK1/2 to activate scleraxis expression in a population of mesenchymal progenitor cells in the dorsal sclerotome. We show that the levels of active,phosphorylated ERK protein in the developing somite are crucial for the expression of scleraxis and Mkp3. MKP3 is a dual specificity phosphatase and a specific antagonist of ERK MAP kinases and we demonstrate that in somites Mkp3 transcription depends on the presence of active ERK. Therefore, MKP3 and ERK MAP kinase constitute a negative feedback loop activated by FGF in sclerotomal progenitor cells. We propose that tight control of ERK signalling strength by MKP3 is important for the appropriate regulation of downstream cellular responses including the activation of scleraxis. We show that increased or decreased levels of phosphorylated ERK result in the loss of scleraxis transcripts and the loss of distal rib development, highlighting the importance of the MKP3-ERK-MAP kinase mediated feedback loop for cell specification and differentiation.
Collapse
|
113
|
Pau H, Fuchs H, de Angelis MH, Steel KP. Hush puppy: a new mouse mutant with pinna, ossicle, and inner ear defects. Laryngoscope 2005; 115:116-24. [PMID: 15630379 DOI: 10.1097/01.mlg.0000150693.31130.a0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES/HYPOTHESIS Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. METHODS The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. RESULTS Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. CONCLUSION The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects.
Collapse
Affiliation(s)
- Henry Pau
- MRC Institute of Hearing Research, University Park, Nottingham, UK
| | | | | | | |
Collapse
|
114
|
Abstract
Fibroblast growth factors (FGFs) have been implicated in diverse cellular processes including apoptosis, cell survival, chemotaxis, cell adhesion, migration, differentiation, and proliferation. This review presents our current understanding on the roles of FGF signaling, the pathways employed, and its regulation. We focus on FGF signaling during early embryonic processes in vertebrates, such as induction and patterning of the three germ layers as well as its function in the control of morphogenetic movements.
Collapse
Affiliation(s)
- Ralph T Böttcher
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
115
|
Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16:139-49. [PMID: 15863030 DOI: 10.1016/j.cytogfr.2005.01.001] [Citation(s) in RCA: 1431] [Impact Index Per Article: 71.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 22 members of the fibroblast growth factor (FGF) family of growth factors mediate their cellular responses by binding to and activating the different isoforms encoded by the four receptor tyrosine kinases (RTKs) designated FGFR1, FGFR2, FGFR3 and FGFR4. Unlike other growth factors, FGFs act in concert with heparin or heparan sulfate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic responses that lead to the variety of cellular responses induced by this large family of growth factors. A variety of human skeletal dysplasias have been linked to specific point mutations in FGFR1, FGFR2 and FGFR3 leading to severe impairment in cranial, digital and skeletal development. Gain of function mutations in FGFRs were also identified in a variety of human cancers such as myeloproliferative syndromes, lymphomas, prostate and breast cancers as well as other malignant diseases. The binding of FGF and HSPG to the extracellular ligand domain of FGFR induces receptor dimerization, activation and autophosphorylation of multiple tyrosine residues in the cytoplasmic domain of the receptor molecule. A variety of signaling proteins are phosphorylated in response to FGF stimulation including Shc, phospholipase-Cgamma, STAT1, Gab1 and FRS2alpha leading to stimulation of intracellular signaling pathways that control cell proliferation, cell differentiation, cell migration, cell survival and cell shape. The docking proteins FRS2alpha and FRS2beta are major mediators of the Ras/MAPK and PI-3 kinase/Akt signaling pathways as well as negative feedback mechanisms that fine-tune the signal that is initiated at the cell surface following FGFR stimulation.
Collapse
Affiliation(s)
- V P Eswarakumar
- Yale University School of Medicine, Department of Pharmacology, 333 Cedar Street, P.O. Box 208066, SHM B-295, New Haven, CT 06520, USA
| | | | | |
Collapse
|
116
|
Abstract
Since its discovery over three decades ago, platelet-derived growth factor (PDGF) has been a model system for learning how growth factors regulate biological processes. For the first several decades investigators used cells grown in tissue culture. More recently, PDGF signaling has also been investigated in mice. This review outlines the advances in these two systems, and highlights some of the directions for future investigation.
Collapse
Affiliation(s)
- Michelle Tallquist
- Deptartment of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390-9046, USA
| | | |
Collapse
|
117
|
Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron 2004; 43:795-807. [PMID: 15363391 DOI: 10.1016/j.neuron.2004.08.041] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 08/03/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
During vertebrate retinogenesis, seven classes of cells are specified from multipotent progenitors. To date, the mechanisms underlying multipotent cell fate determination by retinal progenitors remain poorly understood. Here, we show that the Foxn4 winged helix/forkhead transcription factor is expressed in a subset of mitotic progenitors during mouse retinogenesis. Targeted disruption of Foxn4 largely eliminates amacrine neurons and completely abolishes horizontal cells, while overexpression of Foxn4 strongly promotes an amacrine cell fate. These results indicate that Foxn4 is both necessary and sufficient for commitment to the amacrine cell fate and is nonredundantly required for the genesis of horizontal cells. Furthermore, we provide evidence that Foxn4 controls the formation of amacrine and horizontal cells by activating the expression of the retinogenic factors Math3, NeuroD1, and Prox1. Our data suggest a model in which Foxn4 cooperates with other key retinogenic factors to mediate the multipotent differentiation of retinal progenitors.
Collapse
Affiliation(s)
- Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854 USA
| | | | | | | | | | | |
Collapse
|
118
|
Scholpp S, Groth C, Lohs C, Lardelli M, Brand M. Zebrafish fgfr1 is a member of the fgf8 synexpression group and is required for fgf8 signalling at the midbrain-hindbrain boundary. Dev Genes Evol 2004; 214:285-95. [PMID: 15221377 DOI: 10.1007/s00427-004-0409-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Accepted: 04/05/2004] [Indexed: 11/29/2022]
Abstract
FGFR1 is an important signalling molecule during embryogenesis and in adulthood. FGFR1 mutations in human may lead to developmental defects and pathological conditions, including cancer and Alzheimer's disease. Here, we describe cloning and expression analysis of the zebrafish fibroblast growth factor receptor 1 ( fgfr1). Initially, fgfr1 is expressed in the adaxial mesoderm with transcripts distinctly localised to the anterior portion of each half-somite. Hereupon, fgfr1 is also strongly expressed in the otic vesicles, branchial arches and the brain, especially at the midbrain-hindbrain boundary (MHB). The expression patterns of fgfr1 and fgf8 are strikingly similar and knock-down of fgfr1 phenocopies many aspects observed in the fgf8 mutant acerebellar, suggesting that Fgf8 exerts its function mainly by binding to FgfR1.
Collapse
Affiliation(s)
- Steffen Scholpp
- Max-Planck Institute of Molecular Cell Biology and Genetics, Department of Genetics, University of Technology (TU), 01307, Dresden, Germany
| | | | | | | | | |
Collapse
|
119
|
Chawengsaksophak K, de Graaff W, Rossant J, Deschamps J, Beck F. Cdx2 is essential for axial elongation in mouse development. Proc Natl Acad Sci U S A 2004; 101:7641-5. [PMID: 15136723 PMCID: PMC419659 DOI: 10.1073/pnas.0401654101] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inactivation of Cdx2 leads to preimplantation embryonic lethality. Rescue of the implantation defect by tetraploid fusion established that Cdx2 is necessary for trophoblastic development, vasculogenesis in the yolk sac mesoderm, allantoic growth, and chorioallantoic fusion. "Rescued" Cdx2 mutants die at late gastrulation stages because of failure of placental development. Cdx2 is also needed for the completion of the normal process of gastrulation and tail bud elongation. Presegmental paraxial mesoderm is severely restricted in amount and somites posterior to somite 5 are abnormal. The Cdx2 mutation, like mutations impairing Wnt and Fgf signaling, causes posterior truncations and disturbs axial patterning of the embryonic structures, indicated by changes in the Hox expression domains. The gene appears to be important in the integration of the pathways controlling embryonic axial elongation, and anterior-posterior patterning.
Collapse
Affiliation(s)
- Kallayanee Chawengsaksophak
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
120
|
Kimura Y, Jones N, Klüppel M, Hirashima M, Tachibana K, Cohn JB, Wrana JL, Pawson T, Bernstein A. Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages. Proc Natl Acad Sci U S A 2004; 101:6015-20. [PMID: 15067126 PMCID: PMC395915 DOI: 10.1073/pnas.0305363101] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Loss-of-function mutations in the murine dominant white spotting/c-kit locus affect a diverse array of biological processes and cell lineages and cause a range of phenotypes, including severe anemia, defective pigmentation, sterility, mast cell deficits, a lack of interstitial cells of Cajal, spatial learning memory deficits, and defects in peripheral nerve regeneration. Here we show that tyrosine residues 567 and 569 in the juxtamembrane (Jx) domain of the murine Kit receptor tyrosine kinase are crucial for the function of Kit in melanogenesis and mast cell development, but are dispensable for the normal development of erythroid, interstitial cells of Cajal and germ cells. Furthermore, adult mice lacking both tyrosines exhibit splenomegaly, dysregulation of B-cell and megakaryocyte development, and enlarged stomachs. Analysis of signal transduction events induced by the mutant receptors after ligand stimulation indicates that Jx tyrosine mutations diminish receptor autophosphorylation and selectively attenuate activation of extracellular signal-regulated kinase/mitogen-activated protein kinases. Together, these observations demonstrate that the Jx domain of Kit plays a cell-type specific regulatory role in vivo and illustrate how engineered mutations in Kit can be used to understand the complex biological and molecular events that result from activating a receptor tyrosine kinase.
Collapse
Affiliation(s)
- Yuki Kimura
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, ON, Canada M5G 1X5
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Cordes R, Schuster-Gossler K, Serth K, Gossler A. Specification of vertebral identity is coupled to Notch signalling and the segmentation clock. Development 2004; 131:1221-33. [PMID: 14960495 DOI: 10.1242/dev.01030] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To further analyse requirements for Notch signalling in patterning the paraxial mesoderm, we generated transgenic mice that express in the paraxial mesoderm a dominant-negative version of Delta1. Transgenic mice with reduced Notch activity in the presomitic mesoderm as indicated by loss of Hes5 expression were viable and displayed defects in somites and vertebrae consistent with known roles of Notch signalling in somite compartmentalisation. In addition, these mice showed with variable expressivity and penetrance alterations of vertebral identities resembling homeotic transformations, and subtle changes of Hox gene expression in day 12.5 embryos. Mice that carried only one functional copy of the endogenous Delta1 gene also showed changes of vertebral identities in the lower cervical region, suggesting a previously unnoticed haploinsufficiency for Delta1. Likewise, in mice carrying a null allele of the oscillating Lfng gene, or in transgenic mice expressing Lfngconstitutively in the presomitic mesoderm, vertebral identities were changed and numbers of segments in the cervical and thoracic regions were reduced,suggesting anterior shifts of axial identity. Together, these results provide genetic evidence that precisely regulated levels of Notch activity as well as cyclic Lfng activity are critical for positional specification of the anteroposterior body axis in the paraxial mesoderm.
Collapse
Affiliation(s)
- Ralf Cordes
- Institut für Molekularbiologie OE5250, Medizinische Hochschule, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | | | | |
Collapse
|
122
|
Hajihosseini MK, Lalioti MD, Arthaud S, Burgar HR, Brown JM, Twigg SRF, Wilkie AOM, Heath JK. Skeletal development is regulated by fibroblast growth factor receptor 1 signalling dynamics. Development 2004; 131:325-35. [PMID: 14668415 DOI: 10.1242/dev.00940] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ligand-dependent signalling pathways have been characterised as having morphogen properties where there is a quantitative relationship between receptor activation and response, or threshold characteristics in which there is a binary switch in response at a fixed level of receptor activation. Here we report the use of a bacterial artificial chromosome (BAC)-based transgenic system in which a hypermorphic mutation has been introduced into the murine Fgfr1 gene. These mice exhibit cranial suture and sternal fusions that are exacerbated when the BAC copy number is increased. Surprisingly,increasing mutant BAC copy number also leads to the de novo appearance of digit I polydactyly in the hind limb and transformations of the vertebrae. Polydactyly is accompanied by a reduction of programmed cell death in the developing hind limb. Candidate gene analysis reveals downregulation of Dkk1 in the digit I field and upregulation of Wnt5a and Hoxd13. These findings show that Fgfr1-mediated developmental pathways exhibit differing signalling dynamics, whereby development of the cranial sutures and sternum follows a morphogen mode, whereas development of the vertebral column and the hind limbs has threshold signalling properties.
Collapse
|
123
|
Zhang H, Dessimoz J, Beyer TA, Krampert M, Williams LT, Werner S, Grose R. Fibroblast growth factor receptor 1-IIIb is dispensable for skin morphogenesis and wound healing. Eur J Cell Biol 2004; 83:3-11. [PMID: 15085950 DOI: 10.1078/0171-9335-00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative splicing in the extracellular domain is a characteristic feature of members of the fibroblast growth factor receptor (FGFR) family. This splicing event generates receptor variants, which differ in their ligand binding specificities. A poorly characterized splice variant is FGFR1-IIIb, recently found to be a functional FGF receptor predominantly expressed in the skin. Here we show that FGFR1-IIIb is expressed in normal and wounded mouse skin. Reduced expression of this type of receptor was found in wounds of healing-impaired genetically diabetic mice, suggesting that downregulation of FGFR1-IIIb is associated with wound healing defects. To address this possibility, we deleted the IIIb exon of FGFR1 in mice. The lack of FGFR-IIIb did not alter the expression of either FGFR1-IIIc, other FGF receptor genes or of FGFR1-IIIb ligands in normal and wounded skin. Histological analysis of the skin of FGFR1-IIIb knockout animals did not reveal any obvious abnormalities. Furthermore, full-thickness excisional skin wounds in these mice healed normally and no defects could be observed at the macroscopic or histological level. Finally, several genes that encode key players in wound repair were normally expressed in these animals. These data demonstrate that FGFR1-IIIb is dispensable for skin development and wound repair.
Collapse
Affiliation(s)
- Hongbing Zhang
- Five Prime Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
124
|
Coumoul X, Deng CX. Roles of FGF receptors in mammalian development and congenital diseases. ACTA ACUST UNITED AC 2003; 69:286-304. [PMID: 14745970 DOI: 10.1002/bdrc.10025] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Four fibroblast growth factor receptors (FGFR1-4) constitute a family of transmembrane tyrosine kinases that serve as high affinity receptors for at least 22 FGF ligands. Gene targeting in mice has yielded valuable insights into the functions of this important gene family in multiple biological processes. These include mesoderm induction and patterning; cell growth, migration, and differentiation; organ formation and maintenance; neuronal differentiation and survival; wound healing; and malignant transformation. Furthermore, discoveries that mutations in three of the four receptors result in more than a dozen human congenital diseases highlight the importance of these genes in skeletal development. In this review, we will discuss recent progress on the roles of FGF receptors in mammalian development and congenital diseases, with an emphasis on signal transduction pathways.
Collapse
Affiliation(s)
- Xavier Coumoul
- Genetics of Development and Disease Branch, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
125
|
Tallquist MD, French WJ, Soriano P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol 2003; 1:E52. [PMID: 14624252 PMCID: PMC261889 DOI: 10.1371/journal.pbio.0000052] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 09/16/2003] [Indexed: 11/19/2022] Open
Abstract
The platelet-derived growth factor β receptor (PDGFRβ) is known to activate many molecules involved in signal transduction and has been a paradigm for receptor tyrosine kinase signaling for many years. We have sought to determine the role of individual signaling components downstream of this receptor in vivo by analyzing an allelic series of tyrosine–phenylalanine mutations that prevent binding of specific signal transduction components. Here we show that the incidence of vascular smooth muscle cells/pericytes (v/p), a PDGFRβ-dependent cell type, can be correlated to the amount of receptor expressed and the number of activated signal transduction pathways. A decrease in either receptor expression levels or disruption of multiple downstream signaling pathways lead to a significant reduction in v/p. Conversely, loss of RasGAP binding leads to an increase in this same cell population, implicating a potential role for this effector in attenuating the PDGFRβ signal. The combined in vivo and biochemical data suggest that the summation of pathways associated with the PDGFRβ signal transduction determines the expansion of developing v/p cells. Using both in vivo and biochemical approaches, the summation of pathways associated with the PDGFRβ signal transduction is shown to determine the expansion of a specific PDGFRβ-dependent cell type
Collapse
MESH Headings
- Alleles
- Animals
- Blotting, Southern
- Blotting, Western
- Cytoplasm/metabolism
- Fibroblasts/metabolism
- Immunohistochemistry
- Kidney/metabolism
- Mice
- Mice, Transgenic
- Models, Genetic
- Muscle, Smooth, Vascular/cytology
- Mutation
- Myocytes, Smooth Muscle/cytology
- Pericytes/metabolism
- Phenylalanine/chemistry
- Point Mutation
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/physiology
- Retina/embryology
- Signal Transduction
- Time Factors
- Transgenes
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Michelle D Tallquist
- Program in Developmental Biology and Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | |
Collapse
|
126
|
Corson LB, Yamanaka Y, Lai KMV, Rossant J. Spatial and temporal patterns of ERK signaling during mouse embryogenesis. Development 2003; 130:4527-37. [PMID: 12925581 DOI: 10.1242/dev.00669] [Citation(s) in RCA: 330] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling between tissues is essential to form the complex, three-dimensional organization of an embryo. Because many receptor tyrosine kinases signal through the RAS-MAPK pathway, phosphorylated ERK can be used as an indicator of when and where signaling is active during development. Using whole-mount immunohistochemistry with antibodies specific to phosphorylated ERK1 and ERK2, we analyzed the location, timing, distribution, duration and intensity of ERK signaling during mouse embryogenesis (5-10.5 days postcoitum). Spatial and temporal domains of ERK activation were discrete with well-defined boundaries, indicating specific regulation of signaling in vivo. Prominent, sustained domains of ERK activation were seen in the ectoplacental cone, extra-embryonic ectoderm, limb buds, branchial arches, frontonasal process, forebrain, midbrain-hindbrain boundary, tailbud, foregut and liver. Transient activation was seen in neural crest, peripheral nervous system, nascent blood vessels, and anlagen of the eye, ear and heart. In the contiguous domains of ERK signaling, phospho-ERK staining was cytoplasmic with no sign of nuclear translocation. With few exceptions, the strongest domains of ERK activation correlated with regions of known or suspected fibroblast growth factor (FGF) signaling, and brief incubation with an inhibitor of the fibroblast growth factor receptor (FGFR) specifically diminished the phospho-ERK staining in these regions. Although many domains of ERK activation were FGFR-dependent, not all domains of FGF signaling were phospho-ERK positive. These studies identify key domains of sustained ERK signaling in the intact mouse embryo, give significant insight into the regulation of this signaling in vivo and pinpoint regions where downstream target genes can be sought.
Collapse
Affiliation(s)
- Laura Beth Corson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
127
|
Wright TJ, Hatch EP, Karabagli H, Karabagli P, Schoenwolf GC, Mansour SL. Expression of mouse fibroblast growth factor and fibroblast growth factor receptor genes during early inner ear development. Dev Dyn 2003; 228:267-72. [PMID: 14517998 DOI: 10.1002/dvdy.10362] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inner ear, which mediates hearing and equilibrium, develops from an ectodermal placode located adjacent to the developing hindbrain. Induction of the placode and its subsequent morphogenesis and differentiation into the inner ear epithelium and its sensory neurons, involves signalling interactions within and between otic and non-otic tissues. Several members of the fibroblast growth factor (FGF) family play important roles at various stages of otic development; however, there are additional family members that have not been evaluated. In this study, we surveyed the expression patterns of 18 mouse Fgf and 3 Fgf receptor (Fgfr) genes during early otic development. Two members of the Fgf family, Fgf4 and Fgf16, and all three tested members of the Fgfr family, Fgfr2c, Fgfr3c, and Fgfr4, were expressed in tissues relevant to inner ear development. Fgf4 transcripts were expressed in the preplacodal and placodal ectoderm, suggesting potential roles in placode induction and/or maintenance. Fgf16 was expressed in the posterior otic cup and vesicle, suggesting roles in otic cell fate decisions and/or axis formation.
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | | | | | | | |
Collapse
|
128
|
Abstract
The vertebrate Cdx genes (Cdx1 Cdx2 and Cdx4 in the mouse) encode homeodomain transcription factors related to the Drosophila caudal gene. The vertebrate Cdx gene products have been implicated in the development of the posterior embryo. In particular, loss- and gain-of-function experiments suggest that Cdx members are direct regulators of Hox genes and likely impart posterior information, in part, through this mechanism. Several signaling molecules, notably retinoic acid (RA*) and members of the Wnt (wingless) and fibroblast growth factor (FGF) families, are also implicated in patterning of the posterior vertebrate embryo. Interestingly, recent work indicates that members of the Cdx family are targets of Wnt, RA and FGF signaling, suggesting that Cdx factors act to convey the activity of these signaling molecules to Hox genes. This article will briefly review Cdx expression and function, with particular emphasis on vertebrate model systems.
Collapse
Affiliation(s)
- David Lohnes
- Department of Molecular Biology, Université de Montréal, Division of Experimental Medicine, McGill University, and the Institut de Recherches Cliniques de Montréal, 110 ave des Pins ouest, Montréal, Québec, Canada, H2W 1R7.
| |
Collapse
|
129
|
Dell'Era P, Ronca R, Coco L, Nicoli S, Metra M, Presta M. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ Res 2003; 93:414-20. [PMID: 12893744 DOI: 10.1161/01.res.0000089460.12061.e1] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling plays a crucial role in mesoderm formation and patterning. Heartless mutant studies in Drosophila suggest that FGFR1, among the different FGFRs, may play a role in cardiogenesis. However, fgfr1-/- mice die during gastrulation before heart formation. To establish the contribution of FGFR1 in cardiac development, we investigated the capacity of murine fgfr1+/- and fgfr1-/- embryonic stem (ES) cells to differentiate to cardiomyocytes in vitro. Clusters of pulsating cardiomyocytes were observed in >90% of 3-dimensional embryoid bodies (EBs) originated from fgfr1+/- ES cells at day 9 to 10 of differentiation. In contrast, 10% or less of fgfr1-/- EBs showed beating foci at day 16. Accordingly, fgfr1-/- EBs were characterized by impaired expression of early cardiac transcription factors Nkx2.5 and d-Hand and of late structural cardiac genes myosin heavy chain (MHC)-alpha, MHC-beta, and ventricular myosin light chain. Homozygous fgfr1 mutation resulted also in alterations of the expression of mesoderm-related early genes, including nodal, BMP2, BMP4, T(bra), and sonic hedgehog. Nevertheless, fgfr1+/- and fgfr1-/- EBs similarly express cardiogenic precursor, endothelial, hematopoietic, and skeletal muscle markers, indicating that fgfr1-null mutation exerts a selective effect on cardiomyocyte development in differentiating ES cells. Accordingly, inhibitors of FGFR signaling, including the FGFR1 tyrosine kinase inhibitor SU 5402, the MEK1/2 inhibitor U0126, and the protein kinase C inhibitor GF109 all prevented cardiomyocyte differentiation in fgfr1+/- EBs without affecting the expression of the hematopoietic/endothelial marker flk-1. In conclusion, the data point to a nonredundant role for FGFR1-mediated signaling in cardiomyocyte development.
Collapse
MESH Headings
- Animals
- Butadienes/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Size/physiology
- Cells, Cultured
- Embryo, Mammalian/cytology
- Enzyme Inhibitors/pharmacology
- Epidermal Growth Factor/physiology
- Gene Expression
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/genetics
- Mesoderm/cytology
- Mesoderm/metabolism
- Mice
- Mice, Mutant Strains
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Myosin Heavy Chains/genetics
- Nitriles/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Pyrroles/pharmacology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/physiology
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/physiology
- Signal Transduction/drug effects
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Transcription Factors
- Xenopus Proteins/genetics
Collapse
Affiliation(s)
- Patrizia Dell'Era
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
130
|
Forlani S, Lawson KA, Deschamps J. Acquisition of Hox codes during gastrulation and axial elongation in the mouse embryo. Development 2003; 130:3807-19. [PMID: 12835396 DOI: 10.1242/dev.00573] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early sequential expression of mouse Hox genes is essential for their later function. Analysis of the relationship between early Hox gene expression and the laying down of anterior to posterior structures during and after gastrulation is therefore crucial for understanding the ontogenesis of Hox-mediated axial patterning. Using explants from gastrulation stage embryos, we show that the ability to express 3' and 5' Hox genes develops sequentially in the primitive streak region, from posterior to anterior as the streak extends, about 12 hours earlier than overt Hox expression. The ability to express autonomously the earliest Hox gene, Hoxb1, is present in the posterior streak region at the onset of gastrulation, but not in the anterior region at this stage. However, the posterior region can induce Hoxb1 expression in these anterior region cells. We conclude that tissues are primed to express Hox genes early in gastrulation, concomitant with primitive streak formation and extension, and that Hox gene inducibility is transferred by cell to cell signalling. Axial structures that will later express Hox genes are generated in the node region in the period that Hox expression domains arrive there and continue to spread rostrally. However, lineage analysis showed that definitive Hox codes are not fixed at the node, but must be acquired later and anterior to the node in the neurectoderm, and independently in the mesoderm. We conclude that the rostral progression of Hox gene expression must be modulated by gene regulatory influences from early on in the posterior streak, until the time cells have acquired their stable positions along the axis well anterior to the node.
Collapse
Affiliation(s)
- Sylvie Forlani
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | |
Collapse
|
131
|
Bobola N, Carapuço M, Ohnemus S, Kanzler B, Leibbrandt A, Neubüser A, Drouin J, Mallo M. Mesenchymal patterning by Hoxa2 requires blocking Fgf-dependent activation of Ptx1. Development 2003; 130:3403-14. [PMID: 12810588 DOI: 10.1242/dev.00554] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hox genes are known key regulators of embryonic segmental identity, but little is known about the mechanisms of their action. To address this issue, we have analyzed how Hoxa2 specifies segmental identity in the second branchial arch. Using a subtraction approach, we found that Ptx1 was upregulated in the second arch mesenchyme of Hoxa2 mutants. This upregulation has functional significance because, in Hoxa2(-/-);Ptx1(-/-) embryos, the Hoxa2(-/-) phenotype is partially reversed. Hoxa2 interferes with the Ptx1 activating process, which is dependent on Fgf signals from the epithelium. Consistently, Lhx6, another target of Fgf8 signaling, is also upregulated in the Hoxa2(-/-) second arch mesenchyme. Our findings have important implications for the understanding of developmental processes in the branchial area and suggest a novel mechanism for mesenchymal patterning by Hox genes that acts to define the competence of mesenchymal cells to respond to skeletogenic signals.
Collapse
Affiliation(s)
- Nicoletta Bobola
- Department of Developmental Biology, Max-Planck Institute of Immunobiology, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Trokovic R, Trokovic N, Hernesniemi S, Pirvola U, Vogt Weisenhorn DM, Rossant J, McMahon AP, Wurst W, Partanen J. FGFR1 is independently required in both developing mid- and hindbrain for sustained response to isthmic signals. EMBO J 2003; 22:1811-23. [PMID: 12682014 PMCID: PMC154461 DOI: 10.1093/emboj/cdg169] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2002] [Revised: 01/31/2003] [Accepted: 02/18/2003] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factors (FGFs) are signaling molecules of the isthmic organizer, which regulates development of the midbrain and cerebellum. Tissue-specific inactivation of one of the FGF receptor (FGFR) genes, Fgfr1, in the midbrain and rhombomere 1 of the hindbrain of mouse embryos results in deletion of the inferior colliculi in the posterior midbrain and vermis of the cerebellum. Analyses of both midbrain-hindbrain and midbrain-specific Fgfr1 mutants suggest that after establishment of the isthmic organizer, FGFR1 is needed for continued response to the isthmic signals, and that it has direct functions on both sides of the organizer. In addition, FGFR1 appears to modify cell adhesion properties critical for maintaining a coherent organizing center. This may be achieved by regulating expression of specific cell-adhesion molecules at the midbrain-hindbrain border.
Collapse
MESH Headings
- Animals
- Cadherins/genetics
- Cadherins/metabolism
- Cell Adhesion/physiology
- Cell Survival/physiology
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Ephrin-A5/genetics
- Ephrin-A5/metabolism
- Gene Expression Regulation, Developmental
- Gestational Age
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- In Situ Hybridization
- Integrases/genetics
- Integrases/metabolism
- Mesencephalon/anatomy & histology
- Mesencephalon/growth & development
- Mesencephalon/metabolism
- Mice
- Mice, Transgenic
- Motor Activity/physiology
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Rhombencephalon/anatomy & histology
- Rhombencephalon/growth & development
- Rhombencephalon/metabolism
- Signal Transduction/physiology
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Wnt Proteins
- Zebrafish Proteins
Collapse
Affiliation(s)
- Ras Trokovic
- Institute of Biotechnology, Viikki Biocenter, PO Box 56, 00014 University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Abstract
The vertebrate tail is an extension of the main body axis caudal to the anus. The developmental origin of this structure has been a source of debate amongst embryologists for the past century. Some view tail development as a continuation of the morphogenetic processes that shape the head and trunk (i.e. gastrulation). The alternative view, secondary development, holds that the tail forms in a manner similar to limb development, i.e. by secondary induction. Previous developmental studies have provided support for both views. Here I revisit these studies, describing caudal morphogenesis in select vertebrates, the associated genes and developmental defects, and, as a relevant aside, consider the developmental and evolutionary relationships of primary and secondary neurulation. I conclude that caudal development enlists both gastrulation and secondary induction, and that the application of recent high-resolution cell labelling technology may clarify how these discordant programmes interact in building the vertebrate tail.
Collapse
|
134
|
MESH Headings
- Animals
- Auditory Pathways/metabolism
- Ear/embryology
- Ear/growth & development
- Ear/innervation
- Ear, External/growth & development
- Ear, External/innervation
- Ear, Inner/growth & development
- Ear, Inner/innervation
- Ear, Middle/growth & development
- Ear, Middle/innervation
- Fibroblast Growth Factors/genetics
- Fibroblast Growth Factors/metabolism
- Gene Expression Regulation, Developmental
- Homeodomain Proteins/metabolism
- Mesoderm/metabolism
- Morphogenesis
- Receptor, trkB/metabolism
- Receptor, trkC/metabolism
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Tracy J Wright
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
135
|
Abstract
Development of the pharyngeal region depends on the interaction and integration of different cell populations, including surface ectoderm, foregut endoderm, paraxial mesoderm, and neural crest. Mice homozygous for a hypomorphic allele of Fgfr1 have craniofacial defects, some of which appeared to result from a failure in the early development of the second branchial arch. A stream of neural crest cells was found to originate from the rhombomere 4 region and migrate toward the second branchial arch in the mutants. Neural crest cells mostly failed to enter the second arch, however, but accumulated in a region proximal to it. Both rescue of the hypomorphic Fgfr1 allele and inactivation of a conditional Fgfr1 allele specifically in neural crest cells indicated that Fgfr1 regulates the entry of neural crest cells into the second branchial arch non-cell-autonomously. Gene expression in the pharyngeal ectoderm overlying the developing second branchial arch was affected in the hypomorphic Fgfr1 mutants at a stage prior to neural crest entry. Our results indicate that Fgfr1 patterns the pharyngeal region to create a permissive environment for neural crest cell migration.
Collapse
Affiliation(s)
- Nina Trokovic
- Institute of Biotechnology, Viikki Biocenter, 00014-University of Helsinki, Finland
| | | | | | | |
Collapse
|
136
|
Merry CLR, Wilson VA. Role of heparan sulfate-2-O-sulfotransferase in the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:319-27. [PMID: 12417414 DOI: 10.1016/s0304-4165(02)00399-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heparan sulfate (HS) is a long unbranched polysaccharide found covalently attached to various proteins at the cell surface and in the extracellular matrix. It plays a central role in embryonic development and cellular function by modulating the activities of an extensive range of growth factors and morphogens. HS 2-O-sulfotransferase (Hs2st) occupies a critical position in the succession of enzymes responsible for the biosynthesis of HS, catalysing the transfer of sulfate to the C2-position of selected hexuronic acid residues within the nascent HS chain. Previous studies have concluded that 2-O-sulfation of HS is essential for it to cooperate in many growth factor/receptor interactions. Surprisingly therefore, embryos lacking functional Hs2st survive until birth, but die perinatally, suffering complete failure to form kidneys. However, this rather late lethality belies a more intricate involvement of 2-O-sulfated HS during development. The purpose of this review is to summarise the requirements for 2-O-sulfated HS during mouse development, at the morphological and molecular level. The implications that altered HS structure may have on growth factor/receptor signalling in vivo will be discussed.
Collapse
Affiliation(s)
- Catherine L R Merry
- Cancer Research Campaign, Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, United Kingdom
| | | |
Collapse
|
137
|
Bel-Vialar S, Itasaki N, Krumlauf R. Initiating Hox gene expression: in the early chick neural tube differential sensitivity to FGF and RA signaling subdivides the HoxBgenes in two distinct groups. Development 2002; 129:5103-15. [PMID: 12399303 DOI: 10.1242/dev.129.22.5103] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiation of Hox genes requires interactions between numerous factors and signaling pathways in order to establish their precise domain boundaries in the developing nervous system. There are distinct differences in the expression and regulation of members of Hox genes within a complex suggesting that multiple competing mechanisms are used to initiate their expression domains in early embryogenesis. In this study, by analyzing the response ofHoxB genes to both RA and FGF signaling in neural tissue during early chick embryogenesis (HH stages 7-15), we have defined two distinct groups of Hox genes based on their reciprocal sensitivity to RA or FGF during this developmental period. We found that the expression domain of 5′ members from the HoxB complex (Hoxb6-Hoxb9) can be expanded anteriorly in the chick neural tube up to the level of the otic vesicle following FGF treatment and that these same genes are refractory to RA treatment at these stages. Furthermore, we showed that the chickcaudal-related genes, cdxA and cdxB, are also responsive to FGF signaling in neural tissue and that their anterior expansion is also limited to the level of the otic vesicle. Using a dominant negative form of a Xenopus Cdx gene (XcadEnR) we found that the effect of FGF treatment on 5′ HoxB genes is mediated in part through the activation and function of CDX activity. Conversely, the 3′HoxB genes (Hoxb1 and Hoxb3-Hoxb5) are sensitive to RA but not FGF treatments at these stages. We demonstrated by in ovo electroporation of a dominant negative retinoid receptor construct(dnRAR) that retinoid signaling is required to initiate expression. Elevating CDX activity by ectopic expression of an activated form of aXenopus Cdx gene (XcadVP16) in the hindbrain ectopically activates and anteriorly expands Hoxb4 expression. In a similar manner, when ectopic expression of XcadVP16 is combined with FGF treatment, we found that Hoxb9 expression expands anteriorly into the hindbrain region. Our findings suggest a model whereby, over the window of early development we examined, all HoxB genes are actually competent to interpret an FGF signal via a CDX-dependent pathway. However, mechanisms that axially restrict the Cdx domains of expression, serve to prevent 3′ genes from responding to FGF signaling in the hindbrain. FGF may have a dual role in both modulating the accessibility of the HoxB complex along the axis and in activating the expression of Cdx genes. The position of the shift in RA or FGF responsiveness of Hox genes may be time dependent. Hence, the specific Hox genes in each of these complementary groups may vary in later stages of development or other tissues. These results highlight the key role of Cdx genes in integrating the input of multiple signaling pathways, such as FGFs and RA, in controlling initiation of Hox expression during development and the importance of understanding regulatory events/mechanisms that modulate Cdx expression.
Collapse
Affiliation(s)
- Sophie Bel-Vialar
- Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | | | | |
Collapse
|
138
|
Wilkie AOM, Patey SJ, Kan SH, van den Ouweland AMW, Hamel BCJ. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 112:266-78. [PMID: 12357470 DOI: 10.1002/ajmg.10775] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors (FGFs) comprise a family of 22 distinct proteins with pleiotropic signaling functions in development and homeostasis. These functions are mediated principally by four fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase family, with heparin glycosaminoglycan as an important cofactor. Developmental studies in chick and mouse highlight the critical role of FGF-receptor signaling in multiple phases of limb development, including the positioning of the limb buds, the maintenance of limb bud outgrowth, the detailed patterning of the limb elements, and the growth of the long bones. Corroborating these important roles, mutations of two members of the FGFR family (FGFR1 and FGFR2) are associated with human disorders of limb patterning; in addition, mutations of FGFR3 and FGF23 affect growth of the limb bones. Analysis of FGFR2 mutations in particular reveals a complex pattern of genotype/phenotype correlation, which will be reviewed in detail. Circumstantial evidence suggests that the more severe patterning abnormalities are mediated by illegitimate paracrine signaling in the mesoderm, mediated by FGF10 or by a related FGF, and this is beginning to gain some experimental support. A further test of this hypothesis is provided by a unique family segregating two FGFR2 mutations in cis (S252L; A315S), in which severe syndactyly occurs in the absence of the craniosynostosis that typically accompanies FGFR2 mutations.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|
139
|
Marics I, Padilla F, Guillemot JF, Scaal M, Marcelle C. FGFR4 signaling is a necessary step in limb muscle differentiation. Development 2002; 129:4559-69. [PMID: 12223412 DOI: 10.1242/dev.129.19.4559] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In chick embryos, most if not all, replicating myoblasts present within the skeletal muscle masses express high levels of the FGF receptor FREK/FGFR4, suggesting an important role for this molecule during myogenesis. We examined FGFR4 function during myogenesis, and we demonstrate that inhibition of FGFR4, but not FGFR1 signaling, leads to a dramatic loss of limb muscles. All muscle markers analyzed (such as Myf5, MyoD and the embryonic myosin heavy chain) are affected. We show that inhibition of FGFR4 signal results in an arrest of muscle progenitor differentiation, which can be rapidly reverted by the addition of exogenous FGF, rather than a modification in their proliferative capacities. Conversely, over-expression of FGF8 in somites promotes FGFR4 expression and muscle differentiation in this tissue. Together, these results demonstrate that in vivo, myogenic differentiation is positively controlled by FGF signaling, a notion that contrasts with the general view that FGF promotes myoblast proliferation and represses myogenic differentiation. Our data assign a novel role to FGF8 during chick myogenesis and demonstrate that FGFR4 signaling is a crucial step in the cascade of molecular events leading to terminal muscle differentiation.
Collapse
Affiliation(s)
- Irène Marics
- Developmental Biology Institute of Marseille, Laboratoire de Génétique et de Physiologie du Développement (LGPD), University Aix-Marseille II, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
140
|
Mood K, Friesel R, Daar IO. SNT1/FRS2 mediates germinal vesicle breakdown induced by an activated FGF receptor1 in Xenopus oocytes. J Biol Chem 2002; 277:33196-204. [PMID: 12082104 DOI: 10.1074/jbc.m203894200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from the fibroblast growth factor receptor (FGFR), which plays vital roles during embryogenesis. Activating FGFR mutations cause several craniosynostoses and dwarfism syndromes in humans. Here we show that the Xenopus homolog of mammalian FRS-2 (XFRS2) is essential for the induction of oocyte maturation by an XFGFR1 harboring an activating mutation (XFGFR1act). Using a dominant-negative form of kinase suppressor of Ras, we show the Mek activity is required for germinal vesicle breakdown (GVBD) induced by co-expression of XFGFR1act and XFRS2, but this activity is not required for progesterone-induced GVBD. Furthermore, Mek/MAPK activity is critical for the induction and/or maintenance of H1 kinase activity at metaphase of meiosis II in progesterone-treated oocytes. An activated XFGFR1 containing a mutation in the phospholipase Cgamma binding site (XFGFR1actY672F) displayed a reduced ability to induce cell-cycle progression in oocytes, suggesting phospholipase Cgamma may not be necessary but that it augments XFGFR signaling in this system. Oocytes co-expressing XFGFR1act and XFRS2 showed substantial H1 kinase activity, but this activity was blocked when the oocytes were treated with the phosphatidylinositol 3-kinase inhibitor LY294002. Although phosphatidylinositol 3-kinase activity is essential for XFGFR1act/XFRS2-induced oocyte maturation, this activity is not required for maturation induced by progesterone. Finally, ectopic expression of Xspry2, a negative regulator of XFGFR signaling, greatly reduced MAPK activation and GVBD induced by the expression of either XFGFR1act plus XFRS2 or activated Ras (H-RasV12). In contrast, Xspry2 did not prevent GVBD induced by an activated form of Raf1, suggesting that Xspry2 exerts its inhibitory function upstream or parallel to Raf and downstream of Ras.
Collapse
Affiliation(s)
- Kathleen Mood
- Regulation of Cell Growth Laboratory, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | |
Collapse
|
141
|
Pirvola U, Ylikoski J, Trokovic R, Hébert JM, McConnell SK, Partanen J. FGFR1 is required for the development of the auditory sensory epithelium. Neuron 2002; 35:671-80. [PMID: 12194867 DOI: 10.1016/s0896-6273(02)00824-3] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mammalian auditory sensory epithelium, the organ of Corti, comprises the hair cells and supporting cells that are pivotal for hearing function. The origin and development of their precursors are poorly understood. Here we show that loss-of-function mutations in mouse fibroblast growth factor receptor 1 (Fgfr1) cause a dose-dependent disruption of the organ of Corti. Full inactivation of Fgfr1 in the inner ear epithelium by Foxg1-Cre-mediated deletion leads to an 85% reduction in the number of auditory hair cells. The primary cause appears to be reduced precursor cell proliferation in the early cochlear duct. Thus, during development, FGFR1 is required for the generation of the precursor pool, which gives rise to the auditory sensory epithelium. Our data also suggest that FGFR1 might have a distinct later role in intercellular signaling within the differentiating auditory sensory epithelium.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Transcription Factors
- Calbindins
- Cell Communication/genetics
- Cell Death/genetics
- Cell Differentiation/genetics
- Cell Division/genetics
- DNA-Binding Proteins/genetics
- Female
- Fetus
- Fibroblast Growth Factor 2/metabolism
- Forkhead Transcription Factors
- Gene Dosage
- Gene Expression Regulation, Developmental/physiology
- Hair Cells, Auditory/abnormalities
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/ultrastructure
- Integrases/genetics
- Male
- Mice
- Mice, Mutant Strains
- Mutation/genetics
- Nerve Tissue Proteins/genetics
- Protein Isoforms/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/deficiency
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/deficiency
- Receptors, Fibroblast Growth Factor/genetics
- S100 Calcium Binding Protein G/metabolism
- Signal Transduction/genetics
- Stem Cells/metabolism
- Stem Cells/ultrastructure
- Transcription Factors/metabolism
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Ulla Pirvola
- Institute of Biotechnology, 00014 University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
142
|
Eswarakumar VP, Monsonego-Ornan E, Pines M, Antonopoulou I, Morriss-Kay GM, Lonai P. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development 2002; 129:3783-93. [PMID: 12135917 DOI: 10.1242/dev.129.16.3783] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fibroblast growth factor receptor type 2 (FGFR2) plays major roles in development. Like FGFR1 and FGFR3, it exists as two splice variants, IIIb and IIIc. We have investigated in the mouse the function of FGFR2IIIc, the mesenchymal splice variant of FGFR2. Fgfr2IIIc is expressed in early mesenchymal condensates and in the periosteal collar around the cartilage models; later it is expressed in sites of both endochondral and intramembranous ossification. A translational stop codon inserted into exon 9 disrupted the synthesis of Fgfr2IIIc without influencing the localized transcription of Fgfr2IIIb, the epithelial Fgfr2 variant. The recessive phenotype of Fgfr2IIIc–/– mice was characterized initially by delayed onset of ossification, with continuing deficiency of ossification in the sphenoid region of the skull base. During subsequent stages of skeletogenesis, the balance between proliferation and differentiation was shifted towards differentiation, leading to premature loss of growth, synostosis in certain sutures of the skull base and in the coronal suture of the skull vault, with dwarfism in the long bones and axial skeleton. The retarded ossification was correlated with decrease in the localized transcription of the osteoblast markers secreted phosphoprotein 1 (Spp1) and Runx2/Cbfa1. A decrease in the domain of transcription of the chondrocyte markers Ihh and PTHrP (Pthlh) corresponded with a decrease in their transcripts in the proliferative and hypertrophic chondrocyte zones. These results suggest that Fgfr2IIIc is a positive regulator of ossification affecting mainly the osteoblast, but also the chondrocyte, lineages. This role contrasts with the negative role of Fgfr3, although recent reports implicate FGF18, a ligand for FGFR3IIIc and FGFR2IIIc, as a co-ordinator of osteogenesis via these two receptors.
Collapse
|
143
|
Li S, Price SM, Cahill H, Ryugo DK, Shen MM, Xiang M. Hearing loss caused by progressive degeneration of cochlear hair cells in mice deficient for the Barhl1 homeobox gene. Development 2002; 129:3523-32. [PMID: 12091321 DOI: 10.1242/dev.129.14.3523] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cochlea of the mammalian inner ear contains three rows of outer hair cells and a single row of inner hair cells. These hair cell receptors reside in the organ of Corti and function to transduce mechanical stimuli into electrical signals that mediate hearing. To date, the molecular mechanisms underlying the maintenance of these delicate sensory hair cells are unknown. We report that targeted disruption of Barhl1, a mouse homolog of the Drosophila BarH homeobox genes, results in severe to profound hearing loss, providing a unique model for the study of age-related human deafness disorders. Barhl1 is expressed in all sensory hair cells during inner ear development, 2 days after the onset of hair cell generation. Loss of Barhl1 function in mice results in age-related progressive degeneration of both outer and inner hair cells in the organ of Corti, following two reciprocal longitudinal gradients. Our data together indicate an essential role for Barhl1 in the long-term maintenance of cochlear hair cells, but not in the determination or differentiation of these cells.
Collapse
MESH Headings
- Animals
- Deafness/genetics
- Deafness/pathology
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/genetics
- Gene Expression Regulation, Developmental
- Genes, Homeobox
- Hair Cells, Auditory/growth & development
- Hair Cells, Auditory/pathology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/pathology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/physiology
- Lac Operon
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Nerve Tissue Proteins/deficiency
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/physiology
- Repressor Proteins
Collapse
Affiliation(s)
- Shengguo Li
- Center for Advanced Biotechnology and Medicine and Department of Pediatrics, UMDNJ-Robert Wood Johnson Medical School, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
144
|
van den Akker E, Forlani S, Chawengsaksophak K, de Graaff W, Beck F, Meyer BI, Deschamps J. Cdx1andCdx2have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 2002; 129:2181-93. [PMID: 11959827 DOI: 10.1242/dev.129.9.2181] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mouse Cdx and Hox genes presumably evolved from genes on a common ancestor cluster involved in anteroposterior patterning. Drosophila caudal (cad) is involved in specifying the posterior end of the early embryo, and is essential for patterning tissues derived from the most caudal segment, the analia. Two of the three mouse Cdx paralogues, Cdx 1 and Cdx2, are expressed early in a Hox-like manner in the three germ layers. In the nascent paraxial mesoderm, both genes are expressed in cells contributing first to the most rostral, and then to progressively more caudal parts of the vertebral column. Later, expression regresses from the anterior sclerotomes, and is only maintained for Cdx1 in the dorsal part of the somites, and for both genes in the tail bud. Cdx1 null mutants show anterior homeosis of upper cervical and thoracic vertebrae. Cdx2-null embryos die before gastrulation, and Cdx2 heterozygotes display anterior transformations of lower cervical and thoracic vertebrae. We have analysed the genetic interactions between Cdx1 and Cdx2 in compound mutants. Combining mutant alleles for both genes gives rise to anterior homeotic transformations along a more extensive length of the vertebral column than do single mutations. The most severely affected Cdx1 null/Cdx2 heterozygous mice display a posterior shift of their cranio-cervical, cervico-thoracic, thoraco-lumbar, lumbo-sacral and sacro-caudal transitions. The effects of the mutations in Cdx1 and Cdx2 were co-operative in severity, and a more extensive posterior shift of the expression of three Hox genes was observed in double mutants. The alteration in Hox expression boundaries occurred early. We conclude that both Cdx genes cooperate at early stages in instructing the vertebral progenitors all along the axis, at least in part by setting the rostral expression boundaries of Hox genes. In addition, Cdx mutants transiently exhibit alterations in the extent of Hox expression domains in the spinal cord, reminding of the strong effects of overexpressing Cdx genes on Hox gene expression in the neurectoderm. Phenotypical alterations in the peripheral nervous system were observed at mid-gestation stages. Strikingly, the altered phenotype at caudal levels included a posterior truncation of the tail, mildly affecting Cdx2 heterozygotes, but more severely affecting Cdx1/Cdx2 double heterozygotes and Cdx1 null/Cdx2 heterozygotes. Mutations in Cdx1 and Cdx2 therefore also interfere with axis elongation in a cooperative way. The function of Cdx genes in morphogenetic processes during gastrulation and tail bud extension, and their relationship with the Hox genes are discussed in the light of available data in Amphioxus, C. elegans, Drosophila and mice.
Collapse
Affiliation(s)
- Eric van den Akker
- Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
145
|
Abstract
Receptor tyrosine kinases of the insulin-insulin-like growth factor (IGF) family promote growth and mediate metabolic signals. Despite their extensive structural homology, genetic evidence indicates that their physiological functions are distinct. Nevertheless, there is limited evidence from cell culture systems suggesting that their signalling capabilities differ. Thus, it remains unclear whether the different physiological roles of insulin and IGF-I receptors result from intrinsic differences in their abilities to activate distinct signalling pathways, or arise from extrinsic differences, such as tissue distribution, relative abundance and developmental regulation.
Collapse
Affiliation(s)
- Jane J Kim
- Naomi Berrie Diabetes Center and Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
146
|
Abstract
In vertebrates, the paraxial mesoderm corresponds to the bilateral strips of mesodermal tissue flanking the notochord and neural tube and which are delimited laterally by the intermediate mesoderm and the lateral plate. The paraxial mesoderm comprises the head or cephalic mesoderm anteriorly and the somitic region throughout the trunk and the tail of the vertebrates. Soon after gastrulation, the somitic region of vertebrates starts to become segmented into paired blocks of mesoderm, termed somites. This process lasts until the number of somites characteristic of the species is reached. The somites later give rise to all skeletal muscles of the body, the axial skeleton, and part of the dermis. In this review I discuss the processes involved in the formation of the paraxial mesoderm and its segmentation into somites in vertebrates.
Collapse
Affiliation(s)
- O Pourquié
- Laboratoire de génétique et de physiologie du développement, Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, France.
| |
Collapse
|
147
|
Klinghoffer RA, Hamilton TG, Hoch R, Soriano P. An allelic series at the PDGFalphaR locus indicates unequal contributions of distinct signaling pathways during development. Dev Cell 2002; 2:103-13. [PMID: 11782318 DOI: 10.1016/s1534-5807(01)00103-4] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A central issue in signal transduction is the physiological contribution of different growth factor-initiated signaling pathways. We have generated knockin mice harboring mutations in the PDGFalpha receptor (PDGFalphaR) that selectively eliminate its capacity to activate PI3 kinase (alpha(PI3K)) or Src family kinases (alpha(Src)). The alpha(PI3K) mutation leads to neonatal lethality due to impaired signaling in many cell types, but the alpha(Src) mutation only affects oligodendrocyte development. A third knockin line containing mutations that eliminate multiple docking sites does not increase the severity of the alpha(PI3K) mutation. However, embryos with mutations in the PI3K binding sites of both PDGFRs (alpha and beta) recapitulate the PDGFalphaR null phenotype. Our results indicate that PI3K has a predominant role in PDGFalphaR signaling in vivo and that RTK-activated signaling pathways execute both specific and overlapping functions during mammalian development.
Collapse
Affiliation(s)
- Richard A Klinghoffer
- Program in Developmental Biology, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
148
|
Allan D, Houle M, Bouchard N, Meyer BI, Gruss P, Lohnes D. RARgamma and Cdx1 interactions in vertebral patterning. Dev Biol 2001; 240:46-60. [PMID: 11784046 DOI: 10.1006/dbio.2001.0455] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exogenous retinoic acid (RA) can evoke vertebral homeosis when administered during late gastrulation. These vertebral transformations correlate with alterations of the rostral limit of Hox gene expression in the prevertebrae, suggesting that retinoid signaling regulates the combinatorial expression of Hox genes dictating vertebral identity. Conversely, loss of certain RA receptors (RARs) results in anterior homeotic transformations principally affecting the cervical region. Despite these observations, the relationship between retinoid signaling, somitic Hox expression, and vertebral patterning is poorly understood. The members of the murine Cdx family (Cdx1, Cdx2, and Cdx4) are the homologues of Drosophila caudal and encode homeobox-containing transcription factors. Cdx1 homozygous null mutants exhibit anterior homeotic transformations, some of which are reminiscent of those in RARgamma null offspring. In Cdx1 mutants, these transformations occur concomitant with posteriorized prevertebral expression of certain Hox genes. Cdx1 has recently been demonstrated to be a direct RA target, suggesting an indirect means by which retinoid signaling may impact vertebral patterning. To further investigate this relationship, a complete allelic series of Cdx1-RARgamma mutants was generated and the skeletal phenotype assessed either following normal gestation or after administration of RA. Synergistic interactions between these null alleles were observed in compound mutants, and the full effects of exogenous RA on vertebral morphogenesis required Cdx1. These findings are consistent with a role for RA upstream of Cdx1 as regards axial patterning. However, exogenous RA attenuated several defects inherent to Cdx1 null mutants. This finding, together with the increased phenotypic severity of RARgamma-Cdx1 double null mutants relative to single nulls, suggests that these pathways also function in parallel, likely by converging on common targets.
Collapse
Affiliation(s)
- D Allan
- Division of Experimental Medicine, Department of Molecular Biology, Institut de Recherches Cliniques de Montréal, 110 ave des Pins, ouest, Montréal, Québec, H2W 1R7, Canada
| | | | | | | | | | | |
Collapse
|
149
|
Abstract
One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.
Collapse
Affiliation(s)
- M Lewandoski
- Section of Genetics of Vertebrate Development, Laboratory of Cancer and Developmental Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
150
|
Dubrulle J, McGrew MJ, Pourquié O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001; 106:219-32. [PMID: 11511349 DOI: 10.1016/s0092-8674(01)00437-8] [Citation(s) in RCA: 497] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vertebrate segmentation requires a molecular oscillator, the segmentation clock, acting in presomitic mesoderm (PSM) cells to set the pace at which segmental boundaries are laid down. However, the signals that position each boundary remain unclear. Here, we report that FGF8 which is expressed in the posterior PSM, generates a moving wavefront at which level both segment boundary position and axial identity become determined. Furthermore, by manipulating boundary position in the chick embryo, we show that Hox gene expression is maintained in the appropriately numbered somite rather than at an absolute axial position. These results implicate FGF8 in ensuring tight coordination of the segmentation process and spatiotemporal Hox gene activation.
Collapse
Affiliation(s)
- J Dubrulle
- Laboratoire de génétique et de physiologie du développement (LGPD), Developmental Biology Institute of Marseille (IBDM), CNRS-INSERM-Université de la méditerranée-AP de Marseille, Campus de Luminy, Case 907, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|