101
|
Hu W, Zhao W, Yang J, Oosterhuis DM, Loka DA, Zhou Z. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 101:113-123. [PMID: 26874296 DOI: 10.1016/j.plaphy.2016.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/24/2016] [Accepted: 01/25/2016] [Indexed: 05/21/2023]
Abstract
The nitrogen (N) metabolism of the leaf subtending the cotton boll (LSCB) was studied with two cotton (Gossypium hirsutum L.) cultivars (Simian 3, low-K tolerant; Siza 3, low-K sensitive) under three levels of potassium (K) fertilization (K0: 0 g K2O plant(-1), K1: 4.5 K2O plant(-1) and K2: 9.0 g K2O plant(-1)). The results showed that total dry matter increased by 13.1-27.4% and 11.2-18.5% under K supply for Simian 3 and Siza 3. Boll biomass and boll weight also increased significantly in K1 and K2 treatments. Leaf K content, leaf N content and nitrate (NO3(-)) content increased with increasing K rates, and leaf N content or NO3(-) content had a significant positive correlation with leaf K content. Free amino acid content increased in the K0 treatment for both cultivars, due to increased protein degradation caused by higher protease and peptidase activities, resulting in lower protein content in the K0 treatment. The critical leaf K content for free amino acid and soluble protein content were 14 mg g(-1) and 15 mg g(-1) in Simian 3, and 17 mg g(-1) and 18 mg g(-1) in Siza 3, respectively. Nitrate reductase (NR), glutamic-oxaloace transaminase (GOT) and glutamic-pyruvic transaminase (GPT) activities increased in the K1 and K2 treatments for both cultivars, while glutamine synthetase (GS) and glutamate synthase (GOGAT) activities increased under K supply treatments only for Siza 3, and were not affected in Simian 3, indicating that this was the primary difference in nitrogen-metabolizing enzymes activities for the two cultivars with different sensitivity to low-K.
Collapse
Affiliation(s)
- Wei Hu
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China; Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Wenqing Zhao
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Jiashuo Yang
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China
| | - Derrick M Oosterhuis
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Dimitra A Loka
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Zhiguo Zhou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
102
|
Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, García-Mata C, Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt MR. Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. THE NEW PHYTOLOGIST 2016; 209:1456-69. [PMID: 26508536 DOI: 10.1111/nph.13714] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 09/17/2015] [Indexed: 05/04/2023]
Abstract
Maintaining potassium (K(+) ) nutrition and a robust guard cell K(+) inward channel activity is considered critical for plants' adaptation to fluctuating and challenging growth environment. ABA induces stomatal closure through hydrogen peroxide and nitric oxide (NO) along with subsequent ion channel-mediated loss of K(+) and anions. However, the interactions of NO synthesis and signalling with K(+) nutrition and guard cell K(+) channel activities have not been fully explored in Arabidopsis. Physiological and molecular techniques were employed to dissect the interaction of nitrogen and potassium nutrition in regulating stomatal opening, CO2 assimilation and ion channel activity. These data, gene expression and ABA signalling transduction were compared in wild-type Columbia-0 (Col-0) and the nitrate reductase mutant nia1nia2. Growth and K(+) nutrition were impaired along with stomatal behaviour, membrane transport, and expression of genes associated with ABA signalling in the nia1nia2 mutant. ABA-inhibited K(+) in current and ABA-enhanced slow anion current were absent in nia1nia2. Exogenous NO restored regulation of these channels for complete stomatal closure in nia1nia2. While NO is an important signalling component in ABA-induced stomatal closure in Arabidopsis, our findings demonstrate a more complex interaction associating potassium nutrition and nitrogen metabolism in the nia1nia2 mutant that affects stomatal function.
Collapse
Affiliation(s)
- Zhong-Hua Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yizhou Wang
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Jian-Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Mohammad Babla
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Chenchen Zhao
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Carlos García-Mata
- Instituto de Investigaciones Biológicas, CONCIET-Universidad Nacional de Mar del Plata, CC 1245, 7600, Mar del Plata, Argentina
| | - Emanuela Sani
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Christopher Differ
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Michelle Mak
- School of Science and Health, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Adrian Hills
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Anna Amtmann
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
103
|
Hosseini SA, Hajirezaei MR, Seiler C, Sreenivasulu N, von Wirén N. A Potential Role of Flag Leaf Potassium in Conferring Tolerance to Drought-Induced Leaf Senescence in Barley. FRONTIERS IN PLANT SCIENCE 2016; 7:206. [PMID: 26955376 PMCID: PMC4768371 DOI: 10.3389/fpls.2016.00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 02/06/2016] [Indexed: 05/03/2023]
Abstract
Terminal drought stress decreases crop yields by inducing abscisic acid (ABA) and premature leaf senescence. As potassium (K) is known to interfere with ABA homeostasis we addressed the question whether there is genetic variability regarding the role of K nutrition in ABA homeostasis and drought tolerance. To compare their response to drought stress, two barley lines contrasting in drought-induced leaf senescence were grown in a pot experiment under high and low K supply for the analysis of flag leaves from the same developmental stage. Relative to the drought-sensitive line LPR, the line HPR retained more K in its flag leaves under low K supply and showed delayed flag leaf senescence under terminal drought stress. High K retention was further associated with a higher leaf water status, a higher concentration of starch and other primary carbon metabolites. With regard to ABA homeostasis, HPR accumulated less ABA but higher levels of the ABA degradation products phaseic acid (PA) and dehydro-PA. Under K deficiency this went along with higher transcript levels of ABA8'-HYDROXYLASE, encoding a key enzyme in ABA degradation. The present study provides evidence for a positive impact of the K nutritional status on ABA homeostasis and carbohydrate metabolism under drought stress. We conclude that genotypes with a high K nutritional status in the flag leaf show superior drought tolerance by promoting ABA degradation but attenuating starch degradation which delays flag leaf senescence. Flag leaf K levels may thus represent a useful trait for the selection of drought-tolerant barley cultivars.
Collapse
Affiliation(s)
- Seyed A. Hosseini
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Mohammad R. Hajirezaei
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Christiane Seiler
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nese Sreenivasulu
- Abiotic Stress Genomics Group, Molecular Genetics, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
104
|
Li L, Xu L, Wang X, Pan G, Lu L. De novo characterization of the alligator weed (Alternanthera philoxeroides) transcriptome illuminates gene expression under potassium deprivation. J Genet 2016; 94:95-104. [PMID: 25846881 DOI: 10.1007/s12041-015-0493-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As one of the three macronutrients, potassium participates in many physiological processes in plant life cycle. Recently, potassium-dependent transcriptome analysis has been reported in Arabidopsis, rice and soybean. Alligator weed is well known, particularly for its strong ability to accumulate potassium. However, the molecular mechanism that underlies potassium starvation responses has not yet been described. In this study, we used Illumina (Solexa) sequencing technology to analyse the root transcriptome information of alligator weed under low potassium stress. Further analysis suggested that 9253 differentially expressed genes (DEGs) were upregulated, and 2138 DEGs were downregulated after seven days of potassium deficiency. These factors included 121 transcription factors, 108 kinases, 136 transporters and 178 genes that were related to stress. Twelve transcription factors were randomly selected for further analysis. The expression level of each transcription factor was confirmed by quantitative RT-PCR, and the results of this secondary analysis were consistent with the results of Solexa sequencing. Enrichment analysis indicated that 10,993 DEGs were assigned to 54 gene ontology terms and 123 KEGG pathways. Approximately 24% of DEGs belong to the metabolic, ribosome and biosynthesis of secondary metabolite KEGG pathways. Our results provide a comprehensive analysis of the gene regulatory network of alligator weed under low potassium stress, and afford a valuable resource for genetic and genomic research on plant potassium deficiency.
Collapse
Affiliation(s)
- Liqin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 625014, People's Republic of China.
| | | | | | | | | |
Collapse
|
105
|
Sung J, Lee S, Lee Y, Ha S, Song B, Kim T, Waters BM, Krishnan HB. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:55-64. [PMID: 26706058 DOI: 10.1016/j.plantsci.2015.09.027] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 05/21/2023]
Abstract
Specific metabolic network responses to mineral deficiencies are not well-defined. Here, we conducted a detailed broad-scale identification of metabolic responses of tomato leaves and roots to N, P or K deficiency. Tomato plants were grown hydroponically under optimal (5mM N, 0.5mM P, or 5mM K) and deficient (0.5mM N, 0.05mM P, or 0.5mM K) conditions and metabolites were measured by LC-MS and GC-MS. Based on these results, deficiency of any of these three minerals affected energy production and amino acid metabolism. N deficiency generally led to decreased amino acids and organic acids, and increased soluble sugars. P deficiency resulted in increased amino acids and organic acids in roots, and decreased soluble sugars. K deficiency caused accumulation of soluble sugars and amino acids in roots, and decreased organic acids and amino acids in leaves. Notable metabolic pathway alterations included; (1) increased levels of α-ketoglutarate and raffinose family oligosaccharides in N, P or K-deficient tomato roots, and (2) increased putrescine in K-deficient roots. These findings provide new knowledge of metabolic changes in response to mineral deficiencies.
Collapse
Affiliation(s)
- Jwakyung Sung
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, North Jeolla Province 565-851, Republic of Korea
| | - Suyeon Lee
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, North Jeolla Province 565-851, Republic of Korea
| | - Yejin Lee
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, North Jeolla Province 565-851, Republic of Korea
| | - Sangkeun Ha
- Division of Soil and Fertilizer, National Academy of Agricultural Science, RDA, Wanju, North Jeolla Province 565-851, Republic of Korea
| | - Beomheon Song
- Department of Agronomy, Chungbuk National University, Cheongju, North Chungcheong Province 361-763, Republic of Korea
| | - Taewan Kim
- Department of Plant Life and Environmental Science, Hankyong National University, Anseong, Gyeonggi Province 456-749, Republic of Korea
| | - Brian M Waters
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA
| | - Hari B Krishnan
- Plant Genetics Research Unit, Agriculture Research Service, USDA, 205 Curtis Hall, Columbia, MO 65211, USA; Plant Science Division, University of Missouri, 1-41, Agriculture Bldg., Columbia, MO 65211, USA.
| |
Collapse
|
106
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
107
|
Aguraijuja K, Klõšeiko J, Ots K, Lukjanova A. Effect of wood ash on leaf and shoot anatomy, photosynthesis and carbohydrate concentrations in birch on a cutaway peatland. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:444. [PMID: 26092243 DOI: 10.1007/s10661-015-4681-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/09/2015] [Indexed: 06/04/2023]
Abstract
Trees in cutaway peatland are growing in difficult conditions. Fertilization with nutrient-rich wood ash helps improve growth conditions. Photosynthesis and carbohydrate concentration along leaf anatomy were studied on plots treated with 10 and 5 t ha(-1) wood ash (WA10 and WA5) and on untreated (Control) plot to explain the physiological background of the differences in tree growth. The leaves from WA10 had the largest leaf area, total thickness, the thickest mesophyll and also significantly larger average values of all anatomical parameters of the shoots. The photosynthetic assimilation was significantly higher on treated plots at 200 and 400 ppm CO2 levels. In leaves on the treated plots, the sucrose concentration was lower while that of starch was higher than in trees on untreated soil. The differences in the maximum photosynthesis were relatively small. At unit ground, the leaf area provided for a wood ash-treated tree an efficient surface for CO2 assimilation, light interception and some starch storage during the growing period.
Collapse
Affiliation(s)
- Karin Aguraijuja
- Department of Silviculture, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | | | | | | |
Collapse
|
108
|
Ruan L, Zhang J, Xin X, Zhang C, Ma D, Chen L, Zhao B. Comparative analysis of potassium deficiency-responsive transcriptomes in low potassium susceptible and tolerant wheat (Triticum aestivum L.). Sci Rep 2015; 5:10090. [PMID: 25985414 PMCID: PMC4650753 DOI: 10.1038/srep10090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/30/2015] [Indexed: 11/30/2022] Open
Abstract
Potassium (K+) deficiency as a common abiotic stress can inhibit the growth of plants and thus reduce the agricultural yields. Nevertheless, scarcely any development has been promoted in wheat transcriptional changes under K+ deficiency. Here we investigated root transcriptional changes in two wheat genotypes, namely, low-K+ tolerant “Tongzhou916” and low-K+ susceptible “Shiluan02-1”. There were totally 2713 and 2485 probe sets displayed expression changes more than 1.5-fold in Tongzhou916 and Shiluan02-1, respectively. Low-K+ responsive genes mainly belonged to the categories as follows: metabolic process, cation binding, transferase activity, ion transporters and so forth. We made a comparison of gene expression differences between the two wheat genotypes. There were 1321 and 1177 up-regulated genes in Tongzhou916 and Shiluan02-1, respectively. This result indicated that more genes took part in acclimating to low-K+ stress in Tongzhou916. In addition, there were more genes associated with jasmonic acid, defense response and potassium transporter up-regulated in Tongzhou916. Moreover, totally 19 genes encoding vacuolar H+-pyrophosphatase, ethylene-related, auxin response, anatomical structure development and nutrient reservoir were uniquely up-regulated in Tongzhou916. For their important role in root architecture, K+ uptake and nutrient storage, unique genes above may make a great contribution to the strong low-K+ tolerance in Tongzhou916.
Collapse
Affiliation(s)
- Li Ruan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiuli Xin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lin Chen
- Institute of Soil and Water Resources and Environmental Science, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Bingzi Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental &Resource Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
109
|
Zeng Q, Ling Q, Fan L, Li Y, Hu F, Chen J, Huang Z, Deng H, Li Q, Qi Y. Transcriptome profiling of sugarcane roots in response to low potassium stress. PLoS One 2015; 10:e0126306. [PMID: 25955765 PMCID: PMC4425431 DOI: 10.1371/journal.pone.0126306] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 03/31/2015] [Indexed: 02/04/2023] Open
Abstract
Sugarcane is the most important crop for supplying sugar. Due to its high biomass, sugarcane needs to absorb a large amount of potassium (K) throughout its lifecycle. In South China, a deficiency of K available in soil restricts the production of sugarcane. Increasing the tolerance of sugarcane to low-K will be an effective approach for improving survival of the crop in this area. However, there is little information regarding the mechanism of tolerance to low-K stress in sugarcane. In this study, a customized microarray was used to analyze the changes in the level of transcripts of sugarcane genes 8 h, 24 h and 72 h after exposure to low-K conditions. We identified a total of 4153 genes that were differentially expressed in at least one of the three time points. The number of genes responding to low-K stress at 72 h was almost 2-fold more than the numbers at 8 h and 24 h. Gene ontology (GO) analysis revealed that many genes involved in metabolic, developmental and biological regulatory processes displayed changes in the level of transcripts in response to low-K stress. Additionally, we detected differential expression of transcription factors, transporters, kinases, oxidative stress-related genes and genes in Ca+ and ethylene signaling pathways; these proteins might play crucial roles in improving the tolerance of sugarcane to low-K stress. The results of this study will help to better understand the molecular mechanisms of sugarcane tolerance to low-K.
Collapse
Affiliation(s)
- Qiaoying Zeng
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qiuping Ling
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Lina Fan
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Yu Li
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Fei Hu
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Jianwen Chen
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Zhenrui Huang
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Haihua Deng
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
| | - Qiwei Li
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
- * E-mail: (YQ); (QL)
| | - Yongwen Qi
- Guangdong Key Lab of Sugarcane Improvement & Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, China
- * E-mail: (YQ); (QL)
| |
Collapse
|
110
|
Bargsten JW, Nap JP, Sanchez-Perez GF, van Dijk ADJ. Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC PLANT BIOLOGY 2014; 14:330. [PMID: 25492368 PMCID: PMC4274756 DOI: 10.1186/s12870-014-0330-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/10/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Elucidation of genotype-to-phenotype relationships is a major challenge in biology. In plants, it is the basis for molecular breeding. Quantitative Trait Locus (QTL) mapping enables to link variation at the trait level to variation at the genomic level. However, QTL regions typically contain tens to hundreds of genes. In order to prioritize such candidate genes, we show that we can identify potentially causal genes for a trait based on overrepresentation of biological processes (gene functions) for the candidate genes in the QTL regions of that trait. RESULTS The prioritization method was applied to rice QTL data, using gene functions predicted on the basis of sequence- and expression-information. The average reduction of the number of genes was over ten-fold. Comparison with various types of experimental datasets (including QTL fine-mapping and Genome Wide Association Study results) indicated both statistical significance and biological relevance of the obtained connections between genes and traits. A detailed analysis of flowering time QTLs illustrates that genes with completely unknown function are likely to play a role in this important trait. CONCLUSIONS Our approach can guide further experimentation and validation of causal genes for quantitative traits. This way it capitalizes on QTL data to uncover how individual genes influence trait variation.
Collapse
Affiliation(s)
- Joachim W Bargsten
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
- />Laboratory for Plant Breeding, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Jan-Peter Nap
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Netherlands Bioinformatics Centre (NBIC), Nijmegen, The Netherlands
| | - Gabino F Sanchez-Perez
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Laboratory of Bioinformatics, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Aalt DJ van Dijk
- />Applied Bioinformatics, Bioscience, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
111
|
Erel R, Ben-Gal A, Dag A, Schwartz A, Yermiyahu U. Sodium replacement of potassium in physiological processes of olive trees (var. Barnea) as affected by drought. TREE PHYSIOLOGY 2014; 34:1102-17. [PMID: 25281842 DOI: 10.1093/treephys/tpu081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Potassium (K) is a macro-nutrient understood to play a role in the physiological performance of plants under drought. In some plant species, sodium (Na) can partially substitute K. Although a beneficial role of Na is well established, information regarding its nutritional role in trees is scant and its function under conditions of drought is not fully understood. The objective of the present study was to evaluate the role of K and its possible replacement by Na in olive's (Olea europaea L.) response to drought. Young and bearing olive trees were grown in soilless culture and exposed to gradual drought. In the presence of Na, trees were tolerant of extremely low K concentrations. Depletion of K and Na resulted in ∼50% reduction in CO2 assimilation rate when compared with sufficiently fertilized control plants. Sodium was able to replace K and recover the assimilation rate to nearly optimum level. The inhibitory effect of K deficiency on photosynthesis was more pronounced under high stomatal conductance. Potassium was not found to facilitate drought tolerance mechanisms in olives. Moreover, stomatal control machinery was not significantly impaired by K deficiency, regardless of water availability. Under drought, leaf water potential was affected by K and Na. High environmental K and Na increased leaf starch content and affected the soluble carbohydrate profile in a similar manner. These results identify olive as a species capable of partly replacing K by Na. The nutritional effect of K and Na was shown to be independent of plant water status. The beneficial effect of Na on photosynthesis and carbohydrates under insufficient K indicates a positive role of Na in metabolism and photosynthetic reactions.
Collapse
Affiliation(s)
- Ran Erel
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Alon Ben-Gal
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel
| | - Arnon Dag
- Institute of Plant Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel
| | - Amnon Schwartz
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Uri Yermiyahu
- Institute of Soil, Water and Environmental Sciences, Gilat Research Center, Agricultural Research Organization, Mobile Post Negev 85-280, Israel
| |
Collapse
|
112
|
Comparative transcriptome profiling of two Tibetan wild barley genotypes in responses to low potassium. PLoS One 2014; 9:e100567. [PMID: 24949953 PMCID: PMC4065039 DOI: 10.1371/journal.pone.0100567] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
Potassium (K) deficiency is one of the major factors affecting crop growth and productivity. Development of low-K tolerant crops is an effective approach to solve the nutritional deficiency in agricultural production. Tibetan annual wild barley is rich in genetic diversity and can grow normally under poor soils, including low-K supply. However, the molecular mechanism about low K tolerance is still poorly understood. In this study, Illumina RNA-Sequencing was performed using two Tibetan wild barley genotypes differing in low K tolerance (XZ153, tolerant and XZ141, sensitive), to determine the genotypic difference in transcriptome profiling. We identified a total of 692 differentially expressed genes (DEGs) in two genotypes at 6 h and 48 h after low-K treatment, including transcription factors, transporters and kinases, oxidative stress and hormone signaling related genes. Meanwhile, 294 low-K tolerant associated DEGs were assigned to transporter and antioxidant activities, stimulus response, and other gene ontology (GO), which were mainly involved in starch and sucrose metabolism, lipid metabolism and ethylene biosynthesis. Finally, a hypothetical model of low-K tolerance mechanism in XZ153 was presented. It may be concluded that wild barley accession XZ153 has a higher capability of K absorption and use efficiency than XZ141 under low K stress. A rapid response to low K stress in XZ153 is attributed to its more K uptake and accumulation in plants, resulting in higher low K tolerance. The ethylene response pathway may account for the genotypic difference in low-K tolerance.
Collapse
|
113
|
Demidchik V. Mechanisms and physiological roles of K+ efflux from root cells. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:696-707. [PMID: 24685330 DOI: 10.1016/j.jplph.2014.01.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 05/18/2023]
Abstract
Potassium is the most abundant macronutrient, which is involved in a multitude of physiological processes. Potassium uptake in roots is crucial for plants; however, K(+) efflux can also occur and has important functions. Potassium efflux from roots is mainly induced by stresses, such as pathogens, salinity, freezing, oxidants and heavy metals. Reactive oxygen species (ROS) and exogenous purines also cause this reaction. The depolarisation and activation of cation channels are required for K(+) efflux from plant roots. Potassium channels and nonselective cation channels (NSCCs) are involved in this process. Some of them are 'constitutive', while the others require a chemical agent for activation. In Arabidopsis, there are 77 genes that can potentially encode K(+)-permeable channels. Potassium-selective channel genes include 9 Shaker and 6 Tandem-Pore K(+) channels. Genes of NSCCs are more abundant and present by 20 cyclic nucleotide gated channels, 20 ionotropic glutamate receptors, 1 two-pore channel, 10 mechanosensitive-like channels, 2 mechanosensitive 'Mid1-Complementing Activity' channels, 1 mechanosensitive Piezo channel, and 8 annexins. Two Shakers (SKOR and GORK) and several NSCCs are expressed in root cell plasma membranes. SKOR mediates K(+) efflux from xylem parenchyma cells to xylem vessels while GORK is expressed in the epidermis and functions in K(+) release. Both these channels are activated by ROS. The GORK channel activity is stimulated by hydroxyl radicals that are generated in a Ca(2+)-dependent manner in stress conditions, such as salinity or pathogen attack, resulting in dramatic K(+) efflux from root cells. Potassium loss simulates cytosolic proteases and endonucleases, leading to programmed cell death. Other physiological functions of K(+) efflux channels include repolarisation of the plasma membrane during action potentials and the 'hypothetical' function of a metabolic switch, which provides inhibition of energy-consuming biosyntheses and releasing energy for defence and reparation needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, Minsk 220030, Belarus.
| |
Collapse
|
114
|
Anschütz U, Becker D, Shabala S. Going beyond nutrition: regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:670-87. [PMID: 24635902 DOI: 10.1016/j.jplph.2014.01.009] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/18/2023]
Abstract
Partially and fully completed plant genome sequencing projects in both lower and higher plants allow drawing a comprehensive picture of the molecular and structural diversities of plant potassium transporter genes and their encoded proteins. While the early focus of the research in this field was aimed on the structure-function studies and understanding of the molecular mechanisms underlying K(+) transport, availability of Arabidopsis thaliana mutant collections in combination with micro-array techniques have significantly advanced our understanding of K(+) channel physiology, providing novel insights into the transcriptional regulation of potassium homeostasis in plants. More recently, posttranslational regulation of potassium transport systems has moved into the center stage of potassium transport research. The current review is focused on the most exciting developments in this field. By summarizing recent work on potassium transporter regulation we show that potassium transport in general, and potassium channels in particular, represent important targets and are mediators of the cellular responses during different developmental stages in a plant's life cycle. We show that regulation of intracellular K(+) homeostasis is essential to mediate plant adaptive responses to a broad range of abiotic and biotic stresses including drought, salinity, and oxidative stress. We further link post-translational regulation of K(+) channels with programmed cell death and show that K(+) plays a critical role in controlling the latter process. Thus, is appears that K(+) is not just the essential nutrient required to support optimal plant growth and yield but is also an important signaling agent mediating a wide range of plant adaptive responses to environment.
Collapse
Affiliation(s)
- Uta Anschütz
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany
| | - Dirk Becker
- University of Wuerzburg, Plant Molecular Biology & Biophysics, Wuerzburg, Germany.
| | - Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Australia
| |
Collapse
|
115
|
Kellermeier F, Armengaud P, Seditas TJ, Danku J, Salt DE, Amtmann A. Analysis of the Root System Architecture of Arabidopsis Provides a Quantitative Readout of Crosstalk between Nutritional Signals. THE PLANT CELL 2014; 26:1480-1496. [PMID: 24692421 PMCID: PMC4036566 DOI: 10.1105/tpc.113.122101] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As plant roots forage the soil for food and water, they translate a multifactorial input of environmental stimuli into a multifactorial developmental output that manifests itself as root system architecture (RSA). Our current understanding of the underlying regulatory network is limited because root responses have traditionally been studied separately for individual nutrient deficiencies. In this study, we quantified 13 RSA parameters of Arabidopsis thaliana in 32 binary combinations of N, P, K, S, and light. Analysis of variance showed that each RSA parameter was determined by a typical pattern of environmental signals and their interactions. P caused the most important single-nutrient effects, while N-effects were strongly light dependent. Effects of K and S occurred mostly through nutrient interactions in paired or multiple combinations. Several RSA parameters were selected for further analysis through mutant phenotyping, which revealed combinations of transporters, receptors, and kinases acting as signaling modules in K-N interactions. Furthermore, nutrient response profiles of individual RSA features across NPK combinations could be assigned to transcriptionally coregulated clusters of nutrient-responsive genes in the roots and to ionome patterns in the shoots. The obtained data set provides a quantitative basis for understanding how plants integrate multiple nutritional stimuli into complex developmental programs.
Collapse
Affiliation(s)
- Fabian Kellermeier
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Patrick Armengaud
- INRA, UMR1318 INRA-AgroParisTech, Institut Jean-Pierre Bourgin, INRA Centre de Versailles-Grignon, 78026 Versailles, France
| | - Triona J Seditas
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - John Danku
- Institute of Biological and Environmental Sciences, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - David E Salt
- Institute of Biological and Environmental Sciences, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB24 3UU, United Kingdom
| | - Anna Amtmann
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
116
|
Adams E, Shin R. Transport, signaling, and homeostasis of potassium and sodium in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:231-49. [PMID: 24393374 DOI: 10.1111/jipb.12159] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/31/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K⁺) is an essential macronutrient in plants and a lack of K⁺ significantly reduces the potential for plant growth and development. By contrast, sodium (Na⁺), while beneficial to some extent, at high concentrations it disturbs and inhibits various physiological processes and plant growth. Due to their chemical similarities, some functions of K⁺ can be undertaken by Na⁺ but K⁺ homeostasis is severely affected by salt stress, on the other hand. Recent advances have highlighted the fascinating regulatory mechanisms of K⁺ and Na⁺ transport and signaling in plants. This review summarizes three major topics: (i) the transport mechanisms of K⁺ and Na⁺ from the soil to the shoot and to the cellular compartments; (ii) the mechanisms through which plants sense and respond to K⁺ and Na⁺ availability; and (iii) the components involved in maintenance of K⁺/Na⁺ homeostasis in plants under salt stress.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | | |
Collapse
|
117
|
Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V. Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1259-70. [PMID: 24520019 DOI: 10.1093/jxb/eru004] [Citation(s) in RCA: 337] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrolyte leakage accompanies plant response to stresses, such as salinity, pathogen attack, drought, heavy metals, hyperthermia, and hypothermia; however, the mechanism and physiological role of this phenomenon have only recently been clarified. Accumulating evidence shows that electrolyte leakage is mainly related to K(+) efflux from plant cells, which is mediated by plasma membrane cation conductances. Recent studies have demonstrated that these conductances include components with different kinetics of activation and cation selectivity. Most probably they are encoded by GORK, SKOR, and annexin genes. Hypothetically, cyclic nucleotide-gated channels and ionotropic glutamate receptors can also be involved. The stress-induced electrolyte leakage is usually accompanied by accumulation of reactive oxygen species (ROS) and often results in programmed cell death (PCD). Recent data strongly suggest that these reactions are linked to each other. ROS have been shown to activate GORK, SKOR, and annexins. ROS-activated K(+) efflux through GORK channels results in dramatic K(+) loss from plant cells, which stimulates proteases and endonucleases, and promotes PCD. This mechanism is likely to trigger plant PCD under severe stress. However, in moderate stress conditions, K(+) efflux could play an essential role as a 'metabolic switch' in anabolic reactions, stimulating catabolic processes and saving 'metabolic' energy for adaptation and repair needs.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, Independence Avenue 4, 220030, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
118
|
Chérel I, Lefoulon C, Boeglin M, Sentenac H. Molecular mechanisms involved in plant adaptation to low K(+) availability. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:833-48. [PMID: 24293613 DOI: 10.1093/jxb/ert402] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Potassium is a major inorganic constituent of the living cell and the most abundant cation in the cytosol. It plays a role in various functions at the cell level, such as electrical neutralization of anionic charges, protein synthesis, long- and short-term control of membrane polarization, and regulation of the osmotic potential. Through the latter function, K(+) is involved at the whole-plant level in osmotically driven functions such as cell movements, regulation of stomatal aperture, or phloem transport. Thus, plant growth and development require that large amounts of K(+) are taken up from the soil and translocated to the various organs. In most ecosystems, however, soil K(+) availability is low and fluctuating, so plants have developed strategies to take up K(+) more efficiently and preserve vital functions and growth when K(+) availability is becoming limited. These strategies include increased capacity for high-affinity K(+) uptake from the soil, K(+) redistribution between the cytosolic and vacuolar pools, ensuring cytosolic homeostasis, and modification of root system development and architecture. Our knowledge about the mechanisms and signalling cascades involved in these different adaptive responses has been rapidly growing during the last decade, revealing a highly complex network of interacting processes. This review is focused on the different physiological responses induced by K(+) deprivation, their underlying molecular events, and the present knowledge and hypotheses regarding the mechanisms responsible for K(+) sensing and signalling.
Collapse
Affiliation(s)
- Isabelle Chérel
- Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes, UMR 5004 CNRS/UMR 0386 INRA/Montpellier SupAgro/Université Montpellier 2, F-34060 Montpellier Cedex 1, France
| | | | | | | |
Collapse
|
119
|
Fan M, Huang Y, Zhong Y, Kong Q, Xie J, Niu M, Xu Y, Bie Z. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. PLANTA 2014; 239:397-410. [PMID: 24185372 DOI: 10.1007/s00425-013-1976-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/11/2013] [Indexed: 05/09/2023]
Abstract
Potassium (K) is one of the essential nutrients for crops, and K⁺ deficiency highly restricts crop yield and quality. Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] is an economically important crop that often suffers from K⁺ deficiency. To elucidate the underlying tolerance mechanism of watermelon to K⁺ deficiency and to improve K efficiency of watermelon and other crops in the future, two watermelon genotypes, namely, YS and 8424, that exhibit contrasting K efficiencies were studied to compare their response mechanisms to K⁺ deficiency. YS was more tolerant of K⁺ deficiency and displayed less inhibited root growth than 8424. Roots of YS and 8424 seedlings with or without K⁺ supply were harvested at 6 and 120 h after treatment (HAT), and their transcriptomes were analyzed by Illumina RNA sequencing. Different regulation mechanisms of the root K⁺-uptake genes for short- and long-term stress were observed. Genes involved in jasmonic acid and reactive oxygen species production; Ca²⁺ and receptor-like kinase signaling; lignin biosynthesis; and other stress-related genes were repressed in YS, whereas a large number of such stress-related genes were induced in 8424 at 120 HAT. These results suggested that repressed defense and stress response can save energy for better root growth in YS, which can facilitate K⁺ uptake and increase K efficiency and tolerance to K⁺ deficiency. This study presents the first global root transcriptome in watermelon and provides new insights into the molecular mechanisms underlying tolerance to K⁺ deficiency of K-efficient watermelon genotypes.
Collapse
Affiliation(s)
- Molin Fan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Kadri K, Abdellaoui R, Mhamed HC, Teixeira da Silva JA, Naceur MB. Analysis of salt-induced mRNA transcripts in Tunisian local barley (Hordeum vulgare) leaves identified by differential display RT-PCR. Biochem Genet 2013; 52:106-15. [PMID: 24258019 DOI: 10.1007/s10528-013-9631-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Affiliation(s)
- Karim Kadri
- Laboratoire de Biotechnologie et de Culture des Tissus végétales, Centre Régional de la Recherche en Agriculture Oasienne, 2260, Degach, Tunisia,
| | | | | | | | | |
Collapse
|
121
|
Moriconi JI, Santa-María GE. A theoretical framework to study potassium utilization efficiency in response to withdrawal of potassium. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4289-4299. [PMID: 23963671 DOI: 10.1093/jxb/ert236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An important objective of plant research is to improve the efficiency in the utilization of major nutrients, particularly nitrogen, phosphorus, and potassium. Several definitions of internal nutrient utilization efficiency (NUE) have been proposed, but the theoretical consistence of their use has been poorly explored. Here, a non-mechanistic approach was developed to theoretically examine the dynamics of commonly used NUE indicators following complete potassium deprivation. This approach was used to study the sensitivity of NUE indicators to changes in the actual NUE (NUEa) of K(+) in virtual plants. Three empirically based models that differ in the relationship between NUE and the internal K(+) concentration were examined. Frequently used indicators (potassium use efficiency, utilization efficiency, physiological efficiency, and nutrient productivity) and two additional ones introduced here (accumulated productivity and physiological ratio) differed in their capacity to reflect differences in NUEa. They also exhibited large disparities in their temporal variation and in their responsiveness to the concentration of K(+) before the beginning of the deprivation period. According to this analysis, the simultaneous use of several indicators could help to refine plant breeding for high NUE. The data also suggest that a trade off between plant productivity and the time necessary to reduce the concentration of K(+) by half is inherent to the dynamics of plant systems. Finally, it is proposed that for some plant species selection for high NUEa would not always be in conflict with selection for improved relative plant performance in low K(+) environments.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino Km 8.2, Chascomús 7130, Buenos Aires, Argentina
| | | |
Collapse
|
122
|
Zhao XQ, Wang WS, Zhang F, Zhang T, Zhao W, Fu BY, Li ZK. Temporal profiling of primary metabolites under chilling stress and its association with seedling chilling tolerance of rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2013; 6:23. [PMID: 24280004 PMCID: PMC4883686 DOI: 10.1186/1939-8433-6-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/02/2013] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chilling stress is a major factor limiting rice production. Rice genotypes differ greatly in their seedling chilling tolerance (CT), which is known to involve differential expression of large numbers of genes and proteins. To further understand the metabolomic responses of rice to chilling stress, profiles of the 106 primary metabolites of a CT japonica variety, Lijiangxintuanhegu (LTH) and a chilling sensitive indica line, IR29, were investigated under a time-series of chilling stress and non-stress control conditions at the seedling stage. RESULTS We identified 106 primary metabolites that were temporally and genotype-dependently regulated in LTH and IR29 under the time-series chilling stress and subsequent recovery. Three major groups of primary metabolites, amino acids (AAs), organic acids (OAs) and sugars, showed distinct change patterns in both genotypes in response to the chilling stress: a more general accumulation of most AAs, more dramatic decreased levels of most OAs, and greatly reduced levels for most sugars at early time points of stress but increased levels of specific sugars at the later time points of stress. Compared to IR29, LTH had more metabolites showing chilling induced changes, greater levels of these metabolomic changes and a greater ability to recover after stress, implying that LTH used a positive energy-saving strategy against chilling stress. During subsequent recovery, more metabolites were significantly and exclusively up-regulated in LTH, indicating their positive role in chilling tolerance. A comparative analysis of these metabolites data and differentially expressed genes data allowed identification of 7 AAs and related genes that were both chilling responsive and contributed greatly to the CT of LTH. CONCLUSIONS The metabolomic responses of rice to chilling stress at the seedling stage were dynamic and involved large numbers of the metabolites. The chilling induced changes of three major groups of metabolites, AAs, OAs and sugars, in rice were well coordinated. The high level seedling CT of LTH was apparently attributed to its increased levels of most AAs and reduced energy consumption that resulted in increased glycolysis and strong resilience on recovery. The results of this study extend our understanding of molecular mechanisms of chilling stress tolerance in rice.
Collapse
Affiliation(s)
- Xiu-Qin Zhao
- />Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wen-Sheng Wang
- />Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Fan Zhang
- />Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Ting Zhang
- />Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Wen Zhao
- />Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bin-Ying Fu
- />Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhi-Kang Li
- />Institute of Crop Sciences / National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
123
|
Coordinating metabolite changes with our perception of plant abiotic stress responses: emerging views revealed by integrative-omic analyses. Metabolites 2013; 3:761-86. [PMID: 24958149 PMCID: PMC3901284 DOI: 10.3390/metabo3030761] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 11/17/2022] Open
Abstract
Metabolic configuration and adaptation under a range of abiotic stresses, including drought, heat, salinity, cold, and nutrient deprivation, are subjected to an intricate span of molecular pathways that work in parallel in order to enhance plant fitness and increase stress tolerance. In recent years, unprecedented advances have been made in identifying and linking different abiotic stresses, and the current challenge in plant molecular biology is deciphering how the signaling responses are integrated and transduced throughout metabolism. Metabolomics have often played a fundamental role in elucidating the distinct and overlapping biochemical changes that occur in plants. However, a far greater understanding and appreciation of the complexity in plant metabolism under specific stress conditions have become apparent when combining metabolomics with other—omic platforms. This review focuses on recent advances made in understanding the global changes occurring in plant metabolism under abiotic stress conditions using metabolite profiling as an integrated discovery platform.
Collapse
|
124
|
Hong JP, Takeshi Y, Kondou Y, Schachtman DP, Matsui M, Shin R. Identification and characterization of transcription factors regulating Arabidopsis HAK5. PLANT & CELL PHYSIOLOGY 2013; 54:1478-90. [PMID: 23825216 DOI: 10.1093/pcp/pct094] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Potassium (K) is an essential macronutrient for plant growth and reproduction. HAK5, an Arabidopsis high-affinity K transporter gene, plays an important role in K uptake. Its expression is up-regulated in response to K deprivation and is rapidly down-regulated when sufficient K levels have been re-established. To identify transcription factors regulating HAK5, an Arabidopsis TF FOX (Transcription Factor Full-length cDNA Over-eXpressor) library containing approximately 800 transcription factors was used to transform lines previously transformed with a luciferase reporter gene whose expression was driven by the HAK5 promoter. When grown under sufficient K levels, 87 lines with high luciferase activity were identified, and endogenous HAK5 expression was confirmed in 27 lines. Four lines overexpressing DDF2 (Dwarf and Delayed Flowering 2), JLO (Jagged Lateral Organs), TFII_A (Transcription initiation Factor II_A gamma chain) and bHLH121 (basic Helix-Loop-Helix 121) were chosen for further characterization by luciferase activity, endogenous HAK5 level and root growth in K-deficient conditions. Further analysis showed that the expression of these transcription factors increased in response to low K and salt stress. In comparison with controls, root growth under low K conditions was better in each of these four TF FOX lines. Activation of HAK5 expression by these four transcription factors required at least 310 bp of upstream sequence of the HAK5 promoter. These results indicate that at least these four transcription factors can bind to the HAK5 promoter in response to K limitation and activate HAK5 expression, thus allowing plants to adapt to nutrient stress.
Collapse
Affiliation(s)
- Jong-Pil Hong
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | |
Collapse
|
125
|
Shankar A, Singh A, Kanwar P, Srivastava AK, Pandey A, Suprasanna P, Kapoor S, Pandey GK. Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 2013; 8:e70321. [PMID: 23922980 PMCID: PMC3726378 DOI: 10.1371/journal.pone.0070321] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023] Open
Abstract
Plant nutrition is one of the important areas for improving the yield and quality in crops as well as non-crop plants. Potassium is an essential plant nutrient and is required in abundance for their proper growth and development. Potassium deficiency directly affects the plant growth and hence crop yield and production. Recently, potassium-dependent transcriptomic analysis has been performed in the model plant Arabidopsis, however in cereals and crop plants; such a transcriptome analysis has not been undertaken till date. In rice, the molecular mechanism for the regulation of potassium starvation responses has not been investigated in detail. Here, we present a combined physiological and whole genome transcriptomic study of rice seedlings exposed to a brief period of potassium deficiency then replenished with potassium. Our results reveal that the expressions of a diverse set of genes annotated with many distinct functions were altered under potassium deprivation. Our findings highlight altered expression patterns of potassium-responsive genes majorly involved in metabolic processes, stress responses, signaling pathways, transcriptional regulation, and transport of multiple molecules including K+. Interestingly, several genes responsive to low-potassium conditions show a reversal in expression upon resupply of potassium. The results of this study indicate that potassium deprivation leads to activation of multiple genes and gene networks, which may be acting in concert to sense the external potassium and mediate uptake, distribution and ultimately adaptation to low potassium conditions. The interplay of both upregulated and downregulated genes globally in response to potassium deprivation determines how plants cope with the stress of nutrient deficiency at different physiological as well as developmental stages of plants.
Collapse
Affiliation(s)
- Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Amarjeet Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Dhaula Kuan, New Delhi, India
- * E-mail:
| |
Collapse
|
126
|
Wei J, Li C, Li Y, Jiang G, Cheng G, Zheng Y. Effects of external potassium (k) supply on drought tolerances of two contrasting winter wheat cultivars. PLoS One 2013; 8:e69737. [PMID: 23874992 PMCID: PMC3707864 DOI: 10.1371/journal.pone.0069737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 06/14/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Drought is a common stress limiting crops growth and productivities worldwide. Water deficit may increase cellular membrane permeability, resulting in K outflow. Internal K starvation may disorder plant metabolism and limit plant growth. However, it is seldom reported about the effects of external K on drought tolerance of contrasting wheat cultivars. METHODOLOGY/PRINCIPAL FINDINGS A hydroponics experiment was carried out in a non-controlled greenhouse. Seedlings of drought-tolerant SN16 and intolerant JM22 were simultaneously treated by five levels of K2CO3 (0, 2.5, 5, 7.5, 10 mM) and two levels of PEG6000 (0, 20%) for 7 days. External K2CO3 significantly increased shoot K(+) content, water potential, chlorophyll content as well as gas exchange, but decreased electrolyte leakage (EL) and MDA content in both cultivars under PEG6000 stress. Antioxidant enzymes activities were up-regulated by PEG6000 while external K2CO3 reduced those changes. Molecular basis was explained by measuring the expression levels of antioxidant enzymes related genes. Shoot and root biomass were also increased by K2CO3 supply under drought stress. Although adequate K2CO3 application enhanced plant growth for both cultivars under drought stress, SN16 was better than JM22 due to its high drought tolerance. CONCLUSIONS/SIGNIFICANCE Adequate external K may effectively protect winter wheat from drought injuries. We conclude that drought-tolerant wheat combined with adequate external K supply may be a promising strategy for better growth in arid and semi-arid regions.
Collapse
Affiliation(s)
- Jiguang Wei
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
| | - Yong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
- University of the Chinese Academy of Sciences, Beijing, PR China
| | - Gaoming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
| | - Guanglei Cheng
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, PR China
| | - Yanhai Zheng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, PR China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shanxi, PR China
| |
Collapse
|
127
|
Nwugo CC, Lin H, Duan Y, Civerolo EL. The effect of 'Candidatus Liberibacter asiaticus' infection on the proteomic profiles and nutritional status of pre-symptomatic and symptomatic grapefruit (Citrus paradisi) plants. BMC PLANT BIOLOGY 2013; 13:59. [PMID: 23578104 PMCID: PMC3668195 DOI: 10.1186/1471-2229-13-59] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/08/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND Huanglongbing (HLB) is a highly destructive citrus disease which threatens citrus production worldwide and 'Candidatus Liberibacter asiaticus' (Las), a non-culturable phloem-limited bacterium, is an associated causal agent of the disease. To better understand the physiological and molecular processes involved in host responses to Las, 2-DE and mass spectrometry analyses, as well as ICP spectroscopy analysis were employed to elucidate the global protein expression profiles and nutrient concentrations in leaves of Las-infected grapefruit plants at pre-symptomatic or symptomatic stages for HLB. RESULTS This study identified 123 protein spots out of 191 spots that showed significant changes in the leaves of grapefruit plants in response to Las infection and all identified spots matched to 69 unique proteins/peptides. A down-regulation of 56 proteins including those associated with photosynthesis, protein synthesis, and metabolism was correlated with significant reductions in the concentrations of Ca, Mg, Fe, Zn, Mn, and Cu in leaves of grapefruit plants in response to Las infection, particularly in symptomatic plants. Oxygen-evolving enhancer (OEE) proteins, a PSI 9 kDa protein, and a Btf3-like protein were among a small group of proteins that were down-regulated in both pre-symptomatic and symptomatic plants in response to Las infection. Furthermore, a Las-mediated up-regulation of 13 grapefruit proteins was detected, which included Cu/Zn superoxide dismutase, chitinases, lectin-related proteins, miraculin-like proteins, peroxiredoxins and a CAP 160 protein. Interestingly, a Las-mediated up-regulation of granule-bound starch synthase was correlated with an increase in the K concentrations of pre-symptomatic and symptomatic plants. CONCLUSIONS This study constitutes the first attempt to characterize the interrelationships between protein expression and nutritional status of Las-infected pre-symptomatic or symptomatic grapefruit plants and sheds light on the physiological and molecular mechanisms associated with HLB disease development.
Collapse
Affiliation(s)
- Chika C Nwugo
- San Joaquin valley Agricultural Sciences Center, USDA-ARS Parlier, California, 93648, USA
| | - Hong Lin
- San Joaquin valley Agricultural Sciences Center, USDA-ARS Parlier, California, 93648, USA
| | | | - Edwin L Civerolo
- San Joaquin valley Agricultural Sciences Center, USDA-ARS Parlier, California, 93648, USA
| |
Collapse
|
128
|
Kellermeier F, Chardon F, Amtmann A. Natural variation of Arabidopsis root architecture reveals complementing adaptive strategies to potassium starvation. PLANT PHYSIOLOGY 2013; 161:1421-32. [PMID: 23329148 PMCID: PMC3585606 DOI: 10.1104/pp.112.211144] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Root architecture is a highly plastic and environmentally responsive trait that enables plants to counteract nutrient scarcities with different foraging strategies. In potassium (K) deficiency (low K), seedlings of the Arabidopsis (Arabidopsis thaliana) reference accession Columbia (Col-0) show a strong reduction of lateral root elongation. To date, it is not clear whether this is a direct consequence of the lack of K as an osmoticum or a triggered response to maintain the growth of other organs under limiting conditions. In this study, we made use of natural variation within Arabidopsis to look for novel root architectural responses to low K. A comprehensive set of 14 differentially responding root parameters were quantified in K-starved and K-replete plants. We identified a phenotypic gradient that links two extreme strategies of morphological adaptation to low K arising from a major tradeoff between main root (MR) and lateral root elongation. Accessions adopting strategy I (e.g. Col-0) maintained MR growth but compromised lateral root elongation, whereas strategy II genotypes (e.g. Catania-1) arrested MR elongation in favor of lateral branching. K resupply and histochemical staining resolved the temporal and spatial patterns of these responses. Quantitative trait locus analysis of K-dependent root architectures within a Col-0 × Catania-1 recombinant inbred line population identified several loci each of which determined a particular subset of root architectural parameters. Our results indicate the existence of genomic hubs in the coordinated control of root growth in stress conditions and provide resources to facilitate the identification of the underlying genes.
Collapse
|
129
|
Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G. Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 2013; 8:e55431. [PMID: 23383190 PMCID: PMC3561194 DOI: 10.1371/journal.pone.0055431] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022] Open
Abstract
A thorough understanding of the mechanisms underlying barley salt tolerance and exploitation of elite genetic resource are essential for utilizing wild barley germplasm in developing barley varieties with salt tolerance. In order to reveal the physiological and molecular difference in salt tolerance between Tibetan wild barley (Hordeum spontaneum) and cultivated barley (Hordeum vulgare), profiles of 82 key metabolites were studies in wild and cultivated barley in response to salinity. According to shoot dry biomass under salt stress, XZ16 is a fast growing and salt tolerant wild barley. The results of metabolite profiling analysis suggested osmotic adjustment was a basic mechanism, and polyols played important roles in developing salt tolerance only in roots, and high level of sugars and energy in roots and active photosynthesis in leaves were important for barley to develop salt tolerance. The metabolites involved in tolerance enhancement differed between roots and shoots, and also between genotypes. Tibetan wild barley, XZ16 had higher chlorophyll content and higher contents of compatible solutes than CM72, while the cultivated barley, CM72 probably enhanced its salt tolerance mainly through increasing glycolysis and energy consumption, when the plants were exposed to high salinity. The current research extends our understanding of the mechanisms involved in barley salt tolerance and provides possible utilization of Tibetan wild barley in developing barley cultivars with salt tolerance.
Collapse
Affiliation(s)
- Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Shengguan Cai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingxian Chen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Lingzhen Ye
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Zhonghua Chen
- School of Science and Health, University of Western Sydney, Penrith, New South Wales, Australia
| | - Haitao Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Feibo Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
130
|
Detmann KC, Araújo WL, Martins SC, Fernie AR, DaMatta FM. Metabolic alterations triggered by silicon nutrition: is there a signaling role for silicon? PLANT SIGNALING & BEHAVIOR 2013; 8:e22523. [PMID: 23104113 PMCID: PMC3745559 DOI: 10.4161/psb.22523] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 10/11/2012] [Indexed: 05/18/2023]
Abstract
Although the beneficial role of silicon (Si) in stimulating the growth and development of many plants is generally accepted, our knowledge concerning the physiological and molecular mechanisms underlying this response remains far from comprehensive. Considerable effort has been invested in understanding the role of Si on plant disease, which has led to several new and compelling hypotheses; in unstressed plants, however, Si is believed to have no molecular or metabolic effects. Recently, we have demonstrated that Si nutrition can modulate the carbon/nitrogen balance in unstressed rice plants. Our findings point to an important role of Si as a signaling metabolite able to promote amino acid remobilization. In this article we additionally discuss the agronomic significance of these novel observations and suggest Si nutrition as an important target in future attempts to improve yields of agronomic crops.
Collapse
Affiliation(s)
- Kelly C. Detmann
- Departamento de Biologia Vegetal; Universidade Federal de Viçosa; Viçosa, Minas Gerais, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal; Universidade Federal de Viçosa; Viçosa, Minas Gerais, Brazil
| | - Samuel C.V. Martins
- Departamento de Biologia Vegetal; Universidade Federal de Viçosa; Viçosa, Minas Gerais, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie; Potsdam-Golm, Germany
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal; Universidade Federal de Viçosa; Viçosa, Minas Gerais, Brazil
- Correspondence to: Fábio M. DaMatta,
| |
Collapse
|
131
|
Abstract
As one of the most important mineral nutrient elements, potassium (K(+)) participates in many plant physiological processes and determines the yield and quality of crop production. In this review, we summarize K(+) signaling processes and K(+) transport regulation in higher plants, especially in plant responses to K(+)-deficiency stress. Plants perceive external K(+) fluctuations and generate the initial K(+) signal in root cells. This signal is transduced into the cytoplasm and encoded as Ca(2+) and reactive oxygen species signaling. K(+)-deficiency-induced signals are subsequently decoded by cytoplasmic sensors, which regulate the downstream transcriptional and posttranslational responses. Eventually, plants produce a series of adaptive events in both physiological and morphological alterations that help them survive K(+) deficiency.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Center of Plant Gene Research (Beijing), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
132
|
Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A. Primary, secondary metabolites, photosynthetic capacity and antioxidant activity of the Malaysian Herb Kacip Fatimah (Labisia Pumila Benth) exposed to potassium fertilization under greenhouse conditions. Int J Mol Sci 2012. [PMID: 23203128 PMCID: PMC3509644 DOI: 10.3390/ijms131115321] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (gs), intercellular CO2 (Ci), apparent quantum yield (ξ) and lower dark respiration rates (Rd), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
Collapse
Affiliation(s)
- Mohd Hafiz Ibrahim
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | | | | |
Collapse
|
133
|
Liu Z, Rochfort S. A fast liquid chromatography-mass spectrometry (LC-MS) method for quantification of major polar metabolites in plants. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 912:8-15. [PMID: 23246845 DOI: 10.1016/j.jchromb.2012.10.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/22/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
Abstract
Current liquid chromatography (LC) based methods for the analysis of polar plant metabolites require multiple runs using complex mobile phases and a combination of different columns. Here we describe a fast liquid chromatography-mass spectrometry (LC-MS) method for the determination of major polar metabolites in plants that requires only a single run using a single column. The method takes advantage of the ability to acquire both positive and negative data in an ion trap mass spectrometer (MS) and also the accurate mass capability of the orbitrap MS. The separation of polar compounds is achieved with a polar, reversed-phase column (Synergi Hydro-RP). A single analysis with a 25min runtime is able to reliably determine the level of nearly all essential amino acids, several major organic acids and several major sugars in plant materials, as exemplified by analysis of a perennial ryegrass extract. The level of detection on column was below 0.1ng (average 0.03ng) for most amino acids, below 5ng (average 2.3ng) for organics acids and below 1ng (average 0.64ng) for sugars. The levels of quantified metabolites in ryegrass varied from 22μg/g dry weight for histidine to 41mg/g dry weight for sucrose.
Collapse
Affiliation(s)
- Zhiqian Liu
- Department of Primary Industries, Biosciences Research Division, Bundoora, Victoria, Australia
| | | |
Collapse
|
134
|
Ma TL, Wu WH, Wang Y. Transcriptome analysis of rice root responses to potassium deficiency. BMC PLANT BIOLOGY 2012; 12:161. [PMID: 22963580 PMCID: PMC3489729 DOI: 10.1186/1471-2229-12-161] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Accepted: 08/06/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Potassium (K+) is an important nutrient ion in plant cells and plays crucial roles in many plant physiological and developmental processes. In the natural environment, K+ deficiency is a common abiotic stress that inhibits plant growth and reduces crop productivity. Several microarray studies have been conducted on genome-wide gene expression profiles of rice during its responses to various stresses. However, little is known about the transcriptional changes in rice genes under low-K+ conditions. RESULTS We analyzed the transcriptomic profiles of rice roots in response to low-K+ stress. The roots of rice seedlings with or without low-K+ treatment were harvested after 6 h, and 3 and 5 d, and used for microarray analysis. The microarray data showed that many genes (2,896) were up-regulated or down-regulated more than 1.2-fold during low-K+ treatment. GO analysis indicated that the genes showing transcriptional changes were mainly in the following categories: metabolic process, membrane, cation binding, kinase activity, transport, and so on. We conducted a comparative analysis of transcriptomic changes between Arabidopsis and rice under low-K+ stress. Generally, the genes showing changes in transcription in rice and Arabidopsis in response to low-K+ stress displayed similar GO distribution patterns. However, there were more genes related to stress responses and development in Arabidopsis than in rice. Many auxin-related genes responded to K+ deficiency in rice, whereas jasmonic acid-related enzymes may play more important roles in K+ nutrient signaling in Arabidopsis. CONCLUSIONS According to the microarray data, fewer rice genes showed transcriptional changes in response to K+ deficiency than to phosphorus (P) or nitrogen (N) deficiency. Thus, transcriptional regulation is probably more important in responses to low-P and -N stress than to low-K+ stress. However, many genes in some categories (protein kinase and ion transporter families) were markedly up-regulated, suggesting that they play important roles during K+ deficiency. Comparative analysis of transcriptomic changes between Arabidopsis and rice showed that monocots and dicots share many similar mechanisms in response to K+ deficiency, despite some differences. Further research is required to clarify the differences in transcriptional regulation between monocots and dicots.
Collapse
Affiliation(s)
- Tian-Li Ma
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), National Plant Gene Research Centre (Beijing), College of Biological Sciences, China Agricultural University, #2 West Yuan Ming Yuan Rd, Beijing, 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), National Plant Gene Research Centre (Beijing), College of Biological Sciences, China Agricultural University, #2 West Yuan Ming Yuan Rd, Beijing, 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), National Plant Gene Research Centre (Beijing), College of Biological Sciences, China Agricultural University, #2 West Yuan Ming Yuan Rd, Beijing, 100193, China
| |
Collapse
|
135
|
Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 2012; 69:3225-43. [PMID: 22885821 PMCID: PMC3437017 DOI: 10.1007/s00018-012-1091-5] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 12/15/2022]
Abstract
Plant metabolism is perturbed by various abiotic stresses. As such the metabolic network of plants must be reconfigured under stress conditions in order to allow both the maintenance of metabolic homeostasis and the production of compounds that ameliorate the stress. The recent development and adoption of metabolomics and systems biology approaches enable us not only to gain a comprehensive overview, but also a detailed analysis of crucial components of the plant metabolic response to abiotic stresses. In this review we introduce the analytical methods used for plant metabolomics and describe their use in studies related to the metabolic response to water, temperature, light, nutrient limitation, ion and oxidative stresses. Both similarity and specificity of the metabolic responses against diverse abiotic stress are evaluated using data available in the literature. Classically discussed stress compounds such as proline, γ-amino butyrate and polyamines are reviewed, and the widespread importance of branched chain amino acid metabolism under stress condition is discussed. Finally, where possible, mechanistic insights into metabolic regulatory processes are discussed.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | |
Collapse
|
136
|
Wang C, Chen H, Hao Q, Sha A, Shan Z, Chen L, Zhou R, Zhi H, Zhou X. Transcript profile of the response of two soybean genotypes to potassium deficiency. PLoS One 2012; 7:e39856. [PMID: 22792192 PMCID: PMC3390323 DOI: 10.1371/journal.pone.0039856] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 05/27/2012] [Indexed: 02/02/2023] Open
Abstract
The macronutrient potassium (K) is essential to plant growth and development. Crop yield potential is often affected by lack of soluble K. The molecular regulation mechanism of physiological and biochemical responses to K starvation in soybean roots and shoots is not fully understood. In the present study, two soybean varieties were subjected to low-K stress conditions: a low-K-tolerant variety (You06-71) and a low-K-sensitive variety (HengChun04-11). Eight libraries were generated for analysis: 2 genotypes ×2 tissues (roots and shoots) ×2 time periods [short term (0.5 to 12 h) and long term (3 to 12 d)]. RNA derived from the roots and shoots of these two varieties across two periods (short term and long term) were sequenced and the transcriptomes were compared using high-throughput tag-sequencing. To this end, a large number of clean tags (tags used for analysis after removal of dirty tags) corresponding to distinct tags (all types of clean tags) were identified in eight libraries (L1, You06-71-root short term; L2, HengChun04-11-root short term; L3, You06-71-shoot short term; L4, HengChun04-11-shoot short term; L5, You06-71-root long term; L6, HengChun04-11-root long term; L7, You06-71-shoot long term; L8, HengChun04-11-shoot long term). All clean tags were mapped to the available soybean (Glycine max) transcript database (http://www.soybase.org). Many genes showed substantial differences in expression across the libraries. In total, 5,440 transcripts involved in 118 KEGG pathways were either up- or down-regulated. Fifteen genes were randomly selected and their expression levels were confirmed using quantitative RT-PCR. Our results provide preliminary information on the molecular mechanism of potassium absorption and transport under low-K stress conditions in different soybean tissues.
Collapse
Affiliation(s)
- Cheng Wang
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - HaiFeng Chen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - QingNan Hao
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - AiHua Sha
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - ZhiHui Shan
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - LiMiao Chen
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Rong Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - HaiJian Zhi
- National Center for Soybean Improvement, National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - XinAn Zhou
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
137
|
Wang N, Hua H, Egrinya Eneji A, Li Z, Duan L, Tian X. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 110:1-8. [DOI: 10.1016/j.jphotobiol.2012.02.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/13/2012] [Accepted: 02/07/2012] [Indexed: 11/30/2022]
|
138
|
Moriconi JI, Buet A, Simontacchi M, Santa-María GE. Near-isogenic wheat lines carrying altered function alleles of the Rht-1 genes exhibit differential responses to potassium deprivation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:199-207. [PMID: 22325882 DOI: 10.1016/j.plantsci.2011.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 05/05/2023]
Abstract
Most of the elements involved in the integration of signals of low external K(+)-supply into a physiological response pathway remain essentially unknown. The aim of this work was to study the influence exerted by DELLA proteins, which are known to be key components for the control of growth, on plant responses during K(+) deprivation in wheat (Triticum aestivum) by using two sets of near-isogenic lines (NILs) in the Maringa and April Bearded cultivars. After K(+) shortage, the NILs of both cultivars containing the Rht-B1b,Rht-D1b alleles, which encode altered function DELLA proteins, displayed either a slight or no decrease in chlorophyll content, in contrast to the sharp decrease observed in the NILs having the wild type alleles (Rht-B1a,Rht-D1a). That difference was accompanied by a lower relative decrease of biomass accumulation only in the Maringa cultivar. In both cultivars, high chlorophyll retention was coupled with K(+) starvation-induced differences in superoxide dismutase and ascorbate peroxidase activities, which were enhanced in K(+)-starved Rht-B1b,Rht-D1b NILs. In addition, Rht-B1b,Rht-D1b and Rht-B1a,Rht-D1a NILs markedly differed in the accumulation of the major cations Ca(2+), Na(+) and K(+). These results suggest a major role of the Rht-1 genes in the control of physiological responses during K(+) deprivation.
Collapse
Affiliation(s)
- Jorge I Moriconi
- Instituto Tecnológico Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas, Camino Circunvalación Laguna Km 8.5, Chascomús, Buenos Aires 7130, Argentina
| | | | | | | |
Collapse
|
139
|
Araújo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. PLANT, CELL & ENVIRONMENT 2012; 35:1-21. [PMID: 21477125 DOI: 10.1111/j.1365-3040.2011.02332.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Germany
| | | | | | | | | |
Collapse
|
140
|
Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K. Effects of abiotic stress on plants: a systems biology perspective. BMC PLANT BIOLOGY 2011; 11:163. [PMID: 22094046 PMCID: PMC3252258 DOI: 10.1186/1471-2229-11-163] [Citation(s) in RCA: 549] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/17/2011] [Indexed: 05/18/2023]
Abstract
The natural environment for plants is composed of a complex set of abiotic stresses and biotic stresses. Plant responses to these stresses are equally complex. Systems biology approaches facilitate a multi-targeted approach by allowing one to identify regulatory hubs in complex networks. Systems biology takes the molecular parts (transcripts, proteins and metabolites) of an organism and attempts to fit them into functional networks or models designed to describe and predict the dynamic activities of that organism in different environments. In this review, research progress in plant responses to abiotic stresses is summarized from the physiological level to the molecular level. New insights obtained from the integration of omics datasets are highlighted. Gaps in our knowledge are identified, providing additional focus areas for crop improvement research in the future.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, Mail Stop 330, University of Nevada, Reno, Nevada 89557, USA
| | - Kaoru Urano
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| | - Serge Delrot
- Univ. Bordeaux, ISVV, Ecophysiologie et Génomique Fonctionnelle de la Vigne, UMR 1287, F-33882 Villenave d'Ornon, France
| | - Mario Pezzotti
- Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| |
Collapse
|
141
|
Borghi M, Rus A, Salt DE. Loss-of-function of Constitutive Expresser of Pathogenesis Related Genes5 affects potassium homeostasis in Arabidopsis thaliana. PLoS One 2011; 6:e26360. [PMID: 22046278 PMCID: PMC3203115 DOI: 10.1371/journal.pone.0026360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/25/2011] [Indexed: 11/24/2022] Open
Abstract
Here, we demonstrate that the reduction in leaf K(+) observed in a mutant previously identified in an ionomic screen of fast neutron mutagenized Arabidopsis thaliana is caused by a loss-of-function allele of CPR5, which we name cpr5-3. This observation establishes low leaf K(+) as a new phenotype for loss-of-function alleles of CPR5. We investigate the factors affecting this low leaf K(+) in cpr5 using double mutants defective in salicylic acid (SA) and jasmonic acid (JA) signalling, and by gene expression analysis of various channels and transporters. Reciprocal grafting between cpr5 and Col-0 was used to determine the relative importance of the shoot and root in causing the low leaf K(+) phenotype of cpr5. Our data show that loss-of-function of CPR5 in shoots primarily determines the low leaf K(+) phenotype of cpr5, though the roots also contribute to a lesser degree. The low leaf K(+) phenotype of cpr5 is independent of the elevated SA and JA known to occur in cpr5. In cpr5 expression of genes encoding various Cyclic Nucleotide Gated Channels (CNGCs) are uniquely elevated in leaves. Further, expression of HAK5, encoding the high affinity K(+) uptake transporter, is reduced in roots of cpr5 grown with high or low K(+) supply. We suggest a model in which low leaf K(+) in cpr5 is driven primarily by enhanced shoot-to-root K(+) export caused by a constitutive activation of the expression of various CNGCs. This activation may enhance K(+) efflux, either indirectly via enhanced cytosolic Ca(2+) and/or directly by increased K(+) transport activity. Enhanced shoot-to-root K(+) export may also cause the reduced expression of HAK5 observed in roots of cpr5, leading to a reduction in uptake of K(+). All ionomic data presented is publically available at www.ionomicshub.org.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ana Rus
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - David E. Salt
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
142
|
Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, Fei Z, Giovannoni JJ, Fernie AR. Systems biology of tomato fruit development: combined transcript, protein, and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. PLANT PHYSIOLOGY 2011; 157:405-25. [PMID: 21795583 PMCID: PMC3165888 DOI: 10.1104/pp.111.175463] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 07/24/2011] [Indexed: 05/18/2023]
Abstract
Tomato (Solanum lycopersicum) is an established model to study fleshy fruit development and ripening. Tomato ripening is regulated independently and cooperatively by ethylene and transcription factors, including nonripening (NOR) and ripening-inhibitor (RIN). Mutations of NOR, RIN, and the ethylene receptor Never-ripe (Nr), which block ethylene perception and inhibit ripening, have proven to be great tools for advancing our understanding of the developmental programs regulating ripening. In this study, we present systems analysis of nor, rin, and Nr at the transcriptomic, proteomic, and metabolomic levels during development and ripening. Metabolic profiling marked shifts in the abundance of metabolites of primary metabolism, which lead to decreases in metabolic activity during ripening. When combined with transcriptomic and proteomic data, several aspects of the regulation of metabolism during ripening were revealed. First, correlations between the expression levels of a transcript and the abundance of its corresponding protein were infrequently observed during early ripening, suggesting that posttranscriptional regulatory mechanisms play an important role in these stages; however, this correlation was much greater in later stages. Second, we observed very strong correlation between ripening-associated transcripts and specific metabolite groups, such as organic acids, sugars, and cell wall-related metabolites, underlining the importance of these metabolic pathways during fruit ripening. These results further revealed multiple ethylene-associated events during tomato ripening, providing new insights into the molecular biology of ethylene-mediated ripening regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany (S.O., M.L., M.I.Z., T.T., B.U., A.R.F.); Boyce Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service Robert W. Holley Center (R.A., Z.F., J.J.G.) and Department of Plant Biology (C.M.B.D., G.L.-C., J.K.C.R.), Cornell University, Ithaca, New York 14853
| |
Collapse
|
143
|
Moing A, Aharoni A, Biais B, Rogachev I, Meir S, Brodsky L, Allwood JW, Erban A, Dunn WB, Kay L, de Koning S, de Vos RCH, Jonker H, Mumm R, Deborde C, Maucourt M, Bernillon S, Gibon Y, Hansen TH, Husted S, Goodacre R, Kopka J, Schjoerring JK, Rolin D, Hall RD. Extensive metabolic cross-talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. THE NEW PHYTOLOGIST 2011; 190:683-96. [PMID: 21275993 DOI: 10.1111/j.1469-8137.2010.03626.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Variations in tissue development and spatial composition have a major impact on the nutritional and organoleptic qualities of ripe fleshy fruit, including melon (Cucumis melo). To gain a deeper insight into the mechanisms involved in these changes, we identified key metabolites for rational food quality design. • The metabolome, volatiles and mineral elements were profiled employing an unprecedented range of complementary analytical technologies. Fruits were followed at a number of time points during the final ripening process and tissues were collected across the fruit flesh from rind to seed cavity. Approximately 2000 metabolite signatures and 15 mineral elements were determined in an assessment of temporal and spatial melon fruit development. • This study design enabled the identification of: coregulated hubs (including aspartic acid, 2-isopropylmalic acid, β-carotene, phytoene and dihydropseudoionone) in metabolic association networks; global patterns of coordinated compositional changes; and links of primary and secondary metabolism to key mineral and volatile fruit complements. • The results reveal the extent of metabolic interactions relevant to ripe fruit quality and thus have enabled the identification of essential candidate metabolites for the high-throughput screening of melon breeding populations for targeted breeding programmes aimed at nutrition and flavour improvement.
Collapse
Affiliation(s)
- Annick Moing
- INRA-UMR 619 Biologie du Fruit, Centre INRA de Bordeaux, Villenave d'Ornon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, Filleur S, Daniel-Vedele F. From the soil to the seeds: the long journey of nitrate in plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1349-59. [PMID: 21193579 DOI: 10.1093/jxb/erq409] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Under temperate climates and in cultivated soils, nitrate is the most important source of nitrogen (N) available for crops and, before its reduction and assimilation into amino acids, must enter the root cells and then move in the whole plant. The aim of this review is to provide an overall picture of the numerous membrane proteins that achieve these processes by being localized in different compartments and in different tissues. Nitrate transporters (NRT) from the NRT1 and NRT2 families ensure the capacity of root cells to take up nitrate, through high- and low-affinity systems (HATS and LATS) depending on nitrate concentrations in the soil solution. Other members of the NRT1 family are involved subsequently in loading and unloading of nitrate to and from the xylem vessels, allowing its distribution to aerial organs or its remobilization from old leaves. Once in the cell, nitrate can be stored in the vacuole by passing through the tonoplast, a step that involves chloride channels (CLC) or a NRT2 member. Finally, with the exception of one NRT1 member, the transport of nitrite towards the chloroplast is still largely unknown. All these fluxes are controlled by key factors, the 'major tour operators' like the internal nutritional status of the plant but also by external abiotic factors.
Collapse
Affiliation(s)
- Julie Dechorgnat
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Institut National de la Recherche Agronomique, Route de St. Cyr, F-78026 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
145
|
Castaings L, Marchive C, Meyer C, Krapp A. Nitrogen signalling in Arabidopsis: how to obtain insights into a complex signalling network. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1391-7. [PMID: 21118821 DOI: 10.1093/jxb/erq375] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
It is well known that nitrogen (N) and N status can be sensed by plants to regulate their development, physiology, and metabolism. Based on approaches efficiently used for fungi and algae, plant researchers have been trying, but with little success, to elucidate higher plants N signalling for several years. Recently, the use of new strategies such as transcriptomics, comparative reverse genetics, and new forward genetic screens have unravelled some players within the complex plant N signalling network. This review will mainly focus on these recent advances in the molecular knowledge of N sensing in plants such as the dual function of the nitrate transporter CHL1, the roles of the transcription factors LBD37/38/39 and NLP7 or of the CIPK8/23 kinases, as well as the implication of small RNAs, which are at last opening doors for future research in this field.
Collapse
Affiliation(s)
- Loren Castaings
- Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Institut National de Recherche Agronomique, Route de St. Cyr, F-78026 Versailles, France
| | | | | | | |
Collapse
|
146
|
Tsay YF, Ho CH, Chen HY, Lin SH. Integration of nitrogen and potassium signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:207-26. [PMID: 21495843 DOI: 10.1146/annurev-arplant-042110-103837] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sensing and responding to soil nutrient fluctuations are vital for the survival of higher plants. Over the past few years, great progress has been made in our understanding of nitrogen and potassium signaling. Key components of the signaling pathways including sensors, kinases, miRNA, ubiquitin ligases, and transcriptional factors. These components mediate the transcriptional responses, root-architecture changes, and uptake-activity modulation induced by nitrate, ammonium, and potassium in the soil solution. Integration of these responses allows plants to compete for limited nutrients and to survive under nutrient deficiency or toxic nutrient excess. A future challenge is to extend the present fragmented sets of data to a comprehensive signaling network. Then, such knowledge and the accompanying molecular tools can be applied to improve the efficiency of nutrient utilization in crops.
Collapse
Affiliation(s)
- Yi-Fang Tsay
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | | | | | | |
Collapse
|
147
|
Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, Kopka J, Bouchereau A. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:215-29. [PMID: 21070405 DOI: 10.1111/j.1365-313x.2010.04323.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Thellungiella salsuginea, a Brassicaceae species closely related to Arabidopsis thaliana, is tolerant to high salinity. The two species were compared under conditions of osmotic stress to assess the relationships between stress tolerance, the metabolome, water homeostasis and growth performance. A broad range of metabolites were analysed by metabolic fingerprinting and profiling, and the results showed that, despite a few notable differences in raffinose and secondary metabolites, the same metabolic pathways were regulated by salt stress in both species. The main difference was quantitative: Thellungiella had much higher levels of most metabolites than Arabidopsis whatever the treatment. Comprehensive quantification of organic and mineral solutes showed a relative stability of the total solute content regardless of the species or treatment, meaning that little or no osmotic adjustment occurred under stress. The reduction in osmotic potential observed in plants under stress was found to result from a passive loss of water. Thellungiella shoots contain less water than Arabidopsis shoots, and have the ability to lose more water, which could contribute to maintain a water potential gradient between soil and plant. Significant differences between Thellungiella and Arabidopsis were also observed in terms of the physicochemical properties of their metabolomes, such as water solubility and polarity. On the whole, the Thellungiella metabolome appears to be more compatible with dehydration. Osmotic stress was also found to impact the metabolome properties in both species, increasing the overall polarity. Together, the results suggest that Thellungiella copes with osmotic stress by tolerating dehydration, with its metabolic configuration lending itself to osmoprotective strategies rather than osmo-adjustment.
Collapse
Affiliation(s)
- Raphaël Lugan
- INRA Agrocampus Ouest, Université de Rennes 1, UMR 118, Amélioration des Plantes et Biotechnologies Végétales, Le Rheu Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. PLANT PHYSIOLOGY 2010; 154:357-72. [PMID: 20631317 PMCID: PMC2938159 DOI: 10.1104/pp.110.157008] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 07/09/2010] [Indexed: 05/18/2023]
Abstract
Growth and carbon (C) fluxes are severely altered in plants exposed to soil water deficit. Correspondingly, it has been suggested that plants under water deficit suffer from C shortage. In this study, we test this hypothesis in Arabidopsis (Arabidopsis thaliana) by providing an overview of the responses of growth, C balance, metabolites, enzymes of the central metabolism, and a set of sugar-responsive genes to a sustained soil water deficit. The results show that under drought, rosette relative expansion rate is decreased more than photosynthesis, leading to a more positive C balance, while root growth is promoted. Several soluble metabolites accumulate in response to soil water deficit, with K(+) and organic acids as the main contributors to osmotic adjustment. Osmotic adjustment costs only a small percentage of the daily photosynthetic C fixation. All C metabolites measured (not only starch and sugars but also organic acids and amino acids) show a diurnal turnover that often increased under water deficit, suggesting that these metabolites are readily available for being metabolized in situ or exported to roots. On the basis of 30 enzyme activities, no in-depth reprogramming of C metabolism was observed. Water deficit induces a shift of the expression level of a set of sugar-responsive genes that is indicative of increased, rather than decreased, C availability. These results converge to show that the differential impact of soil water deficit on photosynthesis and rosette expansion results in an increased availability of C for the roots, an increased turnover of C metabolites, and a low-cost C-based osmotic adjustment, and these responses are performed without major reformatting of the primary metabolism machinery.
Collapse
Affiliation(s)
- Irène Hummel
- INRA, Ecophysiologie des Plantes sous Stress Environnementaux, UMR 759, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Troufflard S, Mullen W, Larson TR, Graham IA, Crozier A, Amtmann A, Armengaud P. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:172. [PMID: 20701801 PMCID: PMC3017790 DOI: 10.1186/1471-2229-10-172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 08/11/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Mineral fertilization and pest control are essential and costly requirements for modern crop production. The two measures go hand in hand because plant mineral status affects plant susceptibility to pests and vice versa. Nutrient deficiency triggers specific responses in plants that optimize nutrient acquisition and reprogram metabolism. K-deficient plants illustrate these strategies by inducing high-affinity K-uptake and adjusting primary metabolism. Whether and how K deficient plants also alter their secondary metabolism for nutrient management and defense is not known. RESULTS Here we show that K-deficient plants contain higher levels of the phytohormone jasmonic acid (JA), hydroxy-12-oxo-octadecadienoic acids (HODs) and 12-oxo-phytodienoic acid (OPDA) than K-sufficient plants. Up-regulation of the 13-LOX pathway in response to low K was evident in increased transcript levels of several biosynthetic enzymes. Indole and aliphatic glucosinolates accumulated in response to K-deficiency in a manner that was respectively dependent or independent on signaling through Coronatine-Insensitive 1 (COI1). Transcript and glucosinolate profiles of K-deficient plants resembled those of herbivore attacked plants. CONCLUSIONS Based on our results we propose that under K-deficiency plants produce oxylipins and glucosinolates to enhance their defense potential against herbivorous insects and create reversible storage for excess S and N.
Collapse
Affiliation(s)
- Stephanie Troufflard
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - William Mullen
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Tony R Larson
- Centre for Novel Agricultural Products, Department of Biology, University of York, PO BOX 373, York YO10 5YW, UK
| | - Ian A Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, PO BOX 373, York YO10 5YW, UK
| | - Alan Crozier
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Amtmann
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick Armengaud
- Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Current Address: Institut Jean-Pierre Bourgin, UMR1318 INRA AgroParisTech, Centre de Versailles, RD10, 78026 Versailles Cedex, France
| |
Collapse
|
150
|
Ruzicka DR, Barrios-Masias FH, Hausmann NT, Jackson LE, Schachtman DP. Tomato root transcriptome response to a nitrogen-enriched soil patch. BMC PLANT BIOLOGY 2010; 10:75. [PMID: 20423508 PMCID: PMC3095349 DOI: 10.1186/1471-2229-10-75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 04/27/2010] [Indexed: 05/04/2023]
Abstract
BACKGROUND Nitrogen (N), the primary limiting factor for plant growth and yield in agriculture, has a patchy distribution in soils due to fertilizer application or decomposing organic matter. Studies in solution culture over-simplify the complex soil environment where microbial competition and spatial and temporal heterogeneity challenge roots' ability to acquire adequate amounts of nutrients required for plant growth. In this study, various ammonium treatments (as 15N) were applied to a discrete volume of soil containing tomato (Solanum lycopersicum) roots to simulate encounters with a localized enriched patch of soil. Transcriptome analysis was used to identify genes differentially expressed in roots 53 hrs after treatment. RESULTS The ammonium treatments resulted in significantly higher concentrations of both ammonium and nitrate in the patch soil. The plant roots and shoots exhibited increased levels of 15N over time, indicating a sustained response to the enriched environment. Root transcriptome analysis identified 585 genes differentially regulated 53 hrs after the treatments. Nitrogen metabolism and cell growth genes were induced by the high ammonium (65 mug NH4+-N g-1 soil), while stress response genes were repressed. The complex regulation of specific transporters following the ammonium pulse reflects a simultaneous and synergistic response to rapidly changing concentrations of both forms of inorganic N in the soil patch. Transcriptional analysis of the phosphate transporters demonstrates cross-talk between N and phosphate uptake pathways and suggests that roots increase phosphate uptake via the arbuscular mycorrhizal symbiosis in response to N. CONCLUSION This work enhances our understanding of root function by providing a snapshot of the response of the tomato root transcriptome to a pulse of ammonium in a complex soil environment. This response includes an important role for the mycorrhizal symbiosis in the utilization of an N patch.
Collapse
Affiliation(s)
- Daniel R Ruzicka
- Donald Danforth Plant Science Center, 975 N Warson Rd., St. Louis MO 63132 USA
| | - Felipe H Barrios-Masias
- Department of Land, Air, and Water Resources, University of California, 1 Shields Avenue, Davis CA 95616 USA
| | - Natasha T Hausmann
- Department of Land, Air, and Water Resources, University of California, 1 Shields Avenue, Davis CA 95616 USA
| | - Louise E Jackson
- Department of Land, Air, and Water Resources, University of California, 1 Shields Avenue, Davis CA 95616 USA
| | - Daniel P Schachtman
- Donald Danforth Plant Science Center, 975 N Warson Rd., St. Louis MO 63132 USA
| |
Collapse
|