101
|
Jagadish SVK, Murty MVR, Quick WP. Rice responses to rising temperatures--challenges, perspectives and future directions. PLANT, CELL & ENVIRONMENT 2015; 38:1686-98. [PMID: 25142172 DOI: 10.1111/pce.12430] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/18/2014] [Accepted: 08/07/2014] [Indexed: 05/18/2023]
Abstract
Phenotypic plasticity in overcoming heat stress-induced damage across hot tropical rice-growing regions is predominantly governed by relative humidity. Expression of transpiration cooling, an effective heat-avoiding mechanism, will diminish with the transition from fully flooded paddies to water-saving technologies, such as direct-seeded and aerobic rice cultivation, thus further aggravating stress damage. This change can potentially introduce greater sensitivity to previously unaffected developmental stages such as floral meristem (panicle) initiation and spikelet differentiation, and further intensify vulnerability at the known sensitive gametogenesis and flowering stages. More than the mean temperature rise, increased variability and a more rapid increase in nighttime temperature compared with the daytime maximum present a greater challenge. This review addresses (1) the importance of vapour pressure deficit under fully flooded paddies and increased vulnerability of rice production to heat stress or intermittent occurrence of combined heat and drought stress under emerging water-saving rice technologies; (2) the major disconnect with high night temperature response between field and controlled environments in terms of spikelet sterility; (3) highlights the most important mechanisms that affect key grain quality parameters, such as chalk formation under heat stress; and finally (4), we model and estimate heat stress-induced spikelet sterility taking South Asia as a case study.
Collapse
Affiliation(s)
- S V K Jagadish
- International Rice Research Institute, Metro Manila, DAPO BOX, 7777, Philippines
| | - M V R Murty
- International Rice Research Institute, Metro Manila, DAPO BOX, 7777, Philippines
| | - W P Quick
- International Rice Research Institute, Metro Manila, DAPO BOX, 7777, Philippines
- Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
102
|
Garapati P, Xue GP, Munné-Bosch S, Balazadeh S. Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades. PLANT PHYSIOLOGY 2015; 168:1122-39. [PMID: 25953103 PMCID: PMC4741325 DOI: 10.1104/pp.15.00567] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/05/2015] [Indexed: 05/18/2023]
Abstract
Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hydrogen peroxide-activated TF Arabidopsis thaliana activating factor1 (ATAF1) as a novel upstream regulator of senescence. ATAF1 executes its physiological role by affecting both key chloroplast maintenance and senescence-promoting TFs, namely GOLDEN2-LIKE1 (GLK1) and ORESARA1 (Arabidopsis NAC092), respectively. Notably, while ATAF1 activates ORESARA1, it represses GLK1 expression by directly binding to their promoters, thereby generating a transcriptional output that shifts the physiological balance toward the progression of senescence. We furthermore demonstrate a key role of ATAF1 for ABA- and hydrogen peroxide-induced senescence, in accordance with a direct regulatory effect on ABA homeostasis genes, including nine-CIS-epoxycarotenoid dioxygenase3 involved in ABA biosynthesis and ABC transporter G family member40, encoding an ABA transport protein. Thus, ATAF1 serves as a core transcriptional activator of senescence by coupling stress-related signaling with photosynthesis- and senescence-related transcriptional cascades.
Collapse
Affiliation(s)
- Prashanth Garapati
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| | - Gang-Ping Xue
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| | - Sergi Munné-Bosch
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| | - Salma Balazadeh
- University of Potsdam, Institute of Biochemistry and Biology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Plant Signaling Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (P.G., S.B.);Commonwealth Scientific and Industrial Research Organization Plant Industry, St. Lucia, Queensland 4067, Australia (G.-P.X.); andDepartament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, 08028 Barcelona, Spain (S.M.-B.)
| |
Collapse
|
103
|
Blum A. Towards a conceptual ABA ideotype in plant breeding for water limited environments. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:502-513. [PMID: 32480696 DOI: 10.1071/fp14334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/29/2015] [Indexed: 05/25/2023]
Abstract
A huge amount of information had been accumulated on abscisic acid (ABA). Laboratory and some field research with ABA-enhanced transgenic plants generally conclude that ABA is a drought resistance hormone, since it causes stomatal closure, reduces transpiration and results in 'water saving' under drought stress. This recurring conclusion is hard to accept in the agronomic domain considering the many direct and indirect negative effects of ABA on plant growth and reproduction. In order to formulate a conceptual phenotypic ABA ideotype for plant breeding, this paper begins by briefly reviewing the phenomics of ABA relative to plant function and productivity. Consequently, it is recognised that ABA enhancement is important in controlling the isohydric ('water saving') plant model, whereas plant hydraulics are more important in controlling the anisohydric ('water spending') plant model. Subsequently, the respective isohydric and anisohydric ideotypes appropriate to specific dryland crop drought stress scenarios are proposed. It is concluded that ABA can by no means be universally defined as a 'drought resistance hormone'. Its benefit or damage depends on the crop drought stress profile and the dynamics of the seasonal regimen of ABA in the plant. The isohydric ideotype might have an advantage in the harshest environments, whereas the anisohydric one will perform relatively better under more moderate drought conditions.
Collapse
|
104
|
Barrero JM, Cavanagh C, Verbyla KL, Tibbits JFG, Verbyla AP, Huang BE, Rosewarne GM, Stephen S, Wang P, Whan A, Rigault P, Hayden MJ, Gubler F. Transcriptomic analysis of wheat near-isogenic lines identifies PM19-A1 and A2 as candidates for a major dormancy QTL. Genome Biol 2015; 16:93. [PMID: 25962727 PMCID: PMC4443510 DOI: 10.1186/s13059-015-0665-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Next-generation sequencing technologies provide new opportunities to identify the genetic components responsible for trait variation. However, in species with large polyploid genomes, such as bread wheat, the ability to rapidly identify genes underlying quantitative trait loci (QTL) remains non-trivial. To overcome this, we introduce a novel pipeline that analyses, by RNA-sequencing, multiple near-isogenic lines segregating for a targeted QTL. RESULTS We use this approach to characterize a major and widely utilized seed dormancy QTL located on chromosome 4AL. It exploits the power and mapping resolution afforded by large multi-parent mapping populations, whilst reducing complexity by using multi-allelic contrasts at the targeted QTL region. Our approach identifies two adjacent candidate genes within the QTL region belonging to the ABA-induced Wheat Plasma Membrane 19 family. One of them, PM19-A1, is highly expressed during grain maturation in dormant genotypes. The second, PM19-A2, shows changes in sequence causing several amino acid alterations between dormant and non-dormant genotypes. We confirm that PM19 genes are positive regulators of seed dormancy. CONCLUSIONS The efficient identification of these strong candidates demonstrates the utility of our transcriptomic pipeline for rapid QTL to gene mapping. By using this approach we are able to provide a comprehensive genetic analysis of the major source of grain dormancy in wheat. Further analysis across a diverse panel of bread and durum wheats indicates that this important dormancy QTL predates hexaploid wheat. The use of these genes by wheat breeders could assist in the elimination of pre-harvest sprouting in wheat.
Collapse
Affiliation(s)
- Jose M Barrero
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| | - Colin Cavanagh
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
- Current address: Bayer CropScience, Technologiepark 38, 9052, Zwijnaarde (Gent), Belgium.
| | - Klara L Verbyla
- CSIRO Digital Productivity & Services Flagship, GPO Box 664, Canberra, ACT 2601, Australia.
| | - Josquin F G Tibbits
- Department of Environment and Primary Industries, Agriobio Center, Bundoora, VIC, 3083, Australia.
| | - Arunas P Verbyla
- CSIRO Digital Productivity & Services Flagship, GPO Box 780, Atherton, QLD 4883, Australia.
| | - B Emma Huang
- CSIRO Digital Productivity & Services Flagship, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Garry M Rosewarne
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
- Current address: Department of Environment and Primary Industries, 110 Natimuk Rd, Horsham, VIC, 3400, Australia.
| | - Stuart Stephen
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| | - Penghao Wang
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| | - Alex Whan
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| | - Philippe Rigault
- Gydle, 101-1332 Av. Chanoine Morel, Québec, QC, G1S 4B4, Canada.
| | - Matthew J Hayden
- Department of Environment and Primary Industries, Agriobio Center, Bundoora, VIC, 3083, Australia.
| | - Frank Gubler
- CSIRO Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
105
|
Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta. PLoS One 2015; 10:e0125046. [PMID: 25927364 PMCID: PMC4415818 DOI: 10.1371/journal.pone.0125046] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
The number of cotton (Gossypium sp.) ovule epidermal cells differentiating into fiber initials is an important factor affecting cotton yield and fiber quality. Despite extensive efforts in determining the molecular mechanisms regulating fiber initial differentiation, only a few genes responsible for fiber initial differentiation have been discovered. To identify putative genes directly involved in the fiber initiation process, we used a cotton ovule culture technique that controls the timing of fiber initial differentiation by exogenous phytohormone application in combination with comparative expression analyses between wild type and three fiberless mutants. The addition of exogenous auxin and gibberellins to pre-anthesis wild type ovules that did not have visible fiber initials increased the expression of genes affecting auxin, ethylene, ABA and jasmonic acid signaling pathways within 1 h after treatment. Most transcripts expressed differentially by the phytohormone treatment in vitro were also differentially expressed in the ovules of wild type and fiberless mutants that were grown in planta. In addition to MYB25-like, a gene that was previously shown to be associated with the differentiation of fiber initials, several other differentially expressed genes, including auxin/indole-3-acetic acid (AUX/IAA) involved in auxin signaling, ACC oxidase involved in ethylene biosynthesis, and abscisic acid (ABA) 8'-hydroxylase an enzyme that controls the rate of ABA catabolism, were co-regulated in the pre-anthesis ovules of both wild type and fiberless mutants. These results support the hypothesis that phytohormonal signaling networks regulate the temporal expression of genes responsible for differentiation of cotton fiber initials in vitro and in planta.
Collapse
|
106
|
Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G. A key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. PLoS One 2015; 10:e0116646. [PMID: 25647508 PMCID: PMC4315402 DOI: 10.1371/journal.pone.0116646] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/11/2014] [Indexed: 01/24/2023] Open
Abstract
Expressions of ABA biosynthesis genes and catabolism genes are generally co-regulated in plant development and responses to environmental stress. Up-regulation of OsNCED3 gene, a key gene in ABA biosynthesis, has been suggested as a way to enhance plant drought resistance but little is known for the role of ABA catabolic genes during drought stress. In this study, we found that OsABA8ox3 was the most highly expressed gene of the OsABA8ox family in rice leaves. Expression of OsABA8ox3 was promptly induced by rehydration after PEG-mimic dehydration, a tendency opposite to the changes of ABA level. We therefore constructed rice OsABA8ox3 silencing (RNA interference, RNAi) and overexpression plants. There were no obvious phenotype differences between the transgenic seedlings and wild type under normal condition. However, OsABA8ox3 RNAi lines showed significant improvement in drought stress tolerance while the overexpression seedlings were hypersensitive to drought stress when compared with wild type in terms of plant survival rates after 10 days of unwatering. Enzyme activity analysis indicated that OsABA8ox3 RNAi plants had higher superoxide dismutase (SOD) and catalase (CAT) activities and less malondialdehyde (MDA) content than those of wild type when the plants were exposed to dehydration treatment, indicating a better anti-oxidative stress capability and less membrane damage. DNA microarray and real-time PCR analysis under dehydration treatment revealed that expressions of a group of stress/drought-related genes, i.e. LEA genes, were enhanced with higher transcript levels in OsABA8ox3 RNAi transgenic seedlings. We therefore conclude that that OsABA8ox3 gene plays an important role in controlling ABA level and drought stress resistance in rice.
Collapse
Affiliation(s)
- Shanlan Cai
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guobin Jiang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Nenghui Ye
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Zhizhan Chu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xuezhong Xu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianhua Zhang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Guohui Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| |
Collapse
|
107
|
Zhang J, Xu Y, Chen W, Dell B, Vergauwen R, Biddulph B, Khan N, Luo H, Appels R, Van den Ende W. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. THE NEW PHYTOLOGIST 2015; 205:293-305. [PMID: 25250511 DOI: 10.1111/nph.13030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/27/2014] [Indexed: 05/18/2023]
Abstract
In wheat stems, the levels of fructan-dominated water-soluble carbohydrates (WSC) do not always correlate well with grain yield. Field drought experiments were carried out to further explain this lack of correlation. Wheat (Triticum aestivum) varieties, Westonia, Kauz and c. 20 genetically diverse double haploid (DH) lines derived from them were investigated. Substantial genotypic differences in fructan remobilization were found and the 1-FEH w3 gene was shown to be the major contributor in the stem fructan remobilization process based on enzyme activity and gene expression results. A single nucleotide polymorphism (SNP) was detected in an auxin response element in the 1-FEH w3 promoter region, therefore we speculated that the mutated Westonia allele might affect gene expression and enzyme activity levels. A cleaved amplified polymorphic (CAP) marker was generated from the SNP. The harvested results showed that the mutated Westonia 1-FEH w3 allele was associated with a higher thousand grain weight (TGW) under drought conditions in 2011 and 2012. These results indicated that higher gene expression of 1-FEH w3 and 1-FEH w3 mediated enzyme activities that favoured stem WSC remobilization to the grains. The CAP marker residing in the 1-FEH w3 promoter region may facilitate wheat breeding by selecting lines with high stem fructan remobilization capacity under terminal drought.
Collapse
Affiliation(s)
- Jingjuan Zhang
- School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA, 6150, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Barton DA, Cantrill LC, Law AMK, Phillips CG, Sutton BG, Overall RL. Chilling to zero degrees disrupts pollen formation but not meiotic microtubule arrays in Triticum aestivum L. PLANT, CELL & ENVIRONMENT 2014; 37:2781-94. [PMID: 24762030 DOI: 10.1111/pce.12358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/13/2014] [Accepted: 04/16/2014] [Indexed: 05/18/2023]
Abstract
Throughout the wheat-growing regions of Australia, chilling temperatures below 2 °C occur periodically on consecutive nights during the period of floral development in spring wheat (Triticum aestivum L.). In this study, wheat plants showed significant reductions in fertility when exposed to prolonged chilling temperatures in controlled environment experiments. Among the cultivars tested, the Australian cultivars Kite and Hartog had among the lowest levels of seed set due to chilling and their responses were investigated further. The developmental stage at exposure, the chilling temperature and length of exposure all influenced the level of sterility. The early period of booting, and specifically the +4 cm auricle distance class, was the most sensitive and corresponded to meiosis within the anthers. The response of microtubules to chilling during meiosis in Hartog was monitored, but there was little difference between chilled and control plants. Other abnormalities, such as plasmolysis and cytomixis increased in frequency, were associated with death of developing pollen cells, and could contribute to loss of fertility. The potential for an above-zero chilling sensitivity in Australian spring wheat varieties could have implications for exploring the tolerance of wheat flower development to chilling and freezing conditions in the field.
Collapse
Affiliation(s)
- Deborah A Barton
- School of Biological Sciences, University of Sydney, Macleay Building, A12, Camperdown, New South Wales, 2006, Australia
| | | | | | | | | | | |
Collapse
|
109
|
Dolferus R. To grow or not to grow: a stressful decision for plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:247-261. [PMID: 25443851 DOI: 10.1016/j.plantsci.2014.10.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Progress in improving abiotic stress tolerance of crop plants using classic breeding and selection approaches has been slow. This has generally been blamed on the lack of reliable traits and phenotyping methods for stress tolerance. In crops, abiotic stress tolerance is most often measured in terms of yield-capacity under adverse weather conditions. "Yield" is a complex trait and is determined by growth and developmental processes which are controlled by environmental signals throughout the life cycle of the plant. The use of model systems has allowed us to gradually unravel how plants grow and develop, but our understanding of the flexibility and opportunistic nature of plant development and its capacity to adapt growth to environmental cues is still evolving. There is genetic variability for the capacity to maintain yield and productivity under abiotic stress conditions in crop plants such as cereals. Technological progress in various domains has made it increasingly possible to mine that genetic variability and develop a better understanding about the basic mechanism of plant growth and abiotic stress tolerance. The aim of this paper is not to give a detailed account of all current research progress, but instead to highlight some of the current research trends that may ultimately lead to strategies for stress-proofing crop species. The focus will be on abiotic stresses that are most often associated with climate change (drought, heat and cold) and those crops that are most important for human nutrition, the cereals.
Collapse
Affiliation(s)
- Rudy Dolferus
- CSIRO, Agriculture Flagship, GPO Box 1600, Canberra, ACT 2601, Australia.
| |
Collapse
|
110
|
Großkinsky DK, van der Graaff E, Roitsch T. Abscisic Acid-Cytokinin Antagonism Modulates Resistance Against Pseudomonas syringae in Tobacco. PHYTOPATHOLOGY 2014; 104:1283-8. [PMID: 24941328 DOI: 10.1094/phyto-03-14-0076-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phytohormones are known as essential regulators of plant defenses, with ethylene, jasmonic acid, and salicylic acid as the central immunity backbone, while other phytohormones have been demonstrated to interact with this. Only recently, a function of the classic phytohormone cytokinin in plant immunity has been described in Arabidopsis, rice, and tobacco. Although interactions of cytokinins with salicylic acid and auxin have been indicated, the complete network of cytokinin interactions with other immunity-relevant phytohormones is not yet understood. Therefore, we studied the interaction of kinetin and abscisic acid as a negative regulator of plant immunity to modulate resistance in tobacco against Pseudomonas syringae. By analyzing infection symptoms, pathogen proliferation, and accumulation of the phytoalexin scopoletin as a key mediator of kinetin-induced resistance in tobacco, antagonistic interaction of these phytohormones in plant immunity was identified. Kinetin reduced abscisic acid levels in tobacco, while increased abscisic acid levels by exogenous application or inhibition of abscisic acid catabolism by diniconazole neutralized kinetin-induced resistance. Based on these results, we conclude that reduction of abscisic acid levels by enhanced abscisic acid catabolism strongly contributes to cytokinin-mediated resistance effects. Thus, the identified cytokinin-abscisic acid antagonism is a novel regulatory mechanism in plant immunity.
Collapse
|
111
|
Blum A. Genomics for drought resistance - getting down to earth. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1191-1198. [PMID: 32481068 DOI: 10.1071/fp14018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/10/2014] [Indexed: 05/20/2023]
Abstract
A meta-analysis of 520 reports published during the last 20 years on transgenic and mutant plants generated towards drought resistance revealed a total of at least 487 tested transgenic plants involving at least 100 genes claimed to be functional towards drought resistance. During this period, the rate of reported new experimental transgenic model or crop plants for drought resistance has been increasing exponentially. Despite these numbers, qualified sources of information indicate a very limited impact on global dryland agriculture, whereas the genetically modified (GM) market hardly recognises drought-resistant GM cultivars. This paper discusses possible reasons for the limited impact of genomics on the delivery of drought-resistant cultivars, which are beyond issues of regulation, propriety or commercialisation. These reasons are mainly tied to scientific and methodological problems in drought stress gene expression work and the functional genomics protocols used to identify drought resistance. Insufficient phenotyping of experimental transgenic plants for drought resistance often does not allow true conclusions about the real function of the discovered genes towards drought resistance. The discussion is concluded by proposing an outline of a minimal set of tests that might help us resolve the real function of discovered genes, thus bringing the research results down to earth.
Collapse
|
112
|
Cenzano AM, Masciarelli O, Luna MV. Abscisic acid metabolite profiling as indicators of plastic responses to drought in grasses from arid Patagonian Monte (Argentina). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:200-206. [PMID: 25245790 DOI: 10.1016/j.plaphy.2014.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
The identification of hormonal and biochemical traits that play functional roles in the adaptation to drought is necessary for the conservation and planning of rangeland management. The aim of this study was to evaluate the effects of drought on i) the water content (WC) of different plant organs, ii) the endogenous level of abscisic acid (ABA) and metabolites (phaseic acid-PA, dihydrophaseic acid-DPA and abscisic acid conjugated with glucose ester-ABA-GE), iii) the total carotenoid concentration and iv) to compare the traits of two desert perennial grasses (Pappostipa speciosa and Poa ligularis) with contrasting morphological and functional drought resistance traits and life-history strategies. Both species were subjected to two levels of gravimetric soil moisture (the highest near field capacity during autumn-winter and the lowest corresponding to summer drought). Drought significantly increased the ABA and DPA levels in the green leaves of P. speciosa and P. ligularis. Drought decreased ABA in the roots of P. speciosa while it increased ABA in the roots of P. ligularis. P. ligularis had the highest ABA level and WC in green leaves. While P. speciosa had the highest DPA levels in leaves. In conclusion, we found the highest ABA level in the mesophytic species P. ligularis and the lowest ABA level in the xerophytic species P. speciosa, revealing that the ABA metabolite profile in each grass species is a plastic response to drought resistance.
Collapse
Affiliation(s)
- Ana M Cenzano
- Laboratorio de Fisiología Vegetal, Unidad de Investigación Ecosistemas Continentales Patagónicos (ECOPAT), Centro Nacional Patagónico-Consejo Nacional de Investigaciones Científicas y Técnicas (CENPAT-CONICET), Boulevard Brown 2915, 9120 Puerto Madryn, Chubut, Argentina.
| | - O Masciarelli
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina.
| | - M Virginia Luna
- Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km 601, 5800 Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
113
|
Whan A, Dielen AS, Mieog J, Bowerman AF, Robinson HM, Byrne K, Colgrave M, Larkin PJ, Howitt CA, Morell MK, Ral JP. Engineering α-amylase levels in wheat grain suggests a highly sophisticated level of carbohydrate regulation during development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5443-57. [PMID: 25053646 PMCID: PMC4157717 DOI: 10.1093/jxb/eru299] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 05/20/2023]
Abstract
Wheat starch degradation requires the synergistic action of different amylolytic enzymes. Our spatio-temporal study of wheat α-amylases throughout grain development shows that AMY3 is the most abundant isoform compared with the other known α-amylases. Endosperm-specific over-expression of AMY3 resulted in an increase of total α-amylase activity in harvested grains. Unexpectedly, increased activity did not have a significant impact on starch content or composition but led to an increase of soluble carbohydrate (mainly sucrose) in dry grain. In AMY3 overexpression lines (A3OE), germination was slightly delayed and triacylglycerol (TAG) content was increased in the endosperm of mature grain. Despite increased AMY3 transcript and protein content throughout grain development, alterations of α-amylase activity and starch granule degradation were not detected until grain maturation, suggesting a post-translational inhibition of α-amylase activity in the endosperm during the starch filling period. These findings show unexpected effects of a high level of α-amylase on grain development and composition, notably in carbon partitioning and TAG accumulation, and suggest the presence of a hitherto unknown regulatory pathway during grain filling.
Collapse
Affiliation(s)
- Alex Whan
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Anne-Sophie Dielen
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Jos Mieog
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Andrew F Bowerman
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Hannah M Robinson
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Keren Byrne
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. CSIRO Animal, Food and Health Sciences, St Lucia, Queensland, Australia
| | - Michelle Colgrave
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. CSIRO Animal, Food and Health Sciences, St Lucia, Queensland, Australia
| | - Philip J Larkin
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia. CSIRO Plant Industry, GPO Box 1600, Canberra ACT 2601 Australia
| | - Crispin A Howitt
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Matthew K Morell
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia
| | - Jean-Philippe Ral
- CSIRO Food Futures National Research Flagship, GPO Box 1600, Canberra ACT 2601 Australia.
| |
Collapse
|
114
|
Reddy SK, Liu S, Rudd JC, Xue Q, Payton P, Finlayson SA, Mahan J, Akhunova A, Holalu SV, Lu N. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1289-98. [PMID: 25014264 DOI: 10.1016/j.jplph.2014.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 05/05/2023]
Abstract
Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112.
Collapse
Affiliation(s)
- Srirama Krishna Reddy
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, 6500 Amarillo Blvd W, Amarillo, TX 79106 USA
| | - Shuyu Liu
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, 6500 Amarillo Blvd W, Amarillo, TX 79106 USA.
| | - Jackie C Rudd
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, 6500 Amarillo Blvd W, Amarillo, TX 79106 USA
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, 6500 Amarillo Blvd W, Amarillo, TX 79106 USA
| | - Paxton Payton
- United States Department of Agriculture - Agriculture Research Services, Cropping Systems Research Laboratory, Lubbock, TX 79415 USA.
| | - Scott A Finlayson
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843 USA
| | - James Mahan
- United States Department of Agriculture - Agriculture Research Services, Cropping Systems Research Laboratory, Lubbock, TX 79415 USA
| | - Alina Akhunova
- Integrated Genomics Facility, Kansas State University, 4024 Throckmorton, Manhattan, KS 66506 USA
| | - Srinidhi V Holalu
- Department of Soil and Crop Sciences, Texas A&M University and Texas A&M AgriLife Research, College Station, TX 77843 USA
| | - Nanyan Lu
- Bioinformatics Center, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
115
|
Endo A, Nelson KM, Thoms K, Abrams SR, Nambara E, Sato Y. Functional characterization of xanthoxin dehydrogenase in rice. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1231-40. [PMID: 25014258 DOI: 10.1016/j.jplph.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 05/05/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that plays a key role in biotic and abiotic stress responses. ABA metabolic genes are promising targets for molecular breeding work to improve stress tolerance in crops. The accumulation of ABA does not always improve stress tolerance since stress-induced accumulation of ABA in pollen inhibits the normal course of gametogenesis, affecting grain yields in cereals. This effect highlights the importance of manipulating the ABA levels according to the type of tissues. The aim of this study was to assign an ABA biosynthetic enzyme, xanthoxin dehydrogenase (XanDH), as a functional marker to modulate ABA levels in rice. XanDH is a member of the short-chain dehydrogenase/reductase family that catalyzes the conversion of xanthoxin to abscisyl aldehyde (ABAld). Previously, this enzyme had only been identified in Arabidopsis, as AtABA2. In this study, a XanDH named OsABA2 was identified in rice. Phylogenetic analysis indicated that a single gene encodes for OsABA2 in the rice genome. Its amino acid sequence contains two motifs that are essential for cofactor binding and catalytic activity. Expression analysis of OsABA2 mRNA showed that the transcript level did not change in response to treatment with ABA or dehydration. Recombinant OsABA2 protein expressed in Escherichia coli converted xanthoxin to ABAld in an NAD-dependent manner. Moreover, expression of OsABA2 in an Arabidopsis aba2 mutant rescued the aba2 mutant phenotypes, characterized by reduced growth, increased water loss, and germination in the presence of paclobutrazol, a gibberellin biosynthesis inhibitor or high concentration of glucose. These results indicate that OsABA2 is a rice XanDH that functions in ABA biosynthesis.
Collapse
Affiliation(s)
- Akira Endo
- Crop Breeding Research Division, National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan
| | - Ken M Nelson
- National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Ken Thoms
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C7, Canada
| | - Suzanne R Abrams
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C7, Canada
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada; The Center for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
| | - Yutaka Sato
- Crop Breeding Research Division, National Agriculture and Food Research Organization (NARO), Hokkaido Agricultural Research Center, 1 Hitsujigaoka, Toyohira-ku, Sapporo, Hokkaido 062-8555, Japan.
| |
Collapse
|
116
|
Farooq M, Hussain M, Siddique KHM. Drought Stress in Wheat during Flowering and Grain-filling Periods. CRITICAL REVIEWS IN PLANT SCIENCES 2014. [PMID: 0 DOI: 10.1080/07352689.2014.875291] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
117
|
El Kelish A, Zhao F, Heller W, Durner J, Winkler JB, Behrendt H, Traidl-Hoffmann C, Horres R, Pfeifer M, Frank U, Ernst D. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress. BMC PLANT BIOLOGY 2014; 14:176. [PMID: 24972689 PMCID: PMC4084800 DOI: 10.1186/1471-2229-14-176] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/18/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pollen of common ragweed (Ambrosia artemisiifolia) is a main cause of allergic diseases in Northern America. The weed has recently become spreading as a neophyte in Europe, while climate change may also affect the growth of the plant and additionally may also influence pollen allergenicity. To gain better insight in the molecular mechanisms in the development of ragweed pollen and its allergenic proteins under global change scenarios, we generated SuperSAGE libraries to identify differentially expressed transcripts. RESULTS Ragweed plants were grown in a greenhouse under 380 ppm CO2 and under elevated level of CO2 (700 ppm). In addition, drought experiments under both CO2 concentrations were performed. The pollen viability was not altered under elevated CO2, whereas drought stress decreased its viability. Increased levels of individual flavonoid metabolites were found under elevated CO2 and/or drought. Total RNA was isolated from ragweed pollen, exposed to the four mentioned scenarios and four SuperSAGE libraries were constructed. The library dataset included 236,942 unique sequences, showing overlapping as well as clear differently expressed sequence tags (ESTs). The analysis targeted ESTs known in Ambrosia, as well as in pollen of other plants. Among the identified ESTs, those encoding allergenic ragweed proteins (Amb a) increased under elevated CO2 and drought stress. In addition, ESTs encoding allergenic proteins in other plants were also identified. CONCLUSIONS The analysis of changes in the transcriptome of ragweed pollen upon CO2 and drought stress using SuperSAGE indicates that under global change scenarios the pollen transcriptome was altered, and impacts the allergenic potential of ragweed pollen.
Collapse
Affiliation(s)
- Amr El Kelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Werner Heller
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Biochemical Plant Pathology, Technische Universität München, Center of Life and Food Sciences Weihenstephan, 85350 Freising-Weihenstephan, Germany
| | - J Barbro Winkler
- Research Unit for Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, 85764 Neuherberg, Germany
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Munich, Germany
| | - Ralf Horres
- GenXPro GmbH, 60438 Frankfurt am Main, Germany
| | - Matthias Pfeifer
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- CK-CARE, Christine Kühne – Center for Allergy Research and Education, Davos, Switzerland
| |
Collapse
|
118
|
Takeuchi J, Okamoto M, Akiyama T, Muto T, Yajima S, Sue M, Seo M, Kanno Y, Kamo T, Endo A, Nambara E, Hirai N, Ohnishi T, Cutler SR, Todoroki Y. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nat Chem Biol 2014; 10:477-82. [PMID: 24792952 DOI: 10.1038/nchembio.1524] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/07/2014] [Indexed: 02/08/2023]
Abstract
The plant stress hormone abscisic acid (ABA) is critical for several abiotic stress responses. ABA signaling is normally repressed by group-A protein phosphatases 2C (PP2Cs), but stress-induced ABA binds Arabidopsis PYR/PYL/RCAR (PYL) receptors, which then bind and inhibit PP2Cs. X-ray structures of several receptor-ABA complexes revealed a tunnel above ABA's 3' ring CH that opens at the PP2C binding interface. Here, ABA analogs with sufficiently long 3' alkyl chains were predicted to traverse this tunnel and block PYL-PP2C interactions. To test this, a series of 3'-alkylsulfanyl ABAs were synthesized with different alkyl chain lengths. Physiological, biochemical and structural analyses revealed that a six-carbon alkyl substitution produced a potent ABA antagonist that was sufficiently active to block multiple stress-induced ABA responses in vivo. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class.
Collapse
Affiliation(s)
- Jun Takeuchi
- 1] Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan. [2]
| | - Masanori Okamoto
- 1] Arid Land Research Center, Tottori University, Tottori, Japan. [2] Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California-Riverside, Riverside, California, USA. [3]
| | - Tomonori Akiyama
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takuya Muto
- Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Shunsuke Yajima
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Masayuki Sue
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Kanagawa, Japan
| | - Tsunashi Kamo
- National Institute for Agro-Environmental Sciences, Ibaraki, Japan
| | - Akira Endo
- 1] Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada. [2]
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Nobuhiro Hirai
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Toshiyuki Ohnishi
- 1] Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan. [2] Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Sean R Cutler
- Department of Botany and Plant Sciences and Center for Plant Cell Biology, University of California-Riverside, Riverside, California, USA
| | - Yasushi Todoroki
- 1] Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan. [2] Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan. [3] Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
119
|
Seiler C, Harshavardhan VT, Reddy PS, Hensel G, Kumlehn J, Eschen-Lippold L, Rajesh K, Korzun V, Wobus U, Lee J, Selvaraj G, Sreenivasulu N. Abscisic acid flux alterations result in differential abscisic acid signaling responses and impact assimilation efficiency in barley under terminal drought stress. PLANT PHYSIOLOGY 2014; 164:1677-96. [PMID: 24610749 PMCID: PMC3982733 DOI: 10.1104/pp.113.229062] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 02/25/2014] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a central player in plant responses to drought stress. How variable levels of ABA under short-term versus long-term drought stress impact assimilation and growth in crops is unclear. We addressed this through comparative analysis, using two elite breeding lines of barley (Hordeum vulgare) that show senescence or stay-green phenotype under terminal drought stress and by making use of transgenic barley lines that express Arabidopsis (Arabidopsis thaliana) 9-cis-epoxycarotenoid dioxygenase (AtNCED6) coding sequence or an RNA interference (RNAi) sequence of ABA 8'-hydroxylase under the control of a drought-inducible barley promoter. The high levels of ABA and its catabolites in the senescing breeding line under long-term stress were detrimental for assimilate productivity, whereas these levels were not perturbed in the stay-green type that performed better. In transgenic barley, drought-inducible AtNCED expression afforded temporal control in ABA levels such that the ABA levels rose sooner than in wild-type plants but also subsided, unlike as in the wild type , to near-basal levels upon prolonged stress treatment due to down-regulation of endogenous HvNCED genes. Suppressing of ABA catabolism with the RNA interference approach of ABA 8'-hydroxylase caused ABA flux during the entire period of stress. These transgenic plants performed better than the wild type under stress to maintain a favorable instantaneous water use efficiency and better assimilation. Gene expression analysis, protein structural modeling, and protein-protein interaction analyses of the members of the PYRABACTIN RESISTANCE1/PYRABACTIN RESISTANCE1-LIKE/REGULATORY COMPONENT OF ABA RECEPTORS, TYPE 2C PROTEIN PHOSPHATASE Sucrose non-fermenting1-related protein kinase2, and ABA-INSENSITIVE5/ABA-responsive element binding factor family identified specific members that could potentially impact ABA metabolism and stress adaptation in barley.
Collapse
|
120
|
Alsharafa K, Vogel MO, Oelze ML, Moore M, Stingl N, König K, Friedman H, Mueller MJ, Dietz KJ. Kinetics of retrograde signalling initiation in the high light response of Arabidopsis thaliana. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130424. [PMID: 24591725 DOI: 10.1098/rstb.2013.0424] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High light acclimation depends on retrograde control of nuclear gene expression. Retrograde regulation uses multiple signalling pathways and thus exploits signal patterns. To maximally challenge the acclimation system, Arabidopsis thaliana plants were either adapted to 8 (low light (L-light)) or 80 µmol quanta m(-2) s(-1) (normal light (N-light)) and subsequently exposed to a 100- and 10-fold light intensity increase, respectively, to high light (H-light, 800 µmol quanta m(-2) s(-1)), for up to 6 h. Both L → H- and N → H-light plants efficiently regulated CO2 assimilation to a constant level without apparent damage and inhibition. This experimental set-up was scrutinized for time-dependent regulation and efficiency of adjustment. Transcriptome profiles revealed that N-light and L-light plants differentially accumulated 2119 transcripts. After 6 h in H-light, only 205 remained differently regulated between the L → H- and N → H-light plants, indicating efficient regulation allowing the plants to reach a similar transcriptome state. Time-dependent analysis of transcripts as markers for signalling pathways, and of metabolites and hormones as possibly involved transmitters, suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metabolites and redox cues predominantly control the acclimation response, whereas abscisic acid, salicylic acid and auxins play an insignificant or minor role.
Collapse
Affiliation(s)
- Khalid Alsharafa
- Biochemistry and Physiology of Plants, Bielefeld University, , Bielefeld 33501, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Pérez-Díaz J, Wu TM, Pérez-Díaz R, Ruíz-Lara S, Hong CY, Casaretto JA. Organ- and stress-specific expression of the ASR genes in rice. PLANT CELL REPORTS 2014; 33:61-73. [PMID: 24085307 DOI: 10.1007/s00299-013-1512-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 08/14/2013] [Accepted: 09/20/2013] [Indexed: 05/26/2023]
Abstract
Rice ASR genes respond distinctly to abscisic acid, dehydration and cold stress. Their tissue-specific expression provides new hints about their possible roles in plant responses to stress. Plant ASR proteins have emerged as an interesting distinct group of proteins with apparent roles in protecting cellular structures as well as putative regulators of gene expression, both important responses of plants to environmental stresses. Regardless of the possible functions proposed by different studies, little is known about their role in cereals. To further understand the function of these proteins in the Gramineae, we investigated the expression pattern of the six ASR genes present in the rice genome in response to ABA, stress conditions and in different organs. Although transcription of most OsASRs is transiently enhanced by ABA treatment, the genes present a differential response under cold and drought stress as well as specific expression in certain tissues and organs. Analysis of their promoters reveals regulatory cis-elements associated to hormonal, sugar and stress responses. The promoters of two genes, OsASR1 and OsASR5, direct the expression of the GUS reporter gene especially to leaf vascular tissue in response to dehydration and low temperature. In control conditions, a GUS reporter assay also indicates specific expression of these two genes in roots, anthers and seed scutellar tissues. These results provide new clues about the possible role of ASRs in plant stress responses and development.
Collapse
Affiliation(s)
- Jorge Pérez-Díaz
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | | | | | | |
Collapse
|
122
|
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. PLANT, CELL & ENVIRONMENT 2014; 37:1-18. [PMID: 23731015 PMCID: PMC4280902 DOI: 10.1111/pce.12142] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 05/18/2023]
Abstract
In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links, 653, B-9000, Ghent, Belgium
| | | |
Collapse
|
123
|
Jääskeläinen M, Chang W, Moisy C, Schulman AH. Retrotransposon BARE displays strong tissue-specific differences in expression. THE NEW PHYTOLOGIST 2013; 200:1000-8. [PMID: 24033286 DOI: 10.1111/nph.12470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 05/25/2023]
Abstract
The BARE retrotransposon comprises c. 10% of the barley (Hordeum vulgare) genome. It is actively transcribed, translated and forms virus-like particles (VLPs). For retrotransposons, the inheritance of new copies depends critically on where in the plant replication occurs. In order to shed light on the replication strategy of BARE in the plant, we have used immunolocalization and in situ hybridization to examine expression of the BARE capsid protein, Gag, at a tissue-specific level. Gag is expressed in provascular tissues and highly localized in companion cells surrounding the phloem sieve tubes in mature vascular tissues. BARE Gag and RNA was not seen in the shoot apical meristem of young seedlings, but appeared, following transition to flowering, in the developing floral spike. Moreover, Gag has a highly specific localization in pre-fertilization ovaries. The strong presence of Gag in the floral meristems suggests that newly replicated copies there will be passed to the next generation. BARE expression patterns are consistent with transcriptional regulation by predicted response elements in the BARE promoter, and in the ovary with release from epigenetic transcriptional silencing. To our knowledge, this is the first analysis of the expression of native retrotransposon proteins within a plant to be reported.
Collapse
Affiliation(s)
- Marko Jääskeläinen
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, PO Box 65, Viikinkaari 1, FIN-00014, Helsinki, Finland
| | | | | | | |
Collapse
|
124
|
Gene expression patterns in wheat coleorhiza under cold- and biological stratification. Microbiol Res 2013; 169:616-22. [PMID: 24211069 DOI: 10.1016/j.micres.2013.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/28/2013] [Accepted: 09/30/2013] [Indexed: 12/30/2022]
Abstract
This study assessed germination of wheat seeds under cold and biological stratification and determined the expression level of gibberellins (GA) and abscisic acid (ABA) genes in coleorhiza. Both cold and biological stratification significantly (P<0.05) enhanced the rate and efficacy of germination. The spatial distance between the fungal endophyte and the seed can be a determining factor of biological stratification as seeds in direct contact with fungal endophyte showed the highest rate and efficacy of germination. Consistently high expression of GA3ox2 gene was found in wheat coleorhiza throughout the tested period of germination. The expression of ABA biosynthesis gene, TaNCED, was substantially higher in cold stratification seeds, reflecting the role of abscisic acid in stress-adaptation. Overall, this study provides molecular evidence of the importance of coleorhiza in germinating wheat seeds, in addition to reporting that the spatial distance between symbiotic partners may be a critical factor driving mycovitality.
Collapse
|
125
|
Jin Y, Yang H, Wei Z, Ma H, Ge X. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. MOLECULAR PLANT 2013; 6:1630-45. [PMID: 23604203 DOI: 10.1093/mp/sst067] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought affects rice reproduction and results in severe yield loss. The developmental defects and changes of gene regulation network in reproductive tissues under drought stress are largely unknown. In this study, rice plants subjected to reproductive stage drought stress were examined for floral development and transcriptomic changes. The results showed that male fertility was dramatically affected, with differing pollen viability in flowers of the same panicle due to aberrant anther development under water stress. Examination of local starch distribution revealed that starch accumulated abnormally in terms of position and abundance in anthers of water-stressed plants. Microarray analysis using florets of different sizes identified >1000 drought-responsive genes, most of which were specifically regulated in only one or two particular sizes of florets, suggesting developmental stage-dependent responses to drought. Genes known to be involved in tapetum and/or microspore development, cell wall formation or expansion, and starch synthesis were found more frequently among the genes affected by drought than genome average, while meiosis and MADS-box genes were less frequently affected. In addition, pathways related to gibberellin acid signaling and abscisic acid catabolism were reprogrammed by drought. Our results strongly suggest interactions between reproductive development, phytohormone signaling, and carbohydrate metabolism in water-stressed plants.
Collapse
Affiliation(s)
- Yue Jin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
126
|
Kohli A, Sreenivasulu N, Lakshmanan P, Kumar PP. The phytohormone crosstalk paradigm takes center stage in understanding how plants respond to abiotic stresses. PLANT CELL REPORTS 2013; 32:945-57. [PMID: 23749097 DOI: 10.1007/s00299-013-1461-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 05/18/2013] [Accepted: 05/18/2013] [Indexed: 05/04/2023]
Abstract
The highly coordinated, dynamic nature of growth requires plants to perceive and react to various environmental signals in an interactive manner. Elaborate signaling networks mediate this plasticity in growth and the ability to adapt to changing environmental conditions. The fluctuations of stress-responsive hormones help alter the cellular dynamics and hence play a central role in coordinately regulating the growth responses under stress. Recent experimental data unequivocally demonstrated that interactions among various phytohormones are the rule rather than exception in integrating the diverse input signals and readjusting growth as well as acquiring stress tolerance. The presence of multiple and often redundant signaling intermediates for each phytohormone appears to help in such crosstalk. Furthermore, there are several examples of similar developmental changes occurring in response to distinct abiotic stress signals, which can be explained by the crosstalk in phytohormone signaling. Therefore, in this brief review, we have highlighted the major phytohormone crosstalks with a focus on the response of plants to abiotic stresses. The recent findings have made it increasingly apparent that such crosstalk will also explain the extreme pleiotropic responses elicited by various phytohormones. Indeed, it would not be presumptuous to expect that in the coming years this paradigm will take a central role in explaining developmental regulation.
Collapse
Affiliation(s)
- Ajay Kohli
- Genetics and Biotechnology Division, Plant Breeding, International Rice Research Institute, 7777 Manila, Philippines
| | | | | | | |
Collapse
|
127
|
Jacobsen JV, Barrero JM, Hughes T, Julkowska M, Taylor JM, Xu Q, Gubler F. Roles for blue light, jasmonate and nitric oxide in the regulation of dormancy and germination in wheat grain (Triticum aestivum L.). PLANTA 2013; 238:121-38. [PMID: 23588419 DOI: 10.1007/s00425-013-1878-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 04/04/2013] [Indexed: 05/22/2023]
Abstract
Abscisic acid (ABA) plays a central role in seed dormancy and transcriptional regulation of genes coding for ABA biosynthetic and degradation enzymes is responsible for control of ABA content. However, little is known about signalling both before and after ABA regulation, in particular, how environmental signals are perceived and transduced. We are interested in these processes in cereal grains, particularly in relation to the development of strategies for controlling pre-harvest sprouting in barley and wheat. Our previous studies have indicated possible components of dormancy control and here we present evidence that blue light, nitric oxide (NO) and jasmonate are major controlling elements in wheat grain. Using microarray and pharmacological studies, we have found that blue light inhibits germination in dormant grain and that methyl jasmonate (MJ) and NO counteract this effect by reducing dormancy. We also present evidence that NO and jasmonate play roles in dormancy control in vivo. ABA was reduced by MJ and this was accompanied by reduced levels of expression of TaNCED1 and increased expression of TaABA8'OH-1 compared with dormant grain. Similar changes were caused by after-ripening. Analysis of global gene expression showed that although jasmonate and after-ripening caused important changes in gene expression, the changes were very different. While breaking dormancy, MJ had only a small number of target genes including gene(s) encoding beta-glucosidase. Our evidence indicates that NO and MJ act interdependently in controlling reduction of ABA and thus the demise of dormancy.
Collapse
Affiliation(s)
- John V Jacobsen
- CSIRO Division of Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
128
|
Harsant J, Pavlovic L, Chiu G, Sultmanis S, Sage TL. High temperature stress and its effect on pollen development and morphological components of harvest index in the C3 model grass Brachypodium distachyon. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2971-83. [PMID: 23771979 PMCID: PMC3697958 DOI: 10.1093/jxb/ert142] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The effect of high temperatures on harvest index (HI) and morphological components that contribute to HI was investigated in two lines (Bd21 and Bd21-3) of Brachypodium distachyon, a C3 grass recognized as a tractable plant, to address critical issues associated with enhancing cereal crop yields in the presence of global climate change. The results demonstrated that temperatures ≥32 °C eliminated HI. Reductions in yield at 32 °C were due primarily to declines in pollen viability, retention of pollen in anthers, and pollen germination, while abortion of microspores by the uninucleate stage that was correlated with abnormal tapetal development resulted in yield failure at 36 °C. Increasing temperatures from 24 to 32 °C resulted in reductions in tiller numbers but had no impact on axillary branch numbers per tiller. Grain developed at 24 and 28 °C primarily in tiller spikes, although spikes on axillary branches also formed grain. Grain quantity decreased in tiller spikes but increased in axillary branch spikes as temperatures rose from 24 to 28 °C. Differential patterns of axillary branching and floret development within spikelets between Bd21 and Bd21-3 resulted in higher grain yield in axillary branches of Bd21-3 at 28 °C. The response of male reproductive development and tiller branching patterns in B. distachyon to increasing temperatures mirrors that in other cereal crops, providing support for the use of this C3 grass in assessing the molecular control of HI in the presence of global warming.
Collapse
Affiliation(s)
- Jeffrey Harsant
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Lazar Pavlovic
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Greta Chiu
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| | - Tammy L. Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario, Canada, M5S 3B2
| |
Collapse
|
129
|
Cruz RPD, Sperotto RA, Cargnelutti D, Adamski JM, FreitasTerra T, Fett JP. Avoiding damage and achieving cold tolerance in rice plants. Food Energy Secur 2013. [DOI: 10.1002/fes3.25] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Raul Antonio Sperotto
- Centro de Ciências Biológicas e da Saúde (CCBS) Programa de Pós‐Graduação em Biotecnologia (PPGBiotec) Centro Universitário UNIVATES Lajeado Rio Grande do Sul Brazil
| | - Denise Cargnelutti
- Universidade Federal da Fronteira Sul (UFFS) Erechim Rio Grande do Sul Brazil
| | - Janete Mariza Adamski
- Departamento de Botânica Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Tatiana FreitasTerra
- Departamento de Botânica Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| | - Janette Palma Fett
- Departamento de Botânica Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
- Centro de Biotecnologia Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Rio Grande do Sul Brazil
| |
Collapse
|
130
|
Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B. ABA transport and transporters. TRENDS IN PLANT SCIENCE 2013; 18:325-33. [PMID: 23453706 DOI: 10.1016/j.tplants.2013.01.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 05/19/2023]
Abstract
Abscisic acid (ABA) metabolism, perception, and transport form a triptych allowing higher plants to use ABA as a signaling molecule. The molecular bases of ABA metabolism are now well described and, over the past few years, several ABA receptors have been discovered. Although ABA transport has long been demonstrated in planta, the first breakthroughs in identifying plasma membrane-localized ABA transporters came in 2010, with the identification of two ATP-binding cassette (ABC) proteins. More recently, two ABA transporters in the nitrate transporter 1/peptide transporter (NRT1/PTR) family have been identified. In this review, we discuss the role of these different ABA transporters and examine the scientific impact of their identification. Given that the NRT1/PTR family is involved in the transport of nitrogen (N) compounds, further work should determine whether an interaction between ABA and N signaling or nutrition occurs.
Collapse
Affiliation(s)
- Yann Boursiac
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
131
|
Drought tolerance in modern and wild wheat. ScientificWorldJournal 2013; 2013:548246. [PMID: 23766697 PMCID: PMC3671283 DOI: 10.1155/2013/548246] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/03/2013] [Indexed: 11/18/2022] Open
Abstract
The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by "omics" studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.
Collapse
|
132
|
Bolouri Moghaddam MR, Van den Ende W. Sweet immunity in the plant circadian regulatory network. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1439-49. [PMID: 23564957 DOI: 10.1093/jxb/ert046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
All organisms have an internal timing mechanism, termed the circadian clock, to anticipate the light/dark cycle. The clock, with an oscillating rhythm that approximates 24h, is a rather robust system persisting to a great extent in continuous light and dark. It is widely accepted that plant growth and development are regulated by the clock, hormones, and sugar signals. On the one hand, sugar signalling can affect circadian rhythms by altering the expression pattern of clock-regulated genes. More in particular, the clock seems to be particularly sensitive to sucrose-mediated signalling which is also associated with immunity and abiotic stress responses. Also, hormonal interaction with the clock can contribute to appropriate plant immune responses. Recent data show a prominent role for the clock in growth and stress responses. On the other hand, the clock seems to be essential in controlling the gene expression and activity of an array of carbohydrate-metabolizing enzymes, suggesting a complex reciprocal relationship between the clock and metabolic signalling processes. Therefore, the clock fulfils a crucial role at the heart of cellular networks. The players involved in the complex plant circadian network and their possible contribution to the novel 'sweet immunity' concept are discussed.
Collapse
|
133
|
Yoshikawa T, Eiguchi M, Hibara KI, Ito JI, Nagato Y. Rice slender leaf 1 gene encodes cellulose synthase-like D4 and is specifically expressed in M-phase cells to regulate cell proliferation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2049-61. [PMID: 23519729 PMCID: PMC3638827 DOI: 10.1093/jxb/ert060] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellulose synthase-like (CSL) genes are predicted to catalyse the biosynthesis of non-cellulosic polysaccharides such as the β-D-glycan backbone of hemicelluloses and are classified into nine subfamilies (CSLA-CSLH and CSLJ). The CSLD subfamily is conserved in all land plants, and among the nine CSL subfamilies, it shows the highest sequence similarity to the cellulose synthase genes, suggesting that it plays fundamental roles in plant development. This study presents a detailed analysis of slender leaf 1 (sle1) mutants of rice that showed rolled and narrow leaf blades and a reduction in plant height. The narrow leaf blade of sle1 was caused by reduced cell proliferation beginning at the P3 primordial stage. In addition to the size reduction of organs, sle1 mutants exhibited serious developmental defects in pollen formation, anther dehiscence, stomata formation, and cell arrangement in various tissues. Map-based cloning revealed that SLE1 encodes the OsCSLD4 protein, which was identified previously from a narrow leaf and dwarf 1 mutant. In situ hybridization experiments showed that OsCSLD4 was expressed in a patchy pattern in developing organs. Double-target in situ hybridization and quantitative RT-PCR analyses revealed that SLE1 was expressed specifically during the M-phase of the cell cycle, and suggested that the cell-cycle regulation was altered in sle1 mutants. These results suggest that the OsCSLD4 protein plays a pivotal role in the M phase to regulate cell proliferation. Further study of OsCSLD4 is expected to yield new insight into the role of hemicelluloses in plant development.
Collapse
Affiliation(s)
- Takanori Yoshikawa
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Mitsugu Eiguchi
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411–8540, Japan
| | - Ken-Ichiro Hibara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Jun-Ichi Ito
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
| | - Yasuo Nagato
- Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113–8657, Japan
- * To whom correspondence should be addressed.
| |
Collapse
|
134
|
Zhang Y, Guo L, Shu Z, Sun Y, Chen Y, Liang Z, Guo H. Identification of Amplified Fragment Length Polymorphism (AFLP) Markers Tightly Associated with Drought Stress Gene in Male Sterile and Fertile Salvia miltiorrhiza Bunge. Int J Mol Sci 2013; 14:6518-28. [PMID: 23525049 PMCID: PMC3634402 DOI: 10.3390/ijms14036518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 02/22/2013] [Accepted: 02/25/2013] [Indexed: 11/16/2022] Open
Abstract
Consistent grain yield in drought environment has attracted wide attention due to global climate change. However, the important drought-related traits/genes in crops have been rarely reported. Many near-isogenic lines (NILs) of male sterile and fertile Salvia miltiorrhiza have been obtained in our previous work through testcross and backcross in continuous field experiments conducted in 2006-2009. Both segregating sterile and fertile populations were subjected to bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) with 384 and 170 primer combinations, respectively. One out of 14 AFLP markers (E9/M3246) was identified in treated fertile population as tightly linked to the drought stress gene with a recombination frequency of 6.98% and at a distance of 7.02 cM. One of 15 other markers (E2/M5357) was identified in a treated sterile population that is closely associated with the drought stress gene. It had a recombination frequency of 4.65% and at a distance of 4.66 cM. Interestingly, the E9/M3246 fragment was found to be identical to another AFLP fragment E11/M4208 that was tightly linked to the male sterile gene of S. miltiorrhiza with 95% identity and e-value 4 × 10-93. Blastn analysis suggested that the drought stress gene sequence showed higher identity with nucleotides in Arabidopsis chromosome 1-5.
Collapse
Affiliation(s)
| | | | - Zhiming Shu
- Shaanxi Research Center of TCM Fingerprinting and NP Library, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.Z.); (L.G.); (Z.S.); (Y.S.); (Y.C.); (Z.L.)
| | - Yiyue Sun
- Shaanxi Research Center of TCM Fingerprinting and NP Library, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.Z.); (L.G.); (Z.S.); (Y.S.); (Y.C.); (Z.L.)
| | - Yuanyuan Chen
- Shaanxi Research Center of TCM Fingerprinting and NP Library, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.Z.); (L.G.); (Z.S.); (Y.S.); (Y.C.); (Z.L.)
| | - Zongsuo Liang
- Shaanxi Research Center of TCM Fingerprinting and NP Library, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.Z.); (L.G.); (Z.S.); (Y.S.); (Y.C.); (Z.L.)
| | - Hongbo Guo
- Shaanxi Research Center of TCM Fingerprinting and NP Library, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China; E-Mails: (Y.Z.); (L.G.); (Z.S.); (Y.S.); (Y.C.); (Z.L.)
| |
Collapse
|
135
|
Barrero JM, Mrva K, Talbot MJ, White RG, Taylor J, Gubler F, Mares DJ. Genetic, hormonal, and physiological analysis of late maturity α-amylase in wheat. PLANT PHYSIOLOGY 2013; 161:1265-77. [PMID: 23321420 PMCID: PMC3585595 DOI: 10.1104/pp.112.209502] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 01/14/2013] [Indexed: 05/20/2023]
Abstract
Late maturity α-amylase (LMA) is a genetic defect that is commonly found in bread wheat (Triticum aestivum) cultivars and can result in commercially unacceptably high levels of α-amylase in harvest-ripe grain in the absence of rain or preharvest sprouting. This defect represents a serious problem for wheat farmers, and apart from the circumstantial evidence that gibberellins are somehow involved in the expression of LMA, the mechanisms or genes underlying LMA are unknown. In this work, we use a doubled haploid population segregating for constitutive LMA to physiologically analyze the appearance of LMA during grain development and to profile the transcriptomic and hormonal changes associated with this phenomenon. Our results show that LMA is a consequence of a very narrow and transitory peak of expression of genes encoding high-isoelectric point α-amylase during grain development and that the LMA phenotype seems to be a partial or incomplete gibberellin response emerging from a strongly altered hormonal environment.
Collapse
Affiliation(s)
- Jose M. Barrero
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| | - Kolumbina Mrva
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| | - Mark J. Talbot
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| | - Rosemary G. White
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| | - Jennifer Taylor
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| | - Frank Gubler
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| | - Daryl J. Mares
- Commonwealth Scientific and Industrial Research Organization Plant Industry, Canberra, Australian Capital Territory 2601, Australia (J.M.B., M.J.T., R.G.W., J.T., F.G.); and Plant and Pest Science, School of Agriculture, Food, and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia (K.M., D.J.M.)
| |
Collapse
|
136
|
Chono M, Matsunaka H, Seki M, Fujita M, Kiribuchi-Otobe C, Oda S, Kojima H, Kobayashi D, Kawakami N. Isolation of a wheat (Triticum aestivum L.) mutant in ABA 8'-hydroxylase gene: effect of reduced ABA catabolism on germination inhibition under field condition. BREEDING SCIENCE 2013; 63:104-15. [PMID: 23641187 PMCID: PMC3621436 DOI: 10.1270/jsbbs.63.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/18/2012] [Indexed: 05/05/2023]
Abstract
Pre-harvest sprouting, the germination of mature seeds on the mother plant under moist condition, is a serious problem in cereals. To investigate the effect of reduced abscisic acid (ABA) catabolism on germination in hexaploid wheat (Triticum aestivum L.), we cloned the wheat ABA 8'-hydroxyase gene which was highly expressed during seed development (TaABA8'OH1) and screened for mutations that lead to reduced ABA catabolism. In a screen for natural variation, one insertion mutation in exon 5 of TaABA8'OH1 on the D genome (TaABA8'OH1-D) was identified in Japanese cultivars including 'Tamaizumi'. However, a single mutation in TaABA8'OH1-D had no clear effect on germination inhibition in double haploid lines. In a screen for a mutation, one deletion mutant lacking the entire TaABA8'OH1 on the A genome (TaABA8'OH1-A), TM1833, was identified from gamma-ray irradiation lines of 'Tamaizumi'. TM1833 (a double mutant in TaABA8'OH1-A and TaABA8'OH1-D) showed lower TaABA8'OH1 expression, higher ABA content in embryos during seed development under field condition and lower germination than those in 'Tamaizumi' (a single mutant in TaABA8'OH1-D). These results indicate that reduced ABA catabolism through mutations in TaABA8'OH1 may be effective in germination inhibition in field-grown wheat.
Collapse
Affiliation(s)
- Makiko Chono
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
- Corresponding author (e-mail: )
| | - Hitoshi Matsunaka
- NARO Kyushu Okinawa Agricultural Research Center, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
| | - Masako Seki
- NARO Agricultural Research Center, Hokuriku Research Center, 1-2-1 Inada, Jouetsu, Niigata 943-0193, Japan
| | - Masaya Fujita
- NARO Kyushu Okinawa Agricultural Research Center, 496 Izumi, Chikugo, Fukuoka 833-0041, Japan
| | | | - Shunsuke Oda
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Hisayo Kojima
- NARO Institute of Crop Science, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Daisuke Kobayashi
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Mita, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
137
|
Jagadish KSV, Craufurd P, Shi W, Oane R. A phenotypic marker for quantifying heat stress impact during microsporogenesis in rice (Oryza sativa L.). FUNCTIONAL PLANT BIOLOGY : FPB 2013; 41:48-55. [PMID: 32480965 DOI: 10.1071/fp13086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 07/03/2013] [Indexed: 05/25/2023]
Abstract
Gametogenesis in rice (Oryza sativa L.), and particularly male gametogenesis, is a critical developmental stage affected by different abiotic stresses. Research on this stage is limited, as flowering stage has been the major focus for research to date. Our main objective was to identify a phenotypic marker for male gametogenesis and the duration of exposure needed to quantify the impact of heat stress at this stage. Spikelet size coinciding with microsporogenesis was identified using parafilm sectioning, and the panicle (spikelet) growth rate was established. The environmental stability of the marker was ascertained with different nitrogen (75 and 125kg ha-1) and night temperature (22°C and 28°C) combinations under field conditions. A distance of -8 to -9cm between the collar of the last fully opened leaf and the flag leaf collar, which was yet to emerge was identified as the environmentally stable phenotypic marker. Heat stress (38°C) imposed using the identified marker induced 8-63% spikelet sterility across seven genetically diverse rice genotypes. Identifying the right stage based on the marker information and imposing 6 consecutive days of heat stress ensures that >95% of the spikelets in a panicle are stressed spanning across the entire microsporogenesis stage.
Collapse
Affiliation(s)
| | - Peter Craufurd
- Plant Environment Laboratory, University of Reading, Cutbush Lane, Shinfield, Reading, RG2 9AF, UK
| | - Wanju Shi
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Rowena Oane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
138
|
Liu YH, Offler CE, Ruan YL. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. FRONTIERS IN PLANT SCIENCE 2013; 4:282. [PMID: 23914195 PMCID: PMC3729977 DOI: 10.3389/fpls.2013.00282] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps) and non-enzymic antioxidants (e.g., glutathione, ascorbic acid), which collectively maintain the integrity of membranes and prevent programmed cell death (PCD) through protecting proteins and scavenging reactive oxygen species (ROS). In parallel, sugars (sucrose, glucose, and fructose), also exert signaling roles through cross-talk with hormone and ROS signaling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-fermenting related kinase-1 (SnRK), and the target of rapamycin (TOR) kinase complex also play important roles in regulating plant development through modulating nutrient and energy signaling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signaling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.
Collapse
Affiliation(s)
- Yong-Hua Liu
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Christina E. Offler
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| | - Yong-Ling Ruan
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- *Correspondence: Yong-Ling Ruan, Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia e-mail:
| |
Collapse
|
139
|
Bang SW, Park SH, Jeong JS, Kim YS, Jung H, Ha SH, Kim JK. Characterization of the stress-inducible OsNCED3 promoter in different transgenic rice organs and over three homozygous generations. PLANTA 2013; 237:211-24. [PMID: 23007553 DOI: 10.1007/s00425-012-1764-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 09/03/2012] [Indexed: 05/18/2023]
Abstract
To be effective in crop biotechnology applications, gene promoters need to be stably active over sequential generations in a population of single-copy transgenic lines. Most of the stress-inducible promoters characterized in plants thus far have been analyzed at early (T₀, T₁ or T₂) generations and/or by testing only a small number of transgenic lines. In our current study, we report our analysis of OsNCED3, a stress-inducible rice promoter involved in ABA biosynthesis, in various organs and tissues of transgenic rice plants over the T(2-4) homozygous generations. The transgene copy numbers in the lines harboring the OsNCED3:gfp construct were determined and six single- and two double-copy transgenic lines were analyzed for promoter activity in comparison with the Wsi18, a stress-inducible promoter previously characterized. The exogenous promoter activities were found to be significantly enhanced in the roots and leaves, whereas zero or low levels of activity were evident in grains and flowers, under drought and high-salinity conditions. The highest induction levels of gfp transcripts in the OsNCED3:gfp plants upon drought treatments were 161- and 93-fold in leaves and roots, respectively, and these levels were comparable with those of gfp transcripts in the Wsi18:gfp plants. A comparison of the promoter activities between the T₂-T₄ plants revealed that comparable activity levels were maintained over these three homozygous generations with no evidence of silencing. Thus, our results provide the OsNCED3 promoter that is stress-inducible in a whole rice plant except for in the aleurones and endosperm and stably active over three generations.
Collapse
Affiliation(s)
- Seung Woon Bang
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin 449-728, Korea
| | | | | | | | | | | | | |
Collapse
|
140
|
Biotechnological approaches to study plant responses to stress. BIOMED RESEARCH INTERNATIONAL 2012; 2013:654120. [PMID: 23509757 PMCID: PMC3591138 DOI: 10.1155/2013/654120] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/30/2012] [Indexed: 12/01/2022]
Abstract
Multiple biotic and abiotic environmental stress factors affect negatively various aspects of plant growth, development, and crop productivity. Plants, as sessile organisms, have developed, in the course of their evolution, efficient strategies of response to avoid, tolerate, or adapt to different types of stress situations. The diverse stress factors that plants have to face often activate similar cell signaling pathways and cellular responses, such as the production of stress proteins, upregulation of the antioxidant machinery, and accumulation of compatible solutes. Over the last few decades advances in plant physiology, genetics, and molecular biology have greatly improved our understanding of plant responses to abiotic stress conditions. In this paper, recent progresses on systematic analyses of plant responses to stress including genomics, proteomics, metabolomics, and transgenic-based approaches are summarized.
Collapse
|
141
|
Cossani CM, Reynolds MP. Physiological traits for improving heat tolerance in wheat. PLANT PHYSIOLOGY 2012; 160:1710-8. [PMID: 23054564 PMCID: PMC3510104 DOI: 10.1104/pp.112.207753] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/05/2012] [Indexed: 05/18/2023]
Affiliation(s)
- C Mariano Cossani
- International Maize and Wheat Improvement Center, El Batán, Texcoco CP 56130, Mexico.
| | | |
Collapse
|
142
|
Zhang S, Haider I, Kohlen W, Jiang L, Bouwmeester H, Meijer AH, Schluepmann H, Liu CM, Ouwerkerk PBF. Function of the HD-Zip I gene Oshox22 in ABA-mediated drought and salt tolerances in rice. PLANT MOLECULAR BIOLOGY 2012; 80:571-85. [PMID: 23109182 DOI: 10.1007/s11103-012-9967-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 09/04/2012] [Indexed: 05/02/2023]
Abstract
Oshox22 belongs to the homeodomain-leucine zipper (HD-Zip) family I of transcription factors, most of which have unknown functions. Here we show that the expression of Oshox22 is strongly induced by salt stress, abscisic acid (ABA), and polyethylene glycol treatment (PEG), and weakly by cold stress. Trans-activation assays in yeast and transient expression analyses in rice protoplasts demonstrated that Oshox22 is able to bind the CAAT(G/C)ATTG element and acts as a transcriptional activator that requires both the HD and Zip domains. Rice plants homozygous for a T-DNA insertion in the promoter region of Oshox22 showed reduced Oshox22 expression and ABA content, decreased sensitivity to ABA, and enhanced tolerance to drought and salt stresses at the seedling stage. In contrast, transgenic rice over-expressing Oshox22 showed increased sensitivity to ABA, increased ABA content, and decreased drought and salt tolerances. Based on these results, we conclude that Oshox22 affects ABA biosynthesis and regulates drought and salt responses through ABA-mediated signal transduction pathways.
Collapse
Affiliation(s)
- Shuxin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. PLANT PHYSIOLOGY 2012; 160:846-67. [PMID: 22837360 PMCID: PMC3461560 DOI: 10.1104/pp.112.200444] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/19/2012] [Indexed: 05/18/2023]
Abstract
Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.
Collapse
Affiliation(s)
| | | | - Curtis Klumas
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | | | | | - Elijah Myers
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Ruth Grene
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Andy Pereira
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| |
Collapse
|
144
|
Iehisa JCM, Takumi S. Variation in abscisic acid responsiveness of Aegilops tauschii and hexaploid wheat synthetics due to the D-genome diversity. Genes Genet Syst 2012; 87:9-18. [PMID: 22531790 DOI: 10.1266/ggs.87.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Common wheat (Triticum aestivum L.) is an allohexaploid that originated from natural hybridization between tetraploid wheat (Triticum turgidum) and diploid Aegilops tauschii. Ae. tauschii is considered one of the potential sources of new genetic variation in abiotic stress tolerance for improving common wheat. Abscisic acid (ABA) plays an important role in plant adaptation to environmental stresses. In this study, ABA responsiveness of 67 Ae. tauschii accessions and their synthetic hexaploid wheat lines, derived from crosses between T. turgidum cv. Langdon and the Ae. tauschii accessions, was evaluated based on growth inhibition by 20 µM ABA. Wide variation was found in ABA responsiveness for both synthetic wheat lines and their parental Ae. tauschii accessions. The variations due to D-genome found at the diploid level were also expressed in a hexaploid genetic background. Two pairs of synthetic wheat lines differing in ABA responsiveness were then selected for gene expression analysis and to test abiotic stress tolerance, because their parental Ae. tauschii accessions similarly exhibited the differential response to ABA. Gene expression of ABA inducible transcription factor, WABI5, and the downstream Cor/Lea genes (Wrab17, Wdhn13 and Wrab18) were analysed. In one pair, the highly responsive line exhibited higher induction of Wrab17 by ABA treatment, but no significant difference in dehydration or salinity tolerance was observed between these lines. In contrast, in the second pair, the highly ABA-responsive line showed higher levels of Wdhn13 expression and dehydration and salinity tolerance. In synthetic wheat lines, the difference in the ABA responsiveness of the lines appeared to be determined by the different sets of D-genome genes. Our findings suggest that highly ABA-responsive Ae. tauschii accessions should be valuable genetic resources for improving the abiotic stress tolerance of common wheat.
Collapse
Affiliation(s)
- Julio C M Iehisa
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | |
Collapse
|
145
|
Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A. Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 2012; 506:265-73. [PMID: 22771691 DOI: 10.1016/j.gene.2012.06.076] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/17/2012] [Accepted: 06/25/2012] [Indexed: 02/06/2023]
Abstract
Recent developments in defining the functional basis of abscisic acid in regulating growth, development and stress response have provided essential components for its actions. We are yet to envision the impact of how differential levels of ABA influence plant growth across life cycle. Here we reviewed the information arising from the recent unprecedented advancement made in the field of ABA signaling operative under calcium-dependent and calcium-independent pathways mediating the transcriptional reprogramming under short-term stress response. Advancement made in the field of ABA receptors and transporters has started to fill major gaps in our understanding of the ABA action. However, ABA just not only regulates guard cell movement but impacts other reproductive tissue development through massive transcriptional reprogramming events affecting various stages of the plant life cycle. Therefore many questions still remain unanswered. One such intriguing question is the contradictory role of ABA known to mediate two opposite faces of the coin: regulating abiotic stress tolerance and imparting growth retardation. In this review, we critically assessed the impact of substantial elevated levels of ABA on impairment of photosynthesis and growth alteration and its subsequent influence on seed yield formation. Excess biosynthesis of ABA under stress may deprive the same precursor pool necessary for chlorophyll biosynthesis pathway, thereby triggering growth retardation. Further, we emphasized the importance of ABA homeostasis for integrating stress cues towards coordinating sustainable plant growth. Also we provided a pertinent background on ABA biosynthesis and degradation pathway manipulation to highlight the genes and processes used in genetic engineering of plants for changed ABA content.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Interdiciplinary Center for Crop Plant Research (IZN) Research Group Stress Genomics, Corrensstraße 3, 06466 Gatersleben, Germany.
| | | | | | | | | |
Collapse
|
146
|
Seung D, Risopatron JPM, Jones BJ, Marc J. Circadian clock-dependent gating in ABA signalling networks. PROTOPLASMA 2012; 249:445-57. [PMID: 21773710 DOI: 10.1007/s00709-011-0304-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/01/2011] [Indexed: 05/08/2023]
Abstract
Plant growth and development are intimately attuned to fluctuations in environmental variables such as light, temperature and water availability. A broad range of signalling and dynamic response mechanisms allows them to adjust their physiology so that growth and reproductive capacity are optimised for the prevailing conditions. Many of the response mechanisms are mediated by the plant hormones. The hormone abscisic acid (ABA) plays a dominant role in fundamental processes such as seed dormancy and germination, regulation of stomatal movements and enhancing drought tolerance in response to the osmotic stresses that result from water deficit, salinity and freezing. Whereas plants maintain a constant vigilance, there is emerging evidence that the capacity to respond is gated by the circadian clock so that it varies with diurnal fluctuations in light, temperature and water status. Clock regulation enables plants to anticipate regular diurnal fluctuations and thereby presumably to maximise metabolic efficiency. Circadian clock-dependent gating appears to regulate the ABA signalling network at numerous points, including metabolism, transport, perception and activity of the hormone. In this review, we summarise the basic principles and recent progress in elucidating the molecular mechanisms of circadian gating of the ABA response network and how it can affect fundamental processes in plant growth and development.
Collapse
Affiliation(s)
- David Seung
- School of Biological Sciences, The University of Sydney, Sydney, Australia
| | | | | | | |
Collapse
|
147
|
Setter TL. Analysis of constituents for phenotyping drought tolerance in crop improvement. Front Physiol 2012; 3:180. [PMID: 22675308 PMCID: PMC3365635 DOI: 10.3389/fphys.2012.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/16/2012] [Indexed: 01/12/2023] Open
Abstract
Investigators now have a wide range of analytical tools to use in measuring metabolites, proteins and transcripts in plant tissues. These tools have the potential to assist genetic studies that seek to phenotype genetic lines for heritable traits that contribute to drought tolerance. To be useful for crop breeding, hundreds or thousands of genetic lines must be assessed. This review considers the utility of assaying certain constituents with roles in drought tolerance for phenotyping genotypes. Abscisic acid (ABA), organic and inorganic osmolytes, compatible solutes, and late embryogenesis abundant proteins, are considered. Confounding effects that require appropriate tissue and timing specificity, and the need for high-throughput and analytical cost efficiency are discussed. With future advances in analytical methods and the value of analyzing constituents that provide information on the underlying mechanisms of drought tolerance, these approaches are expected to contribute to development crops with improved drought tolerance.
Collapse
Affiliation(s)
- Tim L. Setter
- Department Crop and Soil Sciences, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
148
|
Bolouri Moghaddam MR, Van den Ende W. Sugars and plant innate immunity. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3989-98. [PMID: 22553288 DOI: 10.1093/jxb/ers129] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars are involved in many metabolic and signalling pathways in plants. Sugar signals may also contribute to immune responses against pathogens and probably function as priming molecules leading to pathogen-associated molecular patterns (PAMP)-triggered immunity and effector-triggered immunity in plants. These putative roles also depend greatly on coordinated relationships with hormones and the light status in an intricate network. Although evidence in favour of sugar-mediated plant immunity is accumulating, more in-depth fundamental research is required to unravel the sugar signalling pathways involved. This might pave the way for the use of biodegradable sugar-(like) compounds to counteract plant diseases as cheaper and safer alternatives for toxic agrochemicals.
Collapse
|
149
|
Baron KN, Schroeder DF, Stasolla C. Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 188-189:48-59. [PMID: 22525244 DOI: 10.1016/j.plantsci.2012.03.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 05/22/2023]
Abstract
The phytohormone abscisic acid (ABA) plays an important role in developmental processes in addition to mediating plant adaptation to stress. In the current study, transcriptional response of 17 genes involved in ABA metabolism and transport has been examined in vegetative and reproductive organs exposed to cold and heat stress. Temperature stress activated numerous genes involved in ABA biosynthesis, catabolism and transport; however, several ABA biosynthesis genes (ABA1, ABA2, ABA4, AAO3, NCED3) were differentially expressed (up- or down-regulated) in an organ-specific manner. Key genes (CYP707As) involved in ABA catabolism responded differentially to temperature stress. Cold stress strongly activated ABA catabolism in all organs examined, whereas heat stress triggered more subtle activation and repression of select CYP707A genes. Genes involved in conjugation (UGT71B6), hydrolysis (AtBG1), and transport (ABCG25, ABCG40) of ABA or ABA glucose ester responded to temperature stress and displayed unique organ-specific expression patterns. Comparing the transcriptional response of vegetative and reproductive organs revealed ABA homeostasis is differentially regulated at the whole plant level. Taken together our findings indicate organs in close physical proximity undergo vastly different transcriptional programs in response to abiotic stress and developmental cues.
Collapse
Affiliation(s)
- Kevin N Baron
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada R3T 2N2
| | | | | |
Collapse
|
150
|
Wilkinson S, Kudoyarova GR, Veselov DS, Arkhipova TN, Davies WJ. Plant hormone interactions: innovative targets for crop breeding and management. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3499-509. [PMID: 22641615 DOI: 10.1093/jxb/ers148] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Here we highlight how both the root and shoot environment impact on whole plant hormone balance, particularly under stresses such as soil drying, and relate hormone ratios and relative abundances to processes influencing plant performance and yield under both mild and more severe stress. We discuss evidence (i) that abscisic acid (ABA) and ethylene act antagonistically on grain-filling rate amongst other yield-impacting processes; (ii) that ABA's effectiveness as an agent of stomatal closure can be modulated by coincident ethylene or cytokinin accumulation; and (iii) that enhanced cytokinin production can increase growth and yield by improving foliar stay-green indices under stress, and by improving processes that impact grain-filling and number, and that this can be the result of altered relative abundances of cytokinin and ABA (and other hormones). We describe evidence and novel processes whereby these phenomena are/could be amenable to manipulation through genetic and management routes, such that plant performance and yield can be improved. We explore the possibility that a range of ABA-ethylene and ABA-cytokinin relative abundances could represent targets for breeding/managing for yield resilience under a spectrum of stress levels between severe and mild, and could circumvent some of the pitfalls so far encountered in the massive research effort towards breeding for increases in the complex trait of yield.
Collapse
Affiliation(s)
- Sally Wilkinson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | | | | | | | | |
Collapse
|