101
|
Kong Q, Liu R, Wu W, Fang X, Chen H, Han Y, Chen J. Cuticular Wax Triterpenes Maintain Storage Quality of Blueberries by Reducing Water Loss. Foods 2023; 12:2643. [PMID: 37509735 PMCID: PMC10378620 DOI: 10.3390/foods12142643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Cuticular wax contributes to maintaining postharvest storage quality against fruit water loss and softening. Triterpenoids, such as oleanolic acid (OA) and ursolic acid (UA), are the main components in blueberry cuticular wax, but their role in water migration during the storage of blueberries remains to be determined. Here, we examined the relationship between the content of OA and UA and the storage quality of blueberry fruit (25 °C). The results revealed that the UA content during eight-day postharvest storage ranged from 58 to 77 μg cm-2, which was negatively related to weight loss. Additionally, we investigated the effect of exogenous OA and UA on water migration in the blueberry fruit during storage at room temperature; the weight loss was significantly lower (by 22%) with UA treatment than in the control fruit. Our findings indicate that OA and UA effectively affect water migration in blueberry fruit during postharvest storage, which could contribute to improving postharvest preservation techniques.
Collapse
Affiliation(s)
- Qi Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong, Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ruiling Liu
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanchao Han
- Key Laboratory of Post-Harvest Handing of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Key Laboratory of Postharvest Preservation and Processing of Fruits and Vegetables, China National Light Industry, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong, Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
102
|
Mitić ZS, Nikolić JS, Dimitrijević IS, Jevtović SČ, Nikolić BM, Zlatković BK, Stojanović GS. Cuticular Wax Variability of Abies alba, A.×borisii-regis and A. cephalonica from the Balkans: Chemophenetic and Ecological Aspects. Chem Biodivers 2023; 20:e202300553. [PMID: 37329266 DOI: 10.1002/cbdv.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
This is the first study on cuticular wax variability of Abies alba, A.×borisii-regis and A. cephalonica, using 18 native populations from the assumed hybrid zone in the Balkan Peninsula. Presence of 13 n-alkanes with chain-lengths ranging from C21 to C33 , one primary alcohol, two diterpenes, one triterpene and one sterol was determined in hexane extracts of 269 needle samples. The multivariate statistical analyses at the population level entirely failed in supporting circumscription of Balkan Abies taxa and therefore, in identifying hybrid populations. However, performed at the species level, these analyses revealed a certain tendency of differentiation between A. alba and A. cephalonica, while individuals of A.×borisii-regis were largely overlapped by the clouds of both parent species. Finally, the correlation analysis suggested that the observed variation of wax compounds was probably genetically conditioned and that it does not represent an adaptive response to various environmental factors.
Collapse
Affiliation(s)
- Zorica S Mitić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Jelena S Nikolić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Ivana S Dimitrijević
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Snežana Č Jevtović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | | | - Bojan K Zlatković
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| | - Gordana S Stojanović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000, Niš, Serbia
| |
Collapse
|
103
|
Mustafa MH, Corre MN, Heurtevin L, Bassi D, Cirilli M, Quilot-Turion B. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media. Fungal Biol 2023; 127:1085-1097. [PMID: 37495299 DOI: 10.1016/j.funbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
Phenolic and triterpenoid compounds are essential components in stone fruit skin and flesh tissues. They are thought to possess general antimicrobial activity. However, regarding brown rot disease, investigations were only confined to a limited number of phenolics, especially chlorogenic acid. The activity of triterpenoids against Monilinia spp., as an essential part of the peach cuticular wax, has not been studied before. In this work, the anti-fungal effect of some phenolics, triterpenoids, and fruit surface compound (FSC) extracts of peach fruit at two developmental stages were investigated on Monilinia fructicola and Monilinia laxa characteristics during in vitro growth. A new procedure for assaying anti-fungal activity of triterpenoids, which are notoriously difficult to assess in vitro because of their hydrophobicity, has been developed. Measurements of colony diameter, sporulation, and germination of second-generation conidia were recorded. Furthermore, the expression of twelve genes of M. fructicola associated with germination and/or appressorium formation and virulence-related genes was studied relative to the presence of the compounds. The study revealed that certain phenolics and triterpenoids showed modest anti-fungal activity while dramatically modulating gene expression in mycelium of M. fructicola on culture medium. MfRGAE1 gene was overexpressed by chlorogenic and ferulic acids and MfCUT1 by betulinic acid, at 4- and 7- days of mycelium incubation. The stage II FSC extract, corresponding to the period when the fruit is resistant to Monilinia spp., considerably up-regulated the MfLAE1 gene. These findings effectively contribute to the knowledge of biochemical compounds effects on fungi on in vitro conditions.
Collapse
Affiliation(s)
- Majid Hassan Mustafa
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy; INRAE, GAFL, F-84143, Montfavet, France
| | | | | | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
104
|
Guan L, Xia D, Hu N, Zhang H, Wu H, Jiang Q, Li X, Sun Y, Wang Y, Wang Z. OsFAR1 is involved in primary fatty alcohol biosynthesis and promotes drought tolerance in rice. PLANTA 2023; 258:24. [PMID: 37344696 DOI: 10.1007/s00425-023-04164-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
MAIN CONCLUSION OsFAR1 encodes a fatty acyl-CoA reductase involved in biosynthesis of primary alcohols and plays an important role in drought stress response in rice. Cuticular waxes cover the outermost surface of terrestrial plants and contribute to inhibiting nonstomatal water loss and improving plant drought resistance. Primary alcohols are the most abundant components in the leaf cuticular waxes of rice (Oryza sativa), but the biosynthesis and regulation of primary alcohol remain largely unknown in rice. Here, we identified and characterized an OsFAR1 gene belonging to the fatty acyl-CoA reductases (FARs) via a homology-based approach in rice. OsFAR1 was activated by abiotic stresses and abscisic acid, resulting in increased production of primary alcohol in rice. Heterologous expression of OsFAR1 enhanced the amounts of C22:0 and C24:0 primary alcohols in yeast (Saccharomyces cerevisiae) and C24:0 to C32:0 primary alcohols in Arabidopsis. Similarly, OsFAR1 overexpression significantly increased the content of C24:0 to C30:0 primary alcohols on rice leaves. Finally, OsFAR1 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance in rice and Arabidopsis. Taken together, our results demonstrate that OsFAR1 is involved in rice primary alcohol biosynthesis and plays an important role in responding to drought and other environmental stresses.
Collapse
Affiliation(s)
- Lulu Guan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dongnan Xia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanbing Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongqi Wu
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingkai Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
105
|
Liu L, Xu H, Zhang W, Xing J, Zhu M, Zhang Y, Wang Y. Genome-Wide Analysis of the BAHD Family in Welsh Onion and CER2-LIKEs Involved in Wax Metabolism. Genes (Basel) 2023; 14:1286. [PMID: 37372466 DOI: 10.3390/genes14061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.
Collapse
Affiliation(s)
- Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Huanhuan Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Wanyue Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Jiayi Xing
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Mingzhao Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yuchen Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yongqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| |
Collapse
|
106
|
Liu L, Li H, Wang X, Chang C. Transcription Factor TaMYB30 Activates Wheat Wax Biosynthesis. Int J Mol Sci 2023; 24:10235. [PMID: 37373378 DOI: 10.3390/ijms241210235] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The waxy cuticle covers a plant's aerial surface and contributes to environmental adaptation in land plants. Although past decades have seen great advances in understanding wax biosynthesis in model plants, the mechanisms underlying wax biosynthesis in crop plants such as bread wheat remain to be elucidated. In this study, wheat MYB transcription factor TaMYB30 was identified as a transcriptional activator positively regulating wheat wax biosynthesis. The knockdown of TaMYB30 expression using virus-induced gene silencing led to attenuated wax accumulation, increased water loss rates, and enhanced chlorophyll leaching. Furthermore, TaKCS1 and TaECR were isolated as essential components of wax biosynthetic machinery in bread wheat. In addition, silencing TaKCS1 and TaECR resulted in compromised wax biosynthesis and potentiated cuticle permeability. Importantly, we showed that TaMYB30 could directly bind to the promoter regions of TaKCS1 and TaECR genes by recognizing the MBS and Motif 1 cis-elements, and activate their expressions. These results collectively demonstrated that TaMYB30 positively regulates wheat wax biosynthesis presumably via the transcriptional activation of TaKCS1 and TaECR.
Collapse
Affiliation(s)
- Lang Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Haoyu Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| |
Collapse
|
107
|
Santillán-Sarmiento A, Pazzaglia J, Ruocco M, Dattolo E, Ambrosino L, Winters G, Marin-Guirao L, Procaccini G. Gene co-expression network analysis for the selection of candidate early warning indicators of heat and nutrient stress in Posidonia oceanica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162517. [PMID: 36868282 DOI: 10.1016/j.scitotenv.2023.162517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/01/2023] [Accepted: 02/24/2023] [Indexed: 05/06/2023]
Abstract
The continuous worldwide seagrasses decline calls for immediate actions in order to preserve this precious marine ecosystem. The main stressors that have been linked with decline in seagrasses are 1) the increasing ocean temperature due to climate change and 2) the continuous inputs of nutrients (eutrophication) associated with coastal human activities. To avoid the loss of seagrass populations, an "early warning" system is needed. We used Weighed Gene Co-expression Network Analysis (WGCNA), a systems biology approach, to identify potential candidate genes that can provide an early warning signal of stress in the Mediterranean iconic seagrass Posidonia oceanica, anticipating plant mortality. Plants were collected from both eutrophic (EU) and oligotrophic (OL) environments and were exposed to thermal and nutrient stress in a dedicated mesocosm. By correlating the whole-genome gene expression after 2-weeks exposure with the shoot survival percentage after 5-weeks exposure to stressors, we were able to identify several transcripts that indicated an early activation of several biological processes (BP) including: protein metabolic process, RNA metabolic process, organonitrogen compound biosynthetic process, catabolic process and response to stimulus, which were shared among OL and EU plants and among leaf and shoot apical meristem (SAM), in response to excessive heat and nutrients. Our results suggest a more dynamic and specific response of the SAM compared to the leaf, especially the SAM from plants coming from a stressful environment appeared more dynamic than the SAM from a pristine environment. A vast list of potential molecular markers is also provided that can be used as targets to assess field samples.
Collapse
Affiliation(s)
| | - Jessica Pazzaglia
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Miriam Ruocco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Emanuela Dattolo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Luca Ambrosino
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Gidon Winters
- Dead Sea and Arava Science Center (DSASC), Masada National Park, Mount Masada 8698000, Israel.; Eilat Campus, Ben-Gurion University of the Negev, Hatmarim Blv, Eilat 8855630, Israel
| | - Lázaro Marin-Guirao
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; Seagrass Ecology Group, Oceanographic Center of Murcia, Spanish Institute of Oceanography (IEO-CSIC), Murcia, Spain
| | - Gabriele Procaccini
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy.
| |
Collapse
|
108
|
Composition, metabolism and postharvest function and regulation of fruit cuticle: A review. Food Chem 2023; 411:135449. [PMID: 36669336 DOI: 10.1016/j.foodchem.2023.135449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The cuticle of plants, a hydrophobic membrane that covers their aerial organs, is crucial to their ability to withstand biotic and abiotic stressors. Fruit is the reproductive organ of plants, and an important dietary source that can offer a variety of nutrients for the human body, and fruit cuticle performs a crucial protective role in fruit development and postharvest quality. This review discusses the universality and diversity of the fruit cuticle composition, and systematically summarizes the metabolic process of fruit cuticle, including the biosynthesis, transport and regulatory factors (including transcription factors, phytohormones and environmental elements) of fruit cuticle. Additionally, we emphasize the postharvest functions and postharvest regulatory technologies of fruit cuticle, and propose future research directions for fruit cuticle.
Collapse
|
109
|
Ji D, Liu W, Jiang L, Chen T. Cuticles and postharvest life of tomato fruit: A rigid cover for aerial epidermis or a multifaceted guard of freshness? Food Chem 2023; 411:135484. [PMID: 36682164 DOI: 10.1016/j.foodchem.2023.135484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Fruit cuticle is a specialized cell wall hydrophobic architecture covering the aerial surfaces of fruit, which forms the interface between the fruit and its environment. As a specialized seed-bearing organ, fruit utilize cuticles as physical barriers, water permeation regulator and resistance to pathogens, thus appealing extensive research interests for its potential values in developing postharvest freshness-keeping strategies. Here, we provide an overview for the composition and functions of fruit cuticles, mainly focusing on its functions in mechanical support, water permeability barrier and protection over pathogens, further introduce key mechanisms implicated in fruit cuticle biosynthesis. Moreover, currently available state-of-art techniques for examining compositional diversity and architecture of fruit are also compared.
Collapse
Affiliation(s)
- Dongchao Ji
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China; Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Wei Liu
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Xincun West Road 266, Zhangdian District, Zibo, Shandong 255049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovative Academy of Seed Design, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road 19(A), Shijingshan District, Beijing 100049, China; Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture, Nanxincun 20, Xiangshan, Haidian District, Beijing 100093, China.
| |
Collapse
|
110
|
Song G, Liu C, Fang B, Ren J, Feng H. Identification of an epicuticular wax crystal deficiency gene Brwdm1 in Chinese cabbage ( Brassica campestris L. ssp. pekinensis). FRONTIERS IN PLANT SCIENCE 2023; 14:1161181. [PMID: 37324687 PMCID: PMC10267742 DOI: 10.3389/fpls.2023.1161181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
Introduction The cuticle wax covering the plant surface is a whitish hydrophobic protective barrier in Chinese cabbage, and the epicuticular wax crystal deficiency normally has higher commodity value for a tender texture and glossy appearance. Herein, two allelic epicuticular wax crystal deficiency mutants, wdm1 and wdm7, were obtained from the EMS mutagenesis population of a Chinese cabbage DH line 'FT'. Methods The cuticle wax morphology was observed by Cryo-scanning electron microscopy (Cryo-SEM) and the composition of wax was determined by GC-MS. The candidate mutant gene was found by MutMap and validated by KASP. The function of candidate gene was verified by allelic variation. Results The mutants had fewer wax crystals and lower leaf primary alcohol and ester content. Genetic analysis revealed that the epicuticular wax crystal deficiency phenotype was controlled by a recessive nuclear gene, named Brwdm1. MutMap and KASP analyses indicated that BraA01g004350.3C, encoding an alcohol-forming fatty acyl-CoA reductase, was the candidate gene for Brwdm1. A SNP 2,113,772 (C to T) variation in the 6th exon of Brwdm1 in wdm1 led to the 262nd amino acid substitution from threonine (T) to isoleucine (I), which existed in a rather conserved site among the amino acid sequences from Brwdm1 and its homologs. Meanwhile, the substitution changed the three-dimensional structure of Brwdm1. The SNP 2,114,994 (G to A) in the 10th exon of Brwdm1 in wdm7 resulted in the change of the 434th amino acid from valine (V) to isoleucine (I), which occurred in the STERILE domain. KASP genotyping showed that SNP 2,114,994 was co-segregated with glossy phenotype. Compared with the wild type, the relative expression of Brwdm1 was significantly decreased in the leaves, flowers, buds and siliques of wdm1. Discussion These results indicated that Brwdm1 was indispensable for the wax crystals formation and its mutation resulted in glossy appearance in Chinese cabbage.
Collapse
Affiliation(s)
| | | | | | - Jie Ren
- *Correspondence: Jie Ren, ; Hui Feng,
| | - Hui Feng
- *Correspondence: Jie Ren, ; Hui Feng,
| |
Collapse
|
111
|
Ge S, Wang R, Yang L, Kong H, Chang X, Fu X, Shan Y, Ding S. Transcriptomics and gas chromatography-mass spectrometry metabolomics reveal the mechanism of heat shock combined with 1-methylcyclopropene to regulate the cuticle wax of jujube fruit during storage. Food Chem 2023; 408:135187. [PMID: 36527923 DOI: 10.1016/j.foodchem.2022.135187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Cuticle wax is closely related to fruit quality during storage. In this study, changes in epidermal wax morphology, composition, and genes regulation induced by heat shock (HT), 1-methylcyclopropene (1-MCP) or their combination (HT + 1-MCP) were investigated in jujube fruit during cold storage. HT, 1-MCP, or HT + 1-MCP caused a smoother wax layer and fewer micro-cracks compared to the control (CK) during cold storage. It was confirmed that acids and terpenoids were the main wax components by gas chromatography-mass spectrometry. HT + 1-MCP and 1-MCP treatments could significantly increase (p < 0.05) the wax content at 45 d of cold storage. The transcriptomics results indicated that HT + 1-MCP treatment up-regulated FATB, FATB, FAB2, FAD2 and CYP716A, and maintained the wax content of jujube fruit during cold storage. These results could provide new perspective for regulating the cuticle characteristics to extend the shelf life of jujube fruit.
Collapse
Affiliation(s)
- Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Lvzhu Yang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Hui Kong
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Province International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Changsha 410125, China.
| |
Collapse
|
112
|
Nagata K, Abe M. A conserved mechanism determines the activity of two pivotal transcription factors that control epidermal cell differentiation in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2023; 136:349-358. [PMID: 36826609 PMCID: PMC10126025 DOI: 10.1007/s10265-023-01439-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/01/2023] [Indexed: 05/25/2023]
Abstract
The surface of plants is covered by the epidermis, which protects the plant's body from the external environment and mediates inter-cell layer signaling to regulate plant development. Therefore, the manifestation of epidermal traits at a precise location is a prerequisite for their normal growth and development. In Arabidopsis thaliana, class IV homeodomain-leucine zipper transcription factors PROTODERMAL FACTOR2 (PDF2) and ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) play redundant roles in epidermal cell differentiation. Nevertheless, several pieces of evidence suggest that the activity and/or function of PDF2 and ATML1 are regulated differently. The role of the steroidogenic acute regulatory protein-related lipid transfer (START) domain of ATML1 in restricting this protein's activity has been demonstrated; however, whether this lipid-dependent mechanism regulates PDF2 expression is unknown. In this study, we demonstrated that the START domains of PDF2 and ATML1, regulate protein turnover in a position-dependent manner and affect the dimeric proteins. Our results show that a conserved mechanism provides the basis for the functional redundancy of PDF2 and ATML1 in epidermal cell differentiation and that an unidentified regulatory layer specific to PDF2 or ATML1 is responsible for the difference in the activity and/or function of PDF2 and ATML1.
Collapse
Affiliation(s)
- Kenji Nagata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan
| | - Mitsutomo Abe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
113
|
Li HJ, Bai WP, Liu LB, Liu HS, Wei L, Garant TM, Kalinger RS, Deng YX, Wang GN, Bao AK, Ma Q, Rowland O, Wang SM. Massive increases in C31 alkane on Zygophyllum xanthoxylum leaves contribute to its excellent abiotic stress tolerance. ANNALS OF BOTANY 2023; 131:723-736. [PMID: 36848247 PMCID: PMC10147333 DOI: 10.1093/aob/mcad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Desert plants possess excellent water-conservation capacities to survive in extreme environments. Cuticular wax plays a pivotal role in reducing water loss through plant aerial surfaces. However, the role of cuticular wax in water retention by desert plants is poorly understood. METHODS We investigated leaf epidermal morphology and wax composition of five desert shrubs from north-west China and characterized the wax morphology and composition for the typical xerophyte Zygophyllum xanthoxylum under salt, drought and heat treatments. Moreover, we examined leaf water loss and chlorophyll leaching of Z. xanthoxylum and analysed their relationships with wax composition under the above treatments. KEY RESULTS The leaf epidermis of Z. xanthoxylum was densely covered by cuticular wax, whereas the other four desert shrubs had trichomes or cuticular folds in addition to cuticular wax. The total amount of cuticular wax on leaves of Z. xanthoxylum and Ammopiptanthus mongolicus was significantly higher than that of the other three shrubs. Strikingly, C31 alkane, the most abundant component, composed >71 % of total alkanes in Z. xanthoxylum, which was higher than for the other four shrubs studied here. Salt, drought and heat treatments resulted in significant increases in the amount of cuticular wax. Of these treatments, the combined drought plus 45 °C treatment led to the largest increase (107 %) in the total amount of cuticular wax, attributable primarily to an increase of 122 % in C31 alkane. Moreover, the proportion of C31 alkane within total alkanes remained >75 % in all the above treatments. Notably, the water loss and chlorophyll leaching were reduced, which was negatively correlated with C31 alkane content. CONCLUSION Zygophyllum xanthoxylum could serve as a model desert plant for study of the function of cuticular wax in water retention because of its relatively uncomplicated leaf surface and because it accumulates C31 alkane massively to reduce cuticular permeability and resist abiotic stressors.
Collapse
Affiliation(s)
- Hu-Jun Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Wan-Peng Bai
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Lin-Bo Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Hai-Shuang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Li Wei
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Timothy M Garant
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Rebecca S Kalinger
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yu-Xuan Deng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Gai-Ni Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Ai-Ke Bao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Qing Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| | - Owen Rowland
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Suo-Min Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China
| |
Collapse
|
114
|
Zhang C, Cheng C, Xue J, Li Q, Wang C, Zhang Y, Yang S. Metabolome and transcriptome profiling in different bagging pear fruit reveals that PbKCS10 affects the occurrence of superficial scald via regulating the wax formation. Food Chem 2023; 422:136206. [PMID: 37130451 DOI: 10.1016/j.foodchem.2023.136206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/04/2023]
Abstract
Superficial scald is a physiological disorder of fruit, which is easy to occur during long-term cold storage after harvest. Different preharvest bagging treatments (no bagging, polyethylene bagging and non-woven fabric bagging) were used to explore the occurrence mechanism of superficial scald. UHPLC-MS analysis, GC-MS analysis and RNA-seq revealed the influence of the wax of 'Chili' on the occurrence of superficial scald. The wax content and wax components (Lupeol, lup-20(29)-en-3-one, heptacosane, 9-octadecenoic acid, eicosanoic acid, cis-11-eicosenoic acid) were significantly higher in the fruit bagged with non-woven fabric (NWF, with low incidence of superficial scald) than that in fruit bagged with polyethylene (PE, high incidence of superficial scald). Transcriptomics and qRT-PCR data identified a wax synthesis gene, PbKCS10, which exhibited high expression levels in fruit with low of superficial scald. The results of gene function showed that PbKCS10 reduced the occurrence of superficial scald by increasing the wax formation.
Collapse
Affiliation(s)
- Chunjian Zhang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Chenxia Cheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Junxiu Xue
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Qian Li
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China
| | - Yu Zhang
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| | - Shaolan Yang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, China.
| |
Collapse
|
115
|
Parusnath M, Naidoo Y, Singh M, Rihan H, Dewir YH. Phytochemical Composition of Combretum molle (R. Br. ex G. Don.) Engl. & Diels Leaf and Stem Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:1702. [PMID: 37111925 PMCID: PMC10144686 DOI: 10.3390/plants12081702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
The demand for medicinal plants is on a rise due to their affordability, accessibility and relatively non-toxic nature. Combretum molle (Combretaceae) is used in African traditional medicine to treat a number of diseases. This study aimed to screen the phytochemical composition of the hexane, chloroform and methanol extracts of C. molle leaves and stems using qualitative phytochemical screening. Additionally, the study aimed to identify the functional phytochemical groups, determine the elemental composition and provide a fluorescence characterization of the powdered leaves and stems by performing Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray (EDX) microanalyses and fluorescence microscopy. Phytochemical screening revealed the presence of alkaloids, flavonoids, phenolic compounds, polyphenols, terpenoids, tannins, coumarins, saponins, phytosterols, gums, mucilage, carbohydrates, amino acids and proteins within all leaf and stem extracts. Lipids and fixed oils were additionally present within the methanol extracts. FTIR demonstrated significant peaks in absorption frequency in the leaf at wavelengths of 3283.18, 2917.81, 1617.72, 1318.83, 1233.97, 1032.32 and 521.38 cm-1, and in the stem at 3318.91, 1619.25, 1317.13, 1032.68, 780.86 and 516.39 cm-1. These corresponded to the functional groups of chemical compounds including alcohols, phenols, primary amines, alkyl halides, alkanes and alkyl aryl ethers, corroborating the presence of the detected phytochemicals within the plant. EDX microanalyses showed the elemental composition of the powdered leaves (68.44% C, 26.72% O, 1.87% Ca, 0.96% Cl, 0.93% Mg, 0.71% K, 0.13% Na, 0.12 % Mn and 0.10% Rb) and stems (54.92% C, 42.86% O, 1.7% Ca, 0.43% Mg and 0.09% Mn). Fluorescence microscopy provided a characteristic evaluation of the plant in its powdered form and revealed distinct colour changes in the material when treated with various reagents and viewed under ultraviolet light. In conclusion, the phytochemical constituents of the leaves and stems of C. molle confirm the suitability of this species for use in traditional medicine. The findings from this study suggest the need to validate the use of C. molle in the development of modern medicines.
Collapse
Affiliation(s)
- Myuri Parusnath
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Yougasphree Naidoo
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Moganavelli Singh
- School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Hail Rihan
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus PL4 8AA, UK
- Phytome Life Sciences, Launceston PL15 7AB, UK
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
116
|
Gozdzik J, Busta L, Jetter R. Leaf cuticular waxes of wild-type Welsh onion (Allium fistulosum L.) and a wax-deficient mutant: Compounds with terminal and mid-chain functionalities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107679. [PMID: 37121165 DOI: 10.1016/j.plaphy.2023.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/02/2023]
Abstract
Plant cuticles cover aerial organs to limit non-stomatal water loss and protect against insects and pathogens. Cuticles contain complex mixtures of fatty acid-derived waxes, with various chain lengths and diverse functional groups. To further our understanding of the chemical diversity and biosynthesis of these compounds, this study investigated leaf cuticular waxes of Welsh onion (Allium fistulosum L.) wild type and a wax-deficient mutant. Leaf waxes were extracted with chloroform, separated using thin layer chromatography (TLC), and analyzed using gas chromatography-mass spectrometry (GC-MS). The extracts contained typical wax compound classes found in nearly all plant lineages but also two uncommon compound classes. Analyses of characteristic MS fragmentation patterns followed by comparisons with synthetic standards identified the latter as very-long-chain ketones and primary ketols. The ketols were minor compounds, with chain lengths ranging from C28 to C32 and carbonyls mainly on C-18 and C-20 in wild type wax, and a C28 chain with C-16 carbonyl in the mutant. The ketones made up 70% of total wax in the wild type, consisting mainly of C31 isomers with carbonyl group on C-14 or C-16. In contrast, the mutant wax comprised only 4% ketones, with chain lengths C27 and C29 and carbonyls predominantly on C-12 and C-14, respectively. A two-carbon homolog shift between wild type and mutant was also observed in the primary alcohols (a major wax compound class), whilst alkanes exhibited a four-carbon shift. Overall, the compositional data shed light on possible biosynthetic pathways to wax ketones that can be tested in future studies.
Collapse
Affiliation(s)
- Jedrzej Gozdzik
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Reinhard Jetter
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
117
|
Gerasimova SV, Kolosovskaya EV, Vikhorev AV, Korotkova AM, Hertig CW, Genaev MA, Domrachev DV, Morozov SV, Chernyak EI, Shmakov NA, Vasiliev GV, Kochetov AV, Kumlehn J, Khlestkina EK. WAX INDUCER 1 Regulates β-Diketone Biosynthesis by Mediating Expression of the Cer-cqu Gene Cluster in Barley. Int J Mol Sci 2023; 24:ijms24076762. [PMID: 37047735 PMCID: PMC10095013 DOI: 10.3390/ijms24076762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Plant surface properties are crucial determinants of resilience to abiotic and biotic stresses. The outer layer of the plant cuticle consists of chemically diverse epicuticular waxes. The WAX INDUCER1/SHINE subfamily of APETALA2/ETHYLENE RESPONSIVE FACTORS regulates cuticle properties in plants. In this study, four barley genes homologous to the Arabidopsis thaliana AtWIN1 gene were mutated using RNA-guided Cas9 endonuclease. Mutations in one of them, the HvWIN1 gene, caused a recessive glossy sheath phenotype associated with β-diketone deficiency. A complementation test for win1 knockout (KO) and cer-x mutants showed that Cer-X and WIN1 are allelic variants of the same genomic locus. A comparison of the transcriptome from leaf sheaths of win1 KO and wild-type plants revealed a specific and strong downregulation of a large gene cluster residing at the previously known Cer-cqu locus. Our findings allowed us to postulate that the WIN1 transcription factor in barley is a master mediator of the β-diketone biosynthesis pathway acting through developmental stage- and organ-specific transactivation of the Cer-cqu gene cluster.
Collapse
Affiliation(s)
- Sophia V Gerasimova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | | | - Alexander V Vikhorev
- Vavilov Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Anna M Korotkova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Christian W Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Mikhail A Genaev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Dmitry V Domrachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey V Morozov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena I Chernyak
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Nikolay A Shmakov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Gennady V Vasiliev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alex V Kochetov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Elena K Khlestkina
- Vavilov Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| |
Collapse
|
118
|
Erndwein L, Kawash J, Knowles S, Vorsa N, Polashock J. Cranberry fruit epicuticular wax benefits and identification of a wax-associated molecular marker. BMC PLANT BIOLOGY 2023; 23:181. [PMID: 37020185 PMCID: PMC10074888 DOI: 10.1186/s12870-023-04207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As the global climate changes, periods of abiotic stress throughout the North American cranberry growing regions will become more common. One consequence of high temperature extremes and drought conditions is sunscald. Scalding damages the developing berry and reduces yields through fruit tissue damage and/or secondary pathogen infection. Irrigation runs to cool the fruit is the primary approach to controlling sunscald. However, it is water intensive and can increase fungal-incited fruit rot. Epicuticular wax functions as a barrier to various environmental stresses in other fruit crops and may be a promising feature to mitigate sunscald in cranberry. In this study we assessed the function of epicuticular wax in cranberries to attenuate stresses associated with sunscald by subjecting high and low epicuticular wax cranberries to controlled desiccation and light/heat exposure. A cranberry population that segregates for epicuticular wax was phenotyped for epicuticular fruit wax levels and genotyped using GBS. Quantitative trait loci (QTL) analyses of these data identified a locus associated with epicuticular wax phenotype. A SNP marker was developed in the QTL region to be used for marker assisted selection. RESULTS Cranberries with high epicuticular wax lost less mass percent and maintained a lower surface temperature following heat/light and desiccation experiments as compared to fruit with low wax. QTL analysis identified a marker on chromosome 1 at position 38,782,094 bp associated with the epicuticular wax phenotype. Genotyping assays revealed that cranberry selections homozygous for a selected SNP have consistently high epicuticular wax scores. A candidate gene (GL1-9), associated with epicuticular wax synthesis, was also identified near this QTL region. CONCLUSIONS Our results suggest that high cranberry epicuticular wax load may help reduce the effects of heat/light and water stress: two primary contributors to sunscald. Further, the molecular marker identified in this study can be used in marker assisted selection to screen cranberry seedlings for the potential to have high fruit epicuticular wax. This work serves to advance the genetic improvement of cranberry crops in the face of global climate change.
Collapse
Affiliation(s)
- Lindsay Erndwein
- ORISE Postdoctoral Research Associate, Chatsworth, NJ, 08019, USA
| | - Joseph Kawash
- Genetic Improvement of Fruit and Vegetables Laboratory, Agricultural Research Service, USDA-ARS, Chatsworth, NJ, 08019, USA
| | - Sara Knowles
- P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ, 08019, USA
| | - Nicholi Vorsa
- P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ, 08019, USA
| | - James Polashock
- Genetic Improvement of Fruit and Vegetables Laboratory, Agricultural Research Service, USDA-ARS, Chatsworth, NJ, 08019, USA.
| |
Collapse
|
119
|
Lv S, Hong T, Wan M, Peng L, Zhao Y, Sun L, Zou X. Polydopamine-encapsulated cap-like mesoporous silica based delivery system for responsive pesticide release and high retention. Colloids Surf B Biointerfaces 2023; 224:113213. [PMID: 36870269 DOI: 10.1016/j.colsurfb.2023.113213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Nanopesticides formulation has been applied in modern agriculture, but the effective deposition of pesticides on plant surfaces is still a critical challenge. Here, we developed a cap-like mesoporous silica (C-mSiO2) carrier for pesticide delivery. The C-mSiO2 carriers with surface amino groups present uniform cap-like shape and have an mean diameter of 300 nm and width of 100 nm. This structure would reduce the rolling and bouncing of carriers on plant leaves, leading to improving the foliage deposition and retention. After loading dinotefuran (DIN), polydopamine (PDA) was used to encapsulate the pesticide (DIN@C-mSiO2@PDA). The C-mSiO2 carriers exhibit high drug loading efficiency (24.7%) and benign biocompatibility on bacteria and seed. Except for pH/NIR response release, the DIN@C-mSiO2@PDA exhibited excellent photostability under UV irradiation. Moreover, the insecticidal activity of DIN@C-mSiO2@PDA was comparable to that of pure DIN and DIN commercial suspension (CS-DIN). This carrier system has the potential for improving the foliage retention and utilization of pesticides.
Collapse
Affiliation(s)
- Shuoshuo Lv
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Tao Hong
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Menghui Wan
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Lichao Peng
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China.
| | - Yanbao Zhao
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China.
| | - Lei Sun
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| | - Xueyan Zou
- National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China
| |
Collapse
|
120
|
Gao H, Wan X, Yang Y, Lu J, Zhu Q, Xu L, Wang S. Leaf-Inspired Patterned Organohydrogel Surface for Ultrawide Time-Range Open Biosensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207702. [PMID: 36775866 PMCID: PMC10104639 DOI: 10.1002/advs.202207702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Droplet arrays show great significance in biosensing and biodetection because of low sample consumption and easy operation. However, inevitable water evaporation in open environment severely limits their applications in time-consuming reactions. Herein, inspired by the unique water retention features of leaves, it is demonstrated that an open droplet array on patterned organohydrogel surface with water evaporating replenishment (POWER) for ultrawide time-range biosensing, which integrated hydrophilic hydrogel domains and hydrophobic organogel background. The hydrogel domains on the surface can supply water to the pinned droplets through capillary channels formed in the nether organohydrogel bulk. The organogel background can inhibit water evaporation like the wax coating of leaves. Such a unique bioinspired design enables ultrawide time-range biosensing in open environment from a few minutes to more than five hours involving a variety of analytes such as ions, small molecules, and macromolecules. The POWER provides a feasible and open biosensing platform for ultrawide time-range reactions.
Collapse
Affiliation(s)
- Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Jingwei Lu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Li‐Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing TechnologySchool of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
121
|
Marinov O, Nomberg G, Sarkar S, Arya GC, Karavani E, Zelinger E, Manasherova E, Cohen H. Microscopic and metabolic investigations disclose the factors that lead to skin cracking in chili-type pepper fruit varieties. HORTICULTURE RESEARCH 2023; 10:uhad036. [PMID: 37799628 PMCID: PMC10548408 DOI: 10.1093/hr/uhad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/20/2023] [Indexed: 10/07/2023]
Abstract
The hydrophobic cuticle encasing the fruit skin surface plays critical roles during fruit development and post-harvest. Skin failure often results in the fruit surface cracking and forming a wound-periderm tissue made of suberin and lignin. The factors that make the fruit skin susceptible to cracking have yet to be fully understood. Herein, we investigated two varieties of chili peppers (Capsicum annuum L.), Numex Garnet, whose fruit has intact skin, and Vezena Slatka, whose fruit has cracked skin. Microscopical observations, gas chromatography-mass spectrometry, biochemical and gene expression assays revealed that Vezena Slatka fruit form a thicker cuticle with greater levels of cutin monomers and hydroxycinnamic acids, and highly express key cutin-related genes. The skin of these fruit also had a lower epidermal cell density due to cells with very large perimeters, and highly express genes involved in epidermal cell differentiation. We demonstrate that skin cracking in the Vezena Slatka fruit is accompanied by a spatial accumulation of lignin-like polyphenolic compounds, without the formation of a typical wound-periderm tissues made of suberized cells. Lastly, we establish that skin cracking in chili-type pepper significantly affects fruit quality during post-harvest storage in a temperature-dependent manner. In conclusion, our data highlight cuticle thickness and epidermal cell density as two critical factors determining fruit skin susceptibility to cracking in chili-type pepper fruit.
Collapse
Affiliation(s)
- Ofir Marinov
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Nomberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Sutanni Sarkar
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Eldad Karavani
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Einat Zelinger
- Center for Scientific Imaging (CSI), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| |
Collapse
|
122
|
Wang H, Lu Z, Xu Y, Zhang J, Han L, Chai M, Wang ZY, Yang X, Lu S, Tong J, Xiao L, Wen J, Mysore KS, Zhou C. Roles of very long-chain fatty acids in compound leaf patterning in Medicago truncatula. PLANT PHYSIOLOGY 2023; 191:1751-1770. [PMID: 36617225 PMCID: PMC10022625 DOI: 10.1093/plphys/kiad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Plant cuticles are composed of hydrophobic cuticular waxes and cutin. Very long-chain fatty acids (VLCFAs) are components of epidermal waxes and the plasma membrane and are involved in organ morphogenesis. By screening a barrelclover (Medicago truncatula) mutant population tagged by the transposable element of tobacco (Nicotiana tabacum) cell type1 (Tnt1), we identified two types of mutants with unopened flower phenotypes, named unopened flower1 (uof1) and uof2. Both UOF1 and UOF2 encode enzymes that are involved in the biosynthesis of VLCFAs and cuticular wax. Comparative analysis of the mutants indicated that the mutation in UOF1, but not UOF2, leads to the increased number of leaflets in M. truncatula. UOF1 was specifically expressed in the outermost cell layer (L1) of the shoot apical meristem (SAM) and leaf primordia. The uof1 mutants displayed defects in VLCFA-mediated plasma membrane integrity, resulting in the disordered localization of the PIN-FORMED1 (PIN1) ortholog SMOOTH LEAF MARGIN1 (SLM1) in M. truncatula. Our work demonstrates that the UOF1-mediated biosynthesis of VLCFAs in L1 is critical for compound leaf patterning, which is associated with the polarization of the auxin efflux carrier in M. truncatula.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Zhichao Lu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| | - Maofeng Chai
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Xianpeng Yang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Shiyou Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China
| | - Jiangqi Wen
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Kirankumar S Mysore
- Institute of Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, Oklahoma 73401, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266101, China
| |
Collapse
|
123
|
Saladin S, D'Aronco S, Ingram G, Giorio C. Direct surface analysis mass spectrometry uncovers the vertical distribution of cuticle-associated metabolites in plants. RSC Adv 2023; 13:8487-8495. [PMID: 36926302 PMCID: PMC10012332 DOI: 10.1039/d2ra07166e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
The plant cuticle covers the plant's entire aerial surface and acts as the outermost protective layer. Despite being crucial for the survival of plants, surprisingly little is known about its biosynthesis. Conventional analytical techniques are limited to the isolation and depolymerization of the polyester cutin, which forms the cuticular scaffold. Although this approach allows the elucidation of incorporated cutin monomers, it neglects unincorporated metabolites participating in cutin polymerization. The feasibility of a novel approach is tested for in situ analysis of unpolymerized cuticular metabolites to enhance the understanding of cuticle biology. Intact cotyledons of Brassica napus and Arabidopsis thaliana seedlings are immersed in organic solvents for 60 seconds. Extracts are analyzed using high-resolution direct infusion mass spectrometry. A variety of different diffusion routes of plant metabolites across the cuticle are discussed. The results reveal different feasibilities depending on the research question and cuticle permeabilities in combination with the analyte's polarity. Especially hydrophilic analytes are expected to be co-located in the cell wall beneath the cuticle causing systematic interferences when comparing plants with different cuticle permeabilities. These interferences limit data interpretation to qualitative rather than quantitative comparison. In contrast, quantitative data evaluation is facilitated when analyzing cuticle-specific metabolites or plants with similar cuticle permeabilities.
Collapse
Affiliation(s)
- Siriel Saladin
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Sara D'Aronco
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Gwyneth Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, UCBL F-69342 Lyon France
| | - Chiara Giorio
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
124
|
Ronchi A, Foscari A, Zaina G, De Paoli E, Incerti G. Self-DNA Early Exposure in Cultivated and Weedy Setaria Triggers ROS Degradation Signaling Pathways and Root Growth Inhibition. PLANTS (BASEL, SWITZERLAND) 2023; 12:1288. [PMID: 36986976 PMCID: PMC10058795 DOI: 10.3390/plants12061288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The accumulation of fragmented extracellular DNA reduces conspecific seed germination and plantlet growth in a concentration-dependent manner. This self-DNA inhibition was repeatedly reported, but the underlying mechanisms are not fully clarified. We investigated the species-specificity of self-DNA inhibition in cultivated vs. weed congeneric species (respectively, Setaria italica and S. pumila) and carried out a targeted real-time qPCR analysis under the hypothesis that self-DNA elicits molecular pathways that are responsive to abiotic stressors. The results of a cross-factorial experiment on root elongation of seedlings exposed to self-DNA, congeneric DNA, and heterospecific DNA from Brassica napus and Salmon salar confirmed a significantly higher inhibition by self-DNA as compared to non-self-treatments, with the latter showing a magnitude of the effect consistent with the phylogenetic distance between the DNA source and the target species. Targeted gene expression analysis highlighted an early activation of genes involved in ROS degradation and management (FSD2, ALDH22A1, CSD3, MPK17), as well as deactivation of scaffolding molecules acting as negative regulators of stress signaling pathways (WD40-155). While being the first exploration of early response to self-DNA inhibition at molecular level on C4 model plants, our study highlights the need for further investigation of the relationships between DNA exposure and stress signaling pathways by discussing potential applications for species-specific weed control in agriculture.
Collapse
Affiliation(s)
- Alessia Ronchi
- Department of Life Sciences, University of Trieste, via Giorgieri 5, 34100 Trieste, Italy
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Alessandro Foscari
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Giusi Zaina
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Emanuele De Paoli
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| | - Guido Incerti
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
125
|
Triterpenoids of Three Apple Cultivars—Biosynthesis, Antioxidative and Anti-Inflammatory Properties, and Fate during Processing. Molecules 2023; 28:molecules28062584. [PMID: 36985556 PMCID: PMC10058748 DOI: 10.3390/molecules28062584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Triterpenoids are a group of secondary plant metabolites, with a remarkable pharmacological potential, occurring in the cuticular waxes of the aerial parts of plants. The aim of this study was to analyze triterpenoid variability in the fruits and leaves of three apple cultivars during the growing season and gain new insights into their health-promoting properties and fate during juice and purée production. The identification and quantification of the compounds of interest were conducted using gas chromatography coupled with mass spectrometry. The waxes of both matrices contained similar analytes; however, their quantitative patterns varied: triterpenic acids prevailed in the fruits, while higher contents of steroids and esterified forms were observed in the leaves. The total triterpenoid content per unit area was stable during the growing season; the percentage of esters increased in the later phases of growth. Antioxidative and anti-inflammatory properties were evaluated with a series of in vitro assays. Triterpenoids were found to be the main anti-inflammatory compounds in the apples, while their impact on antioxidant capacity was minor. The apples were processed on a lab scale to obtain juices and purées. The apple purée and cloudy juice contained only some of the triterpenoids present in the raw fruit, while the clear juices were virtually free of those lipophilic compounds.
Collapse
|
126
|
Viola IL, Alem AL, Jure RM, Gonzalez DH. Physiological Roles and Mechanisms of Action of Class I TCP Transcription Factors. Int J Mol Sci 2023; 24:ijms24065437. [PMID: 36982512 PMCID: PMC10049435 DOI: 10.3390/ijms24065437] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 and 2 (TCP) proteins constitute a plant-specific transcription factors family exerting effects on multiple aspects of plant development, such as germination, embryogenesis, leaf and flower morphogenesis, and pollen development, through the recruitment of other factors and the modulation of different hormonal pathways. They are divided into two main classes, I and II. This review focuses on the function and regulation of class I TCP proteins (TCPs). We describe the role of class I TCPs in cell growth and proliferation and summarize recent progresses in understanding the function of class I TCPs in diverse developmental processes, defense, and abiotic stress responses. In addition, their function in redox signaling and the interplay between class I TCPs and proteins involved in immunity and transcriptional and posttranslational regulation is discussed.
Collapse
Affiliation(s)
- Ivana L. Viola
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| | | | | | - Daniel H. Gonzalez
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| |
Collapse
|
127
|
Yang J, Busta L, Jetter R, Sun Y, Wang T, Zhang W, Ni Y, Guo Y. Diversified chemical profiles of cuticular wax on alpine meadow plants of the Qinghai-Tibet Plateau. PLANTA 2023; 257:74. [PMID: 36879182 DOI: 10.1007/s00425-023-04107-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The alpine meadow plants showed great intra- and inter-genera variations of chemical profiles of cuticular waxes. Developing an understanding of wax structure-function relationships that will help us tackle global climate change requires a detailed understanding of plant wax chemistry. The goal in this study was to provide a catalog of wax structures, abundances, and compositions on alpine meadow plants. Here, leaf waxes from 33 plant species belonging to 11 families were sampled from alpine meadows of the east side of the Qinghai-Tibet Plateau. Across these species, total wax coverage varied from 2.30 μg cm-2 to 40.70 μg cm-2, showing variation both within as well as between genera and suggesting that wax variation is subject to both environmental and genetic effects. Across all wax samples, more than 140 wax compounds belonging to 13 wax compound classes were identified, including both ubiquitous wax compounds and lineage-specific compounds. Among the ubiquitous compounds (primary alcohols, alkyl esters, aldehydes, alkanes, and fatty acids), chain length profiles across a wide range of species point to key differences in the chain length specificity of alcohol and alkane formation machinery. The lineage-specific wax compound classes (diols, secondary alcohols, lactones, iso-alkanes, alkyl resorcinols, phenylethyl esters, cinnamate esters, alkyl benzoates, and triterpenoids) nearly all consisted of isomers with varying chain lengths or functional group positions, making the diversity of specialized wax compounds immense. The comparison of species relationships between chemical data and genetic data highlighted the importance of inferring phylogenetic relationships from data sets that contain a large number of variables that do not respond to environmental stimuli.
Collapse
Affiliation(s)
- Jianfeng Yang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China
- College of Animal Science and Technology, Southwest University, Chongqing, 400716, China
| | - Lucas Busta
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, 55812, USA
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Yingpeng Sun
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Tianyu Wang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenlan Zhang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Ni
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao, 266109, China.
- College of Grassland Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
128
|
Grünhofer P, Schreiber L. Cutinized and suberized barriers in leaves and roots: Similarities and differences. JOURNAL OF PLANT PHYSIOLOGY 2023; 282:153921. [PMID: 36780757 DOI: 10.1016/j.jplph.2023.153921] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Anatomical, histochemical, chemical, and biosynthetic similarities and differences of cutinized and suberized plant cell walls are presented and reviewed in brief. Based on this, the functional properties of cutinized and suberized plant cell walls acting as transport barriers are compared and discussed in more detail. This is of general importance because fundamental misconceptions about relationships in plant-environment water relations are commonly encountered in the scientific literature. It will be shown here, that cuticles represent highly efficient apoplastic transport barriers significantly reducing the diffusion of water and dissolved compounds. The transport barrier of cuticles is mainly established by the deposition of cuticular waxes. Upon wax extraction, with the cutin polymer remaining, cuticular permeability for water and dissolved non-ionized and lipophilic solutes are increasing by 2-3 orders of magnitude, whereas polar and charged substances (e.g., nutrient ions) are only weakly affected (2- to 3-fold increases in permeability). Suberized apoplastic barriers without the deposition of wax are at least as permeable as the cutin polymer matrix without waxes and hardly offer any resistance to the free movement of water. Only upon the deposition of significant amounts of wax, as it is the case with suberized periderms exposed to the atmosphere, an efficient transport barrier for water can be established by suberized cell walls. Comparing the driving forces (gradients between water potentials inside leaves and roots and the surrounding environment) for water loss acting on leaves and roots, it is shown that leaves must have a genetically pre-defined highly efficient transpiration barrier fairly independent from rapidly changing environmental influences. Roots, in most conditions facing a soil environment with relative humidities very close to 100%, are orders of magnitude more permeable to water than leaf cuticles. Upon desiccation, the permanent wilting point of plants is defined as -1.5 MPa, which still corresponds to nearly 99% relative humidity in soil. Thus, the main reason for plant water stress leading to dehydration is the inability of root tissues to decrease their internal water potential to values more negative than -1.5 MPa and not the lack of a transport barrier for water in roots and leaves. Taken together, the commonly mentioned concepts that a drought-induced increase of cuticular wax or root suberin considerably strengthens the apoplastic leaf or root transport barriers and thus aids in water conservation appears highly questionable.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany.
| |
Collapse
|
129
|
Negin B, Hen-Avivi S, Almekias-Siegl E, Shachar L, Jander G, Aharoni A. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. THE NEW PHYTOLOGIST 2023; 237:1574-1589. [PMID: 36369885 DOI: 10.1111/nph.18615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/05/2022] [Indexed: 05/20/2023]
Abstract
Despite decades of extensive study, the role of cuticular lipids in sustaining plant fitness is far from being understood. We utilized genome-edited tree tobacco (Nicotiana glauca) to investigate the significance of different classes of epicuticular wax in abiotic stress such as cuticular water loss, drought, and light response. We generated mutants displaying a range of wax compositions. Four wax mutants and one cutin mutant were extensively investigated for alterations in their response to abiotic factors. Although the mutations led to elevated cuticular water loss, the wax mutants did not display elevated transpiration or reduced growth under nonstressed conditions. However, under drought, plants lacking alkanes were unable to reduce their transpiration, leading to leaf death, impaired recovery, and stem cracking. By contrast, plants deficient in fatty alcohols exhibited elevated drought tolerance, which was part of a larger trend of plant phenotypes not clustering by a glossy/glaucous appearance in the parameters examined in this study. We conclude that although alkanes have little effect on whole N. glauca transpiration and biomass gain under normal, nonstressed conditions, they are essential during drought responses, since they enable plants to seal their cuticle upon stomatal closure, thereby reducing leaf death and facilitating a speedy recovery.
Collapse
Affiliation(s)
- Boaz Negin
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Shelly Hen-Avivi
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Efrat Almekias-Siegl
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Lior Shachar
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Asaph Aharoni
- Plant and Environmental Science Department, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
130
|
Palma-Salgado S, Ku KM, Juvik JA, Nguyen TH, Feng H. Artificial phylloplanes resembling physicochemical characteristics of selected fresh produce and their potential use in bacterial attachment/removal studies. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
131
|
Kondo A, Ito M, Takeda Y, Kurahashi Y, Toh S, Funaguma T. Morphological and antioxidant responses of Nopalea cochenillifera cv. Maya (edible Opuntia sp. "Kasugai Saboten") to chilling acclimatization. JOURNAL OF PLANT RESEARCH 2023; 136:211-225. [PMID: 36690846 PMCID: PMC9988806 DOI: 10.1007/s10265-023-01437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
To clarify the wintering ability of the cactus Nopalea cochenillifera cv. Maya (edible Opuntia sp., common name "Kasugai Saboten"), we investigated the effects of temperature and antioxidant capacity on chilling acclimatization. We analyzed the anatomy of cladode chlorenchyma tissue of plants exposed to light under chilling. We found that chilling acclimatization can be achieved by exposure to approximately 15 °C for 2 weeks and suggest that it is affected by whether or not antioxidant capacity can recover. The overwintering cacti had the thinnest cuticle but firm cuticular wax, which is important in the acquisition of low temperature tolerance under strong light. In cacti with severe chilling injury, round swollen nuclei with clumping chloroplasts were localized in the upper part (axial side) of the cell, as though pushed up by large vacuoles in the lower part. In overwintering cacti, chloroplasts were arranged on the lateral side of the cell as in control plants, but they formed pockets: invaginations with a thin layer of chloroplast stroma that surrounded mitochondria and peroxisomes. Specific cellular structural changes depended on the degree of chilling stress and provide useful insights linking chloroplast behavior and structural changes to the environmental stress response.
Collapse
Affiliation(s)
- Ayumu Kondo
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan.
| | - Masashi Ito
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Yusaku Takeda
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Yuka Kurahashi
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Shigeo Toh
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| | - Toru Funaguma
- Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya, 468-8502, Japan
| |
Collapse
|
132
|
Molina I, Bueno A, Heredia A, Domínguez E. Editorial: Plant cuticle: From biosynthesis to ecological functions. FRONTIERS IN PLANT SCIENCE 2023; 14:1154255. [PMID: 36875608 PMCID: PMC9975735 DOI: 10.3389/fpls.2023.1154255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Isabel Molina
- Department of Biology, School of Life Sciences and the Environment, Algoma University, Sault Ste Marie, ON, Canada
| | - Amauri Bueno
- Chair of Botany II – Ecophysiology and Vegetation Ecology, Julius von Sachs Institute of Biological Sciences, University of Würzburg, Würzburg, Germany
| | - Antonio Heredia
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Eva Domínguez
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Málaga, Spain
| |
Collapse
|
133
|
Examination of Different Sporidium Numbers of Ustilago maydis Infection on Two Hungarian Sweet Corn Hybrids' Characteristics at Vegetative and Generative Stages. Life (Basel) 2023; 13:life13020433. [PMID: 36836790 PMCID: PMC9967947 DOI: 10.3390/life13020433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Corn smut is one of the major diseases in corn production. The cob infection causes high economic and quality loss. This research investigated the effects of three different concentrations of corn smut infection (2500, 5000, and 10,000 sporidia/mL) on two Hungarian sweet corn hybrids (Desszert 73 and Noa). Plants were infected at the vegetative (V4-V5) and the generative (V7) stages. The effects of the corn smut infection were evaluated at 7 and 14 days after the pathogen infection (DAPI) at vegetative and at 21 DAPI at generative stages. The photosynthetic pigments (relative chlorophyll, chlorophyll-a and b, and carotenoids), malondialdehyde (MDA), and proline concentration, activities of the antioxidant enzymes [ascorbate peroxidase (APX), guaiacol peroxidase (POX), and superoxide dismutase (SOD)], morphological characteristics (plant height, stem and cob diameter, cob length, cob and kernel weights), mineral contents (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, P, Pb, S, Sr, and Zn), and quality parameters (dry matter, fiber, fat, ash, nitrogen, and protein) were measured. At both sampling times (7 and 14 DAPI) in both hybrids, the corn smut infection reduced the photosynthetic pigments (relative chlorophyll, chlorophylls-a, and b, and carotenoids) irrespective of the spore concentration. Under the same conditions, the MDA and proline contents, as well as the activities of APX, POX, and SOD increased at both sampling times. The negative effects of the corn smut infection were also observed at the generative stage. Only the 10,000 sporidia/mL of corn smut caused symptoms (tumor growth) on the cobs of both hybrids at 21 DAPI. Similarly, this treatment impacted adversely the cob characteristics (reduced cob length, kernel weight, and 100 grains fresh and dry weight) for both hybrids. In addition, crude fat and protein content, Mg, and Mn concentration of grains also decreased in both hybrids while the concentration of Al and Ca increased. Based on these results, the sweet corn hybrids were more susceptible to corn smut at the vegetative stage than at the generative stage.
Collapse
|
134
|
Karlsson ME, Hellström M, Flöhr A, Bergstrand KJ, Alsanius BW. The power of light: Impact on the performance of biocontrol agents under minimal nutrient conditions. Front Microbiol 2023; 14:1087639. [PMID: 36819051 PMCID: PMC9932321 DOI: 10.3389/fmicb.2023.1087639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Background The spectral distribution of light (different wavelength) has recently been identified as an important factor in the dynamics and function of leaf-associated microbes. This study investigated the impact of different wavelength on three commercial biocontrol agents (BCA): Bacillus amyloliquefaciens (BA), Pseudomonas chlororaphis (PC), and Streptomyces griseoviridis (SG). Methods The impact of light exposure on sole carbon source utilization, biofilm formation, and biosurfactant production by the selected BCA was studied using phenotypic microarray (PM) including 190 sole carbon sources (OmniLog®, PM panels 1 and 2). The BCA were exposed to five monochromatic light conditions (420, 460, 530, 630, and 660 nm) and darkness during incubation, at an intensity of 50 μmol m-2 s-1. Results Light exposure together with specific carbon source increased respiration in all three BCA. Different wavelengths of light influenced sole carbon utilization for the different BCA, with BA and PC showing increased respiration when exposed to wavelengths within the blue spectrum (420 and 460 nm) while respiration of selected carbon sources by SG increased in the presence of red light (630 and 660 nm). Only one carbon source (capric acid) generated biosurfactant production in all three BCA. A combination of specific wavelength of light and sole carbon source increased biofilm formation in all three BCA. BA showed significantly higher biofilm formation when exposed to blue (460 nm) and green (530 nm) light and propagated in D-sucrose, D-fructose, and dulcitol. PC showed higher biofilm formation when exposed to blue light. Biofilm formation by SG increased when exposed to red light (630 nm) and propagated in citraconic acid. Conclusion To increase attachment and success in BCA introduced into the phyllosphere, a suitable combination of light quality and nutrient conditions could be used.
Collapse
|
135
|
Khoudi H. SHINE clade of ERF transcription factors: A significant player in abiotic and biotic stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:77-88. [PMID: 36603451 DOI: 10.1016/j.plaphy.2022.12.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
SHINE (SHN) clade transcription factors (TFs) represents a subfamily of APETALA2/ethylene-responsive factor (AP2/ERF) proteins. The latter, is characterized by its responsiveness to the phytohormone ethylene and the presence of AP2 DNA-binding domain. They are involved in many biological processes and in responses to different environmental constraints. SHN TFs were among the first identified regulators of cuticle formation. Cuticle plays crucial role in plant tolerance to drought, salinity and high temperature as well as in defense against pathogens. In addition, SHN were shown to be involved in the regulation of stomatal development which influences resistance to drought and diseases. Interestingly, recent studies have also shown that SHN TFs are involved in mediating the beneficial effects of arbuscular mycorrhizal fungi (AMF) as well as disease resistance conferred by nanoparticles. To fulfill their roles, SHN TFs are controlled upstream by other TFs and they control, in their turn, different downstream genes. In this review, we highlight the role of SHN TFs in different abiotic and biotic stresses through their involvement in cuticle biosynthesis, stomatal development and molecular regulation of biochemical and physiological traits. In addition, we discuss the regulation of SHN TFs by plant hormones and their influence on hormone biosynthesis and signaling pathways. Knowledge of this complex regulation can be put into contribution to increase multiple abiotic stress tolerances through transgenesis, gene editing and classical breeding.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Route Sidi Mansour Km 6, B.P'1177', 3018, Sfax, Tunisia.
| |
Collapse
|
136
|
Wang XN, Yang F, Zhang JC, Ren YR, An JP, Chang DY, Wang XF, You CX. Ectopic expression of MmCYP1A1, a mouse cytochrome P450 gene, positively regulates stress tolerance in apple calli and Arabidopsis. PLANT CELL REPORTS 2023; 42:433-448. [PMID: 36693991 DOI: 10.1007/s00299-022-02969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Ectopic expression of MmCYP1A1 gene from Mus musculus in apple calli and Arabidopsis increased the levels of melatonin and 6-hydroxymelatonin, and improved their stress resistance. Melatonin occurs widely in organisms, playing a key regulatory role. CYP1A1 is a cytochrome P450 monooxygenase, involved in the melatonin metabolism, and is responsible for the synthesis of 6-hydroxymelatonin from melatonin. Melatonin and 6-hydroxymelatonin have strong antioxidant activities in animals. Here, we cloned MmCYP1A1 from Mus musculus and found that ectopic expression of MmCYP1A1 improved the levels of melatonin and 6-hydroxymelatonin in transgenic apple calli and Arabidopsis. Subsequently, we observed that MmCYP1A1 increased the tolerance of transgenic apple calli and Arabidopsis to osmotic stress simulated by polyethylene glycol 6000 (PEG 6000), as well as resistance of transgenic Arabidopsis to drought stress. Further, the number of lateral roots of MmCYP1A1 transgenic Arabidopsis were enhanced significantly after PEG 6000 treatment. The expression of MmCYP1A1 remarkably reduced malondialdehyde (MDA) content, electrolyte leakage, accumulation of H2O2 and O2- during stress treatment. Moreover, MmCYP1A1 enhanced stress tolerance in apple calli and Arabidopsis by increasing the expression levels of resistance genes. MmCYP1A1 also promoted stomatal closure in transgenic Arabidopsis to reduce leaf water loss during drought. Our results indicate that MmCYP1A1 plays a key role in plant stress tolerance, which may provide a reference for future plant stress tolerance studies.
Collapse
Affiliation(s)
- Xiao-Na Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Fei Yang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Jiu-Cheng Zhang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Yi-Ran Ren
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Jian-Ping An
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China
| | - Da-Yong Chang
- Yantai Goodly Biological Technology Co., Ltd, Yan-Tai, 241003, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, 271018, Tai-An, China.
| |
Collapse
|
137
|
Feng Z, Liang X, Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M, Xu K, Mostofa MG, Ha CV, Mochida K, Tian C, Tanaka M, Seki M, Liang Z, Miao Y, Tran LSP, Li W. SUPPRESSOR of MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) Negatively Regulate Drought Resistance in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1900-1913. [PMID: 35681253 DOI: 10.1093/pcp/pcac080] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Recent investigations in Arabidopsis thaliana suggest that SUPPRESSOR of MORE AXILLARY GROWTH 2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) are negative regulators of karrikin (KAR) and strigolactone (SL) signaling during plant growth and development, but their functions in drought resistance and related mechanisms of action remain unclear. To understand the roles and mechanisms of SMAX1 and SMXL2 in drought resistance, we investigated the drought-resistance phenotypes and transcriptome profiles of smax1 smxl2 (s1,2) double-mutant plants in response to drought stress. The s1,2 mutant plants showed enhanced drought-resistance and lower leaf water loss when compared with wild-type (WT) plants. Transcriptome comparison of rosette leaves from the s1,2 mutant and the WT under normal and dehydration conditions suggested that the mechanism related to cuticle formation was involved in drought resistance. This possibility was supported by enhanced cuticle formation in the rosette leaves of the s1,2 mutant. We also found that the s1,2 mutant plants were more sensitive to abscisic acid in assays of stomatal closure, cotyledon opening, chlorophyll degradation and growth inhibition, and they showed a higher reactive oxygen species detoxification capacity than WT plants. In addition, the s1,2 mutant plants had longer root hairs and a higher root-to-shoot ratio than the WT plants, suggesting that the mutant had a greater capacity for water absorption than the WT. Taken together, our results indicate that SMAX1 and SMXL2 negatively regulate drought resistance, and disruption of these KAR- and SL-signaling-related genes may therefore provide a novel means for improving crop drought resistance.
Collapse
Affiliation(s)
- Zhonghui Feng
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- College of Life Science, Baicheng Normal University, No. 57, Zhongxing West Road, Taobei District, Baicheng 137000, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xiaohan Liang
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Hongtao Tian
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Yasuko Watanabe
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Kien Huu Nguyen
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Vietnam Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Vietnam
| | - Cuong Duy Tran
- Genetic Engineering Department, Agricultural Genetics Institute, Vietnamese Academy of Agricultural Science, Pham Van Dong Street, Hanoi 100000, Vietnam
| | - Mostafa Abdelrahman
- Botany Department, Faculty of Science, Aswan University, Aswan 81528, Egypt
- Molecular Biotechnology Program, Faculty of Science, Galala University, Suze, New Galala 43511, Egypt
| | - Kun Xu
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Chien Van Ha
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-tyo, Totsuka, Yokohama, 244-0813 Japan
- RIKEN Baton Zone Program, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Chunjie Tian
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Zhengwei Liang
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, 1006 Canton Ave, Lubbock, TX 79409, USA
| | - Weiqiang Li
- Jilin Daan Agro-ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, No. 4888 Shengbei Street, Changchun 130102, China
- State Key Laboratory of Cotton Biology, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, No. 85 Jinming Road, Kaifeng 475004, China
| |
Collapse
|
138
|
Huo X, Pan A, Lei M, Song Z, Chen Y, Wang X, Gao Y, Zhang J, Wang S, Zhao Y, Wang F, Zhang J. Genome-Wide Characterization and Functional Analysis of ABCG Subfamily Reveal Its Role in Cutin Formation in Cotton. Int J Mol Sci 2023; 24:ijms24032379. [PMID: 36768702 PMCID: PMC9916852 DOI: 10.3390/ijms24032379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
ATP-binding cassette transporter G (ABCG) has been shown to be engaged in export of broad-spectrum compounds with structural differences, but little is known concerning its role in cutin formation of cotton (Gossypium spp.). In this study, we conduct a genome-wide survey and detected 69, 71, 124 and 131 ABCG genes within G. arboretum, G. raimondii, G. hirsutum and G. barbadense, separately. The above ABCGs could be divided into four groups (Ia, Ib, Ic, II). Some ABCG genes such as GhABCG15, whose homologous gene transports cuticular lipid in Arabidopsis, was preferentially expressed in the development of fiber. A weighted gene co-expression network analysis (WGCNA) demonstrated that GhABCG expression was significantly associated with the amount of 16-Hydroxypalmitate (a main component of cutin precursor) in cotton fibers. Further, silencing of GhABCG15 by virus-induced gene silencing (VIGS) in cotton generated brightened and crinkled leaves as well as reduced thickness of cuticle and increased permeability. Chemical composition analysis showed the cutin content in GhABCG15-silenced leaves had decreased while the wax content had increased. Our results provide an insight for better understanding of the role of the Gossypium ABCG family and revealed the essential role of GhABCGs in cotton cutin formation.
Collapse
Affiliation(s)
- Xuehan Huo
- Life Science College, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ao Pan
- College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Mingyang Lei
- Life Science College, Shandong Normal University, Jinan 250358, China
| | - Zhangqiang Song
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yu Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Wang
- Life Science College, Shandong Normal University, Jinan 250358, China
| | - Yang Gao
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jingxia Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shengli Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanxiu Zhao
- Life Science College, Shandong Normal University, Jinan 250358, China
- Correspondence: (Y.Z.); (J.Z.)
| | - Furong Wang
- Life Science College, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jun Zhang
- Life Science College, Shandong Normal University, Jinan 250358, China
- Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
139
|
Hasanuzzaman M, Zhou M, Shabala S. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2023; 12:494. [PMID: 36771579 PMCID: PMC9919688 DOI: 10.3390/plants12030494] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
140
|
Datir S, Regan S. Advances in Physiological, Transcriptomic, Proteomic, Metabolomic, and Molecular Genetic Approaches for Enhancing Mango Fruit Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20-34. [PMID: 36573879 DOI: 10.1021/acs.jafc.2c05958] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Mango (Mangifera indica L.) is a nutritionally important fruit of high nutritive value, delicious in taste with an attractive aroma. Due to their antioxidant and therapeutic potential, mango fruits are receiving special attention in biochemical and pharmacognosy-based studies. Fruit quality determines consumer's acceptance, and hence, understanding the physiological, biochemical, and molecular basis of fruit development, maturity, ripening, and storage is essential. Transcriptomic, metabolomic, proteomic, and molecular genetic approaches have led to the identification of key genes, metabolites, protein candidates, and quantitative trait loci that are associated with enhanced mango fruit quality. The major pathways that determine the fruit quality include amino acid metabolism, plant hormone signaling, carbohydrate metabolism and transport, cell wall biosynthesis and degradation, flavonoid and anthocyanin biosynthesis, and carotenoid metabolism. Expression of the polygalacturonase, cutin synthase, pectin methyl esterase, pectate lyase, β-galactosidase, and ethylene biosynthesis enzymes are related to mango fruit ripening, flavor, firmness, softening, and other quality processes, while genes involved in the MAPK signaling pathway, heat shock proteins, hormone signaling, and phenylpropanoid biosynthesis are associated with diseases. Metabolomics identified volatiles, organic acids, amino acids, and various other compounds that determine the characteristic flavor and aroma of the mango fruit. Molecular markers differentiate the mango cultivars based on their geographical origins. Genetic linkage maps and quantitative trait loci studies identified regions in the genome that are associated with economically important traits. The review summarizes the applications of omics techniques and their potential applications toward understanding mango fruit physiology and their usefulness in future mango breeding.
Collapse
Affiliation(s)
- Sagar Datir
- Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
- The Naoroji Godrej Centre for Plant Research, Shindewadi, Shirwal, Maharashtra - 412801 India
| | - Sharon Regan
- Biology Department, Queen's University, Kingston, Ontario, CanadaK7L 3N6
| |
Collapse
|
141
|
Tessmer MA, Ribeiro BG, Kluge RA, Salvador A, Appezzato-da-Glória B. Characterization of the Epidermis and Cuticle of the Cashew Pseudofruit during Its Development and Maturation. PLANTS (BASEL, SWITZERLAND) 2023; 12:293. [PMID: 36679007 PMCID: PMC9866660 DOI: 10.3390/plants12020293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The epidermis and cuticle play an important role in reducing dehydration and protecting the cashew pseudofruit in both the production environment and the postharvest stage. This study analyzes the alterations on the epidermis and cuticle of CCP 76 cashew pseudofruits harvested in five developmental and maturation stages (S1, S2, S3, S4, and S5). The epidermis and cuticle of the samples were analyzed under light microscopy (LM) (quantitative analysis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The epidermal cells at S3 reached maximum outer periclinal wall thickness, which reduced during ripening (S4 and S5), while the cuticle increased in thickness during the same period. These changes coincided with the rapid initial growth of the cashew pseudofruit when the epidermis and cuticle need to accompany the expansion of internal tissues. At the ultrastructural level, lipid material is transported via vesicles through the cell wall to the cuticle, increasing its thickness. Epicuticular waxes, previously deposited as plates and globules, began to develop an amorphous shape during maturation. This process possibly occurs due to changes in wax composition that can be related to the development of greasiness on the fruit skin. These findings provide a better understanding of cashew pseudofruit skin, which will aid future studies and strategies to preserve quality during the postharvest stage.
Collapse
Affiliation(s)
- Magda Andréia Tessmer
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Bruno Geraldelli Ribeiro
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Ricardo Alfredo Kluge
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| | - Alejandra Salvador
- Postharvest Department, Instituto Valenciano de Investigaciones Agrarias, 46113 Valencia, Spain
| | - Beatriz Appezzato-da-Glória
- Biological Science Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil
| |
Collapse
|
142
|
Ramakrishna P. Peeling back the layers: Raman imaging reveals microchemistry of tomato cuticle during development. PLANT PHYSIOLOGY 2023; 191:6-8. [PMID: 36303323 PMCID: PMC9806575 DOI: 10.1093/plphys/kiac504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Priya Ramakrishna
- Laboratory for Biological Geochemistry, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
143
|
Wu X, Moyne AL, Ramos TDM, Harris LJ, DiCaprio E. Impact of irrigation water quality on human norovirus surrogate survival during leafy green production. FRONTIERS IN PLANT SCIENCE 2023; 14:1128579. [PMID: 37077630 PMCID: PMC10106680 DOI: 10.3389/fpls.2023.1128579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Introduction The impact of water quality on the survival of human norovirus (NoV) was determined in irrigation water field run-off (tail water) and well water from a representative Central Coast vegetable production site in the Salinas Valley, California. Methods Tail water, well water, and ultrapure water samples were inoculated separately with two surrogate viruses for human NoV-Tulane virus (TV) and murine norovirus (MNV)-to achieve a titer of 1×105 plaque forming units (PFU)/ml. Samples were stored at 11, 19, and 24°C for 28 days. Additionally, inoculated water was applied to soil collected from a vegetable production site in the Salinas Valley or to the surface of growing romaine lettuce leaves, and virus infectivity was evaluated for 28 days in a growth chamber. Results Virus survival was similar for water stored at 11, 19, and 24°C and there was no difference in infectivity based on water quality. After 28 days, a maximum 1.5 log reduction was observed for both TV and MNV. TV decreased by 1.97-2.26 log and MNV decreased by 1.28- 1.48 logs after 28 days in soil; infectivity was not influenced by water type. Infectious TV and MNV were recovered from lettuce surfaces for up to 7 and 10 days after inoculation, respectively. Across the experiments there was no significant impact of water quality on the stability of the human NoV surrogates. Discussion Overall, the human NoV surrogates were highly stable in water with a less than 1.5 log reduction over 28 days and no difference observed based on the water quality. In soil, the titer of TV declined by approximately 2 logs over 28 days, while MNV declined by 1 log during the same time interval, suggesting surrogate-specific inactivation dynamics in the soil tested in this study. A 5-log reduction in MNV (day 10 post inoculation) and TV (day 14 post inoculation) was observed on lettuce leaves, and the inactivation kinetics were not significantly impacted by the quality of water used. These results suggest that human NoV would be highly stable in water, and the quality of the water (e.g., nutrient content, salinity, and turbidity) does not significantly impact viral infectivity.
Collapse
Affiliation(s)
- Xi Wu
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Anne-laure Moyne
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States
| | - Thais De Melo Ramos
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| | - Linda J. Harris
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States
| | - Erin DiCaprio
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
- *Correspondence: Erin DiCaprio,
| |
Collapse
|
144
|
Kong F, Yang L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front Microbiol 2023; 14:1122947. [PMID: 36876088 PMCID: PMC9975269 DOI: 10.3389/fmicb.2023.1122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Plants, as sessile organisms, are constantly exposed to pathogens in nature. Plants rely on physical barriers, constitutive chemical defenses, and sophisticated inducible immunity to fight against pathogens. The output of these defense strategies is highly associated with host development and morphology. Successful pathogens utilize various virulence strategies to colonize, retrieve nutrients, and cause disease. In addition to the overall defense-growth balance, the host-pathogen interactions often lead to changes in the development of specific tissues/organs. In this review, we focus on recent advances in understanding the molecular mechanisms of pathogen-induced changes in plants' development. We discuss that changes in host development could be a target of pathogen virulence strategies or an active defense strategy of plants. Current and ongoing research about how pathogens shape plant development to increase their virulence and causes diseases could give us novel views on plant disease control.
Collapse
Affiliation(s)
- Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| |
Collapse
|
145
|
Mani M, Mathiyazhagan C, Dey A, Faisal M, Alatar AA, Alok A, Shekhawat MS. Micro-morpho-anatomical transitions at various stages of in vitro development of Crinum malabaricum Lekhak and Yadav: A critically endangered medicinal plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:142-151. [PMID: 36040406 DOI: 10.1111/plb.13464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Crinum malabaricum Lekhak & Yadav is a recently discovered and critically endangered aquatic bulbous plant of the family Amaryllidaceae. It gained attention as a wild source of the acetylcholinesterase inhibiting alkaloid 'galanthamine' used to treat Alzheimer and Parkinson diseases. The bulbs of this plant contain the highest amount of galanthamine among Crinum species. In vitro regeneration systems were developed to produce quality uniform plantlets of C. malabaricum. Bright field light microscopy was used to analyse micro-morpho-anatomical developments taking place in the leaves and roots during in vitro, ex vitro and in vivo transitions of plantlets. Leaves and roots of plants raised in vitro possessed a higher degree of microscopic structural anomalies, such as underdeveloped epicuticular wax deposition, immature and non-functional stomata, more aquiferous parenchyma with a reduced lumen. Roots developed in vitro were characterized by extremely large, uneven cortical cells and reduced intercellular spaces. The vascular tissues were under-developed and only primary vascular tissues were observed. As a result of ex vitro acclimation, there was a significant acceleration in the improvement of tissue systems in leaves and roots. Such plantlets can tolerate elevated temperatures and light under in vivo conditions. Thus, the microscopic evaluation of the structural trajectory in different stages of plantlet development provides an understanding of the acclimation process and structural adaptations, which could help enhance survival of in vitro raised plantlets under ex vitro and in vivo conditions.
Collapse
Affiliation(s)
- M Mani
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
- Department of Botany, Siddha Clinical Research Unit, Central Council for Research in Siddha, Palayamkottai, Tamil Nadu, India
| | - C Mathiyazhagan
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| | - A Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - M Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A A Alatar
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A Alok
- Department of Plant Pathology, University of Minnesota, Twin cities, Saint Paul, USA
| | - M S Shekhawat
- Biotechnology Unit, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Puducherry, India
| |
Collapse
|
146
|
Zhao S, Yan F, Liu Y, Sun M, Wang Y, Li J, Zhang X, Yang X, Wang Q. Genome-wide identification and expression analysis of diacylglycerol acyltransferase genes in soybean ( Glycine max). PeerJ 2023; 11:e14941. [PMID: 36968000 PMCID: PMC10035420 DOI: 10.7717/peerj.14941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023] Open
Abstract
Background Soybean (Glycine max) is a major protein and vegetable oil source. In plants, diacylglycerol acyltransferase (DGAT) can exert strong flux control, which is rate-limiting for triacylglycerol biosynthesis in seed oil formation. Methods Here, we identified soybean DGAT genes via a bioinformatics method, thereby laying a solid foundation for further research on their function. Based on our bioinformatics analyses, including gene structure, protein domain characteristics, and phylogenetic analysis, 26 DGAT putative gene family members unevenly distributed on 12 of the 20 soybean chromosomes were identified and divided into the following four groups: DGAT1, DGAT2, WS/DGAT, and cytoplasmic DGAT. Results The Ka/Ks ratio of most of these genes indicated a significant positive selection pressure. DGAT genes exhibited characteristic expression patterns in soybean tissues. The differences in the structure and expression of soybean DGAT genes revealed the diversity of their functions and the complexity of soybean fatty acid metabolism. Our findings provide important information for research on the fatty acid metabolism pathway in soybean. Furthermore, our results will help identify candidate genes for potential fatty acid-profile modifications to improve soybean seed oil content. Conclusions This is the first time that in silico studies have been used to report the genomic and proteomic characteristics of DGAT in soybean and the effect of its specific expression on organs, age, and stages.
Collapse
|
147
|
Vráblová M, Smutná K, Koutník I, Marková D, Vrábl D, Górecki KM, Žebrák R. A novel approach for measuring membrane permeability for organic compounds via surface plasmon resonance detection. CHEMOSPHERE 2023; 312:137165. [PMID: 36356810 DOI: 10.1016/j.chemosphere.2022.137165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Well-known methods for measuring permeability of membranes include static or flow diffusion chambers. When studying the effects of organic compounds on plants, the use of such model systems allows to investigate xenobiotic behavior at the cuticular barrier level and obtain an understanding of the initial penetration processes of these substances into plant leaves. However, the use of diffusion chambers has disadvantages, including being time-consuming, requiring sampling, or a sufficiently large membrane area, which cannot be obtained from all types of plants. Therefore, we propose a new method based on surface plasmon resonance imaging (SPRi) to enable rapid membrane permeability evaluation. This study presents the methodology for measuring permeability of isolated cuticles for organic compounds via surface plasmon resonance detection, where the selected model analyte was the widely used pesticide metazachlor. Experiments were performed on the cuticles of Ficus elastica, Citrus pyriformis, and an artificial PES membrane, which is used in passive samplers for the detection of xenobiotics in water and soils. The average permeability for metazachlor was 5.23 × 10-14 m2 s-1 for C. pyriformis, 1.34 × 10-13 m2 s-1 for F. elastica, and 7.74 × 10-12 m2 s-1 for the PES membrane. We confirmed that the combination of a flow-through diffusion cell and real-time optical detection of transposed molecules represents a promising method for determining the permeability of membranes to xenobiotics occurring in the environment. This is necessary for determining a pesticide dosage in agriculture, selecting suitable membranes for passive samplers in analytics, testing membranes for water treatment, or studying material use of impregnated membranes.
Collapse
Affiliation(s)
- Martina Vráblová
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Kateřina Smutná
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Ivan Koutník
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Dominika Marková
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; VSB-Technical University of Ostrava, Faculty of Materials Science and Technology, 17. listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Daniel Vrábl
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic; University of Ostrava, Faculty of Science, Chittussiho 10, 710 00, Ostrava, Czech Republic.
| | - Kamil Maciej Górecki
- VSB-Technical University of Ostrava, CEET, Institute of Environmental Technology, 17.listopadu 15, 708 00, Ostrava, Czech Republic.
| | - Radim Žebrák
- Dekonta Inc., Dřetovice 109, 273 42, Stehelčeves, Czech Republic.
| |
Collapse
|
148
|
Zhu F, Sun Y, Jadhav SS, Cheng Y, Alseekh S, Fernie AR. The Plant Metabolic Changes and the Physiological and Signaling Functions in the Responses to Abiotic Stress. Methods Mol Biol 2023; 2642:129-150. [PMID: 36944876 DOI: 10.1007/978-1-0716-3044-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global climate change has altered, and will further alter, rainfall patterns and temperatures likely causing more frequent drought and heat waves, which will consequently exacerbate abiotic stresses of plants and significantly decrease the yield and quality of crops. On the one hand, the global demand for food is ever-increasing owing to the rapid increase of the human population. On the other hand, metabolic responses are one of the most important mechanisms by which plants adapt to and survive to abiotic stresses. Here we therefore summarize recent progresses including the plant primary and secondary metabolic responses to abiotic stresses and their function in plant resistance acting as antioxidants, osmoregulatory, and signaling factors, which enrich our knowledge concerning commonalities of plant metabolic responses to abiotic stresses, including their involvement in signaling processes. Finally, we discuss potential methods of metabolic fortification of crops in order to improve their abiotic stress tolerance.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yuming Sun
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Sagar Sudam Jadhav
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria.
| |
Collapse
|
149
|
Lin SR, Lin YH, Ariyawansa HA, Chang YC, Yu SY, Tsai I, Chung CL, Hung TH. Analysis of the Pathogenicity and Phylogeny of Colletotrichum Species Associated with Brown Blight of Tea ( Camellia sinensis) in Taiwan. PLANT DISEASE 2023; 107:97-106. [PMID: 35657715 DOI: 10.1094/pdis-03-22-0509-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brown blight, a destructive foliar disease of tea, has become a highly limiting factor for tea cultivation in Taiwan. To understand the population composition of the causal agents (Colletotrichum spp.), the fungal diversity in the main tea-growing regions all over Taiwan was surveyed from 2017 to 2019. A collection of 139 Colletotrichum isolates was obtained from 14 tea cultivars in 86 tea plantations. Phylogenic analysis using the ribosomal internal transcribed spacer, glutamine synthetase gene, Apn2-Mat1-2 intergenic spacer, β-tubulin, actin, calmodulin, and glyceraldehyde-3-phosphate dehydrogenase genes together with morphological characterization revealed three species associated with brown blight of tea; namely, Colletotrichum camelliae (95.6% of all isolates), C. fructicola (3.7%), and C. aenigma (0.7%). This is the first report of C. aenigma in Taiwan. The optimal growth temperatures were 25°C for C. camelliae and 25 and 30°C for C. fructicola and C. aenigma. Although C. fructicola and C. aenigma were more adapted to high temperature, C. camelliae was the most pathogenic across different temperatures. Regardless of whether spore suspensions or mycelial discs were used, significantly larger lesions and higher disease incidences were observed for wounded than for nonwounded inoculation and for the third and fourth leaves than for the fifth leaves. Wounded inoculation of detached third and fourth tea leaves with mycelial discs was found to be a reliable and efficient method for assessing the pathogenicity of Colletotrichum spp. within 4 days. Preventive application of fungicides or biocontrol agents immediately after tea pruning and at a young leaf stage would help control the disease.
Collapse
Affiliation(s)
- Shiou-Ruei Lin
- Section of Tea Agronomy, Tea Research and Extension Station, Council of Agriculture, Taoyuan City 326011, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Ying-Hong Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan
| | - Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Yu-Ching Chang
- Section of Tea Agronomy, Tea Research and Extension Station, Council of Agriculture, Taoyuan City 326011, Taiwan
| | - Si-Ying Yu
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung County 912301, Taiwan
| | - Ichen Tsai
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| | - Ting-Hsuan Hung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei City 106319, Taiwan
| |
Collapse
|
150
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|