101
|
Wang H, Sun Y, Chang J, Zheng F, Pei H, Yi Y, Chang C, Dong CH. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling. PLANT MOLECULAR BIOLOGY 2016; 91:471-484. [PMID: 27097903 DOI: 10.1007/s11103-016-0482-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.
Collapse
Affiliation(s)
- Honglin Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yue Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jianhong Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Fangfang Zheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Haixia Pei
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yanjun Yi
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
102
|
Li YH, Wu QS, Huang X, Liu SH, Zhang HN, Zhang Z, Sun GM. Molecular Cloning and Characterization of Four Genes Encoding Ethylene Receptors Associated with Pineapple (Ananas comosus L.) Flowering. FRONTIERS IN PLANT SCIENCE 2016; 7:710. [PMID: 27252725 PMCID: PMC4878293 DOI: 10.3389/fpls.2016.00710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/09/2016] [Indexed: 05/29/2023]
Abstract
Exogenous ethylene, or ethephon, has been widely used to induce pineapple flowering, but the molecular mechanism behind ethephon induction is still unclear. In this study, we cloned four genes encoding ethylene receptors (designated AcERS1a, AcERS1b, AcETR2a, and AcETR2b). The 5' flanking sequences of these four genes were also cloned by self-formed adaptor PCR and SiteFinding-PCR, and a group of putative cis-acting elements was identified. Phylogenetic tree analysis indicated that AcERS1a, AcERS1b, AcETR2a, and AcETR2b belonged to the plant ERS1s and ETR2/EIN4-like groups. Quantitative real-time PCR showed that AcETR2a and AcETR2b (subfamily 2) were more sensitive to ethylene treatment compared with AcERS1a and AcERS1b (subfamily 1). The relative expression of AcERS1b, AcETR2a, and AcETR2b was significantly increased during the earlier period of pineapple inflorescence formation, especially at 1-9 days after ethylene treatment (DAET), whereas AcERS1a expression changed less than these three genes. In situ hybridization results showed that bract primordia (BP) and flower primordia (FP) appeared at 9 and 21 DAET, respectively, and flowers were formed at 37 DAET. AcERS1a, AcERS1b, AcETR2a, and AcETR2b were mainly expressed in the shoot apex at 1-4 DAET; thereafter, with the appearance of BP and FP, higher expression of these genes was found in these new structures. Finally, at 37 DAET, the expression of these genes was mainly focused in the flower but was also low in other structures. These findings indicate that these four ethylene receptor genes, especially AcERS1b, AcETR2a, and AcETR2b, play important roles during pineapple flowering induced by exogenous ethephon.
Collapse
Affiliation(s)
- Yun-He Li
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
- Key Laboratory of Tropical Fruit Biology, Ministry of AgricultureZhanjiang, China
| | - Qing-Song Wu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Xia Huang
- The Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Sheng-Hui Liu
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Hong-Na Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Zhi Zhang
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| | - Guang-Ming Sun
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural SciencesZhanjiang, China
| |
Collapse
|
103
|
Jensen L, Hegelund JN, Olsen A, Lütken H, Müller R. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers. BMC PLANT BIOLOGY 2016; 16:117. [PMID: 27215645 PMCID: PMC4877742 DOI: 10.1186/s12870-016-0786-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/14/2016] [Indexed: 05/04/2023]
Abstract
BACKGROUND The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers are sensitive to even minute concentrations of ethylene. RESULTS Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene signal transduction, specifically in Ethylene Response Sensor 2 (ERS2), Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 3- Like 1 and 2 (EIL1 and EIL2) homologous. Transcripts of ERS2, CTR1 and EIL1 were constitutively expressed in all species both throughout flower development and in response to ethylene. In contrast, EIL2 was found only in Cf and Cm. We identified a natural mutation in Cmeil2 causing a frameshift which resulted in difference in expression levels of EIL2, with more than 100-fold change between Cf and Cm in young flowers. CONCLUSIONS This study shows that the naturally occurring 7 bp frameshift discovered in Cmeil2, a key gene in the ethylene signaling pathway, correlates with ethylene insensitivity in flowers. We suggest that transfer of the eil2 mutation to other plant species will provide a novel tool to engineer ethylene insensitive flowers.
Collapse
Affiliation(s)
- Line Jensen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630 Taastrup, Denmark
| | - Josefine Nymark Hegelund
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630 Taastrup, Denmark
| | - Andreas Olsen
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630 Taastrup, Denmark
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630 Taastrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630 Taastrup, Denmark
| |
Collapse
|
104
|
Winterhagen P, Hagemann MH, Wünsche JN. Expression and interaction of the mango ethylene receptor MiETR1 and different receptor versions of MiERS1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:26-36. [PMID: 26993233 DOI: 10.1016/j.plantsci.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 06/05/2023]
Abstract
Different versions of the mango ethylene receptor MiERS1 were identified and the analysis indicates that, in addition to MiERS1, two short versions of this receptor (MiERS1m, MiERS1s), representing truncated proteins with central deletions of functional domains, are present in mango. The short receptor versions reveal a different expression pattern compared to MiERS1, and they are highly variably transcribed. With transient expression assays using fluorescent fusion proteins, the localisation and the interaction of the receptors were determined in leaf cells of the tobacco model. MiERS1, MiETR1, and the short MiERS1 receptor versions are anchored in the endoplasmic reticulum (ER) membrane and co-localise with each other and with an ER-marker. Furthermore, ectopic expression of the mango receptors appears to induce a re-organisation of the ER resulting in accumulation of ER bodies. Interaction assays suggest that both short MiERS1 receptor versions can bind to proteins located in the ER. Bi-molecular fluorescence complementation (BiFC) assays indicate, that MiERS1m may dimerise with itself and can also interact with MiERS1, but not with MiETR1. Further, it as found that MiETR1 can interact with MiERS1. Interaction of MiERS1s with the other ethylene receptors could not be detected, although it was located in the ER membrane system.
Collapse
Affiliation(s)
- Patrick Winterhagen
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany.
| | - Michael H Hagemann
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| | - Jens N Wünsche
- University of Hohenheim, Institute of Crop Science, Crop Physiology of Specialty Crops, Stuttgart, Germany
| |
Collapse
|
105
|
Poulios S, Vlachonasios KE. Synergistic action of histone acetyltransferase GCN5 and receptor CLAVATA1 negatively affects ethylene responses in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:905-18. [PMID: 26596766 DOI: 10.1093/jxb/erv503] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
GENERAL CONTROL NON-REPRESSIBLE 5 (GCN5) is a histone acetyltransferase (HAT) and the catalytic subunit of several multicomponent HAT complexes that acetylate lysine residues of histone H3. Mutants in AtGCN5 display pleiotropic developmental defects including aberrant meristem function. Shoot apical meristem (SAM) maintenance is regulated by CLAVATA1 (CLV1), a receptor kinase that controls the size of the shoot and floral meristems. Upon activation through CLV3 binding, CLV1 signals to the transcription factor WUSCHEL (WUS), restricting WUS expression and thus the meristem size. We hypothesized that GCN5 and CLV1 act together to affect SAM function. Using genetic and molecular approaches, we generated and characterized clv gcn5 mutants. Surprisingly, the clv1-1 gcn5-1 double mutant exhibited constitutive ethylene responses, suggesting that GCN5 and CLV signaling act synergistically to inhibit ethylene responses in Arabidopsis. This genetic and molecular interaction was mediated by ETHYLENE INSENSITIVE 3/ EIN3-LIKE1 (EIN3/EIL1) transcription factors. Our data suggest that signals from the CLV transduction pathway reach the GCN5-containing complexes in the nucleus and alter the histone acetylation status of ethylene-responsive genes, thus translating the CLV information to transcriptional activity and uncovering a link between histone acetylation and SAM maintenance in the complex mode of ethylene signaling.
Collapse
Affiliation(s)
- Stylianos Poulios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos E Vlachonasios
- Department of Botany, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
106
|
Pekárová B, Szmitkowska A, Dopitová R, Degtjarik O, Žídek L, Hejátko J. Structural Aspects of Multistep Phosphorelay-Mediated Signaling in Plants. MOLECULAR PLANT 2016; 9:71-85. [PMID: 26633861 DOI: 10.1016/j.molp.2015.11.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/16/2023]
Abstract
The multistep phosphorelay (MSP) is a central signaling pathway in plants integrating a wide spectrum of hormonal and environmental inputs and controlling numerous developmental adaptations. For the thorough comprehension of the molecular mechanisms underlying the MSP-mediated signal recognition and transduction, the detailed structural characterization of individual members of the pathway is critical. In this review we describe and discuss the recently known crystal and nuclear magnetic resonance structures of proteins acting in MSP signaling in higher plants, focusing particularly on cytokinin and ethylene signaling in Arabidopsis thaliana. We discuss the range of functional aspects of available structural information including determination of ligand specificity, activation of the receptor via its autophosphorylation, and downstream signal transduction through the phosphorelay. We compare the plant structures with their bacterial counterparts and show that although the overall similarity is high, the differences in structural details are frequent and functionally important. Finally, we discuss emerging knowledge on molecular recognition mechanisms in the MSP, and mention the latest findings regarding structural determinants of signaling specificity in the Arabidopsis MSP that could serve as a general model of this pathway in all higher plants.
Collapse
Affiliation(s)
- Blanka Pekárová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Agnieszka Szmitkowska
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Radka Dopitová
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Oksana Degtjarik
- Faculty of Science, Institute of Chemistry and Biochemistry, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Lukáš Žídek
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jan Hejátko
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
107
|
Liu X, Liu Y, Liu C, Guan M, Yang C. Identification of genes associated with male sterility in a mutant of white birch (Betula platyphylla Suk.). Gene 2015; 574:247-54. [PMID: 26260014 DOI: 10.1016/j.gene.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 08/06/2015] [Indexed: 11/15/2022]
Abstract
White birch (Betula platyphylla Suk.) is a monoecious tree species with unisexual flowers. In this study, we used a spontaneous mutant genotype that produced normal-like male (NLM) inflorescences and mutant male (MM) inflorescences at different locations within the tree to investigate the genes necessary for pollen development. A cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was used to identify genes differentially expressed between the two types of inflorescences. Of approximately 5000 transcript-derived fragments (TDFs) obtained, 323 were significantly differentially expressed, of which 141 were successfully sequenced. BLAST analyses revealed 51.8% of the sequenced TDFs showed significant homology with proteins of known or predicted functions, 10.6% showed significant homology with putative proteins without any known or predicted function, and the remaining 37.6% had no hits in the NCBI database. Further, in a functional categorization based on the BLAST analyses, the protein fate, metabolism, energy categories had in order the highest percentages of the proteins. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the known TDFs were mainly involved in metabolic (28.4%), signal transduction (23.5%) and folding, sorting and degradation (13.6%) pathways. Ten genes from the NLM and MM development stages in the mutant were analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). The information generated in this study can provide some useful clues to help understand male sterility in B. platyphylla.
Collapse
Affiliation(s)
- Xuemei Liu
- Northeast Forestry University, Harbin 150040, PR China
| | - Ying Liu
- Forestry Investigation and Planning Institute of Liaoning Province, Shenyang 110122, PR China
| | - Chuang Liu
- Northeast Forestry University, Harbin 150040, PR China
| | - Minxiao Guan
- Northeast Forestry University, Harbin 150040, PR China
| | - Chuanping Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
108
|
Xie W, Huang J, Liu Y, Rao J, Luo D, He M. Exploring potential new floral organ morphogenesis genes of Arabidopsis thaliana using systems biology approach. FRONTIERS IN PLANT SCIENCE 2015; 6:829. [PMID: 26528302 PMCID: PMC4602108 DOI: 10.3389/fpls.2015.00829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 09/22/2015] [Indexed: 05/24/2023]
Abstract
Flowering is one of the important defining features of angiosperms. The initiation of flower development and the formation of different floral organs are the results of the interplays among numerous genes. But until now, just fewer genes have been found linked with flower development. And the functions of lots of genes of Arabidopsis thaliana are still unknown. Although, the quartet model successfully simplified the ABCDE model to elaborate the molecular mechanism by introducing protein-protein interactions (PPIs). We still don't know much about several important aspects of flower development. So we need to discriminate even more genes involving in the flower development. In this study, we identified seven differentially modules through integrating the weighted gene co-expression network analysis (WGCNA) and Support Vector Machine (SVM) method to analyze co-expression network and PPIs using the public floral and non-floral expression profiles data of Arabidopsis thaliana. Gene set enrichment analysis was used for the functional annotation of the related genes, and some of the hub genes were identified in each module. The potential floral organ morphogenesis genes of two significant modules were integrated with PPI information in order to detail the inherent regulation mechanisms. Finally, the functions of the floral patterning genes were elucidated by combining the PPI and evolutionary information. It was indicated that the sub-networks or complexes, rather than the genes, were the regulation unit of flower development. We found that the most possible potential new genes underlining the floral pattern formation in A. thaliana were FY, CBL2, ZFN3, and AT1G77370; among them, FY, CBL2 acted as an upstream regulator of AP2; ZFN3 activated the flower primordial determining gene AP1 and AP2 by HY5/HYH gene via photo induction possibly. And AT1G77370 exhibited similar function in floral morphogenesis, same as ELF3. It possibly formed a complex between RFC3 and RPS15 in cytoplasm, which regulated TSO1 and CPSF160 in the nucleus, to control the floral organ morphogenesis. This process might also be fine tuning by AT5G53360 in the nucleus.
Collapse
Affiliation(s)
| | | | | | | | - Da Luo
- *Correspondence: Da Luo and Miao He, School of Life Sciences, Sun Yat-sen University, No. 135 West Xingang RD, Guangzhou 510275, Guangdong, China ;
| | - Miao He
- *Correspondence: Da Luo and Miao He, School of Life Sciences, Sun Yat-sen University, No. 135 West Xingang RD, Guangzhou 510275, Guangdong, China ;
| |
Collapse
|
109
|
Rantong G, Evans R, Gunawardena AHLAN. Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis. PLANT MOLECULAR BIOLOGY 2015; 89:215-27. [PMID: 26286451 PMCID: PMC4579252 DOI: 10.1007/s11103-015-0356-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/31/2015] [Indexed: 05/22/2023]
Abstract
The lace plant, Aponogeton madagascariensis, is an aquatic monocot that forms perforations in its leaves as part of normal leaf development. Perforation formation occurs through developmentally regulated programmed cell death (PCD). The molecular basis of PCD regulation in the lace plant is unknown, however ethylene has been shown to play a significant role. In this study, we examined the role of ethylene receptors during perforation formation. We isolated three lace plant ethylene receptors AmERS1a, AmERS1b and AmERS1c. Using quantitative PCR, we examined their transcript levels at seven stages of leaf development. Through laser-capture microscopy, transcript levels were also determined in cells undergoing PCD and cells not undergoing PCD (NPCD cells). AmERS1a transcript levels were significantly lower in window stage leaves (in which perforation formation and PCD are occurring) as compared to all other leaf developmental stages. AmERS1a and AmERS1c (the most abundant among the three receptors) had the highest transcript levels in mature stage leaves, where PCD is not occurring. Their transcript levels decreased significantly during senescence-associated PCD. AmERS1c had significantly higher transcript levels in NPCD compared to PCD cells. Despite being significantly low in window stage leaves, AmERS1a transcripts were not differentially expressed between PCD and NPCD cells. The results suggested that ethylene receptors negatively regulate ethylene-controlled PCD in the lace plant. A combination of ethylene and receptor levels determines cell fate during perforation formation and leaf senescence. A new model for ethylene emission and receptor expression during lace plant perforation formation and senescence is proposed.
Collapse
Affiliation(s)
- Gaolathe Rantong
- Biology Department, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Rodger Evans
- Biology Department, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Arunika H L A N Gunawardena
- Biology Department, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
110
|
Biochemical and Structural Insights into the Mechanism of DNA Recognition by Arabidopsis ETHYLENE INSENSITIVE3. PLoS One 2015; 10:e0137439. [PMID: 26352699 PMCID: PMC4564277 DOI: 10.1371/journal.pone.0137439] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Gaseous hormone ethylene regulates numerous stress responses and developmental adaptations in plants by controlling gene expression via transcription factors ETHYLENE INSENSITIVE3 (EIN3) and EIN3-Like1 (EIL1). However, our knowledge regarding to the accurate definition of DNA-binding domains (DBDs) within EIN3 and also the mechanism of specific DNA recognition by EIN3 is limited. Here, we identify EIN3 82–352 and 174–306 as the optimal and core DBDs, respectively. Results from systematic biochemical analyses reveal that both the number of EIN3-binding sites (EBSs) and the spacing length between two EBSs affect the binding affinity of EIN3; accordingly, a new DNA probe which has higher affinity with EIN3 than ERF1 is also designed. Furthermore, we show that palindromic repeat sequences in ERF1 promoter are not necessary for EIN3 binding. Finally, we provide, to our knowledge, the first crystal structure of EIN3 core DBD, which contains amino acid residues essential for DNA binding and signaling. Collectively, these data suggest the detailed mechanism of DNA recognition by EIN3 and provide an in-depth view at molecular level for the transcriptional regulation mediated by EIN3.
Collapse
|
111
|
Yang C, Ma B, He SJ, Xiong Q, Duan KX, Yin CC, Chen H, Lu X, Chen SY, Zhang JS. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice. PLANT PHYSIOLOGY 2015; 169:148-65. [PMID: 25995326 PMCID: PMC4577385 DOI: 10.1104/pp.15.00353] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/18/2015] [Indexed: 05/19/2023]
Abstract
Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K(+) TRANSPORTER2;1 expression and Na(+) uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops.
Collapse
Affiliation(s)
- Chao Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si-Jie He
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing Xiong
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai-Xuan Duan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
112
|
Bakshi A, Wilson RL, Lacey RF, Kim H, Wuppalapati SK, Binder BM. Identification of Regions in the Receiver Domain of the ETHYLENE RESPONSE1 Ethylene Receptor of Arabidopsis Important for Functional Divergence. PLANT PHYSIOLOGY 2015; 169:219-32. [PMID: 26160962 PMCID: PMC4577405 DOI: 10.1104/pp.15.00626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/09/2015] [Indexed: 05/08/2023]
Abstract
Ethylene influences the growth and development of Arabidopsis (Arabidopsis thaliana) via five receptor isoforms. However, the ETHYLENE RESPONSE1 (ETR1) ethylene receptor has unique, and sometimes contrasting, roles from the other receptor isoforms. Prior research indicates that the receiver domain of ETR1 is important for some of these noncanonical roles. We determined that the ETR1 receiver domain is not needed for ETR1's predominant role in mediating responses to the ethylene antagonist, silver. To understand the structure-function relationship underlying the unique roles of the ETR1 receiver domain in the control of specific traits, we performed alanine-scanning mutagenesis. We chose amino acids that are poorly conserved and are in regions predicted to have altered tertiary structure compared with the receiver domains of the other two receptors that contain a receiver domain, ETR2 and ETHYLENE INSENSITIVE4. The effects of these mutants on various phenotypes were examined in transgenic, receptor-deficient Arabidopsis plants. Some traits, such as growth in air and growth recovery after the removal of ethylene, were unaffected by these mutations. By contrast, three mutations on one surface of the receiver domain rendered the transgene unable to rescue ethylene-stimulated nutations. Additionally, several mutations on another surface altered germination on salt. Some of these mutations conferred hyperfunctionality to ETR1 in the context of seed germination on salt, but not for other traits, that correlated with increased responsiveness to abscisic acid. Thus, the ETR1 receiver domain has multiple functions where different surfaces are involved in the control of different traits. Models are discussed for these observations.
Collapse
Affiliation(s)
- Arkadipta Bakshi
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Rebecca L Wilson
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Randy F Lacey
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Sai Keerthana Wuppalapati
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Genome Science and Technology Program (A.B., B.M.B.) and Department of Biochemistry, Cellular, and Molecular Biology (R.L.W., R.F.L., H.K., S.K.W., B.M.B.), University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
113
|
Bisson MMA, Groth G. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway. MOLECULAR PLANT 2015; 8:1165-74. [PMID: 25843012 DOI: 10.1016/j.molp.2015.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 05/13/2023]
Abstract
The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture.
Collapse
Affiliation(s)
- Melanie M A Bisson
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
114
|
Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4913-31. [PMID: 26022257 DOI: 10.1093/jxb/erv261] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Integrating important environmental signals with intrinsic developmental programmes is a crucial adaptive requirement for plant growth, survival, and reproduction. Key environmental cues include changes in several light variables, while important intrinsic (and highly interactive) regulators of many developmental processes include the phytohormones cytokinins (CKs) and ethylene. Here, we discuss the latest discoveries regarding the molecular mechanisms mediating CK/ethylene crosstalk at diverse levels of biosynthetic and metabolic pathways and their complex interactions with light. Furthermore, we summarize evidence indicating that multiple hormonal and light signals are integrated in the multistep phosphorelay (MSP) pathway, a backbone signalling pathway in plants. Inter alia, there are strong overlaps in subcellular localizations and functional similarities in components of these pathways, including receptors and various downstream agents. We highlight recent research demonstrating the importance of CK/ethylene/light crosstalk in selected aspects of plant development, particularly seed germination and early seedling development. The findings clearly demonstrate the crucial integration of plant responses to phytohormones and adaptive responses to environmental cues. Finally, we tentatively identify key future challenges to refine our understanding of the molecular mechanisms mediating crosstalk between light and hormonal signals, and their integration during plant life cycles.
Collapse
Affiliation(s)
- Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Tereza Dobisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Zuzana Gelová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Markéta Pernisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Siarhei Dabravolski
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
115
|
Abstract
Ethylene is a hormone involved in numerous aspects of growth, development, and responses to biotic and abiotic stresses in plants. Ethylene is perceived through its binding to endoplasmic reticulum-localized receptors that function as negative regulators of ethylene signaling in the absence of the hormone. In Arabidopsis thaliana, five structurally and functionally different ethylene receptors are present. These differ in their primary sequence, in the domains present, and in the type of kinase activity exhibited, which may suggest functional differences among the receptors. Whereas ethylene receptors functionally overlap to suppress ethylene signaling, certain other responses are controlled by specific receptors. In this review, I examine the nature of these receptor differences, how the evolution of the ethylene receptor gene family may provide insight into their differences, and how expression of receptors or their accessory proteins may underlie receptor-specific responses.
Collapse
|
116
|
Yang C, Lu X, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. MOLECULAR PLANT 2015; 8:495-505. [PMID: 25732590 DOI: 10.1016/j.molp.2015.01.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/16/2014] [Accepted: 01/06/2015] [Indexed: 05/18/2023]
Abstract
Ethylene as a gas phytohormone plays significant roles in the whole life cycle of plants, ranging from growth and development to stress responses. A linear ethylene signaling pathway has been established in the dicotyledonous model plant Arabidopsis. However, the ethylene signaling mechanism in monocotyledonous plants such as rice is largely unclear. In this review, we compare the ethylene response phenotypes of dark-grown seedlings of Arabidopsis, rice, and other monocotyledonous plants (maize, wheat, sorghum, and Brachypodium distachyon) and pinpoint that rice has a distinct phenotype of root inhibition but coleoptile promotion in etiolated seedlings upon ethylene treatment. We further summarize the homologous genes of Arabidopsis ethylene signaling components in these monocotyledonous plants and discuss recent progress. Although conserved in most aspects, ethylene signaling in rice has evolved new features compared with that in Arabidopsis. These analyses provide novel insights into the understanding of ethylene signaling in the dicotyledonous Arabidopsis and monocotyledonous plants, particularly rice. Further characterization of rice ethylene-responsive mutants and their corresponding genes will help us better understand the whole picture of ethylene signaling mechanisms in plants.
Collapse
Affiliation(s)
- Chao Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
117
|
Ge XM, Cai HL, Lei X, Zhou X, Yue M, He JM. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:138-50. [PMID: 25704455 DOI: 10.1111/tpj.12799] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 05/18/2023]
Abstract
Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene-induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild-type leaves, ethylene-triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene-induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene-triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1-3 in ethylene-induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1-1 and etr1-9 in ethylene-induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene-induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.
Collapse
Affiliation(s)
- Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; School of Life Sciences, Northwest University, Xi'an, 710069, China
| | | | | | | | | | | |
Collapse
|
118
|
Thongkum M, Burns P, Bhunchoth A, Warin N, Chatchawankanphanich O, van Doorn WG. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals. JOURNAL OF PLANT PHYSIOLOGY 2015; 176:96-100. [PMID: 25590685 DOI: 10.1016/j.jplph.2014.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 05/08/2023]
Abstract
We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects.
Collapse
Affiliation(s)
- Monthathip Thongkum
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand.
| | - Parichart Burns
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Nuchnard Warin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Thanon Phahonyothin, Tambon Khlong Nueng, Amphoe Khlong Luang, Pathum Thani 12120, Thailand
| | - Wouter G van Doorn
- Mann Laboratory, Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
119
|
Gallie DR. Appearance and elaboration of the ethylene receptor family during land plant evolution. PLANT MOLECULAR BIOLOGY 2015; 87:521-39. [PMID: 25682121 DOI: 10.1007/s11103-015-0296-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/11/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is perceived following binding to endoplasmic reticulum-localized receptors, which in Arabidopsis thaliana, include ETR1, ERS1, EIN4, ETR2, and ERS2. These receptors fall into two subfamilies based on conservation of features within their histidine kinase domain. Subfamily 1 contains ETR1 and ERS1 whereas subfamily 2 contains EIN4, ETR2, and ERS2. Because ethylene receptors are found only in plants, this raises questions of when each receptor evolved. Here it is shown that subfamily 1 receptors encoded by a multigene family are present in all charophytes examined, these being most homologous to ETR1 based on their evolutionary relationship as well as containing histidine kinase and receiver domains. In charophytes and Physcomitrella patens, one or more gene family members contain the intron characteristic of subfamily 2 genes, indicating the first step in subfamily 2 receptor evolution. ERS1 homologs appear in basal angiosperm species after Amborella trichopoda and, in some early and basal angiosperm species and monocots in general, it is the only subfamily 1 receptor present. Distinct EIN4 and ETR2 homologs appear only in core eudicots and ERS2 homologs appear only in the Brassicaceae, suggesting it is the most recent receptor to evolve. These findings show that a subfamily 1 receptor had evolved and a subfamily 2 receptor had begun to evolve in plants prior to the colonization of land and only these two existed up to the appearance of the first basal angiosperm. The appearance of ERS2 in the Brassicaceae suggests ongoing evolution of the ethylene receptor family.
Collapse
Affiliation(s)
- Daniel R Gallie
- Department of Biochemistry, University of California, Riverside, CA, 92521-0129, USA,
| |
Collapse
|
120
|
Wilson RL, Bakshi A, Binder BM. Loss of the ETR1 ethylene receptor reduces the inhibitory effect of far-red light and darkness on seed germination of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2014; 5:433. [PMID: 25221561 PMCID: PMC4147998 DOI: 10.3389/fpls.2014.00433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/13/2014] [Indexed: 05/18/2023]
Abstract
When exposed to far-red light followed by darkness, wild-type Arabidopsis thaliana seeds fail to germinate or germinate very poorly. We have previously shown that the ethylene receptor ETR1 (ETHYLENE RESPONSE1) inhibits and ETR2 stimulates seed germination of Arabidopsis during salt stress. This function of ETR1 requires the full-length receptor. These roles are independent of ethylene levels and sensitivity and are mainly mediated by a change in abscisic acid (ABA) sensitivity. In the current study we find that etr1-6 and etr1-7 loss-of-function mutant seeds germinate better than wild-type seeds after illumination with far-red light or when germinated in the dark indicating an inhibitory role for ETR1. Surprisingly, this function of ETR1 does not require the receiver domain. No differences between these mutants and wild-type are seen when germination proceeds after treatment with white, blue, green, or red light. Loss of any of the other four ethylene receptor isoforms has no measurable effect on germination after far-red light treatment. An analysis of the transcript abundance for genes encoding ABA and gibberellic acid (GA) metabolic enzymes indicates that etr1-6 mutants may produce more GA and less ABA than wild-type seeds after illumination with far-red light which correlates with the better germination of the mutants. Epistasis analysis suggests that ETR1 may genetically interact with the phytochromes (phy), PHYA and PHYB to control germination and growth. This study shows that of the five ethylene receptor isoforms in Arabidopsis, ETR1 has a unique role in modulating the effects of red and far-red light on plant growth and development.
Collapse
Affiliation(s)
| | | | - Brad M. Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
121
|
Schellingen K, Van Der Straeten D, Vandenbussche F, Prinsen E, Remans T, Vangronsveld J, Cuypers A. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression. BMC PLANT BIOLOGY 2014; 14:214. [PMID: 25082369 PMCID: PMC4236733 DOI: 10.1186/s12870-014-0214-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/24/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. RESULTS Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. CONCLUSIONS Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants.
Collapse
Affiliation(s)
- Kerim Schellingen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - Dominique Van Der Straeten
- Laboratory for Functional Plant Biology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Filip Vandenbussche
- Laboratory for Functional Plant Biology, Ghent University, Karel Lodewijk Ledeganckstraat 35, Ghent, 9000, Belgium
| | - Els Prinsen
- Laboratory of Plant Growth and Development, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Tony Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, Diepenbeek, 3590, Belgium
| |
Collapse
|
122
|
Wilson RL, Kim H, Bakshi A, Binder BM. The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress. PLANT PHYSIOLOGY 2014; 165:1353-1366. [PMID: 24820022 PMCID: PMC4081342 DOI: 10.1104/pp.114.241695] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of seed germination during salt stress. Specifically, loss of ETHYLENE RESPONSE1 (ETR1) or ETHYLENE INSENSITIVE4 (EIN4) leads to accelerated germination, loss of ETR2 delays germination, and loss of either ETHYLENE RESPONSE SENSOR1 (ERS1) or ERS2 has no measurable effect on germination. Epistasis analysis indicates that ETR1 and EIN4 function additively with ETR2 to control this trait. Interestingly, regulation of germination by ETR1 requires the full-length receptor. The differences in germination between etr1 and etr2 loss-of-function mutants under salt stress could not be explained by differences in the production of or sensitivity to ethylene, gibberellin, or cytokinin. Instead, etr1 loss-of-function mutants have reduced sensitivity to abscisic acid (ABA) and germinate earlier than the wild type, whereas etr2 loss-of-function mutants have increased sensitivity to ABA and germinate slower than the wild type. Additionally, the differences in seed germination on salt between the two mutants and the wild type are eliminated by the ABA biosynthetic inhibitor norflurazon. These data suggest that ETR1 and ETR2 have roles independent of ethylene signaling that affect ABA signaling and result in altered germination during salt stress.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Arkadipta Bakshi
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
123
|
Ságio SA, Barreto HG, Lima AA, Moreira RO, Rezende PM, Paiva LV, Chalfun-Junior A. Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway. PLANTA 2014; 239:951-963. [PMID: 24435496 DOI: 10.1007/s00425-014-2026-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
The plant hormone ethylene is involved in the regulation of a multitude of plant processes, ranging from seed germination to organ senescence. Ethylene induces fruit ripening in climacteric fruits, such as coffee, being directly involved in fruit ripening time and synchronization. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, this work aimed to characterize the putative members of the coffee (Coffea arabica) ethylene biosynthesis and signaling pathways, as well as to analyze the expression patterns of these members during fruit ripening of early (Catucaí 785-15) and late (Acauã) coffee cultivars. Reverse Transcription-qPCR analysis of the four biosynthesis genes (CaACS1-like; CaACO1-like; CaACO4-like e CaACO5-like) analyzed in this study showed that CaACO1-like and CaACO4-like displayed an expression pattern typically observed in climacteric fruits, being up-regulated during ripening. CaACS1-like gene expression was also up-regulated during fruit ripening of both cultivars, although in a much lesser extent when compared to the changes in CaACO1-like and CaACO4-like gene expression. CaACO5-like was only induced in raisin fruit and may be related to senescence processes. On the other hand, members of the ethylene signaling pathway (CaETR1-like, CaETR4-like, CaCTR2-like, CaEIN2-like, CaEIN3-like, CaERF1) showed slightly higher expression levels during the initial stages of development (green and yellow-green fruits), except for the ethylene receptors CaETR1-like and CaETR4-like, which were constitutively expressed and induced in cherry fruits, respectively. The higher ethylene production levels in Catucaí 785-15 fruits, indicated by the expression analysis of CaACO1-like and CaACO4-like, suggest that it promotes an enhanced CaETR4-like degradation, leading to an increase in ethylene sensitivity and consequently to an earliness in the ripening process of this cultivar. Ethylene production in Acauã fruits may not be sufficient to inactivate the CaETR4-like levels and thus ripening changes occur in a slower pace. Thus, the expression analysis of the ethylene biosynthesis and signaling genes suggests that ethylene is directly involved in the determination of the ripening time of coffee fruits, and CaACO1-like, CaACO4-like and CaETR4-like may display essential roles during coffee fruit ripening.
Collapse
Affiliation(s)
- Solange A Ságio
- Plant Molecular Physiology Laboratory, Biology Department, Federal University of Lavras (UFLA), s/n, Cx. P 3037-37200-000, Lavras, Minas Gerais, Brazil
| | | | | | | | | | | | | |
Collapse
|
124
|
Shahri W, Tahir I. Flower senescence: some molecular aspects. PLANTA 2014; 239:277-97. [PMID: 24178586 DOI: 10.1007/s00425-013-1984-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 10/14/2013] [Indexed: 05/08/2023]
|
125
|
How plants sense ethylene gas--the ethylene receptors. J Inorg Biochem 2014; 133:58-62. [PMID: 24485009 DOI: 10.1016/j.jinorgbio.2014.01.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/23/2022]
Abstract
Ethylene is a hormone that affects many processes important for plant growth, development, and responses to stresses. The first step in ethylene signal transduction is when ethylene binds to its receptors. Numerous studies have examined how these receptors function. In this review we summarize many of these studies and present our current understanding about how ethylene binds to the receptors. The biochemical output of the receptors is not known but current models predict that when ethylene binds to the receptors, the activity of the associated protein kinase, CTR1 (constitutive triple response1), is reduced. This results in downstream transcriptional changes leading to ethylene responses. We present a model where a copper cofactor is required and the binding of ethylene causes the receptor to pass through a transition state to become non-signaling leading to lower CTR1 activity.
Collapse
|
126
|
Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, Zhang B, Tang Z, Hughes E, Doerge RW, Hughes TJ, Ma J. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics 2014; 15:18. [PMID: 24410936 PMCID: PMC3893405 DOI: 10.1186/1471-2164-15-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. RESULTS A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. CONCLUSIONS This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.
Collapse
Affiliation(s)
- Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas D Baumann
- Department of Mathematics, University of Wisconsin – La Crosse, La Crosse, WI 54601, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Biao Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Zongxiang Tang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Elisa Hughes
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Teresa J Hughes
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- USDA-ARS Crop Production and Pest Control Research Unit, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
127
|
Lin LC, Chueh CM, Wang LC. Investigating the phytohormone ethylene response pathway by chemical genetics. Methods Mol Biol 2014; 1056:63-77. [PMID: 24306863 DOI: 10.1007/978-1-62703-592-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Conventional mutant screening in forward genetics research is indispensible to understand the biological operation behind any given phenotype. However, several issues, such as functional redundancy and lethality or sterility resulting from null mutations, frequently impede the functional characterization of genetic mutants. As an alternative approach, chemical screening with natural products or synthetic small molecules that act as conditional mutagens allows for identifying bioactive compounds as bioprobes to overcome the above-mentioned issues. Ethylene is the simplest olefin and is one of the major phytohormones playing crucial roles in plant physiology. Most of the current information on how ethylene works in plants came primarily from genetic studies of ethylene mutants identified by conventional genetic screening two decades ago. However, we lack a complete picture of functional interaction among components in the ethylene pathway and cross talk of ethylene with other phytohormones. Here, we describe our methodology for using chemical genetics to identify small molecules that interfere with the ethylene response. We set up a phenotype-based screening platform and a reporter gene-based system for verification of the hit compounds identified by chemical screening. We have successfully identified small molecules affecting the ethylene phenotype in etiolated seedlings and showed that a group of structurally similar compounds are novel inhibitors of ACC synthase, a rate-limiting enzyme in the ethylene biosynthesis pathway.
Collapse
Affiliation(s)
- Lee-Chung Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | |
Collapse
|
128
|
Cho YH, Yoo SD. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:733. [PMID: 25601870 PMCID: PMC4283510 DOI: 10.3389/fpls.2014.00733] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
The signaling of the plant hormone ethylene has been studied genetically, resulting in the identification of signaling components from membrane receptors to nuclear effectors. Among constituents of the hormone signaling pathway, functional links involving a putative mitogen-activated protein kinase kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) and a membrane transporter-like protein ETHYLENE INSENSITIVE2 (EIN2) have been missing for a long time. We now learn that EIN2 is cleaved and its C-terminal end moves to the nucleus upon ethylene perception at the membrane receptors, and then the C-terminal end of EIN2 in the nucleus supports EIN3-dependent ethylene-response gene expression. CTR1 kinase activity negatively controls the EIN2 cleavage process through direct phosphorylation. Despite the novel connection of CTR1 with EIN2 that explains a large portion of the missing links in ethylene signaling, our understanding still remains far from its completion. This focused review will summarize recent advances in the EIN3-dependent ethylene signaling mechanisms including CTR1-EIN2 functions with respect to EIN3 regulation and ethylene responses. This will also present several emerging issues that need to be addressed for the comprehensive understanding of signaling pathways of the invaluable plant hormone ethylene.
Collapse
Affiliation(s)
| | - Sang-Dong Yoo
- *Correspondence: Sang-Dong Yoo, Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anamro, Sungbuk-gu, Seoul 136-713, South Korea e-mail:
| |
Collapse
|
129
|
Yu Y, Wang J, Zhang Z, Quan R, Zhang H, Deng XW, Ma L, Huang R. Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Genet 2013; 9:e1004025. [PMID: 24348273 PMCID: PMC3861121 DOI: 10.1371/journal.pgen.1004025] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/29/2013] [Indexed: 11/19/2022] Open
Abstract
In the dark, etiolated seedlings display a long hypocotyl, the growth of which is rapidly inhibited when the seedlings are exposed to light. In contrast, the phytohormone ethylene prevents hypocotyl elongation in the dark but enhances its growth in the light. However, the mechanism by which light and ethylene signalling oppositely affect this process at the protein level is unclear. Here, we report that ethylene enhances the movement of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) to the nucleus where it mediates the degradation of LONG HYPOCOTYL 5 (HY5), contributing to hypocotyl growth in the light. Our results indicate that HY5 is required for ethylene-promoted hypocotyl growth in the light, but not in the dark. Using genetic and biochemical analyses, we found that HY5 functions downstream of ETHYLENE INSENSITIVE 3 (EIN3) for ethylene-promoted hypocotyl growth. Furthermore, the upstream regulation of HY5 stability by ethylene is COP1-dependent, and COP1 is genetically located downstream of EIN3, indicating that the COP1-HY5 complex integrates light and ethylene signalling downstream of EIN3. Importantly, the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) enriched the nuclear localisation of COP1; however, this effect was dependent on EIN3 only in the presence of light, strongly suggesting that ethylene promotes the effects of light on the movement of COP1 from the cytoplasm to the nucleus. Thus, our investigation demonstrates that the COP1-HY5 complex is a novel integrator that plays an essential role in ethylene-promoted hypocotyl growth in the light. It is well known that light suppresses hypocotyl growth in seedlings, while the phytohormone ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) enhance hypocotyl growth in the light. However, the mechanism by which light and ethylene oppositely affect this process at the protein level is unclear. Here, we demonstrate that ethylene enhances the movement of CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1) to the nucleus where it promotes the degradation of LONG HYPOCOTYL 5 (HY5) in the light, contributing to hypocotyl growth. Our data indicate that HY5 is required for ethylene-promoted hypocotyl growth in the light, but not in the dark. Using genetic and biochemical analyses, we found that HY5 functions downstream of ETHYLENE INSENSITIVE 3 (EIN3) during ethylene-promoted hypocotyl growth. Further, the regulation of HY5 stability by ethylene is COP1-dependent, and COP1 is genetically located downstream of EIN3, indicating that the COP1-HY5 complex integrates light and ethylene signalling downstream of EIN3. Importantly, ACC enriched the nuclear localisation of COP1 in an EIN3-dependent manner in the presence of light, suggesting that ethylene rescued the effects of light on the movement of COP1 from the cytoplasm to the nucleus. Thus, our investigation shows that the COP1-HY5 complex is a novel integrator that plays an essential role in ethylene-promoted hypocotyl growth in the light.
Collapse
Affiliation(s)
- Yanwen Yu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Juan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Zhijin Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Ruidang Quan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Haiwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ligeng Ma
- College of Life Science, Capital Normal University, Beijing, China
- * E-mail: (LM); (RH)
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- National Key Facility of Crop Gene Resources and Genetic Improvement, Beijing, China
- * E-mail: (LM); (RH)
| |
Collapse
|
130
|
Kim HG, Kwon SJ, Jang YJ, Nam MH, Chung JH, Na YC, Guo H, Park OK. GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling. PLANT PHYSIOLOGY 2013; 163:1776-91. [PMID: 24170202 PMCID: PMC3850204 DOI: 10.1104/pp.113.225649] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/27/2013] [Indexed: 05/19/2023]
Abstract
Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk.
Collapse
|
131
|
O’Brien JA, Benková E. Cytokinin cross-talking during biotic and abiotic stress responses. FRONTIERS IN PLANT SCIENCE 2013; 4:451. [PMID: 24312105 PMCID: PMC3833016 DOI: 10.3389/fpls.2013.00451] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 10/22/2013] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants have to be able to adapt to a continuously changing environment. Plants that perceive some of these changes as stress signals activate signaling pathways to modulate their development and to enable them to survive. The complex responses to environmental cues are to a large extent mediated by plant hormones that together orchestrate the final plant response. The phytohormone cytokinin is involved in many plant developmental processes. Recently, it has been established that cytokinin plays an important role in stress responses, but does not act alone. Indeed, the hormonal control of plant development and stress adaptation is the outcome of a complex network of multiple synergistic and antagonistic interactions between various hormones. Here, we review the recent findings on the cytokinin function as part of this hormonal network. We focus on the importance of the crosstalk between cytokinin and other hormones, such as abscisic acid, jasmonate, salicylic acid, ethylene, and auxin in the modulation of plant development and stress adaptation. Finally, the impact of the current research in the biotechnological industry will be discussed.
Collapse
Affiliation(s)
- José A. O’Brien
- Department of Plant Systems Biology, VIB, GentBelgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University GentBelgium
| | - Eva Benková
- Department of Plant Systems Biology, VIB, GentBelgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University GentBelgium
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| |
Collapse
|
132
|
Ma B, He SJ, Duan KX, Yin CC, Chen H, Yang C, Xiong Q, Song QX, Lu X, Chen HW, Zhang WK, Lu TG, Chen SY, Zhang JS. Identification of rice ethylene-response mutants and characterization of MHZ7/OsEIN2 in distinct ethylene response and yield trait regulation. MOLECULAR PLANT 2013; 6:1830-48. [PMID: 23718947 DOI: 10.1093/mp/sst087] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ethylene plays essential roles in adaptive growth of rice plants in water-saturating environment; however, ethylene signaling pathway in rice is largely unclear. In this study, we report identification and characterization of ethylene-response mutants based on the specific ethylene-response phenotypes of etiolated rice seedlings, including ethylene-inhibited root growth and ethylene-promoted coleoptile elongation, which is different from the ethylene triple-response phenotype in Arabidopsis. We establish an efficient system for screening and a set of rice mutants have been identified. Genetic analysis reveals that these mutants form eight complementation groups. All the mutants show insensitivity or reduced sensitivity to ethylene in root growth but exhibit differential responses in coleoptile growth. One mutant group mhz7 has insensitivity to ethylene in both root and coleoptile growth. We identified the corresponding gene by a map-based cloning method. MHZ7 encodes a membrane protein homologous to EIN2, a central component of ethylene signaling in Arabidopsis. Upon ethylene treatment, etiolated MHZ7-overexpressing seedlings exhibit enhanced coleoptile elongation, increased mesocotyl growth and extremely twisted short roots, featuring enhanced ethylene-response phenotypes in rice. Grain length was promoted in MHZ7-transgenic plants and 1000-grain weight was reduced in mhz7 mutants. Leaf senescent process was also affected by MHZ7 expression. Manipulation of ethylene signaling may improve adaptive growth and yield-related traits in rice.
Collapse
Affiliation(s)
- Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Merchante C, Alonso JM, Stepanova AN. Ethylene signaling: simple ligand, complex regulation. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:554-60. [PMID: 24012247 DOI: 10.1016/j.pbi.2013.08.001] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 05/21/2023]
Abstract
The hormone ethylene plays numerous roles in plant development. In the last few years the model of ethylene signaling has evolved from an initially largely linear route to a much more complex pathway with multiple feedback loops. Identification of key transcriptional and post-transcriptional regulatory modules controlling expression and/or stability of the core pathway components revealed that ethylene perception and signaling are tightly regulated at multiple levels. This review describes the most current outlook on ethylene signal transduction and emphasizes the latest discoveries in the ethylene field that shed light on the mechanistic mode of action of the central pathway components CTR1 and EIN2, as well as on the post-transcriptional regulatory steps that modulate the signaling flow through the pathway.
Collapse
Affiliation(s)
- Catharina Merchante
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, United States
| | | | | |
Collapse
|
134
|
Wang F, Cui X, Sun Y, Dong CH. Ethylene signaling and regulation in plant growth and stress responses. PLANT CELL REPORTS 2013; 32:1099-109. [PMID: 23525746 DOI: 10.1007/s00299-013-1421-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/28/2013] [Accepted: 03/09/2013] [Indexed: 05/19/2023]
Abstract
Gaseous phytohormone ethylene affects many aspects of plant growth and development. The ethylene signaling pathway starts when ethylene binds to its receptors. Since the cloning of the first ethylene receptor ETR1 from Arabidopsis, a large number of studies have steadily improved our understanding of the receptors and downstream components in ethylene signal transduction pathway. This article reviews the regulation of ethylene receptors, signal transduction, and the posttranscriptional modulation of downstream components. Functional roles and importance of the ethylene signaling components in plant growth and stress responses are also discussed. Cross-reactions of ethylene with auxin and other phytohormones in plant organ growth will be analyzed. The studies of ethylene signaling in plant growth, development, and stress responses in the past decade greatly advanced our knowledge of how plants respond to endogenous signals and environmental factors.
Collapse
Affiliation(s)
- Feifei Wang
- College of Life Sciences, Qingdao Agricultural University, 266109 Qingdao, People's Republic of China
| | | | | | | |
Collapse
|
135
|
Wang H, Liu G, Li C, Powell ALT, Reid MS, Zhang Z, Jiang CZ. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2013; 14:453-69. [PMID: 23437935 PMCID: PMC6638649 DOI: 10.1111/mpp.12017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
136
|
Gimenez-Ibanez S, Solano R. Nuclear jasmonate and salicylate signaling and crosstalk in defense against pathogens. FRONTIERS IN PLANT SCIENCE 2013; 4:72. [PMID: 23577014 PMCID: PMC3617366 DOI: 10.3389/fpls.2013.00072] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
An extraordinary progress has been made over the last two decades on understanding the components and mechanisms governing plant innate immunity. After detection of a pathogen, effective plant resistance depends on the activation of a complex signaling network integrated by small signaling molecules and hormonal pathways, and the balance of these hormone systems determines resistance to particular pathogens. The discovery of new components of hormonal signaling pathways, including plant nuclear hormone receptors, is providing a picture of complex crosstalk and induced hormonal changes that modulate disease and resistance through several protein families that perceive hormones within the nucleus and lead to massive gene induction responses often achieved by de-repression. This review highlights recent advances in our understanding of positive and negative regulators of these hormones signaling pathways that are crucial regulatory targets of hormonal crosstalk in disease and defense. We focus on the most recent discoveries on the jasmonate and salicylate pathway components that explain their crosstalk with other hormonal pathways in the nucleus. We discuss how these components fine-tune defense responses to build a robust plant immune system against a great number of different microbes and, finally, we summarize recent discoveries on specific nuclear hormonal manipulation by microbes which exemplify the ingenious ways by which pathogens can take control over the plant's hormone signaling network to promote disease.
Collapse
Affiliation(s)
| | - Roberto Solano
- Plant Molecular Genetics Department, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
137
|
Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1565-73. [PMID: 23404897 PMCID: PMC3617834 DOI: 10.1093/jxb/ert031] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Many plant-growth-promoting rhizobacteria (PGPR) associated with plant roots contain the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase and can metabolize ACC, the immediate precursor of the plant hormone ethylene, thereby decreasing plant ethylene production and increasing plant growth. However, relatively few studies have explicitly linked ethylene emission and/or action to growth promotion in these plant-microbe interactions. This study examined effects of the PGPR Variovorax paradoxus 5C-2 containing ACC deaminase on the growth and development of Arabidopsis thaliana using wild-type (WT) plants and several ethylene-related mutants (etr1-1, ein2-1, and eto1-1). Soil inoculation with V. paradoxus 5C-2 promoted growth (leaf area and shoot biomass) of WT plants and the ethylene-overproducing mutant eto1-1, and also enhanced floral initiation of WT plants by 2.5 days. However, these effects were not seen in ethylene-insensitive mutants (etr1-1 and ein2-1) even though bacterial colonization of the root system was similar. Furthermore, V. paradoxus 5C-2 decreased ACC concentrations of rosette leaves of WT plants by 59% and foliar ethylene emission of both WT plants and eto1-1 mutants by 42 and 37%, respectively. Taken together, these results demonstrate that a fully functional ethylene signal transduction pathway is required for V. paradoxus 5C-2 to stimulate leaf growth and flowering of A. thaliana.
Collapse
Affiliation(s)
- Lin Chen
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
- * To whom correspondence should be addressed. E-mail:
| | - Julian C. Theobald
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Andrey A. Belimov
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo Sh. 3, Pushkin-8, 196608, Saint Petersburg, Russian Federation
| | - William J. Davies
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
138
|
Niederhuth CE, Patharkar OR, Walker JC. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2 by RNA-Seq. BMC Genomics 2013; 14:37. [PMID: 23327667 PMCID: PMC3566969 DOI: 10.1186/1471-2164-14-37] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 01/14/2013] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Abscission is a mechanism by which plants shed entire organs in response to both developmental and environmental signals. Arabidopsis thaliana, in which only the floral organs abscise, has been used extensively to study the genetic, molecular and cellular processes controlling abscission. Abscission in Arabidopsis requires two genes that encode functionally redundant receptor-like protein kinases, HAESA (HAE) and HAESA-LIKE 2 (HSL2). Double hae hsl2 mutant plants fail to abscise their floral organs at any stage of floral development and maturation. RESULTS Using RNA-Seq, we compare the transcriptomes of wild-type and hae hsl2 stage 15 flowers, using the floral receptacle which is enriched for abscission zone cells. 2034 genes were differentially expressed with a False Discovery Rate adjusted p < 0.05, of which 349 had two fold or greater change in expression. Differentially expressed genes were enriched for hydrolytic, cell wall modifying, and defense related genes. Testing several of the differentially expressed genes in INFLORESCENCE DEFICIENT IN ABSCISSION (ida) mutants shows that many of the same genes are co-regulated by IDA and HAE HSL2 and support the role of IDA in the HAE and HSL2 signaling pathway. Comparison to microarray data from stamen abscission zones show distinct patterns of expression of genes that are dependent on HAE HSL2 and reveal HAE HSL2- independent pathways. CONCLUSION HAE HSL2-dependent and HAE HSL2-independent changes in genes expression are required for abscission. HAE and HSL2 affect the expression of cell wall modifying and defense related genes necessary for abscission. The HAE HSL2-independent genes also appear to have roles in abscission and additionally are involved in processes such as hormonal signaling, senescence and callose deposition.
Collapse
Affiliation(s)
- Chad E Niederhuth
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - O Rahul Patharkar
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| | - John C Walker
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|
139
|
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB PLANTS 2013; 5:plt010. [PMID: 23543258 PMCID: PMC3611092 DOI: 10.1093/aobpla/plt010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/05/2013] [Indexed: 05/17/2023]
Abstract
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction.
Collapse
Affiliation(s)
- Samina N. Shakeel
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Department of Biochemistry, Quaid-i-azam University, Islamabad 45320, Pakistan
| | - Xiaomin Wang
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Brad M. Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
- Corresponding author's e-mail address:
| |
Collapse
|
140
|
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB PLANTS 2013; 5:plt010. [PMID: 23543258 DOI: 10.1093/aobpla/plt01010.1093/aobpla/plt010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction.
Collapse
Affiliation(s)
- Samina N Shakeel
- Department of Biological Sciences , Dartmouth College , Hanover, NH 03755 , USA ; Department of Biochemistry , Quaid-i-azam University , Islamabad 45320 , Pakistan
| | | | | | | |
Collapse
|
141
|
Shakeel SN, Wang X, Binder BM, Schaller GE. Mechanisms of signal transduction by ethylene: overlapping and non-overlapping signalling roles in a receptor family. AOB PLANTS 2013; 5:plt010. [PMID: 23543258 DOI: 10.1093/aobpla/plt010,1-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 02/05/2013] [Indexed: 05/17/2023]
Abstract
The plant hormone ethylene regulates growth and development as well as responses to biotic and abiotic stresses. Over the last few decades, key elements involved in ethylene signal transduction have been identified through genetic approaches, these elements defining a pathway that extends from initial ethylene perception at the endoplasmic reticulum to changes in transcriptional regulation within the nucleus. Here, we present our current understanding of ethylene signal transduction, focusing on recent developments that support a model with overlapping and non-overlapping roles for members of the ethylene receptor family. We consider the evidence supporting this model for sub-functionalization within the receptor family, and then discuss mechanisms by which such a sub-functionalization may occur. To this end, we consider the importance of receptor interactions in modulating their signal output and how such interactions vary in the receptor family. In addition, we consider evidence indicating that ethylene signal output by the receptors involves both phosphorylation-dependent and phosphorylation-independent mechanisms. We conclude with a current model for signalling by the ethylene receptors placed within the overall context of ethylene signal transduction.
Collapse
Affiliation(s)
- Samina N Shakeel
- Department of Biological Sciences , Dartmouth College , Hanover, NH 03755 , USA ; Department of Biochemistry , Quaid-i-azam University , Islamabad 45320 , Pakistan
| | | | | | | |
Collapse
|
142
|
Veerabagu M, Elgass K, Kirchler T, Huppenberger P, Harter K, Chaban C, Mira-Rodado V. The Arabidopsis B-type response regulator 18 homomerizes and positively regulates cytokinin responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:721-31. [PMID: 22775331 DOI: 10.1111/j.1365-313x.2012.05101.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In higher plants, the two-component system (TCS) is a signaling mechanism based on a His-to-Asp phosphorelay. The Arabidopsis TCS involves three different types of proteins, namely the histidine kinases (AHKs), the histidine phosphotransfer proteins (AHPs) and the response regulators (ARRs). The ARRs comprise three different families, namely A, B and C types, according to their protein structure. While some members of the B-type family of ARRs have been studied extensively and reported to act as DNA-binding transcriptional regulators, very limited information is available for other B-type ARRs such as ARR18. In this study, we characterize in detail the molecular and functional properties of ARR18. ARR18 acts as a transcriptional regulator in plant cells and forms homodimers in planta as shown by FRET-FLIM studies. As demonstrated by mutational analysis, the aspartate at position 70 (D70) in the receiver domain of ARR18 acts as crucial phosphorylation site. The modification of D70 affects the response regulator's ability to homodimerize and to activate its target genes. Furthermore, physiological investigations of Arabidopsis lines ectopically expressing ARR18 introduce ARR18 as a new member within the cytokinin-regulated response pathway regulating root elongation.
Collapse
Affiliation(s)
- Manikandan Veerabagu
- Center for Plant Molecular Biology-ZMBP, Department of Plant Physiology, University of Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
143
|
Ma Q, Du W, Brandizzi F, Giovannoni JJ, Barry CS. Differential control of ethylene responses by GREEN-RIPE and GREEN-RIPE LIKE1 provides evidence for distinct ethylene signaling modules in tomato. PLANT PHYSIOLOGY 2012; 160:1968-84. [PMID: 23043080 PMCID: PMC3510124 DOI: 10.1104/pp.112.205476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/05/2012] [Indexed: 05/18/2023]
Abstract
The factors that mediate specific responses to the plant hormone ethylene are not fully defined. In particular, it is not known how signaling at the receptor complex can control distinct subsets of ethylene responses. Mutations at the Green-ripe (Gr) and reversion to ethylene sensitivity1 (rte1) loci, which encode homologous proteins of unknown function, influence ethylene responses in tomato (Solanum lycopersicum) and Arabidopsis (Arabidopsis thaliana), respectively. In Arabidopsis, AtRTE1 is required for function of the ETR1 ethylene receptor and acts predominantly through this receptor via direct protein-protein interaction. While most eudicot families including the Brassicaceae possess a single gene that is closely related to AtRTE1, we report that members of the Solanaceae family contain two phylogenetically distinct genes defined by GR and GREEN-RIPE LIKE1 (GRL1), creating the possibility of subfunctionalization. We also show that SlGR and SlGRL1 are differentially expressed in tomato tissues and encode proteins predominantly localized to the Golgi. A combination of overexpression in tomato and complementation of the rte1-3 mutant allele indicates that SlGR and SlGRL1 influence distinct but overlapping ethylene responses. Overexpression of SlGRL1 in the Gr mutant background provides evidence for the existence of different ethylene signaling modules in tomato that are influenced by GR, GRL1, or both. In addition, overexpression of AtRTE1 in tomato leads to reduced ethylene responsiveness in a subset of tissues but does not mimic the Gr mutant phenotype. Together, these data reveal species-specific heterogeneity in the control of ethylene responses mediated by members of the GR/RTE1 family.
Collapse
|
144
|
Yasumura Y, Pierik R, Fricker MD, Voesenek LACJ, Harberd NP. Studies of Physcomitrella patens reveal that ethylene-mediated submergence responses arose relatively early in land-plant evolution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:947-59. [PMID: 23046428 DOI: 10.1111/tpj.12005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Colonization of the land by multicellular green plants was a fundamental step in the evolution of life on earth. Land plants evolved from fresh-water aquatic algae, and the transition to a terrestrial environment required the acquisition of developmental plasticity appropriate to the conditions of water availability, ranging from drought to flood. Here we show that extant bryophytes exhibit submergence-induced developmental plasticity, suggesting that submergence responses evolved relatively early in the evolution of land plants. We also show that a major component of the bryophyte submergence response is controlled by the phytohormone ethylene, using a perception mechanism that has subsequently been conserved throughout the evolution of land plants. Thus a plant environmental response mechanism with major ecological and agricultural importance probably had its origins in the very earliest stages of the colonization of the land.
Collapse
Affiliation(s)
- Yuki Yasumura
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UKPlant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
145
|
Contreras-Vergara CA, Stephens-Camacho NA, Yepiz-Plascencia G, González-Aguilar GA, Arvizu-Flores AA, Sanchez-Sanchez E, Islas-Osuna MA. Cloning and expression of ethylene receptor ERS1 at various developmental and ripening stages of mango fruit. GENETICS AND MOLECULAR RESEARCH 2012; 11:4081-92. [PMID: 23079970 DOI: 10.4238/2012.september.10.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ethylene induces characteristic ripening reactions in climacteric fruits through its binding to histidine-kinase (HK) receptors, activating the expression of ripening genes. Ethylene receptors have been found in Arabidopsis thaliana (Brassicaceae) and some fruits; number and expression patterns differ among species. In mango, only ethylene receptor ETR1 was known. We cloned ERS1 cDNA from mango, and evaluated the expression of Mi-ERS1 and Mi-ETR1 by qPCR in developmental and ripening stages of this fruit. The Mi-ERS1 coding sequence is 1890 bp long and encodes 629 amino acids, similar to ERS1 from other fruits. Also, the amino acid sequence of ERS1 C-terminal HK domain shows the cognate fold after molecular modeling. Mi-ERS1 expression levels increased as mangoes ripened, showing the highest levels at the climacteric stage, while Mi-ETR1 levels did not change during development and ripening. We conclude that the patterns of expression of Mi-ERS1 and Mi-ETR1 differ in mango fruit.
Collapse
|
146
|
Kim J, Wilson RL, Case JB, Binder BM. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery. PLANT PHYSIOLOGY 2012; 160:1567-80. [PMID: 22977279 PMCID: PMC3490611 DOI: 10.1104/pp.112.205799] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.
Collapse
|
147
|
Garay-Arroyo A, De La Paz Sánchez M, García-Ponce B, Azpeitia E, Álvarez-Buylla ER. Hormone symphony during root growth and development. Dev Dyn 2012; 241:1867-85. [DOI: 10.1002/dvdy.23878] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2012] [Indexed: 01/29/2023] Open
|
148
|
Nongpiur R, Soni P, Karan R, Singla-Pareek SL, Pareek A. Histidine kinases in plants: cross talk between hormone and stress responses. PLANT SIGNALING & BEHAVIOR 2012; 7:1230-7. [PMID: 22902699 PMCID: PMC3493402 DOI: 10.4161/psb.21516] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two-component signaling pathways involve sensory histidine kinases (HK), histidine phosphotransfer proteins (HpT) and response regulators (RR). Recent advancements in genome sequencing projects for a number of plant species have established the TCS family to be multigenic one. In plants, HKs operate through the His-Asp phosphorelay and control many physiological and developmental processes throughout the lifecycle of plants. Despite the huge diversity reported for the structural features of the HKs, their functional redundancy has also been reported via mutant approach. Several sensory HKs having a CHASE domain, transmembrane domain(s), transmitter domain and receiver domain have been reported to be involved in cytokinin and ethylene signaling. On the other hand, there are also increasing evidences for some of the sensory HKs to be performing their role as osmosensor, clearly indicating toward a possible cross-talk between hormone and stress responsive cascades. In this review, we bring out the latest knowledge about the structure and functions of histidine kinases in cytokinin and ethylene signaling and their role(s) in development and the regulation of environmental stress responses.
Collapse
Affiliation(s)
- Ramsong Nongpiur
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Praveen Soni
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Ratna Karan
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
| | - Sneh L. Singla-Pareek
- Plant Molecular Biology; International Centre for Genetic Engineering and Biotechnology; New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory; School of Life Sciences: Jawaharlal Nehru University; New Delhi, India
- Correspondence to: Ashwani Pareek,
| |
Collapse
|
149
|
Abstract
The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling.
Collapse
|
150
|
McDaniel BK, Binder BM. ethylene receptor 1 (etr1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana. J Biol Chem 2012; 287:26094-103. [PMID: 22692214 PMCID: PMC3406693 DOI: 10.1074/jbc.m112.383034] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/09/2012] [Indexed: 11/06/2022] Open
Abstract
Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the K(d) for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper.
Collapse
Affiliation(s)
- Brittany K. McDaniel
- From the Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0849
| | - Brad M. Binder
- From the Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0849
| |
Collapse
|