101
|
Mellidou I, Ainalidou A, Papadopoulou A, Leontidou K, Genitsaris S, Karagiannis E, Van de Poel B, Karamanoli K. Comparative Transcriptomics and Metabolomics Reveal an Intricate Priming Mechanism Involved in PGPR-Mediated Salt Tolerance in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:713984. [PMID: 34484277 PMCID: PMC8416046 DOI: 10.3389/fpls.2021.713984] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023]
Abstract
Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Greece
- *Correspondence: Ifigeneia Mellidou
| | - Aggeliki Ainalidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Katerina Karamanoli
| |
Collapse
|
102
|
Genome-wide association analysis of the strength of the MAMP-elicited defense response and resistance to target leaf spot in sorghum. Sci Rep 2020; 10:20817. [PMID: 33257818 PMCID: PMC7704633 DOI: 10.1038/s41598-020-77684-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 10/16/2020] [Indexed: 12/27/2022] Open
Abstract
Plants have the capacity to respond to conserved molecular features known as microbe-associated molecular patterns (MAMPs). The goal of this work was to assess variation in the MAMP response in sorghum, to map loci associated with this variation, and to investigate possible connections with variation in quantitative disease resistance. Using an assay that measures the production of reactive oxygen species, we assessed variation in the MAMP response in a sorghum association mapping population known as the sorghum conversion population (SCP). We identified consistent variation for the response to chitin and flg22-an epitope of flagellin. We identified two SNP loci associated with variation in the flg22 response and one with the chitin response. We also assessed resistance to Target Leaf Spot (TLS) disease caused by the necrotrophic fungus Bipolaris cookei in the SCP. We identified one strong association on chromosome 5 near a previously characterized disease resistance gene. A moderately significant correlation was observed between stronger flg22 response and lower TLS resistance. Possible reasons for this are discussed.
Collapse
|
103
|
Wanichthanarak K, Boonchai C, Kojonna T, Chadchawan S, Sangwongchai W, Thitisaksakul M. Deciphering rice metabolic flux reprograming under salinity stress via in silico metabolic modeling. Comput Struct Biotechnol J 2020; 18:3555-3566. [PMID: 33304454 PMCID: PMC7708941 DOI: 10.1016/j.csbj.2020.11.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/30/2022] Open
Abstract
Rice is one of the most economically important commodities globally. However, rice plants are salt susceptible species in which high salinity can significantly constrain its productivity. Several physiological parameters in adaptation to salt stress have been observed, though changes in metabolic aspects remain to be elucidated. In this study, rice metabolic activities of salt-stressed flag leaf were systematically characterized. Transcriptomics and metabolomics data were combined to identify disturbed pathways, altered metabolites and metabolic hotspots within the rice metabolic network under salt stress condition. Besides, the feasible flux solutions in different context-specific metabolic networks were estimated and compared. Our findings highlighted metabolic reprogramming in primary metabolic pathways, cellular respiration, antioxidant biosynthetic pathways, and phytohormone biosynthetic pathways. Photosynthesis and hexose utilization were among the major disturbed pathways in the stressed flag leaf. Notably, the increased flux distribution of the photorespiratory pathway could contribute to cellular redox control. Predicted flux statuses in several pathways were consistent with the results from transcriptomics, end-point metabolomics, and physiological studies. Our study illustrated that the contextualized genome-scale model together with multi-omics analysis is a powerful approach to unravel the metabolic responses of rice to salinity stress.
Collapse
Key Words
- 3-PGA, 3-Phosphoglycerate
- ADH, Arogenate dehydrogenase
- ASA, Ascorbate
- CGS, Cystathionine γ-synthase
- CINV, Cytosolic invertase
- Ci, Intercellular CO2 concentration
- E, Transpiration rate
- GAPDH, Glyceraldehyde-3-phosphate dehydrogenase
- GC-TOF-MS, Gas chromatography time-of-flight mass spectrometry
- GEM, Genome-scale metabolic model
- GLYK, 3-Phosphoglycerate kinase
- GMD, Golm Metabolome Database
- GSH, Glutathione
- GSSG, Glutathione disulfide
- IAA, Indole-3-acetic acid
- IPA, Indolepyruvate
- MAPK, Mitogen-activated protein kinase
- MDH, Malate dehydrogenase
- Metabolic flux analysis
- Metabolic modeling
- Metabolomics
- Multi-omics analysis
- PFK, Phosphofructokinase
- PGK, Phosphoglycerate kinase
- PLS-DA, Partial-Least Squares Discriminant Analysis
- Pn, Net photosynthesis rate
- Rice (Oryza sativa L.)
- SOD, Superoxide dismutase
- Salinity stress
- Systems biology
- TAT, Tyrosine aminotransferase
- Transcriptomics
- gs, Stomatal conductance
- iMAT, Integrative Metabolic Analysis Tool
Collapse
Affiliation(s)
- Kwanjeera Wanichthanarak
- Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Metabolomics and Systems Biology, Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chuthamas Boonchai
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Future Innovation and Research in Science and Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thammaporn Kojonna
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wichian Sangwongchai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Maysaya Thitisaksakul
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
104
|
Dong CJ, Liu XY, Xie LL, Wang LL, Shang QM. Salicylic acid regulates adventitious root formation via competitive inhibition of the auxin conjugation enzyme CsGH3.5 in cucumber hypocotyls. PLANTA 2020; 252:75. [PMID: 33026530 DOI: 10.1007/s00425-020-03467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/12/2020] [Indexed: 06/11/2023]
Abstract
Exogenous SA treatment at appropriate concentrations promotes adventitious root formation in cucumber hypocotyls, via competitive inhibiting the IAA-Asp synthetase activity of CsGH3.5, and increasing the local free IAA level. Adventitious root formation is critical for the cutting propagation of horticultural plants. Indole-3-acetic acid (IAA) has been shown to play a central role in regulating this process, while for salicylic acid (SA), its exact effects and regulatory mechanism have not been elucidated. In this study, we showed that exogenous SA treatment at the concentrations of both 50 and 100 µM promoted adventitious root formation at the base of the hypocotyl of cucumber seedlings. At these concentrations, SA could induce the expression of CYCLIN and Cyclin-dependent Kinase (CDK) genes during adventitious rooting. IAA was shown to be involved in SA-induced adventitious root formation in cucumber hypocotyls. Exposure to exogenous SA led to a slight increase in the free IAA content, and pre-treatment with the auxin transport inhibitor 1-naphthylphthalamic acid (NPA) almost completely abolished the inducible effects of SA on adventitious root number. SA-induced IAA accumulation was also associated with the enhanced expression of Gretchen Hagen3.5 (CsGH3.5). The in vitro enzymatic assay indicated that CsGH3.5 has both IAA- and SA-amido synthetase activity and prefers aspartate (Asp) as the amino acid conjugate. The Asp concentration dictated the functional activity of CsGH3.5 on IAA. Both affinity and catalytic efficiency (Kcat/Km) increased when the Asp concentration increased from 0.3 to 1 mM. In contrast, CsGH3.5 showed equal catalytic efficiency for SA at low and high Asp concentrations. Furthermore, SA functioned as a competitive inhibitor of the IAA-Asp synthetase activity of CsGH3.5. During adventitious formation, SA application indeed repressed the IAA-Asp levels in the rooting zone. These data show that SA plays an inducible role in adventitious root formation in cucumber through competitive inhibition of the auxin conjugation enzyme CsGH3.5. SA reduces the IAA conjugate levels, thereby increasing the local free IAA level and ultimately enhancing adventitious root formation.
Collapse
Affiliation(s)
- Chun-Juan Dong
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | - Xin-Yan Liu
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Lu-Lu Xie
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ling-Ling Wang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Ministry of Agriculture, Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
105
|
Nguyen VC, Tandonnet JP, Khallouk S, Van Ghelder C, Portier U, Lafargue M, Banora MY, Ollat N, Esmenjaud D. Grapevine Resistance to the Nematode Xiphinema index Is Durable in Muscadine-Derived Plants Obtained from Hardwood Cuttings but Not from In Vitro. PHYTOPATHOLOGY 2020; 110:1565-1571. [PMID: 32378451 DOI: 10.1094/phyto-01-20-0008-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Breeding for varieties carrying natural resistance (R) against plant-parasitic nematodes is a promising alternative to nematicide ban. In perennial crops, the long plant-nematode interaction increases the risk for R breaking and R durability is a real challenge. In grapevine, the nematode Xiphinema index has a high economic impact by transmitting Grapevine fanleaf virus (GFLV) and, to delay GFLV transmission, rootstocks resistant to this vector are being selected, using Muscadinia rotundifolia in particular as an R source. To optimize in fine this strategy, the durability has been studied under controlled conditions in F1 and BC1 muscadine-derived resistant accessions previously obtained from either hardwood-cutting or in vitro propagation. After inoculation with a mix, in equal proportions, of four lines representative of the X. index diversity, multiplication on plants has been monitored 3 to 6 years. The nematode reproduction factor remained lower than 1 in resistant plants obtained from hardwood cuttings while it increased at values far beyond 1 in resistant plants of in vitro origin. Data for nematode numbers per gram of roots mostly paralleled those obtained for the reproduction factor. The effect of the propagation type on resistance over years was also evaluated for the ratio female/juvenile and the frequency of males. Altogether our results illustrate that the muscadine-derived resistance based on hardwood cuttings is durable. By contrast, in resistant and reference accessions obtained from in vitro, our data suggest that the increased nematode multiplication might be mainly due to the modification of root architecture consecutive to this propagation method.
Collapse
Affiliation(s)
- Van Chung Nguyen
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Jean-Pascal Tandonnet
- University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, EGFV, 33882 Villenave d'Ornon, France
| | - Samira Khallouk
- Service de la Protection du Patrimoine Végétal, ONSSA, Rabat, Morocco
| | - Cyril Van Ghelder
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Ulysse Portier
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| | - Maria Lafargue
- University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, EGFV, 33882 Villenave d'Ornon, France
| | | | - Nathalie Ollat
- University of Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, EGFV, 33882 Villenave d'Ornon, France
| | - Daniel Esmenjaud
- INRAE, Université Côte d'Azur, CNRS, ISA, 06903 Sophia Antipolis, France
| |
Collapse
|
106
|
Han Q, Chen K, Yan D, Hao G, Qi J, Wang C, Dirk LMA, Bruce Downie A, Gong J, Wang J, Zhao T. ZmDREB2A regulates ZmGH3.2 and ZmRAFS, shifting metabolism towards seed aging tolerance over seedling growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:268-282. [PMID: 32662115 DOI: 10.1111/tpj.14922] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Seed aging tolerance and rapid seedling growth are important agronomic traits for crop production; however, how these traits are controlled at the molecular level remains largely unknown. The unaged seeds of two independent maize DEHYDRATION-RESPONSIVE ELEMENT-BINDING2A mutant (zmdreb2a) lines, with decreased expression of GRETCHEN HAGEN3.2 (ZmGH3.2, encoding indole-3-acetic acid [IAA] deactivating enzyme), and increased IAA in their embryo, produced longer seedling shoots and roots, than the null segregant (NS) controls. However, the zmdreb2a seeds, with decreased expression of RAFFINOSE SYNTHASE (ZmRAFS) and less raffinose in their embryo, exhibit decreased seed aging tolerance, than the NS controls. Overexpression of ZmDREB2A in maize protoplasts increased the expression of ZmGH3.2, ZmRAFS genes and that of a Rennila LUCIFERASE reporter (Rluc) gene, which was controlled by either the ZmGH3.2- or ZmRAFS-promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation assay quantitative polymerase chain reaction showed that ZmDREB2A directly binds to the DRE motif of the promoters of both ZmGH3.2 and ZmRAFS. Exogenous supplementation of IAA to the unaged, germinating NS seeds increased subsequent seedling growth making them similar to the zmdreb2a seedlings from unaged seeds. These findings provide evidence that ZmDREB2A regulates the longevity of maize seed by stimulating the production of raffinose while simultaneously acting to limit auxin-mediated cell expansion.
Collapse
Affiliation(s)
- Qinghui Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kelu Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dong Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guanglong Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Junlong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunmei Wang
- The Biology Teaching and Research Core Facility, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lynnette M A Dirk
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - A Bruce Downie
- Department of Horticulture, Seed Biology Group, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jianhua Gong
- Center of Seed Science and Technology, Beijing Key Laboratory of Crop Genetics and Breeding, Innovation Center for Seed Technology (Ministry of Agriculture), China Agricultural University, Beijing, 100094, China
| | - Jianhua Wang
- Center of Seed Science and Technology, Beijing Key Laboratory of Crop Genetics and Breeding, Innovation Center for Seed Technology (Ministry of Agriculture), China Agricultural University, Beijing, 100094, China
| | - Tianyong Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
- The Key Laboratory of Biology and Genetic Improvement of Maize in Arid Areas of the Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
107
|
Liu X, Yang W, Wang J, Yang M, Wei K, Liu X, Qiu Z, van Giang T, Wang X, Guo Y, Li J, Liu L, Shu J, Du Y, Huang Z. SlGID1a Is a Putative Candidate Gene for qtph1.1, a Major-Effect Quantitative Trait Locus Controlling Tomato Plant Height. Front Genet 2020; 11:881. [PMID: 32849843 PMCID: PMC7427465 DOI: 10.3389/fgene.2020.00881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/17/2020] [Indexed: 11/24/2022] Open
Abstract
Plant height is an important agronomic trait in crops. Several genes underlying tomato (Solanum lycopersicum) plant height mutants have been cloned. However, few quantitative trait genes for plant height have been identified in tomato. In this study, seven quantitative trait loci (QTLs) controlling plant height were identified in tomato. Of which, qtph1.1 (QTL for tomato plant height 1.1), qtph3.1 and qtph12.1 were major QTLs and explained 15, 16, and 12% of phenotypic variation (R2), respectively. The qtph1.1 was further mapped to an 18.9-kb interval on chromosome 1. Based on the annotated tomato genome (version SL2.50, annotation ITAG2.40), Solyc01g098390 encoding GA receptor SlGID1a was the putative candidate gene. The SlGID1a gene underlying the qtph1.1 locus contained a single nucleotide polymorphism (SNP) that resulted in an amino acid alteration in protein sequence. The near-isogenic line containing the qtph1.1 locus (NIL-qtph1.1) exhibited shorter internode length and cell length than the wild type (NIL-WT). The dwarf phenotype of NIL-qtph1.1 could not be rescued by exogenous GA3 treatment. Transcriptome analysis and real-time quantitative reverse transcription PCR (qPCR) showed that several genes related to biosynthesis and signaling of GA and auxin were differentially expressed in stems between NIL-qtph1.1 and NIL-WT. These findings might pave the road for understanding the molecular regulation mechanism of tomato plant height.
Collapse
Affiliation(s)
- Xiaolin Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Wencai Yang
- Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing, China
| | - Jing Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengxia Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Wei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengkun Qiu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation in South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Tong van Giang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanmei Guo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinshuai Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
108
|
Dong A, Yang Y, Liu S, Zenda T, Liu X, Wang Y, Li J, Duan H. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Anyi Dong
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yatong Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Songtao Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Tinashe Zenda
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Xinyue Liu
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Yafei Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Jiao Li
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| | - Huijun Duan
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, PR China
- North China Key Laboratory for Crop Germplasm Resources of the Education Ministry, Hebei Agricultural University, Baoding, Hebei, PR China
| |
Collapse
|
109
|
Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen X, Li T. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:166-183. [PMID: 32031710 DOI: 10.1111/tpj.14717] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Phytohormonal interactions are crucial for plant development. Auxin and cytokinin (CK) both play critical roles in regulating plant growth and development; however, the interaction between these two phytohormones is complex and not fully understood. Here, we isolated a wild apple (Malus sieversii Roem) GRETCHEN HAGEN3 (GH3) gene, MsGH3.5, encoding an indole-3-acetic acid (IAA)-amido synthetase. Overexpression of MsGH3.5 significantly reduced the free IAA content and increased the content of some IAA-amino acid conjugates, and MsGH3.5-overexpressing lines were dwarfed and produced fewer adventitious roots (ARs) than the control. This phenotype is consistent with the role of GH3 in conjugating excess free active IAA to amino acids in auxin homeostasis. Surprisingly, overexpression of MsGH3.5 significantly increased CK concentrations in the whole plant, and altered the expression of genes involved in CK biosynthesis, metabolism and signaling. Furthermore, exogenous CK application induced MsGH3.5 expression through the activity of the CK type-B response regulator, MsRR1a, which mediates the CK primary response. MsRR1a activated MsGH3.5 expression by directly binding to its promoter, linking auxin and CK signaling. Plants overexpressing MsRR1a also displayed fewer ARs, in agreement with the regulation of MsGH3.5 expression by MsRR1a. Taken together, we reveal that MsGH3.5 affects apple growth and development by modulating auxin and CK levels and signaling pathways. These findings provide insight into the interaction between the auxin and CK pathways, and might have substantial implications for efforts to improve apple architecture.
Collapse
Affiliation(s)
- Di Zhao
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yantao Wang
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Chen Feng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yan Wei
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiang Peng
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiao Guo
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xinwei Guo
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Zefeng Zhai
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaoshuai Shen
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Tianhong Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing, 100193, China
- Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing, 102206, China
| |
Collapse
|
110
|
Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:948-964. [PMID: 31923320 DOI: 10.1111/tpj.14677] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 05/20/2023]
Abstract
Plant small RNAs (sRNAs) play significant roles in regulating various developmental processes and hormone signalling pathways involved in plant responses to a wide range of biotic and abiotic stresses. However, the functions of sRNAs in response to rice sheath blight remain unclear. We screened rice (Oryza sativa) sRNA expression patterns against Rhizoctonia solani and found that Tourist-miniature inverted-repeat transposable element (MITE)-derived small interfering RNA (siRNA) (here referred to as siR109944) expression was clearly suppressed upon R. solani infection. One potential target of siR109944 is the F-Box domain and LRR-containing protein 55 (FBL55), which encode the transport inhibitor response 1 (TIR1)-like protein. We found that rice had significantly enhanced susceptibility when siR109944 was overexpressed, while FBL55 OE plants showed resistance to R. solani challenge. Additionally, multiple agronomic traits of rice, including root length and flag leaf inclination, were affected by siR109944 expression. Auxin metabolism-related and signalling pathway-related genes were differentially expressed in the siR109944 OE and FBL55 OE plants. Importantly, pre-treatment with auxin enhanced sheath blight resistance by affecting endogenous auxin homeostasis in rice. Furthermore, transgenic Arabidopsis overexpressing siR109944 exhibited early flowering, increased tiller numbers, and increased susceptibility to R. solani. Our results demonstrate that siR109944 has a conserved function in interfering with plant immunity, growth, and development by affecting auxin homeostasis in planta. Thus, siR109944 provides a genetic target for plant breeding in the future. Furthermore, exogenous application of indole-3-acetic acid (IAA) or auxin analogues might effectively protect field crops against diseases.
Collapse
Affiliation(s)
- Lulu Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Liyu Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Cong Sheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Hailing Jin
- Department of Microbiology & Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Dongdong Niu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
111
|
Identification and expression analysis of auxin-responsive GH3 family genes in Chinese hickory (Carya cathayensis) during grafting. Mol Biol Rep 2020; 47:4495-4506. [PMID: 32444977 DOI: 10.1007/s11033-020-05529-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
The GH3 genes play vital roles in auxin homeostasis by conjugating excess auxin to amino acids. However, how GH3 genes function during grafting in Chinese hickory (Carya cathayensis) is largely unknown. Here, based on the transcriptome database, a comprehensive identification and expression profiling analysis of 12 GH3 genes in Chinese hickory were performed. Phylogenetic analysis indicated that CcGH3-x exists in a specific subfamily. To understand the roles of CcGH3 genes, tissue-specific expression and the response to different phytohormones were determined. Expression profiles of GH3 genes of Chinese hickory during grafting were analysed. The data suggested that 10 CcGH3 genes were down-regulated at an early stage of grafting, indicating that auxin homeostasis regulated by the CcGH3 family might be inhibited at initial stages. At the completion of grafting, expression levels of members of the CcGH3 family were restored to normal levels. Endogenous auxin levels were also measured, and the data showed that free auxin decreased to the lowest level at an early stage of grafting, and then increased during grafting. Auxin amino acid conjugation increased at an early stage of grafting in rootstock, and then decreased with progression of the graft union. Our results demonstrate that the reduced expression of CcGH3 family genes during grafting might contribute to the release of free auxin, making an important contribution to the recovery of auxin levels after grafting.
Collapse
|
112
|
Song M, Fan X, Chen J, Qu H, Luo L, Xu G. OsNAR2.1 Interaction with OsNIT1 and OsNIT2 Functions in Root-growth Responses to Nitrate and Ammonium. PLANT PHYSIOLOGY 2020; 183:289-303. [PMID: 32071150 PMCID: PMC7210649 DOI: 10.1104/pp.19.01364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/07/2020] [Indexed: 05/04/2023]
Abstract
The nitrate transport accessory protein OsNAR2 plays a critical role in root-growth responses to nitrate and nitrate acquisition in rice (Oryza sativa). In this study, a pull-down assay combined with yeast two-hybrid and coimmunoprecipitation analyses revealed that OsNAR2.1 interacts with OsNIT1 and OsNIT2. Moreover, an in vitro nitrilase activity assay indicated that indole-3-acetonitrile (IAN) is hydrolyzed to indole-3-acetic acid (IAA) by OsNIT1, the activity of which was enhanced 3- to 4-fold by OsNIT2 and in excess of 5- to 8-fold by OsNAR2.1. Knockout (KO) of OsNAR2 1 was accompanied by repressed expression of both OsNIT1 and OsNIT2, whereas KO of OsNIT1 and OsNIT2 in the osnit1 and osnit2 mutant lines did not affect expression of OsNAR2 1 or the root nitrate acquisition rate. osnit1 and osnit2 displayed decreased primary root length and lateral root density. Double KO of OsNAR2 1 and OsNIT2 caused further decreases in lateral root density under nitrate supply. Ammonium supply repressed OsNAR2 1 expression whereas it upregulated OsNIT1 and OsNIT2 expression. Both osnit1 and osnit2 showed root growth hypersensitivity to external ammonium; however, less root growth sensitivity to external IAN, higher expression of three IAA-amido synthetase genes, and a lower rate of 3H-IAA movement toward the roots were observed. Taken together, we conclude that the interaction of OsNIT1 and OsNIT2 activated by OsNAR2.1 and nitrogen supply is essential for maintaining root growth possibly via altering the IAA ratio of free to conjugate forms and facilitating its transportation.
Collapse
Affiliation(s)
- Miaoquan Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingguang Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Luo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
113
|
Li Y, Qiu L, Zhang Q, Zhuansun X, Li H, Chen X, Krugman T, Sun Q, Xie C. Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. PLANT DIRECT 2020; 4:e00212. [PMID: 32285024 PMCID: PMC7146025 DOI: 10.1002/pld3.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (Bgt) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some pathogenesis-related (PR) genes, such as PR1.1, PR1, PR10, PR4a, Chitinase 8, beta-1,3-glucanase, RPM1, RGA2, and HSP70, were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of Bgt disease in wheat fields.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huifang Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xin Chen
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Tamar Krugman
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
114
|
Transcriptome Profiling Analysis Reveals Co-regulation of Hormone Pathways in Foxtail Millet during Sclerospora graminicola Infection. Int J Mol Sci 2020; 21:ijms21041226. [PMID: 32059399 PMCID: PMC7072888 DOI: 10.3390/ijms21041226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022] Open
Abstract
Sclerospora graminicola (Sacc.) Schroeter is a biotrophic pathogen of foxtail millet (Setaria italica) and increasingly impacts crop production. We explored the main factors for symptoms such as dwarfing of diseased plants and the “hedgehog panicle” by determining panicle characteristics of varieties infected with S. graminicola and analyzing the endogenous hormone-related genes in leaves of Jingu 21. Results indicated that different varieties infected by S. graminicola exhibited various symptoms. Transcriptome analysis revealed that the ent-copalyl diphosphate synthetase (CPS) encoded by Seita.2G144900 and ent-kaurene synthase (KS) encoded by Seita.2G144400 were up-regulated 4.7-fold and 2.8-fold, respectively. Results showed that the biosynthesis of gibberellin might be increased, but the gibberellin signal transduction pathway might be blocked. The abscisic acid (ABA) 8′-hydroxylase encoded by Seita.6G181300 was continuously up-regulated by 4.2-fold, 2.7-fold, 14.3-fold, and 12.9-fold from TG1 to TG4 stage, respectively. Seita.2G144900 and Seita.2G144400 increased 79-fold and 51-fold, respectively, at the panicle development stage, promoting the formation of a “hedgehog panicle”. Jasmonic acid-related synthesis enzymes LOX2s, AOS, and AOC were up-regulated at the early stage of infection, indicating that jasmonic acid played an essential role in early response to S. graminicola infection. The expression of YUC-related genes of the auxin synthesis was lower than that of the control at TG3 and TG4 stages, but the amidase encoded by Seita.2G313400 was up-regulated by more than 30-fold, indicating that the main biosynthesis pathway of auxin had changed. The results suggest that there was co-regulation of the hormone pathways during the infection of foxtail millet by S. graminicola.
Collapse
|
115
|
Bahmani R, Kim D, Modareszadeh M, Thompson AJ, Park JH, Yoo HH, Hwang S. The mechanism of root growth inhibition by the endocrine disruptor bisphenol A (BPA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113516. [PMID: 31733969 DOI: 10.1016/j.envpol.2019.113516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 05/12/2023]
Abstract
Bisphenol A (BPA) is a harmful environmental contaminant acting as an endocrine disruptor in animals, but it also affects growth and development in plants. Here, we have elucidated the functional mechanism of root growth inhibition by BPA in Arabidopsis thaliana using mutants, reporter lines and a pharmacological approach. In response to 10 ppm BPA, fresh weight and main root length were reduced, while auxin levels increased. BPA inhibited root growth by reducing root cell length in the elongation zone by suppressing expansin expression and by decreasing the length of the meristem zone by repressing cell division. The inhibition of cell elongation and cell division was attributed to the enhanced accumulation/redistribution of auxin in the elongation zone and meristem zone in response to BPA. Correspondingly, the expressions of most auxin biosynthesis and transporter genes were enhanced in roots by BPA. Taken together, it is assumed that the endocrine disruptor BPA inhibits primary root growth by inhibiting cell elongation and division through auxin accumulation/redistribution in Arabidopsis. This study will contribute to understanding how BPA affects growth and development in plants.
Collapse
Affiliation(s)
- Ramin Bahmani
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - DongGwan Kim
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Mahsa Modareszadeh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea
| | - Andrew J Thompson
- Cranfield Soil and Agrifood Institute, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Jeong Hoon Park
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Hye Hyun Yoo
- College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do 15588, South Korea
| | - Seongbin Hwang
- Department of Molecular Biology, Sejong University, Seoul, 143-747, South Korea; Department of Bioindustry and Bioresource Engineering, Sejong University, Seoul, 143-747, South Korea; The Plant Engineering Research Institute, Sejong University, Seoul, 143-747, South Korea.
| |
Collapse
|
116
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice (Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020. [DOI: 10.1007/s12038-020-9996-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
117
|
Li Y, Qiu L, Liu X, Zhang Q, Zhuansun X, Fahima T, Krugman T, Sun Q, Xie C. Glycerol-Induced Powdery Mildew Resistance in Wheat by Regulating Plant Fatty Acid Metabolism, Plant Hormones Cross-Talk, and Pathogenesis-Related Genes. Int J Mol Sci 2020; 21:ijms21020673. [PMID: 31968554 PMCID: PMC7013599 DOI: 10.3390/ijms21020673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Our previous study indicated that glycerol application induced resistance to powdery mildew (Bgt) in wheat by regulating two important signal molecules, glycerol-3-phosphate (G3P) and oleic acid (OA18:1). Transcriptome analysis of wheat leaves treated by glycerol and inoculated with Bgt was performed to identify the activated immune response pathways. We identified a set of differentially expressed transcripts (e.g., TaGLI1, TaACT1, and TaSSI2) involved in glycerol and fatty acid metabolism that were upregulated in response to Bgt infection and might contribute to G3P and OA18:1 accumulation. Gene Ontology (GO) enrichment analysis revealed GO terms induced by glycerol, such as response to jasmonic acid (JA), defense response to bacterium, lipid oxidation, and growth. In addition, glycerol application induced genes (e.g., LOX, AOS, and OPRs) involved in the metabolism pathway of linolenic and alpha-linolenic acid, which are precursor molecules of JA biosynthesis. Glycerol induced JA and salicylic acid (SA) levels, while glycerol reduced the auxin (IAA) level in wheat. Glycerol treatment also induced pathogenesis related (PR) genes, including PR-1, PR-3, PR-10, callose synthase, PRMS, RPM1, peroxidase, HSP70, HSP90, etc. These results indicate that glycerol treatment regulates fatty acid metabolism and hormones cross-talk and induces the expression of PR genes that together contribute to Bgt resistance in wheat.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Xinye Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Correspondence: ; Tel.: +86-10-62732922
| |
Collapse
|
118
|
The Expression of Potato Expansin A3 ( StEXPA3) and Extensin4 ( StEXT4) Genes with Distribution of StEXPAs and HRGPs-Extensin Changes as an Effect of Cell Wall Rebuilding in Two Types of PVY NTN- Solanum tuberosum Interactions. Viruses 2020; 12:v12010066. [PMID: 31948116 PMCID: PMC7020060 DOI: 10.3390/v12010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023] Open
Abstract
The plant cell wall acts not only as a physical barrier, but also as a complex and dynamic structure that actively changes under different biotic and abiotic stress conditions. The question is, how are the different cell wall compounds modified during different interactions with exogenous stimuli such as pathogens? Plants exposed to viral pathogens respond to unfavorable conditions on multiple levels. One challenge that plants face under viral stress is the number of processes required for differential cell wall remodeling. The key players in these conditions are the cell wall genes and proteins, which can be regulated in specific ways during the interactions and have direct influences on the rebuilding of the cell wall structure. The cell wall modifications occurring in plants during viral infection remain poorly described. Therefore, this study focuses on cell wall dynamics as an effect of incompatible interactions between the potato virus Y (PVYNTN) and resistant potatoes (hypersensitive plant), as well as compatible (susceptible plant) interactions. Our analysis describes, for the first time, the expression of the potato expansin A3 (StEXPA3) and potato extensin 4 (StEXT4) genes in PVYNTN-susceptible and -resistant potato plant interactions. The results indicated a statistically significant induction of the StEXPA3 gene during a susceptible response. By contrast, we demonstrated the predominantly gradual activation of the StEXT4 gene during the hypersensitive response to PVYNTN inoculation. Moreover, the in situ distributions of expansins (StEXPAs), which are essential cell wall-associated proteins, and the hydroxyproline-rich glycoprotein (HRGP) extensin were investigated in two types of interactions. Furthermore, cell wall loosening was accompanied by an increase in StEXPA deposition in a PVYNTN-susceptible potato, whereas the HRGP content dynamically increased during the hypersensitive response, when the cell wall was reinforced. Ultrastructural localization and quantification revealed that the HRGP extensin was preferably located in the apoplast, but deposition in the symplast was also observed in resistant plants. Interestingly, during the hypersensitive response, StEXPA proteins were mainly located in the symplast area, in contrast to the susceptible potato where StEXPA proteins were mainly observed in the cell wall. These findings revealed that changes in the intracellular distribution and abundance of StEXPAs and HRGPs can be differentially regulated, depending on different types of PVYNTN–potato plant interactions, and confirmed the involvement of apoplast and symplast activation as a defense response mechanism.
Collapse
|
119
|
Fan S, Chang Y, Liu G, Shang S, Tian L, Shi H. Molecular functional analysis of auxin/indole-3-acetic acid proteins (Aux/IAAs) in plant disease resistance in cassava. PHYSIOLOGIA PLANTARUM 2020; 168:88-97. [PMID: 30950065 DOI: 10.1111/ppl.12970] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 05/18/2023]
Abstract
Auxin/indole-3-acetic acid proteins (Aux/IAAs) play important roles in auxin signaling pathways, with extensive involvement in plant development and plant response to abiotic and biotic stresses. Manihot esculenta (Cassava) is one of the most important biomass energy crops in tropical regions; however, the information about Aux/IAA proteins remain limited in cassava. In this study, 37 MeAux/IAA gene family members were identified in cassava and a phylogenetic analysis was performed. The transcript levels of MeAux/IAAs were commonly regulated by the pathogen Xanthomonas axonopodis pv manihotis (Xam), and some of them were specifically localized to the nucleus. Moreover, the overexpression of MeAux/IAAs confers an improved disease resistance against Xam in Nicotiana benthamiana, while MeAux/IAAs-silenced plants show disease sensitivity against Xam in cassava, as evidenced by the leaf phenotype and leaf bacterial population. Consistent with the disease resistance, MeAux/IAAs regulated the transcript levels of PATHOGENESIS-RELATED GENES (MePRs), reactive oxygen species accumulation and callose development in the plants' defense response. Taken together, gene profile and functional analysis identified several MeAux/IAAs as novel members in plant disease resistance, providing important information for further utilization of MeAux/IAAs.
Collapse
Affiliation(s)
- Shuhong Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Yanli Chang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Sang Shang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Libo Tian
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
120
|
Hu Y, Wang X, Wang C, Hou P, Dong H, Luo B, Li A. A multifunctional ratiometric electrochemical sensor for combined determination of indole-3-acetic acid and salicylic acid. RSC Adv 2020; 10:3115-3121. [PMID: 35497723 PMCID: PMC9048418 DOI: 10.1039/c9ra09951d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022] Open
Abstract
For the first time, a multifunctional ratiometric electrochemical sensor was developed for quantifying IAA and SA simultaneously.
Collapse
Affiliation(s)
- Ye Hu
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- School of Chemical Sciences
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Cheng Wang
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Hongtu Dong
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Bin Luo
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| | - Aixue Li
- Beijing Research Center of Intelligent Equipment for Agriculture
- Beijing Academy of Agriculture and Forestry Sciences
- Beijing 100097
- China
- Beijing Research Center for Information Technology in Agriculture
| |
Collapse
|
121
|
Kumar G, Dasgupta I. Comprehensive molecular insights into the stress response dynamics of rice ( Oryza sativa L.) during rice tungro disease by RNA-seq-based comparative whole transcriptome analysis. J Biosci 2020; 45:27. [PMID: 32020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rice tungro is a serious viral disease of rice resulting from infection by two viruses, Rice tungro bacilliform virus and Rice tungro spherical virus. To gain molecular insights into the global gene expression changes in rice during tungro, a comparative whole genome transcriptome study was performed on healthy and tungroaffected rice plants using Illumina Hiseq 2500. About 10 GB of sequenced data comprising about 50 million paired end reads per sample were then aligned on to the rice genome. Gene expression analysis revealed around 959 transcripts, related to various cellular pathways concerning stress response and hormonal homeostasis to be differentially expressed. The data was validated through qRT-PCR. Gene ontology and pathway analyses revealed enrichment of transcripts and processes similar to the differentially expressed genes categories. In short, the present study is a comprehensive coverage of the differential gene expression landscape and provides molecular insights into the infection dynamics of the rice-tungro virus system.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
122
|
Bacillus amyloliquefaciens MBI600 differentially induces tomato defense signaling pathways depending on plant part and dose of application. Sci Rep 2019; 9:19120. [PMID: 31836790 PMCID: PMC6910970 DOI: 10.1038/s41598-019-55645-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/18/2019] [Indexed: 12/21/2022] Open
Abstract
The success of Bacillus amyloliquefaciens as a biological control agent relies on its ability to outgrow plant pathogens. It is also thought to interact with its plant host by inducing systemic resistance. In this study, the ability of B. amyloliquefaciens MBI600 to elicit defense (or other) responses in tomato seedlings and plants was assessed upon the expression of marker genes and transcriptomic analysis. Spray application of Serifel, a commercial formulation of MBI600, induced responses in a dose-dependent manner. Low dosage primed plant defense by activation of SA-responsive genes. Suggested dosage induced defense by mediating synergistic cross-talk between JA/ET and SA-signaling. Saturation of tomato roots or leaves with MBI600 elicitors activated JA/ET signaling at the expense of SA-mediated responses. The complex signaling network that is implicated in MBI600-tomato seedling interactions was mapped. MBI600 and flg22 (a bacterial flagellin peptide) elicitors induced, in a similar manner, biotic and abiotic stress responses by the coordinated activation of genes involved in JA/ET biosynthesis as well as hormone and redox signaling. This is the first study to suggest the activation of plant defense following the application of a commercial microbial formulation under conditions of greenhouse crop production.
Collapse
|
123
|
Overexpressing GH3.1 and GH3.1L reduces susceptibility to Xanthomonas citri subsp. citri by repressing auxin signaling in citrus (Citrus sinensis Osbeck). PLoS One 2019; 14:e0220017. [PMID: 31830052 PMCID: PMC6907806 DOI: 10.1371/journal.pone.0220017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022] Open
Abstract
The auxin early response gene Gretchen Hagen3 (GH3) plays dual roles in plant development and responses to biotic or abiotic stress. It functions in regulating hormone homeostasis through the conjugation of free auxin to amino acids. In citrus, GH3.1 and GH3.1L play important roles in responding to Xanthomonas citri subsp. citri (Xcc). Here, in Wanjingcheng orange (Citrus sinensis Osbeck), the overexpression of CsGH3.1 and CsGH3.1L caused increased branching and drooping dwarfism, as well as smaller, thinner and upward curling leaves compared with wild-type. Hormone determinations showed that overexpressing CsGH3.1 and CsGH3.1L decreased the free auxin contents and accelerated the Xcc-induced decline of free auxin levels in transgenic plants. A resistance analysis showed that transgenic plants had reduced susceptibility to citrus canker, and a transcriptomic analysis revealed that hormone signal transduction-related pathways were significantly affected by the overexpression of CsGH3.1 and CsGH3.1L. A MapMan analysis further showed that overexpressing either of these two genes significantly downregulated the expression levels of the annotated auxin/indole-3-acetic acid family genes and significantly upregulated biotic stress-related functions and pathways. Salicylic acid, jasmonic acid, abscisic acid, ethylene and zeatin levels in transgenic plants displayed obvious changes compared with wild-type. In particular, the salicylic acid and ethylene levels involved in plant resistance responses markedly increased in transgenic plants. Thus, the overexpression of CsGH3.1 and CsGH3.1L reduces plant susceptibility to citrus canker by repressing auxin signaling and enhancing defense responses. Our study demonstrates auxin homeostasis' potential in engineering disease resistance in citrus.
Collapse
|
124
|
Ntambo MS, Meng JY, Rott PC, Henry RJ, Zhang HL, Gao SJ. Comparative Transcriptome Profiling of Resistant and Susceptible Sugarcane Cultivars in Response to Infection by Xanthomonas albilineans. Int J Mol Sci 2019; 20:ijms20246138. [PMID: 31817492 PMCID: PMC6940782 DOI: 10.3390/ijms20246138] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
Sugarcane (Saccharum spp. hybrids) is a major source of sugar and renewable bioenergy crop worldwide and suffers serious yield losses due to many pathogen infections. Leaf scald caused by Xanthomonas albilineans is a major bacterial disease of sugarcane in most sugarcane-planting countries. The molecular mechanisms of resistance to leaf scald in this plant are, however, still unclear. We performed a comparative transcriptome analysis between resistant (LCP 85-384) and susceptible (ROC20) sugarcane cultivars infected by X. albilineans using the RNA-seq platform. 24 cDNA libraries were generated with RNA isolated at four time points (0, 24, 48, and 72 h post inoculation) from the two cultivars with three biological replicates. A total of 105,783 differentially expressed genes (DEGs) were identified in both cultivars and the most upregulated and downregulated DEGs were annotated for the processes of the metabolic and single-organism categories, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the 7612 DEGs showed that plant-pathogen interaction, spliceosome, glutathione metabolism, protein processing in endoplasmic reticulum, and plant hormone signal transduction contributed to sugarcane's response to X. albilineans infection. Subsequently, relative expression levels of ten DEGs determined by quantitative reverse transcription-PCR (qRT-PCR), in addition to RNA-Seq data, indicated that different plant hormone (auxin and ethylene) signal transduction pathways play essential roles in sugarcane infected by X. albilineans. In conclusion, our results provide, for the first time, valuable information regarding the transcriptome changes in sugarcane in response to infection by X. albilineans, which contribute to the understanding of the molecular mechanisms underlying the interactions between sugarcane and this pathogen and provide important clues for further characterization of leaf scald resistance in sugarcane.
Collapse
Affiliation(s)
- Mbuya Sylvain Ntambo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - Jian-Yu Meng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - Philippe C. Rott
- BGPI, INRA, CIRAD, SupAgro, Univ Montpellier, 34398 Montpellier, France;
| | - Robert J. Henry
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Hui-Li Zhang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.S.N.); (H.-L.Z.)
- Correspondence:
| |
Collapse
|
125
|
Liu G, Liu J, Pei W, Li X, Wang N, Ma J, Zang X, Zhang J, Yu S, Wu M, Yu J. Analysis of the MIR160 gene family and the role of MIR160a_A05 in regulating fiber length in cotton. PLANTA 2019; 250:2147-2158. [PMID: 31620865 DOI: 10.1007/s00425-019-03271-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
The MIR160 family in Gossypium hirsutum and G. barbadense was characterized, and miR160a_A05 was found to increase cotton-fiber length by downregulating its target gene (ARF17) and several GH3 genes. Cotton fiber is the most important raw material for the textile industry. MicroRNAs are involved in regulating cotton-fiber development, but a role in fiber elongation has not been demonstrated. In this study, miR160a was found to be differentially expressed in elongating fibers between two interspecific (between Gossypium hirsutum and G. barbadense) backcross inbred lines (BILs) with different fiber lengths. The gene MIR160 colocalized with a previously mapped fiber-length quantitative trait locus. Its target gene ARF17 was differentially expressed between the two BILs during fiber elongation, but in the inverse fashion. Bioinformatics was used to analyze the MIR160 family in both G. hirsutum and G. barbadense. Moreover, qRT-PCR analysis identified MIR160a as the functional MIR160 gene encoding the miR160a precursor during fiber elongation. Using virus-induced gene silencing and overexpression, overexpressed MIR160a_A05 resulted in significantly longer fibers compared with wild type, whereas suppression of miR160 resulted in significantly shorter fibers. Expression levels of the target gene auxin-response factor 17 (ARF17) and related genes GH3 in the two BILs and/or the virus-infected plants demonstrated similar changes in response to modulation of miR160a level. Finally, overexpression or suppression of miR160 increased or decreased, respectively, the cellular level of indole-3-acetic acid, which is involved in fiber elongation. These results describe a specific regulatory mechanism for fiber elongation in cotton that can be utilized for future crop improvement.
Collapse
Affiliation(s)
- Guoyuan Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China
| | - Ji Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China
| | - Wenfeng Pei
- Xinjiang Research Base, State Key Laboratory of Cotton Biology, Xinjiang Agricultural University, Urumqi, 830001, China
| | - Xihua Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China
| | - Nuohan Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jianjiang Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China
| | - Xinshan Zang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Box 30003, Las Cruces, NM, 88003, USA
| | - Shuxun Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China.
| | - Man Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China.
| | - Jiwen Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture, Zhengzhou University, Anyang, 455000, Henan, China.
| |
Collapse
|
126
|
Gan Z, Fei L, Shan N, Fu Y, Chen J. Identification and Expression Analysis of Gretchen Hagen 3 (GH3) in Kiwifruit ( Actinidia chinensis) During Postharvest Process. PLANTS 2019; 8:plants8110473. [PMID: 31698719 PMCID: PMC6918289 DOI: 10.3390/plants8110473] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022]
Abstract
In plants, the Gretchen GH3 (GH3) protein is involved in free auxin (IAA) and amino acid conjugation, thus controlling auxin homeostasis. To date, many GH3 gene families have been identified from different plant species. However, the GH3 gene family in kiwifruit (Actinidia chinensis) has not been reported. In this study, 12 AcGH3 genes were identified, phylogenetic analysis of AtGH3 (Arabidopsis), SlGH3 (Solanum lycopersicum), and AcGH3 provided insights into various orthologous relationships among these proteins, which were categorized into three groups. Expression analysis of AcGH3 genes at different postharvest stages suggested limited or no role for most of the AcGH3 genes at the initiation of fruit ripening. AcGH3.1 was the only gene exhibiting ripening-associated expression. Further study showed that the expression of AcGH3.1 gene was induced by NAA (1-naphthylacetic acid, auxin analogue) and inhibited by 1-MCP (1-methylcyclopropene, ethylene receptor inhibitor), respectively. AcGH3.1 gene silencing inhibited gene expression and delayed fruit softening in kiwifruit. The results indicate that AcGH3.1 may play an important role in the softening process of fruits. Analysis of the AcGH3.1 promoter revealed the presence of many cis-elements related to hormones, light, and drought. The determination of GUS (β-Galactosidase) enzyme activity revealed that promoter activity increased strikingly upon abscisic acid (ABA), ethylene, or NAA treatment, and significantly decreased with salicylic acid (SA) treatment. The present study could help in the identification of GH3 genes and revelation of AcGH3.1 gene function during postharvest stages, which pave the way for further functional verification of the AcGH3.1 gene.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Liuying Fei
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Nan Shan
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Yongqi Fu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; (Z.G.); (L.F.); (Y.F.)
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China;
- Pingxiang University, Pingxiang 337055, China
- Correspondence: ; Fax: +86-0791-83813185
| |
Collapse
|
127
|
Tang J, Wang Y, Yin W, Dong G, Sun K, Teng Z, Wu X, Wang S, Qian Y, Pan X, Qian Q, Chu C. Mutation of a Nucleotide-Binding Leucine-Rich Repeat Immune Receptor-Type Protein Disrupts Immunity to Bacterial Blight. PLANT PHYSIOLOGY 2019; 181:1295-1313. [PMID: 31431512 PMCID: PMC6836841 DOI: 10.1104/pp.19.00686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 08/11/2019] [Indexed: 05/10/2023]
Abstract
Most characterized plant resistance proteins belong to the nucleotide-binding domain and Leu-rich repeat-containing (NLR) family. NLRs are present in an auto-inhibited state in the absence of specific pathogens, while gain-of-function mutations in NLRs usually cause autoimmunity. Here, we show that a gain-of-function mutation, weaker defense (wed), which caused a Phe-to-Leu substitution in the nucleotide-binding domain of a typical NLR in rice (Oryza sativa), led to enhanced susceptibility to Xanthomonas oryzae pv. Oryzae The unexpected accumulation of salicylic acid (SA), along with downregulation of NONEXPRESSOR OF PR1 (NPR1), in wed indicates the potential presence of a feedback regulation loop of SA biosynthesis in rice. Epistasis analyses illustrated that SA accumulation and the NLR-associated components RAR1, OsRac1, and PhyB are dispensable for the wed phenotypes. Intriguingly, besides pattern-triggered immunity, effector-triggered immunity conferred by different resistance proteins, including Xa3/Xa26, Xa4, and Xa21, was also disturbed by wed to a certain extent, indicating the existence of shared regulatory mechanisms for various defense systems. The identification of wed therefore provides a unique system for genetic dissection of shared immune signaling pathways activated by different types of immune receptors.
Collapse
Affiliation(s)
- Jiuyou Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchao Yin
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Kai Sun
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenfeng Teng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xujiang Wu
- Key Laboratory of Plant Functional Genomics of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Shimei Wang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yangwen Qian
- Biogle Genome Editing Center, Changzhou 213125, China
| | - Xuebiao Pan
- Key Laboratory of Plant Functional Genomics of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, and the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
128
|
Sun X, Zhang L, Tang Z, Shi X, Ma J, Cui R. Transcriptome analysis of roots from resistant and susceptible rice varieties infected with Hirschmanniella mucronata. FEBS Open Bio 2019; 9:1968-1982. [PMID: 31571430 PMCID: PMC6823281 DOI: 10.1002/2211-5463.12737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 09/27/2019] [Indexed: 01/23/2023] Open
Abstract
Hirschmanniella mucronata is a plant-parasitic nematode that is widespread in rice production areas and causes 10-25% yield losses a year on average. Here, we investigated the mechanism of resistance to this nematode by comparing the transcriptomes of roots from resistant (Jiabali) and susceptible (Bawangbian) varieties of rice. Of 39 233 unigenes, 2243. exhibited altered total expression levels between control and infected resistant and susceptible varieties. Significant differences were observed in the expression levels of genes related to stress, peptidase regulation or inhibition, oxidoreductase activity, peroxidase activity and antioxidant activity. The up-regulated genes related to plant secondary metabolites, such as phenylpropanoid, lignin, cellulose or hemicellulose, may result in an increase in the degree of resistance of Jiabali to the H. mucronata infection compared with that of Bawangbian by affecting cell wall organization or biogenesis. Of the genes that responded similarly to H. mucronata infection, ~252 (~76.59%) showed greater changes (whether induced or suppressed) in RN155 (susceptible varieties infected by rice root nematode) than in RN51 (resistance varieties infected by rice root nematode). Nineteen pathogenesis-related genes belonging to nine pathogenesis-related gene families were significantly induced by H. mucronata in the infected roots of Jiabali and Bawangbian, and 13 differentially expressed genes showed changes in their abundance only in the susceptible Bawangbian variety. This study may help enhance our understanding of the mechanisms underlying plant resistance to nematodes.
Collapse
Affiliation(s)
- Xiaotang Sun
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lei Zhang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ziqing Tang
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xugen Shi
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jian Ma
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ruqiang Cui
- College of Agronomy/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
129
|
Ju F, Liu S, Zhang S, Ma H, Chen J, Ge C, Shen Q, Zhang X, Zhao X, Zhang Y, Pang C. Transcriptome analysis and identification of genes associated with fruiting branch internode elongation in upland cotton. BMC PLANT BIOLOGY 2019; 19:415. [PMID: 31590649 PMCID: PMC6781417 DOI: 10.1186/s12870-019-2011-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Appropriate plant architecture can improve the amount of cotton boll opening and allow increased planting density, thus increasing the level of cotton mechanical harvesting and cotton yields. The internodes of cotton fruiting branches are an important part of cotton plant architecture. Thus, studying the molecular mechanism of internode elongation in cotton fruiting branches is highly important. RESULTS In this study, we selected internodes of cotton fruiting branches at three different stages from two cultivars whose internode lengths differed significantly. A total of 76,331 genes were detected by transcriptome sequencing. By KEGG pathway analysis, we found that DEGs were significantly enriched in the plant hormone signal transduction pathway. The transcriptional data and qRT-PCR results showed that members of the GH3 gene family, which are involved in auxin signal transduction, and CKX enzymes, which can reduce the level of CKs, were highly expressed in the cultivar XLZ77, which has relatively short internodes. Genes related to ethylene synthase (ACS), EIN2/3 and ERF in the ethylene signal transduction pathway and genes related to JAR1, COI1 and MYC2 in the JA signal transduction pathway were also highly expressed in XLZ77. Plant hormone determination results showed that the IAA and CK contents significantly decreased in cultivar XLZ77 compared with those in cultivar L28, while the ACC (the precursor of ethylene) and JA contents significantly increased. GO enrichment analysis revealed that the GO categories associated with promoting cell elongation, such as cell division, the cell cycle process and cell wall organization, were significantly enriched, and related genes were highly expressed in L28. However, genes related to the sphingolipid metabolic process and lignin biosynthetic process, whose expression can affect cell elongation, were highly expressed in XLZ77. In addition, 2067 TFs were differentially expressed. The WRKY, ERF and bHLH TF families were the top three largest families whose members were active in the two varieties, and the expression levels of most of the genes encoding these TFs were upregulated in XLZ77. CONCLUSIONS Auxin and CK are positive regulators of internode elongation in cotton branches. In contrast, ethylene and JA may act as negative regulators of internode elongation in cotton branches. Furthermore, the WRKY, ERF and bHLH TFs were identified as important inhibitors of internode elongation in cotton. In XLZ77(a short-internode variety), the mass synthesis of ethylene and amino acid conjugation of auxin led to the inhibition of plant cell elongation, while an increase in JA content and degradation of CKs led to a slow rate of cell division, which eventually resulted in a phenotype that presented relatively short internodes on the fruiting branches. The results of this study not only provide gene resources for the genetic improvement of cotton plant architecture but also lay a foundation for improved understanding of the molecular mechanism of the internode elongation of cotton branches.
Collapse
Affiliation(s)
- Feiyan Ju
- State Key Laboratory of Cotton Biology (Hebei Base)/College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| | - Yongjiang Zhang
- State Key Laboratory of Cotton Biology (Hebei Base)/College of Agronomy, Hebei Agricultural University, Baoding, 071001 Hebei China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455112 Henan China
| |
Collapse
|
130
|
Neogy A, Garg T, Kumar A, Dwivedi AK, Singh H, Singh U, Singh Z, Prasad K, Jain M, Yadav SR. Genome-Wide Transcript Profiling Reveals an Auxin-Responsive Transcription Factor, OsAP2/ERF-40, Promoting Rice Adventitious Root Development. PLANT & CELL PHYSIOLOGY 2019; 60:2343-2355. [PMID: 31318417 DOI: 10.1093/pcp/pcz132] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/01/2019] [Indexed: 05/09/2023]
Abstract
Unlike dicots, the robust root system in grass species largely originates from stem base during postembryonic development. The mechanisms by which plant hormone signaling pathways control the architecture of adventitious root remain largely unknown. Here, we studied the modulations in global genes activity in developing rice adventitious root by genome-wide RNA sequencing in response to external auxin and cytokinin signaling cues. We further analyzed spatiotemporal regulations of key developmental regulators emerged from our global transcriptome analysis. Interestingly, some of the key cell fate determinants such as homeodomain transcription factor (TF), OsHOX12, no apical meristem protein, OsNAC39, APETALA2/ethylene response factor, OsAP2/ERF-40 and WUSCHEL-related homeobox, OsWOX6.1 and OsWOX6.2, specifically expressed in adventitious root primordia. Functional analysis of one of these regulators, an auxin-induced TF containing AP2/ERF domain, OsAP2/ERF-40, demonstrates its sufficiency to confer the adventitious root fate. The ability to trigger the root developmental program is largely attributed to OsAP2/ERF-40-mediated dose-dependent transcriptional activation of genes that can facilitate generating effective auxin response, and OsERF3-OsWOX11-OsRR2 pathway. Our studies reveal gene regulatory network operating in response to hormone signaling pathways and identify a novel TF regulating adventitious root developmental program, a key agronomically important quantitative trait, upstream of OsERF3-OsWOX11-OsRR2 pathway.
Collapse
Affiliation(s)
- Ananya Neogy
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Tushar Garg
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Anil Kumar
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Anuj K Dwivedi
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Harshita Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Urminder Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Zeenu Singh
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Kalika Prasad
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, India
| | - Mukesh Jain
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shri Ram Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee, Uttarakhand, India
| |
Collapse
|
131
|
Visser EA, Wegrzyn JL, Steenkamp ET, Myburg AA, Naidoo S. Dual RNA-Seq Analysis of the Pine- Fusarium circinatum Interaction in Resistant ( Pinus tecunumanii) and Susceptible ( Pinus patula) Hosts. Microorganisms 2019; 7:E315. [PMID: 31487786 PMCID: PMC6780516 DOI: 10.3390/microorganisms7090315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fusarium circinatum poses a serious threat to many pine species in both commercial and natural pine forests. Knowledge regarding the molecular basis of pine-F. circinatum host-pathogen interactions could assist efforts to produce more resistant planting stock. This study aimed to identify molecular responses underlying resistance against F. circinatum. A dual RNA-seq approach was used to investigate host and pathogen expression in F. circinatum challenged Pinus tecunumanii (resistant) and Pinus patula (susceptible), at three- and seven-days post inoculation. RNA-seq reads were mapped to combined host-pathogen references for both pine species to identify differentially expressed genes (DEGs). F. circinatum genes expressed during infection showed decreased ergosterol biosynthesis in P. tecunumanii relative to P. patula. For P. tecunumanii, enriched gene ontologies and DEGs indicated roles for auxin-, ethylene-, jasmonate- and salicylate-mediated phytohormone signalling. Correspondingly, key phytohormone signaling components were down-regulated in P. patula. Key F. circinatum ergosterol biosynthesis genes were expressed at lower levels during infection of the resistant relative to the susceptible host. This study further suggests that coordination of phytohormone signaling is required for F. circinatum resistance in P. tecunumanii, while a comparatively delayed response and impaired phytohormone signaling contributes to susceptibility in P. patula.
Collapse
Affiliation(s)
- Erik A Visser
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Alexander A Myburg
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Centre for Bioinformatics and Computational Biology, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| |
Collapse
|
132
|
Souza GBD, Mendes TADO, Fontes PP, Barros VDA, Gonçalves AB, Ferreira TDF, Costa MDBL, Alves MS, Fietto LG. Genome-wide identification and expression analysis of dormancy-associated gene 1/auxin repressed protein (DRM1/ARP) gene family in Glycine max. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:134-141. [PMID: 30914276 DOI: 10.1016/j.pbiomolbio.2019.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022]
Abstract
Dormancy-Associated gene 1/Auxin Repressed protein (DRM1/ARP) genes are responsive to hormones involved in defense response to biotic stress, such as salicylic acid (SA) and methyl jasmonate (MeJA), as well as to hormones that regulate plant growth and development, including auxins. These characteristics suggest that this gene family may be an important link between the response to pathogens and plant growth and development. In this investigation, the DRM1/ARP genes were identified in the genome of four legume species. The deduced proteins were separated into three distinct groups, according to their sequence conservation. The expression profile of soybean genes from each group was measured in different organs, after treatment with auxin and MeJA and in response to the nematode Meloidogyne javanica. The results demonstrated that this soybean gene family is predominantly expressed in root. The time auxin takes to alter DRM1/ARP expression suggests that these genes can be classified as a late response to auxin. Nevertheless, only the groups 1 and 3 are induced in roots infected by M. javanica and only group 3 is induced by MeJA, which indicates a high level of complexity in expression control mechanisms of DRM1/ARP family in soybean.
Collapse
Affiliation(s)
- Gilza Barcelos de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Tiago Antônio de Oliveira Mendes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Patrícia Pereira Fontes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Vanessa de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Amanda Bonoto Gonçalves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Thiago de Freitas Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Maximiller Dal-Bianco Lamas Costa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil
| | - Murilo Siqueira Alves
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil.
| | - Luciano Gomes Fietto
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Avenida PH Rolfs s/n, Campus Universitário, 36571-000, Viçosa, MG, Brazil.
| |
Collapse
|
133
|
Sánchez-Vicente I, Fernández-Espinosa MG, Lorenzo O. Nitric oxide molecular targets: reprogramming plant development upon stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4441-4460. [PMID: 31327004 PMCID: PMC6736187 DOI: 10.1093/jxb/erz339] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/18/2019] [Indexed: 05/09/2023]
Abstract
Plants are sessile organisms that need to complete their life cycle by the integration of different abiotic and biotic environmental signals, tailoring developmental cues and defense concomitantly. Commonly, stress responses are detrimental to plant growth and, despite the fact that intensive efforts have been made to understand both plant development and defense separately, most of the molecular basis of this trade-off remains elusive. To cope with such a diverse range of processes, plants have developed several strategies including the precise balance of key plant growth and stress regulators [i.e. phytohormones, reactive nitrogen species (RNS), and reactive oxygen species (ROS)]. Among RNS, nitric oxide (NO) is a ubiquitous gasotransmitter involved in redox homeostasis that regulates specific checkpoints to control the switch between development and stress, mainly by post-translational protein modifications comprising S-nitrosation of cysteine residues and metals, and nitration of tyrosine residues. In this review, we have sought to compile those known NO molecular targets able to balance the crossroads between plant development and stress, with special emphasis on the metabolism, perception, and signaling of the phytohormones abscisic acid and salicylic acid during abiotic and biotic stress responses.
Collapse
Affiliation(s)
- Inmaculada Sánchez-Vicente
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Guadalupe Fernández-Espinosa
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Departamento de Botánica y Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
- Correspondence:
| |
Collapse
|
134
|
Chen Y, Zhang B, Li C, Lei C, Kong C, Yang Y, Gong M. A comprehensive expression analysis of the expansin gene family in potato (Solanum tuberosum) discloses stress-responsive expansin-like B genes for drought and heat tolerances. PLoS One 2019; 14:e0219837. [PMID: 31318935 PMCID: PMC6638956 DOI: 10.1371/journal.pone.0219837] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022] Open
Abstract
Expansin is a type of cell wall elongation and stress relaxation protein involved in various developmental processes and stress resistances in plant. In this study, we identified 36 potato (Solanum tuberosum L.) genes belonging to the expansin (StEXP) gene family from the genome reference. These genes included 24 α-expansins (StEXPAs), five β-expansins (StEXPBs), one expansin-like A (StEXLA) and six expansin-like B (StEXLBs). The RNA-Seq analysis conducted from a variety of tissue types showed 34 expansins differentially expressed among tissues, some of which only expressed in specific tissues. Most of the StEXPAs and StEXPB2 transcripts were more abundant in young tuber compared with other tissues, suggesting they likely play a role in tuber development. There were 31 genes, especially StEXLB6, showed differential expression under the treatments of ABA, IAA and GA3, as well as under the drought and heat stresses, indicating they were likely involved in potato stress resistance. In addition, the gene co-expression analysis indicated the StEXLBs likely contribute to a wider range of stress resistances compared with other genes. We found the StEXLA and six StEXLBs expressed differently under a range of abiotic stresses (salt, alkaline, heavy metals, drought, heat, and cold stresses), which likely participated in the associated signaling pathways. Comparing with the control group, potato growing under the drought or heat stresses exhibited up-regulation of the all six StEXLB genes in leaves, whereas, the StEXLB3, StEXLB4, StEXLB5 and StEXLB6 showed relatively higher expression levels in roots. This suggested these genes likely played a role in the drought and heat tolerance. Overall, this study has shown the potential role of the StEXP genes in potato growth and stress tolerance, and provided fundamental resources for the future studies in potato breeding.
Collapse
Affiliation(s)
- Yongkun Chen
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Bo Zhang
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Canhui Li
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, China
| | - Chunxia Lei
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Chunyan Kong
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Yu Yang
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Ming Gong
- School of Life Science, Yunnan Normal University, Kunming, China
- * E-mail:
| |
Collapse
|
135
|
Wei L, Yang B, Jian H, Zhang A, Liu R, Zhu Y, Ma J, Shi X, Wang R, Li J, Xu X. Genome-wide identification and characterization of Gretchen Hagen3 ( GH3) family genes in Brassica napus. Genome 2019; 62:597-608. [PMID: 31271724 DOI: 10.1139/gen-2018-0161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hormone auxin is involved in many biological processes throughout a plant's lifecycle. However, genes in the GH3 (Gretchen Hagen3) family, one of the three major auxin-responsive gene families, have not yet been identified in oilseed rape (Brassica napus). In this study, we identified 63 BnaGH3 genes in oilseed rape using homology searches. We analyzed the chromosome locations, gene structures, and phylogenetic relationships of the BnaGH3 genes, as well as the cis-elements in their promoters. Most BnaGH3 genes are located on chromosomes A03, A09, C02, C03, and C09, each with 4-7 members. In addition, we analyzed the expression patterns of BnaGH3 genes in seven tissues by transcriptome sequencing and quantitative RT-PCR analysis of plants under exogenous IAA treatment. The BnaGH3 genes showed different expression patterns in various tissues. BnaA.GH3.2-1 and BnaC.GH3.2-1 were expressed in the seed and seed coat during development and in response to IAA treatment. These results shed light on the possible roles of the GH3 gene family in oilseed rape.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Bo Yang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Hongju Jian
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Ruiying Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Yan Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Jinqi Ma
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Xiangtian Shi
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China.,Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, P.R. China
| |
Collapse
|
136
|
Zhang H, Liu H, Yang R, Xu X, Liu X, Xu J. Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. Int J Biol Macromol 2019; 130:50-57. [PMID: 30797010 DOI: 10.1016/j.ijbiomac.2019.02.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/19/2023]
Abstract
Expansins play a pivotal role in plant adaptation to environmental stress via cell wall loosening. To evaluate the roles of expansin in response to different environmental stress conditions, the expansin gene PttEXPA8 from Populus tomentosa was transformed into tobacco. Analysis of physiological indices demonstrated the transgenic plants with improved resistance to heat, drought, salt, cold, and cadmium stress but to different extents. In mature plants, PttEXPA8 exerted the greatest effect on heat stress, with a response index value of 137.46%, followed by drought, cadmium, cold, and salt stress with response index values of 101.04%, 70.61%, 69.95%, and 54.68%, respectively. Over-expression of PttEXPA8 resulted in differential responses in physiological indices to the stresses. Soluble sugar content showed the highest response to the stresses, with an average response index value of 29.29%, whereas the absolute response index value for malondialdehyde content, relative electrolyte leakage, chlorophyll content, and superoxide dismutase activity ranged from 11.01% to 19.21%. The present results provide insight into the roles of expansin in stress resistance in Populus.
Collapse
Affiliation(s)
- Hao Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Huabo Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Ruixia Yang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Xiao Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Xiao Liu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
137
|
Besbes F, Habegger R, Schwab W. Induction of PR-10 genes and metabolites in strawberry plants in response to Verticillium dahliae infection. BMC PLANT BIOLOGY 2019; 19:128. [PMID: 30953454 PMCID: PMC6451215 DOI: 10.1186/s12870-019-1718-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/14/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND The soil-borne vascular pathogen Verticillium dahliae causes severe wilt symptoms in a wide range of plants including strawberry (Fragaria × ananassa). To enhance our understanding of the effects of V. dahliae on the growth and development of F. × ananassa, the expression patterns of 21 PR-10 genes were investigated by qPCR analysis and metabolite changes were determined by LC-MS in in vitro F. × ananassa plants upon pathogen infection. RESULTS The expression patterns of the 21 isoforms showed a wide range of responses. Four PR-10 genes were highly induced in leaves upon pathogen infection while eight members were significantly up-regulated in roots. A simultaneously induced expression in leaves and roots was detected for five PR-10 genes. Interestingly, two isoforms were expressed upon infection in all three tissues (leaves, roots and stems) while no induction was detected for two other members. Accumulation of antifungal catechin and epicatechin was detected upon pathogen infection in roots and stems at late stages, while caffeic acid and citric acid were observed only in infected roots. Production of abscisic acid, salicylic acid, jasmonic acid (JA), gibberellic acid and indole acetic acid (IAA) was induced in infected leaves and stems at early stages. IAA and JA were the sole hormones to be ascertained in infected roots at late stages. CONCLUSIONS The induction of several PR-10 genes upon infection of strawberry plants with V. dahliae suggest a role of PR-10 genes in the defense response against this pathogen. Production of phytohormones in the early stages of infection and antifungal metabolites in late stages suppose that they are implicated in this response. The results may possibly improve the control measures of the pathogen.
Collapse
Affiliation(s)
- Fatma Besbes
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Ruth Habegger
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| |
Collapse
|
138
|
Liu M, Shi Z, Zhang X, Wang M, Zhang L, Zheng K, Liu J, Hu X, Di C, Qian Q, He Z, Yang DL. Inducible overexpression of Ideal Plant Architecture1 improves both yield and disease resistance in rice. NATURE PLANTS 2019; 5:389-400. [PMID: 30886331 DOI: 10.1038/s41477-019-0383-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/06/2019] [Indexed: 05/04/2023]
Abstract
Breeding crops with resistance is an efficient way to control diseases. However, increased resistance often has a fitness penalty. Thus, simultaneously increasing disease resistance and yield potential is a challenge in crop breeding. In this study, we found that downregulation of microRNA-156 (miR-156) and overexpression of Ideal Plant Architecture1 (IPA1) and OsSPL7, two target genes of miR-156, enhanced disease resistance against bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo), but reduced rice yield. We discovered that gibberellin signalling might be partially responsible for the disease resistance and developmental defects in IPA1 overexpressors. We then generated transgenic rice plants expressing IPA1 with the pathogen-inducible promoter of OsHEN1; these plants had both enhanced disease resistance and enhanced yield-related traits. Thus, we have identified miR-156-IPA1 as a novel regulator of the crosstalk between growth and defence, and we have established a new strategy for obtaining both high disease resistance and high yield.
Collapse
Affiliation(s)
- Mingming Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaohan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Mingxuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kezhi Zheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xingming Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Cuiru Di
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
139
|
Hui S, Zhang M, Hao M, Yuan M. Rice group I GH3 gene family, positive regulators of bacterial pathogens. PLANT SIGNALING & BEHAVIOR 2019; 14:e1588659. [PMID: 30900505 PMCID: PMC6512922 DOI: 10.1080/15592324.2019.1588659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/01/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Plant GH3 genes play pivotal roles in biotic stress through involving in hormonal homeostasis by conjugation to amino acids of the free-form of salicylic acid, jasmonic acid (JA) or indole-3-acetic acid. We recently showed that rice group I GH3 gene family, with four members, are the functional JA-Ile synthetases and positively mediated rice resistance to Xanthomonas oryzae pv. oryzae (Xoo). Here, we further found that these four genes are also positive regulators conferring resistance to Xanthomonas oryzae pv. oryzicola (Xoc), the devastating bacterial pathogen of rice. The transcript of these four genes were all activated upon Xoc invasion. The overexpressing plants showed less lesion length in comparison with wild type plant accompanying with higher pathogenesis-related genes accumulation, while the triple and quadruple suppressing plants showed susceptible to Xoc with less pathogenesis-related genes accumulation. Previous and present work demonstrate that rice group I GH3 family genes act as positive regulators in the resistance to Xoo and Xoc.
Collapse
Affiliation(s)
- Shugang Hui
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Miaojing Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Mengyu Hao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
140
|
Mücke S, Reschke M, Erkes A, Schwietzer CA, Becker S, Streubel J, Morgan RD, Wilson GG, Grau J, Boch J. Transcriptional Reprogramming of Rice Cells by Xanthomonas oryzae TALEs. FRONTIERS IN PLANT SCIENCE 2019; 10:162. [PMID: 30858855 PMCID: PMC6397873 DOI: 10.3389/fpls.2019.00162] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/29/2019] [Indexed: 05/12/2023]
Abstract
Rice-pathogenic Xanthomonas oryzae bacteria cause severe harvest loss and challenge a stable food supply. The pathogen virulence relies strongly on bacterial TALE (transcription activator-like effector) proteins that function as transcriptional activators inside the plant cell. To understand the plant targets of TALEs, we determined the genome sequences of the Indian X. oryzae pv. oryzae (Xoo) type strain ICMP 3125T and the strain PXO142 from the Philippines. Their complete TALE repertoire was analyzed and genome-wide TALE targets in rice were characterized. Integrating computational target predictions and rice transcriptomics data, we were able to verify 12 specifically induced target rice genes. The TALEs of the Xoo strains were reconstructed and expressed in a TALE-free Xoo strain to attribute specific induced genes to individual TALEs. Using reporter assays, we could show that individual TALEs act directly on their target promoters. In particular, we show that TALE classes assigned by AnnoTALE reflect common target genes, and that TALE classes of Xoo and the related pathogen X. oryzae pv. oryzicola share more common target genes than previously believed. Taken together, we establish a detailed picture of TALE-induced plant processes that significantly expands our understanding of X. oryzae virulence strategies and will facilitate the development of novel resistances to overcome this important rice disease.
Collapse
Affiliation(s)
- Stefanie Mücke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Maik Reschke
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Annett Erkes
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudia-Alice Schwietzer
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Sebastian Becker
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | - Jana Streubel
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| | | | | | - Jan Grau
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jens Boch
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
141
|
Liu H, Wang C, Chen H, Zhou B. Genome-wide transcriptome analysis reveals the molecular mechanism of high temperature-induced floral abortion in Litchi chinensis. BMC Genomics 2019; 20:127. [PMID: 30744557 PMCID: PMC6371443 DOI: 10.1186/s12864-019-5493-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/29/2019] [Indexed: 12/26/2022] Open
Abstract
Background Warm winter and hot spring attributed to global warming affected floral development and may induce floral abortion, resulted in poor flowering in litchi. To identify genes potentially involved in litchi floral abortion, six RNA-sequencing (RNA-Seq) libraries of the developing panicles (DPs) under low temperature (LT) conditions and the shrinking panicles (SPs) under high temperature (HT) conditions were constructed. Results 3.07–8.97 × 106 clean reads were generated. Digital expression of the DPs with that of the SPs was compared. As a result, 1320 up-regulated and 981 down-regulated differentially expressed genes (DEGs) were identified. From the enriched GO-term, 54 temperature responsive DEGs, 23 hormone homeostasis- or biosynthesis-related DEGs, 137 hormone signal transduction or responsive DEGs, and 18 flowering-related DEGs were identified. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis indicated that the effects of hormone-related DEGs on NACs, MYBs, WRKYs were stronger than that on flowering-related DEGs. Expression pattern analysis of the inflorescence in ‘Nuomici’ and ‘Huaizhi’ under LT and HT conditions showed that genes homologous to AIL6 (LcAIL6), LHY (LcLHY), MED16 (LcMED16), SKIP20 (LcSKIP20), POD20 (LcPOD20) in the two cultivars had similar expression trends. Conclusion This study elucidated the transcriptome in the HT-induced floral abortion and identified key genes involved in the process. NACs, MYBs, WRKYs may act as central players involved in the HT-induced floral abortion underlying hormonal control. Increased transcript in LcLHY, LcMED16, LcSKIP20, LcPOD20 and decreased transcript in LcAIL6 might be related to the inhibition of floral development. Our studies provided potential genes for the future molecular breeding of new cultivars that can reduce floral abortion under warm climates, and a novel clue to reveal the relationship of biological processes based on the RNA-seq data using PLS-SEM. Electronic supplementary material The online version of this article (10.1186/s12864-019-5493-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Liu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Congcong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Houbin Chen
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Biyan Zhou
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
142
|
Genome-wide Identification, Expression Profiling and Evolutionary Analysis of Auxin Response Factor Gene Family in Potato (Solanum tuberosum Group Phureja). Sci Rep 2019; 9:1755. [PMID: 30742001 PMCID: PMC6370904 DOI: 10.1038/s41598-018-37923-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/13/2018] [Indexed: 01/02/2023] Open
Abstract
Auxin response factors (ARFs) play central roles in conferring auxin-mediated responses through selection of target genes in plants. Despite their physiological importance, systematic analysis of ARF genes in potato have not been investigated yet. Our genome-wide analysis identified 20 StARF (Solanum tuberosum ARF) genes from potato and found that they are unevenly distributed in all the potato chromosomes except chromosome X. Sequence alignment and conserved motif analysis suggested the presence of all typical domains in all but StARF18c that lacks B3 DNA-binding domain. Phylogenetic analysis indicated that potato ARF could be clustered into 3 distinct subgroups, a result supported by exon-intron structure, consensus motifs, and domain architecture. In silico expression analysis and quantitative real-time PCR experiments revealed that several StARFs were expressed in tissue-specific, biotic/abiotic stress-responsive or hormone-inducible manners, which reflected their potential roles in plant growth, development or under various stress adaptions. Strikingly, most StARFs were identified as highly abiotic stress responsive, indicating that auxin signaling might be implicated in mediating environmental stress-adaptation responses. Taken together, this analysis provides molecular insights into StARF gene family, which paves the way to functional analysis of StARF members and will facilitate potato breeding programs.
Collapse
|
143
|
Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Florane CB. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 2019; 20:112. [PMID: 30727946 DOI: 10.1186/s12864-019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. RESULTS An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. CONCLUSION The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
- Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Jack C McCarty
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| |
Collapse
|
144
|
Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Florane CB. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 2019; 20:112. [PMID: 30727946 PMCID: PMC6366115 DOI: 10.1186/s12864-019-5427-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. Results An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. Conclusion The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5427-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.,Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Jack C McCarty
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| |
Collapse
|
145
|
Evolutionary Analysis of GH3 Genes in Six Oryza Species/Subspecies and Their Expression under Salinity Stress in Oryza sativa ssp. japonica. PLANTS 2019; 8:plants8020030. [PMID: 30682815 PMCID: PMC6409606 DOI: 10.3390/plants8020030] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/09/2023]
Abstract
Glycoside Hydrolase 3 (GH3), a member of the Auxin-responsive gene family, is involved in plant growth, the plant developmental process, and various stress responses. The GH3 gene family has been well-studied in Arabidopsis thaliana and Zea mays. However, the evolution of the GH3 gene family in Oryza species remains unknown and the function of the GH3 gene family in Oryza sativa is not well-documented. Here, a systematic analysis was performed in six Oryza species/subspecies, including four wild rice species and two cultivated rice subspecies. A total of 13, 13, 13, 13, 12, and 12 members were identified in O. sativa ssp. japonica, O. sativa ssp. indica, Oryza rufipogon, Oryza nivara, Oryza punctata, and Oryza glumaepatula, respectively. Gene duplication events, structural features, conserved motifs, a phylogenetic analysis, chromosome locations, and Ka/Ks ratios of this important family were found to be strictly conservative across these six Oryza species/subspecies, suggesting that the expansion of the GH3 gene family in Oryza species might be attributed to duplication events, and this expansion could occur in the common ancestor of Oryza species, even in common ancestor of rice tribe (Oryzeae) (23.07~31.01 Mya). The RNA-seq results of different tissues displayed that OsGH3 genes had significantly different expression profiles. Remarkably, the qRT-PCR result after NaCl treatment indicated that the majority of OsGH3 genes play important roles in salinity stress, especially OsGH3-2 and OsGH3-8. This study provides important insights into the evolution of the GH3 gene family in Oryza species and will assist with further investigation of OsGH3 genes’ functions under salinity stress.
Collapse
|
146
|
Li W, Jia Y, Liu F, Wang F, Fan F, Wang J, Zhu J, Xu Y, Zhong W, Yang J. Integration Analysis of Small RNA and Degradome Sequencing Reveals MicroRNAs Responsive to Dickeya zeae in Resistant Rice. Int J Mol Sci 2019; 20:E222. [PMID: 30626113 PMCID: PMC6337123 DOI: 10.3390/ijms20010222] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
Rice foot rot disease caused by the pathogen Dickeya zeae (formerly known as Erwinia chrysanthemi pv. zeae), is a newly emerging damaging bacterial disease in China and the southeast of Asia, resulting in the loss of yield and grain quality. However, the genetic resistance mechanisms mediated by miRNAs to D. zeae are unclear in rice. In the present study, 652 miRNAs including osa-miR396f predicted to be involved in multiple defense responses to D. zeae were identified with RNA sequencing. A total of 79 differentially expressed miRNAs were detected under the criterion of normalized reads ≥10, including 51 known and 28 novel miRNAs. Degradome sequencing identified 799 targets predicted to be cleaved by 168 identified miRNAs. Among them, 29 differentially expressed miRNA and target pairs including miRNA396f-OsGRFs were identified by co-expression analysis. Overexpression of the osa-miR396f precursor in a susceptible rice variety showed enhanced resistance to D. zeae, coupled with significant accumulation of transcripts of osa-miR396f and reduction of its target the Growth-Regulating Factors (OsGRFs). Taken together, these findings suggest that miRNA and targets including miR396f-OsGRFs have a role in resisting the infections by bacteria D. zeae.
Collapse
Affiliation(s)
- Wenqi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Yulin Jia
- United States Department of Agriculture-Agriculture Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Fangjun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinyan Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Weigong Zhong
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
147
|
Kong W, Zhang Y, Deng X, Li S, Zhang C, Li Y. Comparative Genomic and Transcriptomic Analysis Suggests the Evolutionary Dynamic of GH3 Genes in Gramineae Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:1297. [PMID: 31681387 PMCID: PMC6803601 DOI: 10.3389/fpls.2019.01297] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/18/2019] [Indexed: 05/18/2023]
Abstract
Glycoside hydrolase 3 (GH3) gene family belongs to auxin-responsive gene families and is tightly linked with hormone homeostasis and signaling pathways. However, our knowledge about the evolutionary dynamic of GH3 genes in Gramineae crops is limited. In this study, a comparative genomic and transcriptomic analysis was conducted to study evolutionary patterns and the driving selective forces of GH3 gene family in six representative Gramineae crops, namely, Setaria italica (Si), Zea mays (Zm), Sorghum bicolor (Sb), Hordeum vulgare (Hv), Brachypodium distachyon (Bd), and Oryza sativa ssp. japonica (Os). A total of 17, 13, 11, 9, 8, and 11 GH3 proteins (GH3s) were identified in Si, Zm, Sb, Hv, Bd, and Os, respectively. Phylogenetic, conserved motif, and gene structural analyses could divide all GH3s into two groups (I and II), and all GH3s consisted of seven orthogroups (Ors) on the basis of Or identification result. We further found that genes in the same Or showed similar sequence and structural features, whereas genes in the same groups exhibited intrinsic differences in exon numbers and intron lengths. These results revealed GH3 genes in the same groups have been differentiated. Obvious differences in total numbers of GH3 genes, Ors, and duplication events among these six tested Gramineae crops reflected lineage-specific expansions and homologous gene loss/gain of GH3 gene family during the evolutionary process. In addition, selective force and expression analyses indicated that all GH3 genes were constrained by strong purifying selection, and GH3 genes in conserved Ors showed higher expression levels than that in unconserved Ors. The current study highlighted different evolutionary patterns of GH3 genes in Gramineae crops resulted from different evolutionary rates and duplication events and provided a vital insight into the functional divergence of GH3 genes.
Collapse
|
148
|
Liu M, Wu F, Wang S, Lu Y, Chen X, Wang Y, Gu A, Zhao J, Shen S. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. HORTICULTURE RESEARCH 2019; 6:68. [PMID: 31231526 PMCID: PMC6544662 DOI: 10.1038/s41438-019-0149-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/20/2019] [Accepted: 03/31/2019] [Indexed: 05/20/2023]
Abstract
Pectobacterium carotovorum ssp. carotovorum (Pcc) is a necrotrophic bacterial species that causes soft rot disease in Chinese cabbage. In this study, plants harboring the resistant mutant sr gene, which confers resistance against Pcc, were screened from an 800 M2 population mutated by ethyl methane sulfonate (EMS) and scored in vitro and in vivo for lesion size. The transcript profiles showed ~512 differentially expressed genes (DEGs) between sr and WT plants occurring between 6 and 12 h postinoculation (hpi), which corresponded to the important defense regulation period (resistance) to Pcc in Chinese cabbage. The downstream defense genes (CPK, CML, RBOH MPK3, and MPK4) of pathogen pattern-triggered immunity (PTI) were strongly activated during infection at 12 hpi in resistant mutant sr; PTI appears to be central to plant defense against Pcc via recognition by three putative pattern recognition receptors (PRRs; BrLYM1-BrCERK1, BrBKK1/SERK4-PEPR1, BrWAKs). Pcc triggered the upregulation of the jasmonic acid (JA) and ethylene (ET) biosynthesis genes in mutant sr, but auxins and other hormones may have affected some negative signals. Endogenous hormones (auxins, JAs, and SA), as well as exogenous auxins (MEJA and BTH), were also verified as functioning in the immune system. Concurrently, the expression of glucosinolate and lignin biosynthesis genes was increased at 12 hpi in resistant mutant sr, and the accumulation of glucosinolate and lignin also indicated that these genes have a functional defensive role against Pcc. Our study provides valuable information and elucidates the resistance mechanism of Chinese cabbage against Pcc infection.
Collapse
Affiliation(s)
- Mengyang Liu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Fang Wu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shan Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Yin Lu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Xueping Chen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Yanhua Wang
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Aixia Gu
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Jianjun Zhao
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| | - Shuxing Shen
- Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000 Baoding, China
| |
Collapse
|
149
|
Zhao J, Yuan S, Zhou M, Yuan N, Li Z, Hu Q, Bethea FG, Liu H, Li S, Luo H. Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:233-251. [PMID: 29873883 PMCID: PMC6330543 DOI: 10.1111/pbi.12960] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/19/2018] [Accepted: 06/03/2018] [Indexed: 05/12/2023]
Abstract
MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool-season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri-miR393a (Osa-miR393a). We found that Osa-miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat-shock protein in comparison with wild-type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.
Collapse
Affiliation(s)
- Junming Zhao
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
- Animal Science and Technology CollegeSichuan Agricultural UniversityChengduSichuanChina
| | - Shuangrong Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Man Zhou
- College of Natural, Applied and Health SciencesWenzhou Kean UniversityWenzhouZhejiangChina
| | - Ning Yuan
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Zhigang Li
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Qian Hu
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| | - Frank G. Bethea
- Department of Plant and Environmental SciencesClemson UniversityClemsonSCUSA
| | - Haibo Liu
- Department of Plant and Environmental SciencesClemson UniversityClemsonSCUSA
| | - Shigui Li
- Rice Research InstituteSichuan Agricultural UniversityChengduSichuanChina
| | - Hong Luo
- Department of Genetics and BiochemistryClemson UniversityClemsonSCUSA
| |
Collapse
|
150
|
The group I GH3 family genes encoding JA-Ile synthetase act as positive regulator in the resistance of rice to Xanthomonas oryzae pv. oryzae. Biochem Biophys Res Commun 2019; 508:1062-1066. [DOI: 10.1016/j.bbrc.2018.12.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 12/07/2018] [Indexed: 01/01/2023]
|