101
|
Shi Z, Zhang Y, Maximova SN, Guiltinan MJ. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response. BMC PLANT BIOLOGY 2013; 13:204. [PMID: 24314063 PMCID: PMC3878973 DOI: 10.1186/1471-2229-13-204] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Accepted: 11/27/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Arabidopsis thaliana (Arabidopsis) NON-EXPRESSOR OF PR1 (NPR1) is a transcription coactivator that plays a central role in regulating the transcriptional response to plant pathogens. Developing flowers of homozygous npr3 mutants are dramatically more resistant to infection by the pathogenic bacterium Pseudomonas syringae, suggesting a role of NPR3 as a repressor of NPR1-mediated defense response with a novel role in flower development. RESULTS We report here the characterization of a putative NPR3 gene from the tropical tree species Theobroma cacao (TcNPR3). Like in Arabidopsis, TcNPR3 was constitutively expressed across a wide range of tissue types and developmental stages but with some differences in relative levels compared to Arabidopsis. To test the function of TcNPR3, we performed transgenic complementation analysis by introducing a constitutively expressing putative TcNPR3 transgene into an Arabidopsis npr3 mutant. TcNPR3 expressing Arabidopsis plants were partially restored to the WT pathogen phenotype (immature flowers susceptible to bacterial infection). To test TcNPR3 function directly in cacao tissues, a synthetic microRNA targeting TcNPR3 mRNA was transiently expressed in cacao leaves using an Agrobacterium-infiltration method. TcNPR3 knock down leaf tissues were dramatically more resistance to infection with Phytophthora capsici in a leaf bioassay, showing smaller lesion sizes and reduced pathogen replication. CONCLUSIONS We conclude that TcNPR3 functions similar to the Arabidopsis NPR3 gene in the regulation of the cacao defense response. Since TcNPR3 did not show a perfect complementation of the Arabidopsis NPR3 mutation, the possibility remains that other functions of TcNPR3 remain to be found. This novel knowledge can contribute to the breeding of resistant cacao varieties against pathogens through molecular markers based approaches or biotechnological strategies.
Collapse
Affiliation(s)
- Zi Shi
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yufan Zhang
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Siela N Maximova
- The Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mark J Guiltinan
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- The Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
- 422 Life Sciences Building, University Park, PA 16802, USA
| |
Collapse
|
102
|
Oide S, Bejai S, Staal J, Guan N, Kaliff M, Dixelius C. A novel role of PR2 in abscisic acid (ABA) mediated, pathogen-induced callose deposition in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 200:1187-99. [PMID: 23952213 DOI: 10.1111/nph.12436] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/02/2013] [Indexed: 05/20/2023]
Abstract
Pathogenesis-related protein 2 (PR2) is known to play a major role in plant defense and general stress responses. Resistance against the fungal pathogen Leptosphaeria maculans in Arabidopsis requires abscisic acid (ABA), which promotes the deposition of callose, a β-1,3-glucan polymer. Here, we examined the role of PR2 in callose deposition in relation to ABA treatment and challenge with L. maculans and Pseudomonas syringae. Characterization of PR2-overexpressing plants and the knockout line indicated that PR2 negatively affects callose deposition. Recombinant PR2 purified from Pichia pastoris showed callose-degrading activity, and a considerable reduction in the callose-degrading activity was observed in the leaf extract of the PR2 knockout line compared with the wild-type. ABA pretreatment before challenge with L. maculans concomitantly repressed PR2 and enhanced callose accumulation. Likewise, overexpression of an ABA biosynthesis gene NCED3 resulted in reduced PR2 expression and increased callose deposition. We propose that ABA promotes callose deposition through the transcriptional repression of PR2 in Arabidopsis challenged by L. maculans and P. syringae. Callose by itself is likely to act antagonistically on salicylic acid (SA) defense signaling, suggesting that PR2 may function as a modulator of callose- and SA-dependent defense responses.
Collapse
Affiliation(s)
- Shinichi Oide
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO Box 7080, 750 07, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
103
|
Gao W, Long L, Zhu LF, Xu L, Gao WH, Sun LQ, Liu LL, Zhang XL. Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae. Mol Cell Proteomics 2013; 12:3690-703. [PMID: 24019146 DOI: 10.1074/mcp.m113.031013] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Verticillium wilt causes massive annual losses of cotton yield, but the mechanism of cotton resistance to Verticillium dahliae is complex and poorly understood. In this study, a comparative proteomic analysis was performed in resistant cotton (Gossypium barbadense cv7124) on infection with V. dahliae. A total of 188 differentially expressed proteins were identified by mass spectrometry (MALDI-TOF/TOF) analysis and could be classified into 17 biological processes based on Gene Ontology annotation. Most of these proteins were implicated in stimulus response, cellular processes and metabolic processes. Based on the proteomic analysis, several genes involved in secondary metabolism, reactive oxygen burst and phytohormone signaling pathways were identified for further physiological and molecular analysis. The roles of the corresponding genes were further characterized by employing virus-induced gene silencing (VIGS). Based on the results, we suggest that the production of gossypol is sufficient to affect the cotton resistance to V. dahliae. Silencing of GbCAD1, a key enzyme involving in gossypol biosynthesis, compromised cotton resistance to V. dahliae. Reactive oxygen species and salicylic acid signaling may be also implicated as regulators in cotton responsive to V. dahliae according to the analysis of GbSSI2, an important regulator in the crosstalk between salicylic acid and jasmonic acid signal pathways. Moreover, brassinosteroids and jasmonic acid signaling may play essential roles in the cotton disease resistance to V. dahliae. The brassinosteroids signaling was activated in cotton on inoculation with V. dahliae and the disease resistance of cotton was enhanced after exogenous application of brassinolide. Meanwhile, jasmonic acid signaling was also activated in cotton after inoculation with V. dahliae and brassinolide application. These data provide highlights in the molecular basis of cotton resistance to V. dahliae.
Collapse
Affiliation(s)
- Wei Gao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Zhang Z, van Esse HP, van Damme M, Fradin EF, Liu CM, Thomma BPHJ. Ve1-mediated resistance against Verticillium does not involve a hypersensitive response in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2013; 14:719-27. [PMID: 23710897 PMCID: PMC6638679 DOI: 10.1111/mpp.12042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The recognition of pathogen effectors by plant immune receptors leads to the activation of immune responses that often include a hypersensitive response (HR): rapid and localized host cell death surrounding the site of attempted pathogen ingress. We have demonstrated previously that the recognition of the Verticillium dahliae effector protein Ave1 by the tomato immune receptor Ve1 triggers an HR in tomato and tobacco. Furthermore, we have demonstrated that tomato Ve1 provides Verticillium resistance in Arabidopsis upon Ave1 recognition. In this study, we investigated whether the co-expression of Ve1 and Ave1 in Arabidopsis results in an HR, which could facilitate a forward genetics screen. Surprisingly, we found that the co-expression of Ve1 and Ave1 does not induce an HR in Arabidopsis. These results suggest that an HR may occur as a consequence of Ve1/Ave1-induced immune signalling in tomato and tobacco, but is not absolutely required for Verticillium resistance.
Collapse
Affiliation(s)
- Zhao Zhang
- Laboratory of Phytopathology, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
105
|
Target specificity among canonical nuclear poly(A) polymerases in plants modulates organ growth and pathogen response. Proc Natl Acad Sci U S A 2013; 110:13994-9. [PMID: 23918356 DOI: 10.1073/pnas.1303967110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyadenylation of pre-mRNAs is critical for efficient nuclear export, stability, and translation of the mature mRNAs, and thus for gene expression. The bulk of pre-mRNAs are processed by canonical nuclear poly(A) polymerase (PAPS). Both vertebrate and higher-plant genomes encode more than one isoform of this enzyme, and these are coexpressed in different tissues. However, in neither case is it known whether the isoforms fulfill different functions or polyadenylate distinct subsets of pre-mRNAs. Here we show that the three canonical nuclear PAPS isoforms in Arabidopsis are functionally specialized owing to their evolutionarily divergent C-terminal domains. A strong loss-of-function mutation in PAPS1 causes a male gametophytic defect, whereas a weak allele leads to reduced leaf growth that results in part from a constitutive pathogen response. By contrast, plants lacking both PAPS2 and PAPS4 function are viable with wild-type leaf growth. Polyadenylation of SMALL AUXIN UP RNA (SAUR) mRNAs depends specifically on PAPS1 function. The resulting reduction in SAUR activity in paps1 mutants contributes to their reduced leaf growth, providing a causal link between polyadenylation of specific pre-mRNAs by a particular PAPS isoform and plant growth. This suggests the existence of an additional layer of regulation in plant and possibly vertebrate gene expression, whereby the relative activities of canonical nuclear PAPS isoforms control de novo synthesized poly(A) tail length and hence expression of specific subsets of mRNAs.
Collapse
|
106
|
Zbierzak AM, Porfirova S, Griebel T, Melzer M, Parker JE, Dörmann P. A TIR-NBS protein encoded by Arabidopsis Chilling Sensitive 1 (CHS1) limits chloroplast damage and cell death at low temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:539-52. [PMID: 23617639 DOI: 10.1111/tpj.12219] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/18/2013] [Accepted: 04/22/2013] [Indexed: 05/26/2023]
Abstract
Survival of plants at low temperature depends on mechanisms for limiting physiological damage and maintaining growth. We mapped the chs1-1 (chilling sensitive1-1) mutation in Arabidopsis accession Columbia to the TIR-NBS gene At1g17610. In chs1-1, a single amino acid exchange at the CHS1 N-terminus close to the conserved TIR domain creates a stable mutant protein that fails to protect leaves against chilling stress. The sequence of another TIR-NBS gene (At5g40090) named CHL1 (CHS1-like 1) is related to that of CHS1. Over-expression of CHS1 or CHL1 alleviates chilling damage and enhances plant growth at moderate (24°C) and chilling (13°C) temperatures, suggesting a role for both proteins in growth homeostasis. chs1-1 mutants show induced salicylic acid production and defense gene expression at 13°C, indicative of autoimmunity. Genetic analysis of chs1-1 in combination with defense pathway mutants shows that chs1-1 chilling sensitivity requires the TIR-NBS-LRR and basal resistance regulators encoded by EDS1 and PAD4 but not salicylic acid. By following the timing of metabolic, physiological and chloroplast ultrastructural changes in chs1-1 leaves during chilling, we have established that alterations in photosynthetic complexes and thylakoid membrane integrity precede leaf cell death measured by ion leakage. At 24°C, the chs1-1 mutant appears normal but produces a massive necrotic response to virulent Pseudomonas syringae pv. tomato infection, although this does not affect bacterial proliferation. Our results suggest that CHS1 acts at an intersection between temperature sensing and biotic stress pathway activation to maintain plant performance over a range of conditions.
Collapse
Affiliation(s)
- Anna Maria Zbierzak
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, 53115, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
107
|
de Wit M, Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ, Voesenek LACJ, Pierik R. Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:90-103. [PMID: 23578319 DOI: 10.1111/tpj.12203] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 05/23/2023]
Abstract
In dense stands of plants, such as agricultural monocultures, plants are exposed simultaneously to competition for light and other stresses such as pathogen infection. Here, we show that both salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent disease resistance is inhibited by a simultaneously reduced red:far-red light ratio (R:FR), the early warning signal for plant competition. Conversely, SA- and JA-dependent induced defences did not affect shade-avoidance responses to low R:FR. Reduced pathogen resistance by low R:FR was accompanied by a strong reduction in the regulation of JA- and SA-responsive genes. The severe inhibition of SA-responsive transcription in low R:FR appeared to be brought about by the repression of SA-inducible kinases. Phosphorylation of the SA-responsive transcription co-activator NPR1, which is required for full induction of SA-responsive transcription, was indeed reduced and may thus play a role in the suppression of SA-mediated defences by low R:FR-mediated phytochrome inactivation. Our results indicate that foraging for light through the shade-avoidance response is prioritised over plant immune responses when plants are simultaneously challenged with competition and pathogen attack.
Collapse
Affiliation(s)
- Mieke de Wit
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, University of Edinburgh, King's Buildings, Daniel Rutherford Building, Mayfield Rd, Edinburgh, EH9 3JR, UK
| | - Gabino F Sanchez-Perez
- Theoretical Biology & Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Charlotte M M Gommers
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Laurentius A C J Voesenek
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Ronald Pierik
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
108
|
Powdery mildew resistance in tomato by impairment of SlPMR4 and SlDMR1. PLoS One 2013; 8:e67467. [PMID: 23818978 PMCID: PMC3688610 DOI: 10.1371/journal.pone.0067467] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/17/2013] [Indexed: 11/29/2022] Open
Abstract
Genetic dissection of disease susceptibility in Arabidopsis to powdery and downy mildew has identified multiple susceptibility (S) genes whose impairment results in disease resistance. Although several of these S-genes have been cloned and characterized in more detail it is unknown to which degree their function in disease susceptibility is conserved among different plant species. Moreover, it is unclear whether impairment of such genes has potential in disease resistance breeding due to possible fitness costs associated with impaired alleles. Here we show that the Arabidopsis PMR4 and DMR1, genes encoding a callose synthase and homoserine kinase respectively, have functional orthologs in tomato with respect to their S-gene function. Silencing of both genes using RNAi resulted in resistance to the tomato powdery mildew fungus Oidium neolycopersici. Resistance to O. neolycopersici by SlDMR1 silencing was associated with severely reduced plant growth whereas SlPMR4 silencing was not. SlPMR4 is therefore a suitable candidate gene as target for mutagenesis to obtain alleles that can be deployed in disease resistance breeding of tomato.
Collapse
|
109
|
Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. PLANT CELL REPORTS 2013; 32:687-702. [PMID: 23462936 DOI: 10.1007/s00299-013-1403-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 05/27/2023]
Abstract
A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.
Collapse
Affiliation(s)
- Chuan-yu Guo
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, PR China.
| | | | | | | | | | | |
Collapse
|
110
|
Roberts M, Tang S, Stallmann A, Dangl JL, Bonardi V. Genetic requirements for signaling from an autoactive plant NB-LRR intracellular innate immune receptor. PLoS Genet 2013; 9:e1003465. [PMID: 23633962 PMCID: PMC3636237 DOI: 10.1371/journal.pgen.1003465] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 03/05/2013] [Indexed: 12/27/2022] Open
Abstract
Plants react to pathogen attack via recognition of, and response to, pathogen-specific molecules at the cell surface and inside the cell. Pathogen effectors (virulence factors) are monitored by intracellular nucleotide-binding leucine-rich repeat (NB-LRR) sensor proteins in plants and mammals. Here, we study the genetic requirements for defense responses of an autoactive mutant of ADR1-L2, an Arabidopsis coiled-coil (CC)-NB-LRR protein. ADR1-L2 functions upstream of salicylic acid (SA) accumulation in several defense contexts, and it can act in this context as a “helper” to transduce specific microbial activation signals from “sensor” NB-LRRs. This helper activity does not require an intact P-loop. ADR1-L2 and another of two closely related members of this small NB-LRR family are also required for propagation of unregulated runaway cell death (rcd) in an lsd1 mutant. We demonstrate here that, in this particular context, ADR1-L2 function is P-loop dependent. We generated an autoactive missense mutation, ADR1-L2D484V, in a small homology motif termed MHD. Expression of ADR1-L2D848V leads to dwarfed plants that exhibit increased disease resistance and constitutively high SA levels. The morphological phenotype also requires an intact P-loop, suggesting that these ADR1-L2D484V phenotypes reflect canonical activation of this NB-LRR protein. We used ADR1-L2D484V to define genetic requirements for signaling. Signaling from ADR1-L2D484V does not require NADPH oxidase and is negatively regulated by EDS1 and AtMC1. Transcriptional regulation of ADR1-L2D484V is correlated with its phenotypic outputs; these outputs are both SA–dependent and –independent. The genetic requirements for ADR1-L2D484V activity resemble those that regulate an SA–gradient-dependent signal amplification of defense and cell death signaling initially observed in the absence of LSD1. Importantly, ADR1-L2D484V autoactivation signaling is controlled by both EDS1 and SA in separable, but linked pathways. These data allows us to propose a genetic model that provides insight into an SA–dependent feedback regulation loop, which, surprisingly, includes ADR1-L2. Plants possess an active, inducible disease resistance system, and induction of these responses depends in part on plant resistance proteins. Present understanding of these resistance proteins likens them to molecular switches that bind nucleotides to activate disease resistance responses. Previously it was shown that Activated Disease Resistance 1-like 2 (ADR1-L2), a plant disease resistance protein, is important in the immune response, but can function in the contexts analysed independently of what is currently considered the canonical nucleotide switch activation. Here, we show that, in addition to these previously reported functions, ADR1-L2 also works as a typical, activated disease resistance protein. We use an autoactive mutant form of the protein and show that it promotes disease resistance. We find that ADR1-L2 works in an EDS1-dependent feedback loop with salicylic acid, a hormone known to be essential for plant disease resistance. This work allows us to broaden the understanding of how plant disease resistance proteins function to generate defense against pathogens.
Collapse
Affiliation(s)
- Melinda Roberts
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Saijun Tang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Anna Stallmann
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - Vera Bonardi
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
111
|
Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. Proc Natl Acad Sci U S A 2013; 110:7946-51. [PMID: 23613581 DOI: 10.1073/pnas.1220205110] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Removal of cargos from the cell surface via endocytosis is an efficient mechanism to regulate activities of plasma membrane (PM)-resident proteins, such as receptors or transporters. Salicylic acid (SA) is an important plant hormone that is traditionally associated with pathogen defense. Here, we describe an unanticipated effect of SA on subcellular endocytic cycling of proteins. Both exogenous treatments and endogenously enhanced SA levels repressed endocytosis of different PM proteins. The SA effect on endocytosis did not involve transcription or known components of the SA signaling pathway for transcriptional regulation. SA likely targets an endocytic mechanism that involves the coat protein clathrin, because SA interfered with the clathrin incidence at the PM and clathrin-deficient mutants were less sensitive to the impact of SA on the auxin distribution and root bending during the gravitropic response. By contrast, SA did not affect the ligand-induced endocytosis of the flagellin sensing2 (FLS2) receptor during pathogen responses. Our data suggest that the established SA impact on transcription in plant immunity and the nontranscriptional effect of SA on clathrin-mediated endocytosis are independent mechanisms by which SA regulates distinct aspects of plant physiology.
Collapse
|
112
|
Sahu PP, Rai NK, Puranik S, Roy A, Khan M, Prasad M. Dynamics of defense-related components in two contrasting genotypes of tomato upon infection with Tomato Leaf Curl New Delhi Virus. Mol Biotechnol 2013; 52:140-50. [PMID: 22161255 DOI: 10.1007/s12033-011-9481-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tomato leaf curl virus (ToLCV) disease is a serious threat for tomato cultivation in the tropics and subtropics. Despite serious efforts no immune commercial varieties or F(1) hybrids are available till date. In this study, the interaction between Solanum lycopersicum and ToLCV was characterized on molecular and biochemical basis. RNA silencing mediated by short interfering RNA (siRNA) and reactive oxygen species (ROS) has been proposed as central components of plant adaptation to several stresses. A comparative RNA interference study between two contrasting tomato genotypes, LA1777 (tolerant) and 15SBSB (susceptible) infected with Tomato Leaf Curl New Delhi Virus (ToLCNDV) revealed relatively higher accumulation of siRNA in the leaves of tolerant genotype. In LA1777, ToLCNDV produced chlorotic as well as necrotic areas at the inoculation sites 5-10 days post-inoculation. Caspase-9- and caspase-3-like activities were significantly increased in response to ToLCNDV infection in LA1777 at inoculated region. Activities of antioxidant enzymes involved in the detoxification of ROS were examined in both systemic and localized area of infection, and their expression level was further validated through quantitative real-time PCR of the corresponding transcripts. Expression patterns of three genes encoding pathogenesis-related proteins showed higher accumulation in tolerant genotype. Tolerance against the ToLCNDV in LA1777 can be attributed to the higher siRNA accumulation, localized cell death, altered levels of antioxidant enzymes and activation of pathogenesis-related genes at different durations of virus infection. Based on these direct and indirect evidences, we have proposed a putative mechanism for ToLCNDV tolerance in the tolerant genotype.
Collapse
Affiliation(s)
- Pranav Pankaj Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU Campus, New Delhi 110 067, India
| | | | | | | | | | | |
Collapse
|
113
|
Dobón A, Wulff BBH, Canet JV, Fort P, Tornero P. An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility. PLoS One 2013; 8:e55115. [PMID: 23383073 PMCID: PMC3559596 DOI: 10.1371/journal.pone.0055115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/19/2012] [Indexed: 12/02/2022] Open
Abstract
Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA) while jasmonic acid (JA) regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect. To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of NahG plants (severely depleted of SA) was screened for suppression of susceptibility. The screen resulted in the identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild type levels.
Collapse
Affiliation(s)
- Albor Dobón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Brande B. H. Wulff
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Juan Vicente Canet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Patrocinio Fort
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
- * E-mail:
| |
Collapse
|
114
|
Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C. RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1171-85. [PMID: 22852808 DOI: 10.1094/mpmi-04-12-0076-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RCY1, which encodes a coiled coil nucleotide-binding site leucine-rich repeat (LRR) class R protein, confers the hypersensitive response (HR) to a yellow strain of Cucumber mosaic virus (CMV[Y]) in Arabidopsis thaliana. Nicotiana benthamiana transformed with hemagglutinin (HA) epitope-tagged RCY1 (RCY1-HA) also exhibited a defense response accompanied by HR cell death and induction of defense-related gene expression in response to CMV(Y). Following transient expression of RCY1-HA by agroinfiltration, the defense reaction was induced in N. benthamiana leaves infected with CMV(Y) but not in virulent CMV(B2)-infected N. benthamiana leaves transiently expressing RCY1-HA or CMV(Y)-infected N. benthamiana leaves transiently expressing HA-tagged RPP8 (RPP8-HA), which is allelic to RCY1. This result suggests that Arabidopsis RCY1-conferred resistance to CMV(Y) could be reproduced in N. benthamiana leaves in a gene-for-gene manner. Expression of a series of chimeric constructs between RCY1-HA and RPP8-HA in CMV(Y)-infected N. benthamiana indicated that induction of defense responses to CMV(Y) is regulated by the LRR domain of RCY1. Interestingly, in CMV(Y)-infected N. benthamiana manifesting the defense response, the levels of both RCY1 and chimeric proteins harboring the RCY1 LRR domain were significantly reduced. Taken together, these data indicate that the RCY1-conferred resistance response to CMV(Y) is regulated by an LRR domain-mediated interaction with CMV(Y) and seems to be tightly associated with the degradation of RCY1 in response to CMV(Y).
Collapse
|
115
|
Cheng YT, Li X. Ubiquitination in NB-LRR-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:392-9. [PMID: 22503756 DOI: 10.1016/j.pbi.2012.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/07/2012] [Accepted: 03/21/2012] [Indexed: 05/04/2023]
Abstract
As a common protein modification, ubiquitination is used for regulating the fate of protein targets, notably in terms of stability. In recent years, it has emerged to play key roles in the regulation of plant defense responses. Given its flexibility and critical roles in signaling, primarily in the control of protein turnover, ubiquitination is probably targeting many major immune regulators for modification or degradation. In this review, we summarize the latest findings on how different components of the ubiquitination pathway are involved in NB-LRR R protein-mediated immunity.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Michael Smith Laboratories and the Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
116
|
Igarashi D, Tsuda K, Katagiri F. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:194-204. [PMID: 22353039 DOI: 10.1111/j.1365-313x.2012.04950.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pattern-triggered immunity (PTI) is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs). Although immune responses may provide good protection of plants from pathogen attack, excessive immune responses have negative impacts on plant growth and development. Thus, a good balance between positive and negative effects on the immune signaling network is important for plant fitness. However, little information is known about the molecular mechanisms that are involved in attenuation of PTI. Here, we describe a growth-promoting peptide hormone, phytosulfokine (PSK), as attenuating PTI signaling in Arabidopsis. This research was motivated by the observation that expression of the PSK Receptor 1 (PSKR1) gene was induced by MAMP treatment. Plants homozygous for pskr1 T-DNA insertions showed enhanced defense gene expression and seedling growth inhibition triggered by MAMPs. The pskr1 plants also showed enhanced PTI against the bacterial pathogen Pseudomonas syringae. These results indicate that the PSKR-mediated signaling attenuates immune responses. Tyrosyl protein sulfotransferase (TPST) is an enzyme required for production of the mature sulfated PSK. Like pskr1 mutants, a tpst T-DNA insertion line exhibited enhanced MAMP-triggered seedling growth inhibition, which was suppressed by exogenous application of PSK. Thus, PSK signaling mediated by PSKR1 attenuates PTI but stimulates growth.
Collapse
Affiliation(s)
- Daisuke Igarashi
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St. Paul, MN, 55108, USA
| | | | | |
Collapse
|
117
|
Abstract
Regulation of gene expression by DNA methylation is crucial for defining cellular identities and coordinating organism-wide developmental programs in many organisms. In plants, modulation of DNA methylation in response to environmental conditions represents a potentially robust mechanism to regulate gene expression networks; however, examples of dynamic DNA methylation are largely limited to gene imprinting. Here we report an unexpected role for DNA methylation in regulation of the Arabidopsis thaliana immune system. Profiling the DNA methylomes of plants exposed to bacterial pathogen, avirulent bacteria, or salicylic acid (SA) hormone revealed numerous stress-induced differentially methylated regions, many of which were intimately associated with differentially expressed genes. In response to SA, transposon-associated differentially methylated regions, which were accompanied by up-regulation of 21-nt siRNAs, were often coupled to transcriptional changes of the transposon and/or the proximal gene. Thus, dynamic DNA methylation changes within repetitive sequences or transposons can regulate neighboring genes in response to SA stress.
Collapse
|
118
|
Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trémousaygue D, Deslandes L, Marco Y. Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. THE NEW PHYTOLOGIST 2012; 194:1035-1045. [PMID: 22432714 DOI: 10.1111/j.1469-8137.2012.04113.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.
Collapse
Affiliation(s)
- Dong Xin Feng
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- Department of International Cooperation, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Céline Tasset
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Mathieu Hanemian
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Xavier Barlet
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Jian Hu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dominique Trémousaygue
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Laurent Deslandes
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| | - Yves Marco
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Chemin de Borde Rouge F-31326 Castanet-Tolosan, France
| |
Collapse
|
119
|
Margaret I, Crespo-Rivas JC, Acosta-Jurado S, Buendía-Clavería AM, Cubo MT, Gil-Serrano A, Moreno J, Murdoch PS, Rodríguez-Carvajal MA, Rodríguez-Navarro DN, Ruiz-Sainz JE, Sanjuán J, Soto MJ, Vinardell JM. Sinorhizobium fredii HH103 rkp-3 genes are required for K-antigen polysaccharide biosynthesis, affect lipopolysaccharide structure and are essential for infection of legumes forming determinate nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:825-38. [PMID: 22397406 DOI: 10.1094/mpmi-10-11-0262] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Sinorhizobium fredii HH103 rkp-3 region has been isolated and sequenced. Based on the similarities between the S. fredii HH103 rkpL, rkpM, rkpN, rkpO, rkpP, and rkpQ genes and their corresponding orthologues in Helicobacter pylori, we propose a possible pathway for the biosynthesis of the S. fredii HH103 K-antigen polysaccharide (KPS) repeating unit. Three rkp-3 genes (rkpM, rkpP, and rkpQ) involved in the biosynthesis of the HH103 KPS repeating unit (a derivative of the pseudaminic acid) have been mutated and analyzed. All the rkp-3 mutants failed to produce KPS and their lipopolysaccharide (LPS) profiles were altered. These mutants showed reduced motility and auto-agglutinated when early-stationary cultures were further incubated under static conditions. Glycine max, Vigna unguiculata (determinate nodule-forming legumes), and Cajanus cajan (indeterminate nodules) plants inoculated with mutants in rkpM, rkpQ, or rkpP only formed pseudonodules that did not fix nitrogen and were devoid of bacteria. In contrast, another indeterminate nodule-forming legume, Glycyrrhiza uralensis, was still able to form some nitrogen-fixing nodules with the three S. fredii HH103 rifampicin-resistant rkp-3 mutants tested. Our results suggest that the severe symbiotic impairment of the S. fredii rkp-3 mutants with soybean, V. unguiculata, and C. cajan is mainly due to the LPS alterations rather than to the incapacity to produce KPS.
Collapse
Affiliation(s)
- Isabel Margaret
- Departamento de Microbiología, Faculdad de Biología, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Li W, Ahn IP, Ning Y, Park CH, Zeng L, Whitehill JG, Lu H, Zhao Q, Ding B, Xie Q, Zhou JM, Dai L, Wang GL. The U-Box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:239-50. [PMID: 22383540 PMCID: PMC3366716 DOI: 10.1104/pp.111.192617] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/27/2012] [Indexed: 05/18/2023]
Abstract
The components in plant signal transduction pathways are intertwined and affect each other to coordinate plant growth, development, and defenses to stresses. The role of ubiquitination in connecting these pathways, particularly plant innate immunity and flowering, is largely unknown. Here, we report the dual roles for the Arabidopsis (Arabidopsis thaliana) Plant U-box protein13 (PUB13) in defense and flowering time control. In vitro ubiquitination assays indicated that PUB13 is an active E3 ubiquitin ligase and that the intact U-box domain is required for the E3 ligase activity. Disruption of the PUB13 gene by T-DNA insertion results in spontaneous cell death, the accumulation of hydrogen peroxide and salicylic acid (SA), and elevated resistance to biotrophic pathogens but increased susceptibility to necrotrophic pathogens. The cell death, hydrogen peroxide accumulation, and resistance to necrotrophic pathogens in pub13 are enhanced when plants are pretreated with high humidity. Importantly, pub13 also shows early flowering under middle- and long-day conditions, in which the expression of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and FLOWERING LOCUS T is induced while FLOWERING LOCUS C expression is suppressed. Finally, we found that two components involved in the SA-mediated signaling pathway, SID2 and PAD4, are required for the defense and flowering-time phenotypes caused by the loss of function of PUB13. Taken together, our data demonstrate that PUB13 acts as an important node connecting SA-dependent defense signaling and flowering time regulation in Arabidopsis.
Collapse
|
121
|
Pastor V, Vicent C, Cerezo M, Mauch-Mani B, Dean J, Flors V. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 53:19-26. [PMID: 22285411 DOI: 10.1016/j.plaphy.2012.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/03/2012] [Indexed: 05/07/2023]
Abstract
An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses.
Collapse
Affiliation(s)
- Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department CAMN, Universitat Jaume I, Avd Vicente Sos Baynat, Castellón 12071, Spain
| | | | | | | | | | | |
Collapse
|
122
|
Ali A, Moushib LI, Lenman M, Levander F, Olsson K, Carlson-Nilson U, Zoteyeva N, Liljeroth E, Andreasson E. Paranoid potato: phytophthora-resistant genotype shows constitutively activated defense. PLANT SIGNALING & BEHAVIOR 2012; 7:400-8. [PMID: 22476463 PMCID: PMC3443922 DOI: 10.4161/psb.19149] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Phytophthora is the most devastating pathogen of dicot plants. There is a need for resistance sources with different modes of action to counteract the fast evolution of this pathogen. In order to better understand mechanisms of defense against P. infestans, we analyzed several clones of potato. Two of the genotypes tested, Sarpo Mira and SW93-1015, exhibited strong resistance against P. infestans in field trials, whole plant assays and detached leaf assays. The resistant genotypes developed different sizes of hypersensitive response (HR)-related lesions. HR lesions in SW93-1015 were restricted to very small areas, whereas those in Sarpo Mira were similar to those in Solanum demissum, the main source of classical resistance genes. SW93-1015 can be characterized as a cpr (constitutive expressor of PR genes) genotype without spontaneous microscopic or macroscopic HR lesions. This is indicated by constitutive hydrogen peroxide (H₂O₂) production and PR1 (pathogenesis-related protein 1) secretion. SW93-1015 is one of the first plants identified as having classical protein-based induced defense expressed constitutively without any obvious metabolic costs or spontaneous cell death lesions.
Collapse
Affiliation(s)
- Ashfaq Ali
- Department of Biology; Lund University; Lund, Sweden
| | | | - Marit Lenman
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | | | - Kerstin Olsson
- Department of Plant Breeding and Biotechnology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | - Ulrika Carlson-Nilson
- Department of Plant Breeding and Biotechnology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | - Nadezhda Zoteyeva
- Genetic Department of N.I. Vavilov Institute of Plant Industry; St. Petersburg, Russia
| | - Erland Liljeroth
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Alnarp, Sweden
| | - Erik Andreasson
- Department of Plant Protection Biology; Swedish University of Agricultural Sciences; Alnarp, Sweden
- Correspondence to: Erik Andreasson,
| |
Collapse
|
123
|
Singh P, Kuo YC, Mishra S, Tsai CH, Chien CC, Chen CW, Desclos-Theveniau M, Chu PW, Schulze B, Chinchilla D, Boller T, Zimmerli L. The lectin receptor kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. THE PLANT CELL 2012; 24:1256-70. [PMID: 22427336 PMCID: PMC3336125 DOI: 10.1105/tpc.112.095778] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 05/18/2023]
Abstract
Plant cells can be sensitized toward a subsequent pathogen attack by avirulent pathogens or by chemicals such as β-aminobutyric acid (BABA). This process is called priming. Using a reverse genetic approach in Arabidopsis thaliana, we demonstrate that the BABA-responsive L-type lectin receptor kinase-VI.2 (LecRK-VI.2) contributes to disease resistance against the hemibiotrophic Pseudomonas syringae and the necrotrophic Pectobacterium carotovorum bacteria. Accordingly, LecRK-VI.2 mRNA levels increased after bacterial inoculation or treatments with microbe-associated molecular patterns (MAMPs). We also show that LecRK-VI.2 is required for full activation of pattern-triggered immunity (PTI); notably, lecrk-VI.2-1 mutants show reduced upregulation of PTI marker genes, impaired callose deposition, and defective stomatal closure. Overexpression studies combined with genome-wide microarray analyses indicate that LecRK-VI.2 positively regulates the PTI response. LecRK-VI.2 is demonstrated to act upstream of mitogen-activated protein kinase signaling, but independently of reactive oxygen production and Botrytis-induced kinase1 phosphorylation. In addition, complex formation between the MAMP receptor flagellin sensing2 and its signaling partner brassinosteroid insensitive1-associated kinase1 is observed in flg22-treated lecrk-VI.2-1 mutants. LecRK-VI.2 is also required for full BABA-induced resistance and priming of PTI. Our work identifies LecRK-VI.2 as a novel mediator of the Arabidopsis PTI response and provides insight into molecular mechanisms governing priming.
Collapse
Affiliation(s)
- Prashant Singh
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Kuo
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Swati Mishra
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Hong Tsai
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Cheng Chien
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Ching-Wei Chen
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Marie Desclos-Theveniau
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Po-Wei Chu
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| | - Birgit Schulze
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Delphine Chinchilla
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Thomas Boller
- Zurich-Basel Plant Science Center, Botanical Institute, University of Basel, 4056 Basel, Switzerland
| | - Laurent Zimmerli
- Department of Life Science and Institute of Plant Biology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
124
|
Mang HG, Qian W, Zhu Y, Qian J, Kang HG, Klessig DF, Hua J. Abscisic acid deficiency antagonizes high-temperature inhibition of disease resistance through enhancing nuclear accumulation of resistance proteins SNC1 and RPS4 in Arabidopsis. THE PLANT CELL 2012; 24:1271-84. [PMID: 22454454 PMCID: PMC3336126 DOI: 10.1105/tpc.112.096198] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/28/2012] [Accepted: 03/08/2012] [Indexed: 05/20/2023]
Abstract
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)-deficient mutant aba2 enhances resistance mediated by the resistance (R) gene suppressor of npr1-1 constitutive1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein resistance to Pseudomonas syringae4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses.
Collapse
Affiliation(s)
- Hyung-Gon Mang
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Weiqiang Qian
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Ying Zhu
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jun Qian
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| | - Hong-Gu Kang
- Boyce Thompson Institute, Ithaca, New York 14853
- Department of Biology, Texas State University, San Marcos, Texas 78666
| | | | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
125
|
Gou M, Hua J. Complex regulation of an R gene SNC1 revealed by auto-immune mutants. PLANT SIGNALING & BEHAVIOR 2012; 7:213-6. [PMID: 22415045 PMCID: PMC3405709 DOI: 10.4161/psb.18884] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants have evolved resistance (R) proteins to detect pathogen effectors and trigger plant defense responses in the so named effector-triggered immunity (ETI). R proteins are under negative regulation in plants as upregulated activation of R protein is detrimental to plant growth. Autoimmune mutants have been instrumental in understanding the fine tuning of plant defense responses. Recently, a number of such mutants have been molecularly characterized, and some of them result from over-activation of SNC1, a TIR-NBS-LRR type of R protein. Studies of these mutants revealed a complex negative regulation of SNC1 activity from transcriptional to post-translational regulation. Here, we summarize studies on these SNC1-dependent auto-immune mutants and discuss the fine regulation of R proteins in plant immunity.
Collapse
|
126
|
Mecey C, Hauck P, Trapp M, Pumplin N, Plovanich A, Yao J, He SY. A critical role of STAYGREEN/Mendel's I locus in controlling disease symptom development during Pseudomonas syringae pv tomato infection of Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1965-74. [PMID: 21994350 PMCID: PMC3327183 DOI: 10.1104/pp.111.181826] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/29/2011] [Indexed: 05/18/2023]
Abstract
Production of disease symptoms represents the final phase of infectious diseases and is a main cause of crop loss and/or marketability. However, little is known about the molecular basis of disease symptom development. In this study, a genetic screening was conducted to identify Arabidopsis (Arabidopsis thaliana) mutants that are impaired specifically in the development of disease symptoms (leaf chlorosis and/or necrosis) after infection with the bacterial pathogen Pseudomonas syringae pv tomato (Pst) DC3000. An ethyl methanesulfonate-induced Arabidopsis mutant (no chlorosis1 [noc1]) was identified. In wild-type plants, the abundance of chlorophylls decreased markedly after Pst DC3000 infection, whereas the total amount of chlorophylls remained relatively unchanged in the noc1 mutant. Interestingly, noc1 mutant plants also exhibited reduced disease symptoms in response to the fungal pathogen Alternaria brassicicola. Genetic and molecular analyses showed that the nuclear gene STAYGREEN (SGR; or Mendel's I locus) is mutated (resulting in the aspartic acid to tyrosine substitution at amino acid position 88) in noc1 plants. Transforming wild-type SGR cDNA into the noc1 mutant rescued the chlorosis phenotype in response to Pst DC3000 infection. The SGR transcript was highly induced by Pst DC3000, A. brassicicola, or coronatine (COR), a bacterial phytotoxin that promotes chlorosis. The induction of SGR expression by COR is dependent on COI1, a principal component of the jasmonate receptor complex. These results suggest that pathogen/COR-induced expression of SGR is a critical step underlying the development of plant disease chlorosis.
Collapse
|
127
|
Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. MOLECULAR PLANT PATHOLOGY 2011; 12:855-65. [PMID: 21726384 PMCID: PMC6640339 DOI: 10.1111/j.1364-3703.2011.00717.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling.
Collapse
Affiliation(s)
- Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
128
|
Perazza D, Laporte F, Balagué C, Chevalier F, Remo S, Bourge M, Larkin J, Herzog M, Vachon G. GeBP/GPL transcription factors regulate a subset of CPR5-dependent processes. PLANT PHYSIOLOGY 2011; 157:1232-42. [PMID: 21875893 PMCID: PMC3252139 DOI: 10.1104/pp.111.179804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/28/2011] [Indexed: 05/22/2023]
Abstract
The CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene of Arabidopsis (Arabidopsis thaliana) encodes a putative membrane protein of unknown biochemical function and displays highly pleiotropic functions, particularly in pathogen responses, cell proliferation, cell expansion, and cell death. Here, we demonstrate a link between CPR5 and the GLABRA1 ENHANCER BINDING PROTEIN (GeBP) family of transcription factors. We investigated the primary role of the GeBP/GeBP-like (GPL) genes using transcriptomic analysis of the quadruple gebp gpl1,2,3 mutant and one overexpressing line that displays several cpr5-like phenotypes including dwarfism, spontaneous necrotic lesions, and increased pathogen resistance. We found that GeBP/GPLs regulate a set of genes that represents a subset of the CPR5 pathway. This subset includes genes involved in response to stress as well as cell wall metabolism. Analysis of the quintuple gebp gpl1,2,3 cpr5 mutant indicates that GeBP/GPLs are involved in the control of cell expansion in a CPR5-dependent manner but not in the control of cell proliferation. In addition, to our knowledge, we provide the first evidence that the CPR5 protein is localized in the nucleus of plant cells and that a truncated version of the protein with no transmembrane domain can trigger cpr5-like processes when fused to the VP16 constitutive transcriptional activation domain. Our results provide clues on how CPR5 and GeBP/GPLs play opposite roles in the control of cell expansion and suggest that the CPR5 protein is involved in transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilles Vachon
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale/Université Joseph Fourier U823, Equipe Interference ARN et Epigenetique, Rond-point de la Chantourne, 38706 La Tronche cedex, France (D.P.); Laboratoire d’Ecologie Alpine, Université Joseph Fourier and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5553, 2233, F–38041 Grenoble cedex 9, France (F.L., M.H.); Laboratoire des Interactions Plantes-Microorganismes Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594/441 BP 52627, 31326 Castanet-Tolosan cedex, France (C.B.); Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2594, F–31326 Castanet-Tolosan, France (C.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808 (S.R., J.L.); Institut des Sciences Végétales Centre National de la Recherche Scientifique, F–91198 Gif-sur-Yvette cedex, France (M.B.); Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique et aux Energies Alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l'Energie Atomique et aux Energies Alternatives, 38054 Grenoble cedex 9, France (G.V.)
| |
Collapse
|
129
|
von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Keßler T, Schmitt-Kopplin P, Schäffner AR. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. THE PLANT CELL 2011; 23:4124-45. [PMID: 22080599 PMCID: PMC3246326 DOI: 10.1105/tpc.111.088443] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/30/2011] [Accepted: 10/24/2011] [Indexed: 05/18/2023]
Abstract
Plants coordinate and tightly regulate pathogen defense by the mostly antagonistic salicylate (SA)- and jasmonate (JA)-mediated signaling pathways. Here, we show that the previously uncharacterized glucosyltransferase UGT76B1 is a novel player in this SA-JA signaling crosstalk. UGT76B1 was selected as the top stress-induced isoform among all 122 members of the Arabidopsis thaliana UGT family. Loss of UGT76B1 function leads to enhanced resistance to the biotrophic pathogen Pseudomonas syringae and accelerated senescence but increased susceptibility toward necrotrophic Alternaria brassicicola. This is accompanied by constitutively elevated SA levels and SA-related marker gene expression, whereas JA-dependent markers are repressed. Conversely, UGT76B1 overexpression has the opposite effect. Thus, UGT76B1 attenuates SA-dependent plant defense in the absence of infection, promotes the JA response, and delays senescence. The ugt76b1 phenotypes were SA dependent, whereas UGT76B1 overexpression indicated that this gene possibly also has a direct effect on the JA pathway. Nontargeted metabolomic analysis of UGT76B1 knockout and overexpression lines using ultra-high-resolution mass spectrometry and activity assays with the recombinant enzyme led to the ab initio identification of isoleucic acid (2-hydroxy-3-methyl-pentanoic acid) as a substrate of UGT76B1. Exogenously applied isoleucic acid increased resistance against P. syringae infection. These findings indicate a novel link between amino acid-related molecules and plant defense that is mediated by small-molecule glucosylation.
Collapse
Affiliation(s)
- Veronica von Saint Paul
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wei Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Basem Kanawati
- Institute of Ecological Chemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Theresa Faus-Keßler
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Anton R. Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Address correspondence to
| |
Collapse
|
130
|
Yao Y, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants. THE PLANT CELL 2011; 23:3842-52. [PMID: 22028460 PMCID: PMC3229153 DOI: 10.1105/tpc.111.089003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Franz J. Zemp
- Department of Medical Sciences, University of Calgary, Alberta T2N 4N1, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ozan Nazim Ciftci
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
131
|
Wang Y, Nishimura MT, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:74-87. [PMID: 21645148 DOI: 10.1111/j.1365-313x.2011.04669.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
132
|
Stability of plant immune-receptor resistance proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. Proc Natl Acad Sci U S A 2011; 108:14694-9. [PMID: 21873230 DOI: 10.1073/pnas.1105685108] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nucleotide-binding domain and leucine-rich repeats containing proteins (NLRs) serve as immune receptors in both plants and animals. Overaccumulation of NLRs often leads to autoimmune responses, suggesting that the levels of these immune receptors must be tightly controlled. However, the mechanism by which NLR protein levels are regulated is unknown. Here we report that the F-box protein CPR1 controls the stability of plant NLR resistance proteins. Loss-of-function mutations in CPR1 lead to higher accumulation of the NLR proteins SNC1 and RPS2, as well as autoactivation of immune responses. The autoimmune responses in cpr1 mutant plants can be largely suppressed by knocking out SNC1. Furthermore, CPR1 interacts with SNC1 and RPS2 in vivo, and overexpressing CPR1 results in reduced accumulation of SNC1 and RPS2, as well as suppression of immunity mediated by these two NLR proteins. Our data suggest that SKP1-CULLIN1-F-box (SCF) complex-mediated stability control of plant NLR proteins plays an important role in regulating their protein levels and preventing autoimmunity.
Collapse
|
133
|
Kong X, Li D. Hydrogen peroxide is not involved in HrpN from Erwinia amylovora-induced hypersensitive cell death in maize leaves. PLANT CELL REPORTS 2011; 30:1273-9. [PMID: 21344189 DOI: 10.1007/s00299-011-1038-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/11/2011] [Accepted: 02/09/2011] [Indexed: 05/21/2023]
Abstract
Harpin elicits rapid and localized programmed cell death in plants, also known as the hypersensitive response (HR). Here we report that HrpN from Erwinia amylovora led to rapid cell death in maize leaves within 24 h and also induced the expression of systemic acquired resistance genes, such as ZmPR1 and ZmPR5. Surprisingly, the results of DAB staining showed that there was no H(2)O(2) accumulation in maize leaves during the HR process, and semi-quantitative RT-PCR revealed that there was also no difference in the expression of the ZmRboh genes. These results suggest that HrpN-induced cell death may be independent of H(2)O(2) accumulation in maize leaves.
Collapse
Affiliation(s)
- Xiangpei Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, China
| | | |
Collapse
|
134
|
Robert-Seilaniantz A, MacLean D, Jikumaru Y, Hill L, Yamaguchi S, Kamiya Y, Jones JDG. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:218-31. [PMID: 21457368 DOI: 10.1111/j.1365-313x.2011.04591.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
flg22 treatment increases levels of miR393, a microRNA that targets auxin receptors. Over-expression of miR393 renders plants more resistant to biotroph pathogens and more susceptible to necrotroph pathogens. In contrast, over-expression of AFB1, an auxin receptor whose mRNA is partially resistant to miR393 degradation, renders the plant more susceptible to biotroph pathogens. Here we investigate the mechanism by which auxin signalling and miR393 influence plant defence. We show that auxin signalling represses SA levels and signalling. We also show that miR393 represses auxin signalling, preventing it from antagonizing SA signalling. In addition, over-expression of miR393 increases glucosinolate levels and decreases the levels of camalexin. Further studies on pathogen interactions in auxin signalling mutants revealed that ARF1 and ARF9 negatively regulate glucosinolate accumulation, and that ARF9 positively regulates camalexin accumulation. We propose that the action of miR393 on auxin signalling triggers two complementary responses. First, it prevents suppression of SA levels by auxin. Second, it stabilizes ARF1 and ARF9 in inactive complexes. As a result, the plant is able to mount a full SA response and to re-direct metabolic flow toward the most effective anti-microbial compounds for biotroph resistance. We propose that miR393 levels can fine-tune plant defences and prioritize resources.
Collapse
|
135
|
Robledo M, Jiménez-Zurdo JI, Soto MJ, Velázquez E, Dazzo F, Martínez-Molina E, Mateos PF. Development of functional symbiotic white clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:798-807. [PMID: 21405987 DOI: 10.1094/mpmi-10-10-0249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The establishment of rhizobia as nitrogen-fixing endosymbionts within legume root nodules requires the disruption of the plant cell wall to breach the host barrier at strategic infection sites in the root hair tip and at points of bacterial release from infection threads (IT) within the root cortex. We previously found that Rhizobium leguminosarum bv. trifolii uses its chromosomally encoded CelC2 cellulase to erode the noncrystalline wall at the apex of root hairs, thereby creating the primary portal of its entry into white clover roots. Here, we show that a recombinant derivative of R. leguminosarum bv. trifolii ANU843 that constitutively overproduces the CelC2 enzyme has increased competitiveness in occupying aberrant nodule-like root structures on clover that are inefficient in nitrogen fixation. This aberrant symbiotic phenotype involves an extensive uncontrolled degradation of the host cell walls restricted to the expected infection sites at tips of deformed root hairs and significantly enlarged infection droplets at termini of wider IT within the nodule infection zone. Furthermore, signs of elevated plant host defense as indicated by reactive oxygen species production in root tissues were more evident during infection by the recombinant strain than its wild-type parent. Our data further support the role of the rhizobial CelC2 cell wall-degrading enzyme in primary infection, and show evidence of its importance in secondary symbiotic infection and tight regulation of its production to establish an effective nitrogen-fixing root nodule symbiosis.
Collapse
Affiliation(s)
- Marta Robledo
- Departamento de Microbiologia, Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
136
|
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3321-38. [PMID: 21357767 DOI: 10.1093/jxb/err031] [Citation(s) in RCA: 632] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, 04510, México, DF, México
| | | |
Collapse
|
137
|
Tang J, Zhu X, Wang Y, Liu L, Xu B, Li F, Fang J, Chu C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:996-1007. [PMID: 21418352 DOI: 10.1111/j.1365-313x.2011.04557.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In this study, we characterized the semi-dominant mutant nls1-1D (necrotic leaf sheath 1) of rice, which displays spontaneous lesions, specifically on leaf sheaths, with a developmental pattern. nls1-1D plants also exhibited constitutively activated defense responses, including extensive cell death, excess hydrogen peroxide and salicylic acid (SA) accumulation, up-regulated expressions of pathogenesis-related genes, and enhanced resistance to bacterial pathogens. Map-based cloning revealed that NLS1 encodes a typical CC-NB-LRR-type protein in rice. The nls1-1D mutation causes a S367N substitution in the non-conserved region close to the GLPL motif of the NB domain. An adjacent S366T substitution was found in another semi-dominant mutant, nls1-2D, which exhibited the same phenotypes as nls1-1D. Combined analyses of wild-type plants transformed with the mutant NLS1 gene (nls1-1D), NLS1 RNAi and over-expression transgenic lines showed that nls1-2D is allelic to nls1-1D, and both mutations may cause constitutive auto-activation of the NLS1 R protein. Further real-time PCR analysis revealed that NLS1 is expressed constitutively in an age-dependent manner. In addition, because the morphology and constitutive defense responses of nls1-1D were not suppressed by blocking SA or NPR1 transcript accumulation, we suggest that NLS1 mediates both SA and NPR1-independent defense signaling pathways in rice.
Collapse
Affiliation(s)
- Jiuyou Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Niu DD, Liu HX, Jiang CH, Wang YP, Wang QY, Jin HL, Guo JH. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:533-42. [PMID: 21198361 DOI: 10.1094/mpmi-09-10-0213] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bacillus cereus AR156 is a plant growth-promoting rhizobacterium that induces resistance against a broad spectrum of pathogens including Pseudomonas syringae pv. tomato DC3000. This study analyzed AR156-induced systemic resistance (ISR) to DC3000 in Arabidopsis ecotype Col-0 plants. Compared with mock-treated plants, AR156-treated ones showed an increase in biomass and reductions in disease severity and pathogen density in the leaves. The defense-related genes PR1, PR2, PR5, and PDF1.2 were concurrently expressed in the leaves of AR156-treated plants, suggesting simultaneous activation of the salicylic acid (SA)- and the jasmonic acid (JA)- and ethylene (ET)-dependent signaling pathways by AR156. The above gene expression was faster and stronger in plants treated with AR156 and inoculated with DC3000 than that in plants only inoculated with DC3000. Moreover, the cellular defense responses hydrogen peroxide accumulation and callose deposition were induced upon challenge inoculation in the leaves of Col-0 plants primed by AR156. Also, pretreatment with AR156 led to a higher level of induced protection against DC3000 in Col-0 than that in the transgenic NahG, the mutant jar1 or etr1, but the protection was absent in the mutant npr1. Therefore, AR156 triggers ISR in Arabidopsis by simultaneously activating the SA- and JA/ET-signaling pathways in an NPR1-dependent manner that leads to an additive effect on the level of induced protection.
Collapse
Affiliation(s)
- Dong-Dong Niu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
139
|
Hamamouch N, Li C, Seo PJ, Park CM, Davis EL. Expression of Arabidopsis pathogenesis-related genes during nematode infection. MOLECULAR PLANT PATHOLOGY 2011; 12:355-64. [PMID: 21453430 PMCID: PMC6640486 DOI: 10.1111/j.1364-3703.2010.00675.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The expression pattern of pathogenesis-related genes PR-1 to PR-5 was examined in the roots and leaves of Arabidopsis thaliana plants on infection with beet-cyst (Heterodera schachtii) and root-knot (Meloidogyne incognita) nematodes. During H. schachtii parasitism of Arabidopsis, the expression of PR-1, PR-2 and PR-5, which are considered to be markers for salicylic acid (SA)-dependent systemic acquired resistance (SAR), was induced in both roots and leaves of infected plants. In addition, the expression of PR-3 and PR-4, which are used as markers for jasmonic acid (JA)-dependent SAR, was not altered in roots, but in the leaves of H. schachtii-infected plants, the expression PR-3 was induced, whereas the expression of PR-4 was down-regulated. During M. incognita infection of Arabidopsis, the expression of PR-1, PR-2 and PR-5 was highly induced in roots, as was PR-3 to a lesser extent, but the expression of PR-4 was not altered, indicating that infection with M. incognita activated both SA- and JA-dependent SAR in roots. However, all PRgenes examined (PR-1 to PR-5) were down-regulated in the leaves of M. incognita-infected plants, suggesting the suppression of both SA- and JA-dependent SAR. Furthermore, constitutive expression of a single PR in Arabidopsis altered the transcription patterns of other PR genes, and the over-expression of PR-1 reduced successful infection by both H. schachtii and M. incognita, whereas the over-expression of PR-3 reduced host susceptibility to M. incognita but had no effect on H. schachtii parasitism. The results suggest that fundamental differences in the mechanisms of infection by beet-cyst and root-knot nematodes differentially regulate PR protein production and mobilization within susceptible host plants.
Collapse
Affiliation(s)
- Noureddine Hamamouch
- North Carolina State University, Department of Plant Pathology, Raleigh, NC 27607, USA
| | | | | | | | | |
Collapse
|
140
|
Doornbos RF, Geraats BPJ, Kuramae EE, Van Loon LC, Bakker PAHM. Effects of jasmonic acid, ethylene, and salicylic acid signaling on the rhizosphere bacterial community of Arabidopsis thaliana. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:395-407. [PMID: 21171889 DOI: 10.1094/mpmi-05-10-0115] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemically induced resistance is a promising strategy to control plant diseases, as it affects numerous pathogens. However, since induced resistance reduces one or both growth and activity of plant pathogens, the indigenous microflora may also be affected by an enhanced defensive state of the plant. The aim of this study was to elucidate how much the bacterial rhizosphere microflora of Arabidopsis is affected by induced systemic resistance (ISR) or systemic acquired resistance (SAR). Therefore, the bacterial microflora of wild-type plants and plants affected in their defense signaling was compared. Additionally, ISR was induced by application of methyl jasmonate and SAR by treatment with salicylic acid or benzothiadiazole. As a comparative model, we also used wild type and ethylene-insensitive tobacco. Some of the Arabidopsis genotypes affected in defense signaling showed altered numbers of culturable bacteria in their rhizospheres; however, effects were dependent on soil type. Effects of plant genotype on rhizosphere bacterial community structure could not be related to plant defense because chemical activation of ISR or SAR had no significant effects on density and structure of the rhizosphere bacterial community. These findings support the notion that control of plant diseases by elicitation of systemic resistance will not significantly affect the resident soil bacterial microflora.
Collapse
Affiliation(s)
- Rogier F Doornbos
- Plant-Microbe Interactions, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
141
|
De-la-Peña C, Badri DV, Lei Z, Watson BS, Brandão MM, Silva-Filho MC, Sumner LW, Vivanco JM. Root secretion of defense-related proteins is development-dependent and correlated with flowering time. J Biol Chem 2010; 285:30654-65. [PMID: 20682788 PMCID: PMC2945560 DOI: 10.1074/jbc.m110.119040] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/22/2010] [Indexed: 01/14/2023] Open
Abstract
Proteins found in the root exudates are thought to play a role in the interactions between plants and soil organisms. To gain a better understanding of protein secretion by roots, we conducted a systematic proteomic analysis of the root exudates of Arabidopsis thaliana at different plant developmental stages. In total, we identified 111 proteins secreted by roots, the majority of which were exuded constitutively during all stages of development. However, defense-related proteins such as chitinases, glucanases, myrosinases, and others showed enhanced secretion during flowering. Defense-impaired mutants npr1-1 and NahG showed lower levels of secretion of defense proteins at flowering compared with the wild type. The flowering-defective mutants fca-1, stm-4, and co-1 showed almost undetectable levels of defense proteins in their root exudates at similar time points. In contrast, root secretions of defense-enhanced cpr5-2 mutants showed higher levels of defense proteins. The proteomics data were positively correlated with enzymatic activity assays for defense proteins and with in silico gene expression analysis of genes specifically expressed in roots of Arabidopsis. In conclusion, our results show a clear correlation between defense-related proteins secreted by roots and flowering time.
Collapse
Affiliation(s)
- Clelia De-la-Peña
- From the Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Dayakar V. Badri
- From the Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado 80523
| | - Zhentian Lei
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401, and
| | - Bonnie S. Watson
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401, and
| | - Marcelo M. Brandão
- the Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, C.P. 83, 13400-970 Piracicaba São Paulo, Brazil
| | - Marcio C. Silva-Filho
- the Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Av. Pádua Dias, 11, C.P. 83, 13400-970 Piracicaba São Paulo, Brazil
| | - Lloyd W. Sumner
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, Oklahoma 73401, and
| | - Jorge M. Vivanco
- From the Department of Horticulture and Landscape Architecture and Center for Rhizosphere Biology, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
142
|
Jambunathan N, Penaganti A, Tang Y, Mahalingam R. Modulation of redox homeostasis under suboptimal conditions by Arabidopsis nudix hydrolase 7. BMC PLANT BIOLOGY 2010; 10:173. [PMID: 20704736 PMCID: PMC3095304 DOI: 10.1186/1471-2229-10-173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 08/12/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nudix hydrolases play a key role in maintaining cellular homeostasis by hydrolyzing various nuceloside diphosphate derivatives and capped mRNAs. Several independent studies have demonstrated that Arabidopsis nudix hydrolase 7 (AtNUDT7) hydrolyzes NADH and ADP-ribose. Loss of function Atnudt7-1 mutant plants (SALK_046441) exhibit stunted growth, higher levels of reactive oxygen species, enhanced resistance to pathogens. However, using the same T-DNA line, two other groups reported that mutant plants do not exhibit any visible phenotypes. In this study we analyze plausible factors that account for differences in the observed phenotypes in Atnudt7. Secondly, we evaluate the biochemical and molecular consequences of increased NADH levels due to loss of function of AtNUDT7 in Arabidopsis. RESULTS We identified a novel conditional phenotype of Atnudt7-1 knockout plants that was contingent upon nutrient composition of potting mix. In nutrient-rich Metro-Mix, there were no phenotypic differences between mutant and wild-type (WT) plants. In the nutrient-poor mix (12 parts vermiculite: 3 parts Redi-earth and 1 part sand), mutant plants showed the characteristic stunted phenotype. Compared with WT plants, levels of glutathione, NAD+, NADH, and in turn NADH:NAD+ ratio were higher in Atnudt7-1 plants growing in 12:3:1 potting mix. Infiltrating NADH and ADP-ribose into WT leaves was sufficient to induce AtNUDT7 protein. Constitutive over-expression of AtNudt7 did not alter NADH levels or resistance to pathogens. Transcriptome analysis identified nearly 700 genes differentially expressed in the Atnudt7-1 mutant compared to WT plants grown in 12:3:1 potting mix. In the Atnudt7-1 mutant, genes associated with defense response, proteolytic activities, and systemic acquired resistance were upregulated, while gene ontologies for transcription and phytohormone signaling were downregulated. CONCLUSIONS Based on these observations, we conclude that the differences observed in growth phenotypes of the Atnudt7-1 knockout mutants can be due to differences in the nutrient composition of potting mix. Our data suggests AtNUDT7 plays an important role in maintaining redox homeostasis, particularly for maintaining NADH:NAD+ balance for normal growth and development. During stress conditions, rapid induction of AtNUDT7 is important for regulating the activation of stress/defense signaling and cell death pathways.
Collapse
Affiliation(s)
- Niranjani Jambunathan
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Anuradha Penaganti
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yuhong Tang
- The Samuel Roberts Noble Foundation Inc., Plant Biology Division, Ardmore, Oklahoma, USA
| | - Ramamurthy Mahalingam
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
143
|
Lissarre M, Ohta M, Sato A, Miura K. Cold-responsive gene regulation during cold acclimation in plants. PLANT SIGNALING & BEHAVIOR 2010; 5:948-52. [PMID: 20699657 PMCID: PMC3115169 DOI: 10.4161/psb.5.8.12135] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 04/21/2010] [Indexed: 05/18/2023]
Abstract
Regulation of the transcriptome is necessary for plants to acquire cold tolerance, and cold induces several genes via a cold signaling pathway. The transcription factors CBF/DREB1 (C-repeat binding factor/dehydration responsive element binding1) and ICE1 (inducer of CBF expression1) have important roles in the regulation of cold-responsive gene expression. ICE1 is post-translationally regulated by ubiquitylation-mediated proteolysis and sumoylation. This mini-review highlights some recent studies on plant cold signaling. The relationships among cold signaling, salicylic acid accumulation and stomatal development are also discussed.
Collapse
Affiliation(s)
- Mickael Lissarre
- University of Tsukuba and INRA Joint Lab (TIL); Gene Research Center; Tsukuba, Japan; INRA UMR Biologie du Fruit; Villenave D'Ornon, France
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| | - Masaru Ohta
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| | - Aiko Sato
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| |
Collapse
|
144
|
Divi UK, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC PLANT BIOLOGY 2010; 10:151. [PMID: 20642851 PMCID: PMC3095295 DOI: 10.1186/1471-2229-10-151] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 07/19/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Brassinosteroids (BRs) play crucial roles in plant development and also promote tolerance to a range of abiotic stresses. Although much has been learned about their roles in plant development, the mechanisms by which BRs control plant stress responses and regulate stress-responsive gene expression are not fully known. Since BR interacts with other plant hormones, it is likely that the stress tolerance conferring ability of BR lies in part in its interactions with other stress hormones. RESULTS Using a collection of Arabidopsis mutants that are either deficient in or insensitive to abscisic acid (ABA), ethylene (ET), jasmonic acid (JA) and salicylic acid (SA), we studied the effects of 24-epibrassinloide (EBR) on basic thermotolerance and salt tolerance of these mutants. The positive impact of EBR on thermotolerance in proportion to wild type was evident in all mutants studied, with the exception of the SA-insensitive npr1-1 mutant. EBR could rescue the ET-insensitive ein2 mutant from its hypersensitivity to salt stress-induced inhibition of seed germination, but remained ineffective in increasing the survival of eto1-1 (ET-overproducer) and npr1-1 seedlings on salt. The positive effect of EBR was significantly greater in the ABA-deficient aba1-1 mutant as compared to wild type, indicating that ABA masks BR effects in plant stress responses. Treatment with EBR increased expression of various hormone marker genes in both wild type and mutant seedlings, although to different levels. CONCLUSIONS These results together indicate that the redox-sensitive protein NPR1 (NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1), a master regulator of SA-mediated defense genes, is likely a critical component of EBR-mediated increase in thermotolerance and salt tolerance, but it is not required for EBR-mediated induction of PR-1 (PATHOGENESIS-RELATED1) gene expression; that BR exerts anti-stress effects independently as well as through interactions with other hormones; that ABA inhibits BR effects during stress; and that BR shares transcriptional targets with other hormones.
Collapse
Affiliation(s)
- Uday K Divi
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Tawhidur Rahman
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Priti Krishna
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
145
|
Yang H, Shi Y, Liu J, Guo L, Zhang X, Yang S. A mutant CHS3 protein with TIR-NB-LRR-LIM domains modulates growth, cell death and freezing tolerance in a temperature-dependent manner in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:283-296. [PMID: 20444230 DOI: 10.1111/j.1365-313x.2010.04241.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Low temperature is one of environmental factors that restrict plant growth homeostasis and plant-pathogen interactions. Recent studies suggest a link between temperature responses and defense responses; however, the underlying molecular mechanisms remain unclear. In this study, the chilling sensitive 3 (chs3-1) mutant in Arabidopsis was characterized. chs3-1 plants showed arrested growth and chlorosis when grown at 16 degrees C or when shifted from 22 to 4 degrees C. chs3-1 plants also exhibited constitutively activated defense responses at 16 degrees C, which were alleviated at a higher temperature (22 degrees C). Map-based cloning of CHS3 revealed that it encodes an unconventional disease resistance (R) protein belonging to the TIR-NB-LRR class with a zinc-binding LIM domain (Lin-11, Isl-1 and Mec-3 domains) at the carboxyl terminus. The chs3-1 mutation in the conserved LIM-containing domain led to the constitutive activation of the TIR-NB-LRR domain. Consistently, the growth and defense phenotypes of chs3-1 plants were completely suppressed by eds1, sgt1b and rar1, partially by pad4 and nahG, but not by npr1 and ndr1. Intriguingly, chs3-1 plants grown at 16 degrees C showed enhanced tolerance to freezing temperatures. This tolerance was correlated with growth defect and cell death phenotypes caused by activated defense responses. Other mutants with activated defense responses, including cpr1, cpr5 and slh1 also displayed enhanced freezing tolerance. These findings revealed a role of an unconventional mutant R gene in plant growth, defense response and cold stress, suggesting a mutual interaction between cold signaling and defense responses.
Collapse
Affiliation(s)
- Haibian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193
| | - Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193
| | - Lin Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193
- National Plant Gene Research Center, Beijing 100193, China
| |
Collapse
|
146
|
Makandar R, Nalam V, Chaturvedi R, Jeannotte R, Sparks AA, Shah J. Involvement of salicylate and jasmonate signaling pathways in Arabidopsis interaction with Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:861-70. [PMID: 20521949 PMCID: PMC4164197 DOI: 10.1094/mpmi-23-7-0861] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Fusarium graminearum is the principal causative agent of Fusarium head blight (FHB), a devastating disease of wheat and barley. This fungus can also colonize Arabidopsis thaliana. Disease resistance was enhanced in transgenic wheat and Arabidopsis plants that constitutively overexpress the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) gene, which regulates salicylic acid (SA) signaling and modulates the activation of jasmonic acid (JA)-dependent defenses. Here, we provide several lines of evidence that reveal an important role for SA and JA signaling in Arabidopsis defense against F. graminearum. SA level was elevated in fungus-inoculated leaves, and SA application and biologically activated systemic acquired resistance enhanced resistance. Furthermore, the disruption of SA accumulation and signaling in the sid2 mutant and NahG transgenic plant, and the npr1 and wrky18 mutants, respectively, resulted in heightened susceptibility to this fungus in leaves and inflorescence. JA signaling was activated in parallel with SA signaling in the fungus-challenged plants. However, the hyperresistance of the JA pathway mutants opr3, coi1, and jar1 indicates that this pathway contributes to susceptibility. Genetic and biochemical experiments indicate that the JA pathway promotes disease by attenuating the activation of SA signaling in fungus-inoculated plants. However, the hypersusceptibility of the jar1 npr1 double mutant compared with the npr1 mutant suggests that JAR1 also contributes to defense, signifying a dichotomous role of JA and a JAR1-dependent mechanism in this interaction.
Collapse
Affiliation(s)
- Ragiba Makandar
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
- Department of Plant Sciences, University of Hyderabad, Gachibowli, Hyderabad, India
| | - Vamsi Nalam
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Ratnesh Chaturvedi
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard Jeannotte
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Alexis A. Sparks
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
147
|
Wawrzynska A, Rodibaugh NL, Innes RW. Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:578-84. [PMID: 20367466 PMCID: PMC3290096 DOI: 10.1094/mpmi-23-5-0578] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Loss-of-function mutations in the EDR1 gene of Arabidopsis confer enhanced resistance to Golovinomyces cichoracearum (powdery mildew). Disease resistance mediated by the edr1 mutation is dependent on an intact salicylic acid (SA) signaling pathway, but edr1 mutant plants do not constitutively express the SA-inducible gene PR-1 and are not dwarfed. To identify other components of the EDR1 signaling network, we screened for mutations that enhanced the edr1 mutant phenotype. Here, we describe an enhancer of edr1 mutant, eed3, which forms spontaneous lesions in the absence of pathogen infection, constitutively expresses both SA- and methyl jasmonate (JA)-inducible defense genes, and is dwarfed. Positional cloning of eed3 revealed that the mutation causes a premature stop codon in GLUCAN SYNTHASE-LIKE 5 (GSL5, also known as POWDERY MILDEW RESISTANT 4), which encodes a callose synthase required for pathogen-induced callose production. Significantly, gsl5 single mutants do not constitutively express PR-1 or AtERF1 (a JA-inducible gene) and are not dwarfed. Thus, loss of both EDR1 and GSL5 function has a synergistic effect. Our data suggest that EDR1 and GSL5 negatively regulate SA and JA production or signaling by independent mechanisms and that negative regulation of defense signaling by GSL5 may be independent of callose production.
Collapse
|
148
|
Seo PJ, Park CM. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. THE NEW PHYTOLOGIST 2010; 186:471-83. [PMID: 20149112 DOI: 10.1111/j.1469-8137.2010.03183.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
*The Arabidopsis MYB96 transcription factor plays a role in abscisic acid (ABA)-mediated drought response. Notably, anthocyanins accumulate in the activation-tagging myb96-1d line, suggesting a role of MYB96 in biotic and abiotic stress responses in plants. Here, we investigate the role of MYB96 in salicylic acid (SA) biosynthesis and plant defense and explore the mechanisms underlying the ABA-SA interaction. *myb96-1d and myb96-1 were subject to pathogen infection assays, and expression of SA biosynthetic and defense genes was examined. myb96-1d was crossed with the NahG transgenic plants to investigate the role of MYB96 in ABA regulation of SA biosynthesis. *Whereas myb96-1d exhibited an enhanced disease resistance, myb96-1 was susceptible to pathogen infection. A subset of pathogenesis-related (PR) genes was up-regulated in myb96-1d. However, PR transcript abundances were reduced in myb96-1d X NahG. Interestingly, a SA biosynthetic gene SALICYLIC ACID INDUCTION DEFICIENT2 (SID2) was up-regulated, and concentrations of SA and SA-beta-glucoside (SAG) were elevated in myb96-1d. In addition, the inductive effects of abiotic stresses on SID2 were reduced in aba3-1. *Our observations indicate that MYB96-mediated ABA signals enhance plant disease resistance by inducing SA biosynthesis. It is envisioned that MYB96 is a molecular link that mediates ABA-SA crosstalks.
Collapse
Affiliation(s)
- Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | | |
Collapse
|
149
|
Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, Xie Q. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:12-23. [PMID: 20042021 DOI: 10.1111/j.1365-313x.2009.04120.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Geminiviruses include a large number of single-stranded DNA viruses that are emerging as useful tools to dissect many fundamental processes in plant hosts. However, there have been no reports yet regarding the genetic dissection of the geminivirus-plant interaction. Here, a high-throughput approach was developed to screen Arabidopsis activation-tagged mutants which are resistant to geminivirus Beet severe curly top virus (BSCTV) infection. A mutant, lsb1 (less susceptible to BSCTV 1), was identified, in which BSCTV replication was impaired and BSCTV infectivity was reduced. We found that the three genes closest to the T-DNA were up-regulated in lsb1, and the phenotypes of lsb1 could only be recapitulated by the overexpression of GDU3 (GLUTAMINE DUMPER 3), a gene implicated in amino acid transport. We further demonstrated that activation of LSB1/GDU3 increased the expression of components in the salicylic acid (SA) pathway, which is known to counter geminivirus infection, including the upstream regulator ACD6. These data indicate that up-regulation of LSB1/GDU3 affects BSCTV infection by activating the SA pathway. This study thus provides a new approach to study of the geminivirus-host interaction.
Collapse
Affiliation(s)
- Hao Chen
- Stake Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 West Xin-Gang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Mosher S, Moeder W, Nishimura N, Jikumaru Y, Joo SH, Urquhart W, Klessig DF, Kim SK, Nambara E, Yoshioka K. The lesion-mimic mutant cpr22 shows alterations in abscisic acid signaling and abscisic acid insensitivity in a salicylic acid-dependent manner. PLANT PHYSIOLOGY 2010; 152:1901-13. [PMID: 20164209 PMCID: PMC2850030 DOI: 10.1104/pp.109.152603] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/15/2010] [Indexed: 05/19/2023]
Abstract
A number of Arabidopsis (Arabidopsis thaliana) lesion-mimic mutants exhibit alterations in both abiotic stress responses and pathogen resistance. One of these mutants, constitutive expresser of PR genes22 (cpr22), which has a mutation in two cyclic nucleotide-gated ion channels, is a typical lesion-mimic mutant exhibiting elevated levels of salicylic acid (SA), spontaneous cell death, constitutive expression of defense-related genes, and enhanced resistance to various pathogens; the majority of its phenotypes are SA dependent. These defense responses in cpr22 are suppressed under high-humidity conditions and enhanced by low humidity. After shifting plants from high to low humidity, the cpr22 mutant, but not the wild type, showed a rapid increase in SA levels followed by an increase in abscisic acid (ABA) levels. Concomitantly, genes for ABA metabolism were up-regulated in the mutant. The expression of a subset of ABA-inducible genes, such as RD29A and KIN1/2, was down-regulated, but that of other genes, like ABI1 and HAB1, was up-regulated in cpr22 after the humidity shift. cpr22 showed reduced responsiveness to ABA not only in abiotic stress responses but also in germination and stomatal closure. Double mutant analysis with nahG plants that degrade SA indicated that these alterations in ABA signaling were attributable to elevated SA levels. Furthermore, cpr22 displayed suppressed drought responses by long-term drought stress. Taken together, these results suggest an effect of SA on ABA signaling/abiotic stress responses during the activation of defense responses in cpr22.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Keiko Yoshioka
- Department of Cell and Systems Biology (S.M., W.M., W.U., E.N., K.Y.) and Center for the Analysis of Genome Evolution and Function (W.M., E.N., K.Y.), University of Toronto, Toronto, Ontario M5S 3B2, Canada; Division of Biological Sciences, Cell and Developmental Biology Section, and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093–0116 (N.N.); Growth Regulation Research Group, RIKEN Plant Science Center, Suehiro-cho, Tsurumi-ku, Yokohama 230–0045, Japan (Y.J., E.N.); Department of Life Science, Chung-Ang University, Seoul 156–756, South Korea (S.-H.J., S.-K.K.); and Boyce Thompson Institute for Plant Research, Ithaca, New York 14850 (D.F.K.)
| |
Collapse
|