101
|
Gizowski C, Zaelzer C, Bourque CW. Activation of organum vasculosum neurons and water intake in mice by vasopressin neurons in the suprachiasmatic nucleus. J Neuroendocrinol 2018; 30. [PMID: 29405459 DOI: 10.1111/jne.12577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 01/27/2018] [Indexed: 01/24/2023]
Abstract
Previous studies have shown that mice housed under 12:12 h light-dark conditions display a pronounced increase in water intake during a 2-hour anticipatory period (AP) near the end of their active period (Zeitgeber Time ZT; ZT21.5-ZT23.5) compared to the preceding basal period (BP, ZT19.5-ZT21.5). This increased water intake during the AP is not associated with physiological stimuli for thirst, such as food intake, hyperosmolality, hyperthermia, or hypovolemia. Denying mice the water intake supplement during the AP causes them to be dehydrated at wake time. These observations suggest that this form of thirst may be driven by the circadian clock and serve to mitigate the dehydrating effect of absence of water intake during sleep. Here we review recent findings showing that this behavior is mediated by vasopressin (VP) containing neurons in the suprachiasmatic nucleus (SCN). SCN VP neurons project to the organum vasculosum lamina terminalis (OVLT) where the activity dependent release of VP causes excitation of thirst-promoting neurons. SCN VP neurons increase their electrical activity during the AP and the resultant release of VP causes an increase in the action potential firing rate of OVLT neurons. Experiments involving optogenetic control of VP release from the axon terminals of SCN neurons indicate that this network mechanism is necessary and sufficient to mediate pre-sleep water intake in mice. These findings provide insight into the output mechanisms that are used by the central clock to generate circadian rhythms, and reveal that the regulation of water intake contributes to osmoregulatory homeostasis during sleep. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Claire Gizowski
- Centre for Research in Neuroscience, Research Institute, of the McGill University Health Centre, Montreal Ge neral Hospital, 1650 Cedar Avenue, Montreal, QC, Canada, H3G1A4
| | - Cristian Zaelzer
- Centre for Research in Neuroscience, Research Institute, of the McGill University Health Centre, Montreal Ge neral Hospital, 1650 Cedar Avenue, Montreal, QC, Canada, H3G1A4
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute, of the McGill University Health Centre, Montreal Ge neral Hospital, 1650 Cedar Avenue, Montreal, QC, Canada, H3G1A4
| |
Collapse
|
102
|
Yu S, François M, Huesing C, Münzberg H. The Hypothalamic Preoptic Area and Body Weight Control. Neuroendocrinology 2018; 106:187-194. [PMID: 28772276 PMCID: PMC6118330 DOI: 10.1159/000479875] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/26/2017] [Indexed: 01/09/2023]
Abstract
The preoptic area (POA) of the hypothalamus is involved in many physiological and behavioral processes thanks to its interconnections to many brain areas and ability to respond to diverse humoral factors. One main function of the POA is to manage body temperature homeostasis, e.g. in response to ambient temperature change, which is achieved in part by controlling brown adipose tissue thermogenesis. The POA is also importantly involved in modulating food intake in response to temperature change, thus making it relevant for body weight homeostasis and obesity research. POA function in body weight control is highly unexplored, and a better understanding of POA circuits and their integration into classic hypothalamic circuits that regulate energy homeostasis is expected to provide new opportunities for the scientific basis and treatment of obesity and comorbidities.
Collapse
|
103
|
Blackburn MB, Andrade MA, Toney GM. Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation. J Appl Physiol (1985) 2017; 124:1233-1243. [PMID: 29357503 DOI: 10.1152/japplphysiol.00743.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blackburn MB, Andrade MA, Toney GM. Hypothalamic PVN contributes to acute intermittent hypoxia-induced sympathetic but not phrenic long-term facilitation. J Appl Physiol 124: 1233-1243, 2018. First published December 19, 2017; doi: 10.1152/japplphysiol.00743.2017 .- Acute intermittent hypoxia (AIH) repetitively activates the arterial chemoreflex and triggers a progressive increase of sympathetic nerve activity (SNA) and phrenic nerve activity (PNA) referred to as sympathetic and phrenic long-term facilitation (S-LTF and P-LTF), respectively. Neurons of the hypothalamic paraventricular nucleus (PVN) participate in the arterial chemoreflex, but their contribution to AIH-induced LTF is unknown. To determine this, anesthetized rats were vagotomized and exposed to 10 cycles of AIH, each consisting of ventilation for 3 min with 100% O2 followed by 3 min with 15% O2. Before AIH, rats received bilateral PVN injections of artificial cerebrospinal fluid (aCSF; vehicle) or the GABA-A receptor agonist muscimol (100 pmol in 50 nl) to inhibit neuronal activity. Thirty minutes after completing the AIH protocol, during which rats were continuously ventilated with 100% O2, S-LTF and P-LTF were quantified from recordings of integrated splanchnic SNA and PNA, respectively. PVN muscimol attenuated increases of SNA during hypoxic episodes occurring in later cycles (6-10) of AIH ( P < 0.03) and attenuated post-AIH S-LTF ( P < 0.001). Muscimol, however, did not consistently affect peak PNA responses during hypoxic episodes and did not alter AIH-induced P-LTF. These findings indicate that PVN neuronal activity contributes to sympathetic responses during AIH and to subsequent generation of S-LTF. NEW & NOTEWORTHY Neural circuits mediating acute intermittent hypoxia (AIH)-induced sympathetic and phrenic long-term facilitation (LTF) have not been fully elucidated. We found that paraventricular nucleus (PVN) inhibition attenuated sympathetic activation during episodes of AIH and reduced post-AIH sympathetic LTF. Neither phrenic burst patterning nor the magnitude of AIH-induced phrenic LTF was affected. Findings indicate that PVN neurons contribute to AIH-induced sympathetic LTF. Defining mechanisms of sympathetic LTF could improve strategies to reduce sympathetic activity in cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Megan B Blackburn
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
104
|
Persson PB, Bondke Persson A. Can we make physiological research better? Acta Physiol (Oxf) 2017; 221:224-226. [PMID: 29055074 DOI: 10.1111/apha.12987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 01/06/2023]
Affiliation(s)
- P. B. Persson
- Charité-Universitätsmedizin Berlin; corporate member of Freie Universität Berlin; Humboldt-Universität zu Berlin; and Berlin Institute of Health; Institute of Vegetative Physiology; Berlin Germany
| | - A. Bondke Persson
- Charité-Universitätsmedizin Berlin; corporate member of Freie Universität Berlin; Humboldt-Universität zu Berlin; and Berlin Institute of Health; Berlin Germany
| |
Collapse
|
105
|
Abstract
Water intake is one of the most basic physiological responses and is essential to sustain life. The perception of thirst has a critical role in controlling body fluid homeostasis and if neglected or dysregulated can lead to life-threatening pathologies. Clear evidence suggests that the perception of thirst occurs in higher-order centres, such as the anterior cingulate cortex (ACC) and insular cortex (IC), which receive information from midline thalamic relay nuclei. Multiple brain regions, notably circumventricular organs such as the organum vasculosum lamina terminalis (OVLT) and subfornical organ (SFO), monitor changes in blood osmolality, solute load and hormone circulation and are thought to orchestrate appropriate responses to maintain extracellular fluid near ideal set points by engaging the medial thalamic-ACC/IC network. Thirst has long been thought of as a negative homeostatic feedback response to increases in blood solute concentration or decreases in blood volume. However, emerging evidence suggests a clear role for thirst as a feedforward adaptive anticipatory response that precedes physiological challenges. These anticipatory responses are promoted by rises in core body temperature, food intake (prandial) and signals from the circadian clock. Feedforward signals are also important mediators of satiety, inhibiting thirst well before the physiological state is restored by fluid ingestion. In this Review, we discuss the importance of thirst for body fluid balance and outline our current understanding of the neural mechanisms that underlie the various types of homeostatic and anticipatory thirst.
Collapse
Affiliation(s)
- Claire Gizowski
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre and Montreal General Hospital, 1650 Cedar Avenue, Montreal H3G1A4, Canada
| |
Collapse
|
106
|
Abbott SBG, Saper CB. Median preoptic glutamatergic neurons promote thermoregulatory heat loss and water consumption in mice. J Physiol 2017; 595:6569-6583. [PMID: 28786483 PMCID: PMC5638873 DOI: 10.1113/jp274667] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 07/28/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Glutamatergic neurons in the median preoptic area were stimulated using genetically targeted Channelrhodopsin 2 in transgenic mice. Stimulation of glutamatergic median preoptic area neurons produced a profound hypothermia due to cutaneous vasodilatation. Stimulation also produced drinking behaviour that was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. ABSTRACT The median preoptic nucleus (MnPO) serves an important role in the integration of water/electrolyte homeostasis and thermoregulation, but we have a limited understanding these functions at a cellular level. Using Cre-Lox genetic targeting of Channelrhodospin 2 in VGluT2 transgenic mice, we examined the effect of glutamatergic MnPO neuron stimulation in freely behaving mice while monitoring drinking behaviour and core temperature. Stimulation produced a strong hypothermic response in 62% (13/21) of mice (core temperature: -4.6 ± 0.5°C, P = 0.001 vs. controls) caused by cutaneous vasodilatation. Stimulating glutamatergic MnPO neurons also produced robust drinking behaviour in 82% (18/22) of mice. Mice that drank during stimulation consumed 912 ± 163 μl (n = 8) during a 20 min trial in the dark phase, but markedly less during the light phase (421 ± 83 μl, P = 0.0025). Also, drinking during stimulation was inhibited as water was ingested, suggesting pre-systemic feedback gating of drinking. Both hypothermia and drinking during stimulation occurred in 50% of mice tested. Anatomical mapping of the stimulation sites showed that sites associated with hypothermia were more anteroventral than those associated with drinking, although there was substantial overlap. Thus, activation of separate but overlapping populations of glutamatergic MnPO neurons produces effects on drinking and autonomic thermoregulatory mechanisms, providing a structural basis for their frequently being coordinated (e.g. during hyperthermia).
Collapse
Affiliation(s)
- Stephen B. G. Abbott
- Department of NeurologyBeth Israel‐Deaconess Medical Center ‐ Harvard Medical SchoolBostonMAUSA
- The Heart Research InstituteSydneyAustralia
| | - Clifford B. Saper
- Department of NeurologyBeth Israel‐Deaconess Medical Center ‐ Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
107
|
Prolactin action in the medial preoptic area is necessary for postpartum maternal nursing behavior. Proc Natl Acad Sci U S A 2017; 114:10779-10784. [PMID: 28923971 DOI: 10.1073/pnas.1708025114] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pregnancy hormones, such as prolactin, sensitize neural circuits controlling parental interactions to induce timely activation of maternal behaviors immediately after parturition. While the medial preoptic area (MPOA) is known to be critical for maternal behavior, the specific role of prolactin in this brain region has remained elusive. Here, we evaluated the role of prolactin action in the MPOA using complementary genetic strategies in mice. We characterized prolactin-responsive neurons within the MPOA at different hormonal stages and delineated their projections in the brain. We found that MPOA neurons expressing prolactin receptors (Prlr) form the nexus of a complex prolactin-responsive neural circuit, indicating that changing prolactin levels can act at multiple sites and thus, impinge on the overall activity of a distributed network of neurons. Conditional KO of Prlr from neuronal subpopulations expressing the neurotransmitters GABA or glutamate within this circuit markedly reduced the capacity for prolactin action both in the MPOA and throughout the network. Each of these manipulations, however, produced only subtle impacts on maternal care, suggesting that this distributed circuit is robust with respect to alterations in prolactin signaling. In contrast, acute deletion of Prlr in all MPOA neurons of adult female mice resulted in profound deficits in maternal care soon after birth. All mothers abandoned their pups, showing that prolactin action on MPOA neurons is necessary for the normal expression of postpartum maternal behavior in mice. Our data establish a critical role for prolactin-induced behavioral responses in the maternal brain, ensuring survival of mammalian offspring.
Collapse
|
108
|
Cerri M, Luppi M, Tupone D, Zamboni G, Amici R. REM Sleep and Endothermy: Potential Sites and Mechanism of a Reciprocal Interference. Front Physiol 2017; 8:624. [PMID: 28883799 PMCID: PMC5573803 DOI: 10.3389/fphys.2017.00624] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/11/2017] [Indexed: 01/11/2023] Open
Abstract
Numerous data show a reciprocal interaction between REM sleep and thermoregulation. During REM sleep, the function of thermoregulation appears to be impaired; from the other hand, the tonic activation of thermogenesis, such as during cold exposure, suppresses REM sleep occurrence. Recently, both the central neural network controlling REM sleep and the central neural network controlling thermoregulation have been progressively unraveled. Thermoregulation was shown to be controlled by a central “core” circuit, responsible for the maintenance of body temperature, modulated by a set of accessory areas. REM sleep was suggested to be controlled by a group of hypothalamic neurons overlooking at the REM sleep generating circuits within the brainstem. The two networks overlap in a few areas, and in this review, we will suggest that in such overlap may reside the explanation of the reciprocal interaction between REM sleep and thermoregulation. Considering the peculiar modulation of thermoregulation by REM sleep the result of their coincidental evolution, REM sleep may therefore be seen as a period of transient heterothermy.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Giovanni Zamboni
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, University of BolognaBologna, Italy
| |
Collapse
|
109
|
Insulin-like growth factor 1 receptor regulates hypothermia during calorie restriction. Proc Natl Acad Sci U S A 2017; 114:9731-9736. [PMID: 28827363 DOI: 10.1073/pnas.1617876114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
When food resources are scarce, endothermic animals can lower core body temperature (Tb). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent Tb regulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.
Collapse
|
110
|
Glutamatergic Preoptic Area Neurons That Express Leptin Receptors Drive Temperature-Dependent Body Weight Homeostasis. J Neurosci 2017; 36:5034-46. [PMID: 27147656 DOI: 10.1523/jneurosci.0213-16.2016] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The preoptic area (POA) regulates body temperature, but is not considered a site for body weight control. A subpopulation of POA neurons express leptin receptors (LepRb(POA) neurons) and modulate reproductive function. However, LepRb(POA) neurons project to sympathetic premotor neurons that control brown adipose tissue (BAT) thermogenesis, suggesting an additional role in energy homeostasis and body weight regulation. We determined the role of LepRb(POA) neurons in energy homeostasis using cre-dependent viral vectors to selectively activate these neurons and analyzed functional outcomes in mice. We show that LepRb(POA) neurons mediate homeostatic adaptations to ambient temperature changes, and their pharmacogenetic activation drives robust suppression of energy expenditure and food intake, which lowers body temperature and body weight. Surprisingly, our data show that hypothermia-inducing LepRb(POA) neurons are glutamatergic, while GABAergic POA neurons, originally thought to mediate warm-induced inhibition of sympathetic premotor neurons, have no effect on energy expenditure. Our data suggest a new view into the neurochemical and functional properties of BAT-related POA circuits and highlight their additional role in modulating food intake and body weight. SIGNIFICANCE STATEMENT Brown adipose tissue (BAT)-induced thermogenesis is a promising therapeutic target to treat obesity and metabolic diseases. The preoptic area (POA) controls body temperature by modulating BAT activity, but its role in body weight homeostasis has not been addressed. LepRb(POA) neurons are BAT-related neurons and we show that they are sufficient to inhibit energy expenditure. We further show that LepRb(POA) neurons modulate food intake and body weight, which is mediated by temperature-dependent homeostatic responses. We further found that LepRb(POA) neurons are stimulatory glutamatergic neurons, contrary to prevalent models, providing a new view on thermoregulatory neural circuits. In summary, our study significantly expands our current understanding of central circuits and mechanisms that modulate energy homeostasis.
Collapse
|
111
|
Abstract
Thirst motivates animals to find and consume water. More than 40 years ago, a set of interconnected brain structures known as the lamina terminalis was shown to govern thirst. However, owing to the anatomical complexity of these brain regions, the structure and dynamics of their underlying neural circuitry have remained obscure. Recently, the emergence of new tools for neural recording and manipulation has reinvigorated the study of this circuit and prompted re-examination of longstanding questions about the neural origins of thirst. Here, we review these advances, discuss what they teach us about the control of drinking behaviour and outline the key questions that remain unanswered.
Collapse
Affiliation(s)
- Christopher A Zimmerman
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| | - David E Leib
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| | - Zachary A Knight
- Department of Physiology, the Kavli Institute for Fundamental Neuroscience and the Neuroscience Graduate Program, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
112
|
Silvani A. Orexins and the cardiovascular events of awakening. Temperature (Austin) 2017; 4:128-140. [PMID: 28680929 DOI: 10.1080/23328940.2017.1295128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 10/20/2022] Open
Abstract
This brief review aims to provide an updated account of the cardiovascular events of awakening, proposing a testable conceptual framework that links these events with the neural control of sleep and the autonomic nervous system, with focus on the hypothalamic orexin (hypocretin) neurons. Awakening from non-rapid-eye-movement sleep entails coordinated changes in brain and cardiovascular activity: the neural "flip-flop" switch that governs state transitions becomes biased toward the ascending arousal systems, arterial blood pressure and heart rate rise toward waking values, and distal skin temperature falls. Arterial blood pressure and skin temperature are sensed by baroreceptors and thermoreceptors and may positively feedback on the brain wake-sleep switch, thus contributing to sharpen, coordinate, and stabilize awakening. These effects may be enhanced by the hypothalamic orexin neurons, which may modulate the changes in blood pressure, heart rate, and skin temperature upon awakening, while biasing the wake-sleep switch toward wakefulness through direct neural projections. A deeper understanding of the cardiovascular events of awakening and of their links with skin temperature and the wake-sleep neural switch may lead to better treatments options for patients with narcolepsy type 1, who lack the orexin neurons.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
113
|
|
114
|
Faulk K, Shell B, Nedungadi TP, Cunningham JT. Role of angiotensin-converting enzyme 1 within the median preoptic nucleus following chronic intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2017; 312:R245-R252. [PMID: 28003214 PMCID: PMC5336571 DOI: 10.1152/ajpregu.00472.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/02/2016] [Accepted: 12/15/2016] [Indexed: 01/08/2023]
Abstract
Sustained hypertension is an important consequence of obstructive sleep apnea. An animal model of the hypoxemia associated with sleep apnea, chronic intermittent hypoxia (CIH), produces increased sympathetic nerve activity (SNA) and sustained increases in blood pressure. Many mechanisms have been implicated in the hypertension associated with CIH, including the role of ΔFosB within the median preoptic nucleus (MnPO). Also, the renin-angiotensin system (RAS) has been associated with CIH hypertension. We conducted experiments to determine the possible association of FosB/ΔFosB with a RAS component, angiotensin-converting enzyme 1 (ACE1), within the MnPO following 7 days of CIH. Retrograde tract tracing from the paraventricular nucleus (PVN), a downstream region of the MnPO, was used to establish a potential pathway for FosB/ΔFosB activation of MnPO ACE1 neurons. After CIH, ACE1 cells with FosB/ΔFosB expression increased colocalization with a retrograde tracer that was injected unilaterally within the PVN. Also, Western blot examination showed ACE1 protein expression increasing within the MnPO following CIH. Chromatin immunoprecipitation (ChIP) assays demonstrated an increase in FosB/ΔFosB association with the ACE1 gene within the MnPO following CIH. FosB/ΔFosB may transcriptionally target ACE1 within the MnPO following CIH to affect the downstream PVN region, which may influence SNA and blood pressure.
Collapse
Affiliation(s)
- Katelynn Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Brent Shell
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - T Prashant Nedungadi
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
- American Heart Association, Dallas, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| |
Collapse
|
115
|
Kawano H. Synaptic contact between median preoptic neurons and subfornical organ neurons projecting to the paraventricular hypothalamic nucleus. Exp Brain Res 2017; 235:1053-1062. [DOI: 10.1007/s00221-016-4862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/20/2016] [Indexed: 11/28/2022]
|
116
|
|
117
|
Guyenet PG. Putative Mechanism of Salt-Dependent Neurogenic Hypertension: Cell-Autonomous Activation of Organum Vasculosum Laminae Terminalis Neurons by Hypernatremia. Hypertension 2016; 69:20-22. [PMID: 27895191 DOI: 10.1161/hypertensionaha.116.08470] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville.
| |
Collapse
|
118
|
Abstract
Autonomic thermoregulation is a recently acquired function, as it appears for the first time in mammals and provides the brain with the ability to control energy expenditure. The importance of such control can easily be highlighted by the ability of a heterogeneous group of mammals to actively reduce metabolic rate and enter a condition of regulated hypometabolism known as torpor. The central neural circuits of thermoregulatory cold defense have been recently unraveled and could in theory be exploited to reduce energy expenditure in species that do not normally use torpor, inducing a state called synthetic torpor. This approach may represent the first steps toward the development of a technology to induce a safe and reversible state of hypometabolism in humans, unlocking many applications ranging from new medical procedures to deep space travel.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, Physiology Division, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
119
|
Tan CL, Cooke EK, Leib DE, Lin YC, Daly GE, Zimmerman CA, Knight ZA. Warm-Sensitive Neurons that Control Body Temperature. Cell 2016; 167:47-59.e15. [PMID: 27616062 DOI: 10.1016/j.cell.2016.08.028] [Citation(s) in RCA: 261] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/22/2016] [Accepted: 08/13/2016] [Indexed: 01/12/2023]
Abstract
Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.
Collapse
Affiliation(s)
- Chan Lek Tan
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Elizabeth K Cooke
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Leib
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yen-Chu Lin
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn E Daly
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christopher A Zimmerman
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zachary A Knight
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
120
|
Dampney RAL. Central neural control of the cardiovascular system: current perspectives. ADVANCES IN PHYSIOLOGY EDUCATION 2016; 40:283-296. [PMID: 27445275 DOI: 10.1152/advan.00027.2016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
This brief review, which is based on a lecture presented at the American Physiological Society Teaching Refresher Course on the Brain and Systems Control as part of the Experimental Biology meeting in 2015, aims to summarize current concepts of the principal mechanisms in the brain that regulate the autonomic outflow to the cardiovascular system. Such cardiovascular regulatory mechanisms do not operate in isolation but are closely coordinated with respiratory and other regulatory mechanisms to maintain homeostasis. The brain regulates the cardiovascular system by two general means: 1) feedforward regulation, often referred to as "central command," and 2) feedback or reflex regulation. In most situations (e.g., during exercise, defensive behavior, sleep, etc.), both of these general mechanisms contribute to overall cardiovascular homeostasis. The review first describes the mechanisms and central circuitry subserving the baroreceptor, chemoreceptor, and other reflexes that work together to regulate an appropriate level of blood pressure and blood oxygenation and then considers the brain mechanisms that defend the body against more complex environmental challenges, using dehydration and cold and heat stress as examples. The last section of the review considers the central mechanisms regulating cardiovascular function associated with different behaviors, with a specific focus on defensive behavior and exercise.
Collapse
Affiliation(s)
- Roger A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
121
|
Effects of interleukin-1 beta injections into the subfornical organ and median preoptic nucleus on sodium appetite, blood pressure and body temperature of sodium-depleted rats. Physiol Behav 2016; 163:149-160. [DOI: 10.1016/j.physbeh.2016.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
|
122
|
Abbott SBG, Machado NLS, Geerling JC, Saper CB. Reciprocal Control of Drinking Behavior by Median Preoptic Neurons in Mice. J Neurosci 2016; 36:8228-37. [PMID: 27488641 PMCID: PMC4971367 DOI: 10.1523/jneurosci.1244-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Stimulation of glutamatergic neurons in the subfornical organ drives drinking behavior, but the brain targets that mediate this response are not known. The densest target of subfornical axons is the anterior tip of the third ventricle, containing the median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT), a region that has also been implicated in fluid and electrolyte management. The neurochemical composition of this region is complex, containing both GABAergic and glutamatergic neurons, but the possible roles of these neurons in drinking responses have not been addressed. In mice, we show that optogenetic stimulation of glutamatergic neurons in MnPO/OVLT drives voracious water consumption, and that optogenetic stimulation of GABAergic neurons in the same region selectively reduces water consumption. Both populations of neurons have extensive projections to overlapping regions of the thalamus, hypothalamus, and hindbrain that are much more extensive than those from the subfornical organ, suggesting that the MnPO/OVLT serves as a key link in regulating drinking responses. SIGNIFICANCE STATEMENT Neurons in the median preoptic nucleus (MnPO) and organum vasculosum of the lamina terminalis (OVLT) are known to regulate fluid/electrolyte homeostasis, but few studies have examined this issue with an appreciation for the neurochemical heterogeneity of these nuclei. Using Cre-Lox genetic targeting of Channelrhodospin-2 in transgenic mice, we demonstrate that glutamate and GABA neurons in the MnPO/OVLT reciprocally regulate water consumption. Stimulating glutamatergic MnPO/OVLT neurons induced water consumption, whereas stimulating GABAergic MnPO neurons caused a sustained and specific reduction in water consumption in dehydrated mice, the latter highlighting a heretofore unappreciated role of GABAergic MnPO neurons in thirst regulation. These observations represent an important advance in our understanding of the neural circuits involved in the regulation of fluid/electrolyte homeostasis.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, Heart Research Institute, Sydney, Australia, and
| | - Natalia L S Machado
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215, Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte-MG 31270-901, Brazil
| | - Joel C Geerling
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215
| | - Clifford B Saper
- Department of Neurology, Beth Israel-Deaconess Medical Center-Harvard Medical School, Boston, Massachusetts 02215,
| |
Collapse
|
123
|
Affiliation(s)
- P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
124
|
Schneider NY, Piccin C, Datiche F, Coureaud G. Spontaneous brain processing of the mammary pheromone in rabbit neonates prior to milk intake. Behav Brain Res 2016; 313:191-200. [PMID: 27418440 DOI: 10.1016/j.bbr.2016.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/17/2022]
Abstract
Chemical signals play a critical role in interindividual communication, including mother-young relationships. Detecting odor cues released by the mammary area is vital to the newborn's survival. European rabbit females secret a mammary pheromone (MP) in their milk, which releases sucking-related orocephalic movements in newborns. Pups spontaneously display these typical movements at birth, independently of any perinatal learning. Our previous Fos mapping study (Charra et al., 2012) performed in 4-day-old rabbits showed that the MP activated a network of brain regions involved in osmoregulation, odor processing and arousal in comparison with a control odor. However, at this age, the predisposed appetitive value of the MP might be reinforced by previous milk intake. Here, the brain activation induced by the MP was examined by using Fos immunocytochemistry and compared to a neutral control odor in just born pups (day 0) that did not experienced milk intake. Compared to the control odor, the MP induced an increased Fos expression in the posterior piriform cortex. In the lateral hypothalamus, Fos immunostaining was combined with orexin detection since this peptide is involved in arousal/food-seeking behavior. The number of double-labeled cells was not different between MP and control odor stimulations but the total number of Fos stained cells was increased after MP exposure. Our results indicate that the MP does not activate the same regions in 0- vs. 4-day-old pups. This difference between the two ages may reflect a changing biological value of the MP in addition to its constant predisposed releasing value.
Collapse
Affiliation(s)
- Nanette Y Schneider
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, Dijon, France
| | - Coralie Piccin
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, Dijon, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation (Research Center for Taste and Feeding Behavior), UMR 6265 CNRS/1324 INRA/Université de Bourgogne Franche-Comté, Dijon, France.
| | - Gérard Coureaud
- Centre de Recherche en Neurosciences de Lyon (Lyon Neuroscience Research Center) INSERM U1028/CNRS UMR 5292/Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
125
|
Abstract
Central neural circuits orchestrate the behavioral and autonomic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response and behavioral states and in response to declining energy homeostasis. This review summarizes the central nervous system circuit mechanisms controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction regulating heat loss and shivering and brown adipose tissue for thermogenesis. The activation of these thermoeffectors is regulated by parallel but distinct efferent pathways within the central nervous system that share a common peripheral thermal sensory input. The model for the neural circuit mechanism underlying central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation, for elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation, and for the discovery of novel therapeutic approaches to modulating body temperature and energy homeostasis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
126
|
Affiliation(s)
- R. Mrowka
- Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| | - S. Reuter
- Experimentelle Nephrologie; Universitätsklinikum Jena; Jena Germany
| |
Collapse
|
127
|
Pennington GL, McKinley MJ. Neural Substrate Essential for Suppression of Vasopressin Secretion and Excretion of a Water Load. J Neuroendocrinol 2016; 28. [PMID: 26607053 DOI: 10.1111/jne.12341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022]
Abstract
Suppression of vasopressin secretion to very low levels is essential for the excretion of excess water. To investigate a role for the preoptic brain region in the suppression of vasopressin secretion and the excretion of a water load, lesions were made in the vicinity of the lamina terminalis in ewes (LTX-sheep) and responses to water-loading or reduction of cerebrospinal fluid NaCl by i.c.v. isotonic mannitol solution were investigated. In normal conscious sheep, intraruminal water-loading resulted in the urine flow rate increasing and urine osmolality decreasing within 1 h, such that renal free water clearance (CH 2O ) increased from -1.02 ± 0.16 ml/min (mean ± SEM) to a maximum of +4.99 ± 0.62 ml/min at 2.5 h after water-loading (P < 0.05, n = 6). Plasma vasopressin levels fell from 0.88 ± 0.17 pg/ml to undetectable levels (< 0.4 pg/ml, n = 4). In LTX-sheep (n = 6), CH 2O did not change significantly after water-loading (-1.78 ± 0.13 to -2.03 ± 0.49 ml/min at 2.5 h after water-loading). Plasma vasopressin levels were inappropriately elevated in water-loaded LTX-sheep (n = 3). Intracerebroventricular mannitol (1 ml/h for 2 h) resulted in a water diuresis and increase in CH 2O (-1.16 ± 0.12 to +2.81 ± 0.58 ml/min, P < 0.05) after 2 h in normal sheep, and plasma vasopressin levels fell significantly from to 0.88 ± 0.23 pg/ml to < 0.4 pg/ml (P < 0.05, n = 6). However, in LTX-sheep, there was no change in CH 2O (-1.31 ± 0.14 to -1.35 ± 0.12 ml/min) or the plasma vasopressin concentration (1.47 ± 0.18 to 1.60 ± 0.44 pg/ml, not significant) with i.c.v. mannitol. The results suggest that an inhibitory pathway from the vicinity of the median preoptic nucleus to the supraoptic and hypothalamic paraventricular nuclei plays an important role in the suppression of vasopressin secretion and the excretion of excess water.
Collapse
Affiliation(s)
- Glenn L Pennington
- Florey Institute of Neuroscience and Mental Health and Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Michael J McKinley
- Florey Institute of Neuroscience and Mental Health and Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
128
|
Charkoudian N, Stachenfeld N. Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Auton Neurosci 2016; 196:75-80. [DOI: 10.1016/j.autneu.2015.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/28/2015] [Accepted: 11/30/2015] [Indexed: 11/26/2022]
|
129
|
Flores Á, Julià-Hernández M, Maldonado R, Berrendero F. Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ(9) -tetrahydrocannabinol. Br J Pharmacol 2016; 173:1381-92. [PMID: 26799708 DOI: 10.1111/bph.13440] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 01/12/2016] [Accepted: 01/17/2016] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Anatomical, biochemical and pharmacological evidence suggest the existence of a crosstalk between the orexinergic and endocannabinoid systems. While the orexin receptor 1 (OX1 receptor) modulates the reinforcing properties of cannabinoids, the participation of orexins in the acute pharmacological effects of Δ(9) -tetrahydrocannabinol (THC) remains unexplored. EXPERIMENTAL APPROACH We assessed the possible role of orexins in THC-induced hypolocomotion, hypothermia, antinociception, anxiolytic- and anxiogenic-like effects and memory impairment. Selective OX1 and OX2 receptor antagonists and OX1 knockout (KO) mice as well as prepro-orexin (PPO) KO mice were used as pharmacological and genetic approaches. CB1 receptor levels in control and PPO KO mice were evaluated by immunoblot analysis. The expression of c-Fos after THC treatment was analysed in several brain areas in wild-type mice and in mice lacking the PPO gene. KEY RESULTS The hypothermia, supraspinal antinociception and anxiolytic-like effects induced by THC were modulated by orexins through OX2 receptor signalling. OX1 receptors did not seem to be involved in these THC responses. No differences in CB1 receptor levels were found between wild-type and PPO KO mice. THC-induced increase in c-Fos expression was reduced in the central amygdala, medial preoptic area and lateral septum in these mutant mice. CONCLUSIONS AND IMPLICATIONS Our results provide new findings to further clarify the interaction between orexins and cannabinoids. OX1 and OX2 receptors are differently implicated in the pharmacological effects of cannabinoids.
Collapse
Affiliation(s)
- África Flores
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Marina Julià-Hernández
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Fernando Berrendero
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| |
Collapse
|
130
|
Affiliation(s)
- Pontus B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin Germany
| |
Collapse
|
131
|
Cancelliere NM, Black EAE, Ferguson AV. Neurohumoral Integration of Cardiovascular Function by the Lamina Terminalis. Curr Hypertens Rep 2016; 17:93. [PMID: 26531751 DOI: 10.1007/s11906-015-0602-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanisms involved in cardiovascular regulation, such as vascular tone, fluid volume and blood osmolarity, are quite often mediated by signals circulating in the periphery, such as angiotensin II and sodium concentration. Research has identified areas within the lamina terminalis (LT), specifically the sensory circumventricular organs (CVOs), the subfornical organ and the organum vasculosum of the lamina terminalis, as playing crucial roles detecting and integrating information derived from these circulating signals. The median preoptic nucleus (MnPO) is a third integrative structure within the LT that influences cardiovascular homeostasis, although to date, its role is not as clearly elucidated. More recent studies have demonstrated that the CVOs are not only essential in the detection of traditional cardiovascular signals but also signals primarily considered to be important in the regulation of metabolic, reproductive and inflammatory processes that have now also been implicated in cardiovascular regulation. In this review, we highlight the critical roles played by the LT in the detection and integration of circulating signals that provide critical feedback control information contributing to cardiovascular regulation.
Collapse
Affiliation(s)
- Nicole M Cancelliere
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Emily A E Black
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
132
|
Morrison SF. Central neural control of thermoregulation and brown adipose tissue. Auton Neurosci 2016; 196:14-24. [PMID: 26924538 DOI: 10.1016/j.autneu.2016.02.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 12/26/2022]
Abstract
Central neural circuits orchestrate the homeostatic repertoire that maintains body temperature during environmental temperature challenges and alters body temperature during the inflammatory response. This review summarizes the experimental underpinnings of our current model of the CNS pathways controlling the principal thermoeffectors for body temperature regulation: cutaneous vasoconstriction controlling heat loss, and shivering and brown adipose tissue for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific, core efferent pathways within the CNS that share a common peripheral thermal sensory input. Via the lateral parabrachial nucleus, skin thermal afferent input reaches the hypothalamic preoptic area to inhibit warm-sensitive, inhibitory output neurons which control heat production by inhibiting thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to thermogenesis-controlling premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation of spinal circuits necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a useful platform for further understanding of the functional organization of central thermoregulation and elucidating the hypothalamic circuitry and neurotransmitters involved in body temperature regulation.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, Unites States.
| |
Collapse
|
133
|
Simm B, Ott D, Pollatzek E, Murgott J, Gerstberger R, Rummel C, Roth J. Effects of prostaglandin E2 on cells cultured from the rat organum vasculosum laminae terminalis and median preoptic nucleus. Neuroscience 2015; 313:23-35. [PMID: 26608124 DOI: 10.1016/j.neuroscience.2015.11.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 02/09/2023]
Abstract
The time course of the induction of enzymes responsible for the formation of prostaglandin E2 (PGE2) after an inflammatory insult, in relation to the concomitant febrile response, suggests that peripherally generated PGE2 is involved in the induction of the early phase of fever, while centrally produced PGE2 exerts pyrogenic capacities during the later stages of fever within the hypothalamic median preoptic nucleus (MnPO). The actions of peripherally derived PGE2 on the brain might occur at the level of the organum vasculosum laminae terminalis (OVLT), which lacks a tight blood-brain barrier and is implicated in fever, while the effects of PGE2 within the MnPO might interfere with glutamatergic neurotransmission within a recently characterized central efferent pathway for the activation of cold-defence reactions. Using the fura-2 ratio imaging technique we, therefore, measured changes of the intracellular Ca(2+)-concentration in primary neuroglial microcultures of rat OVLT and MnPO stimulated with PGE2 and/or glutamate. In cultures from the OVLT, as opposed to those derived from the MnPO, substantial numbers of neurons (8% of 385), astrocytes (19% of 645) and microglial cells (28% of 43) directly responded to PGE2 with a transient increase of intracellular Ca(2+). The most pronounced effect of PGE2 on cells from MnPO microcultures was its modulatory influence on the strength of glutamate-induced Ca(2+)-signals. In 72 out of 512 neurons and in 105 out of 715 astrocytes PGE2 significantly augmented glutamate-induced Ca(2+)-signals. About 30% of these neurons were GABAergic. These observations are in agreement with putative roles of peripheral PGE2 as a directly acting circulating agent at the level of the OVLT, and of central MnPO-intrinsic PGE2 as an enhancer of glutamatergic neurotransmission, which causes disinhibition of thermogenic heat production, a crucial component for the manifestation of fever. In microcultures from both brain sites investigated incubation with PGE2 significantly reduced the lipopolysaccharide-induced release of cytokines (tumor necrosis factor-α and interleukin-6) into the supernatant. PGE2, thus, seems to be involved in a negative feed-back loop to limit the strength of the brain inflammatory process and to play a dual role with pro- as well as anti-inflammatory properties.
Collapse
Affiliation(s)
- B Simm
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - D Ott
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - E Pollatzek
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - J Murgott
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - R Gerstberger
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - C Rummel
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - J Roth
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany.
| |
Collapse
|